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Abstract

In this paper, we study the problem of efficient data recovery using the data mules approach, where
a set of mobile sensors with advanced mobility capabilities re-acquire lost data by visiting the
neighbors of failed sensors, thereby avoiding permanent data loss in the network. Our approach
involves defining the optimal communication graph and mules’ placements such that the overall
traveling time and distance is minimized regardless to which sensors crashed. We explore this
problem under different practical network topologies such as arbitrary graphs, grids and random
linear networks and provide approximation algorithms based on multiple combinatorial techniques.
Simulation experiments demonstrate that our algorithms outperform various competitive solutions
for different network models, and that they are applicable for practical scenarios.

1. Problem formulation

A data mule is a vehicle that physically carries a computer with storage between remote locations
to effectively create a data communication link [21]. In ad-hoc networks, data mules are usually
used for data collection [5] or monitoring purposes [11] when the network topology is sparse or when
communication ability is limited. In this paper, we propose to extend the usage of data mules to
the critical task of network reliability. That is, using the advantages of mobility capabilities to
prevent losing crucial information while taking into consideration the additional operational costs.
We propose to model the penalty of a sensor crash as the cost of restoring its information loss,
and present several algorithms that minimize the total cost given any combination of failures. We
use concepts from graph theory to model the deployment of the ad-hoc network and give special
attention to linear and grid graph models, whose unique network characteristics makes them well
suited for many sensor applications such as monitoring of international borders, roads, rivers, as
well as oil, gas, and water pipeline infrastructures [13, 11].

Let T be a data gathering tree rooted at root r spanning n wireless sensors positioned in the
Euclidean plane, where data propagates from leaf nodes to r. We model the environment as a
complete directed graph G = (V,E), where the node set represents the wireless sensors and the
edge represents distance or time to travel between that sensors. We assume the sensors are deployed
in rough geographic terrain with severe climatic conditions, which may cause sporadic failures of
sensors. Clearly, if a sensor v fails, it is undesirable to lose the data it collected from its children
in T , δ(v, T ). Thus, a group of data gathering mules must travel through δ(v, T ) and restore
the lost information. We define this problem as (α, β)-Mule problem, where α is the number of
simultaneous node failures and β is the number of traveling mules. For α = 1, β = 1, the mule
visits the children of v over the shortest tour, t(m, δ(v, T )), starting and ending at node m ∈ V ,
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Figure 1: Example for the mule tour when 2 nodes fail. The grey nodes represent sensors that
experienced failure and the blue dashed lines represent the mule tour; the tour starts and ends at
node m.

where the length of the tour is equal to the Euclidean length of distances; the goal is to find a
data gathering tree T , the placement of the mule m, and the shortest tours, t(m, δ(v, T )) for all
v ∈ V , which minimize the total traveling distance given any sensor can fail. Formally, find T and
m such that

∑

v∈V |t(m, δ(v, T ))| is minimized. In a similar way, we can define the problem for
α > 1, β = 1 (see example for α = 2 in Figure 1, where the edges are directed towards the root).
Formally, find T and m such that

∑

{F⊂V :|F |=α} |t(m,
⋃

v∈F δ(v, T ))| is minimized. We can extend
this scenario to the case where instead of a single mule, we have β mules m̄ = {m1,m2, ...,mβ}
deployed at different coordinates of the graph. When a node fails, its children must be visited by
one of the mules to restore the lost data, which can be viewed as a mule assignment per node for the
single node failure, or per unique node failure combination for the multi-failures case. In addition
to T , we must find the location of all mules m̄, and an assignment of each node v ∈ V to a mule
mi ∈ m̄ that minimizes the total travel cost of all mules. Formally, for β > 1, let t(mi, δ(v, T )) be
the shortest path tour that includes mule mi and the children of node v that mule mi should visit.
For α = 1, the optimization problem is to find T and m such that

∑

v∈V
∑

mi∈m̄ |t(mi, δ(v, T ))| is
minimized.

We consider two network models, complete graphs and unit disc graphs. In the complete graph
model, there is a directed edge between any pair of nodes in the graphs while in the unit disc graph
model, there is an edge if and only if d(u, v) ≤ 1, where d(u, v) is the Euclidean distance between
nodes u and v.

A summary of symbols used throughout this papers are depicted in Table 1.

m The mule placement in T
δ(v, T ) The children of node v in tree T .

|t(m, δ(v, T ))| The cost of the shortest tour visiting the children of node v in tree T starting
from node m.

c(m, r) Total cost of the data gathering tree when mule is placed at node m and root is
placed at node r. The notation is used for topologies for which the cost of the
solution solely depends on m and r.

π(i,m, r) Number of times node i is visited by the mule for a given m and r.
c(T ) The cost of a tree solution T when the placement of m and r is given in advance.

Table 1: Symbol table.
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1.1. Our contribution

To the best of our knowledge, this is the first work exploring the mule approach for avoiding
data loss due to communication failures. Our results are summarized in the following table:

Underlying graph Problem Topology Approximation Ratio

Complete
(1, 1)-Mule

Arbitrary
1 + 1/c, c > 1

(α, 1)-Mule min (3, 1 + s∗),

s∗ = minv∈V
max d(v,u)
min d(v,w)

(1, β)-Mule 2

UDG

(1, 1)-Mule Line OPT
(α, 1)-Mule Line OPT
(1, 1)-Mule Random Line 4

(1, 1)-Mule Grid 1 + (2 +
√
2)/

√
n

Table 2: Summary of results.

1.2. Paper Outline

The paper is organized as follows. In the next Section we discuss the previous related work
to our problem. We analyze different variations of the mule problem under the complete graph
model and the Unit Disc Graph model in Sections 3 and 4, respectively. Section 5 outlines a
possible distributed implementation of our algorithms. In Section 6 we present simulations of our
algorithms under different network settings and conclude in Section 7.

2. Related Work

Exploiting mobile data carriers (mules) in ad-hoc networks has received significant attention
recently. The subject of major interest in most works is using the mules to relay and collect messages
in sparse network settings, where adjacent sensors are far from each other, in order to substantially
reduce the cost of indeterminate sensors communication and data aggregation. For example, Wu
et al. [22], investigate how to use the mule architecture to minimize data collection latency in
wireless sensor networks. They reduce this problem to the well-known k-traveling salesperson with
neighborhood and provide a constant approximation algorithm and two heuristic for it. In a related
paper by Ciullo et al. [8], the collector is responsible for gathering data messages by choosing the
optimal path that minimizes the total transmitted energy of all sensors subject to a maximum
travel delay constraint. In their model, each sensor sends different amount of data. The authors
also use the k-traveling salesperson with neighborhood problem in their solution technique and
prove both analytically and through simulation that letting the mobile collector come closer to
sensors with more data to transmit leads to significant reduction in energy consumption. Cheong
et al. [6] investigate how to find a data collection path for a mobile base station moving along
a fixed track in a wireless sensor network to minimize the latency of data collection. Levin et
al. [17] considered the problem where the goal was to minimize the mules’ traveling distance while
minimizing the amount of information uncertainty caused by not visited a subset of nodes by the
mule. A supplementary paper by Jea et al. [14] studies the practical advantages of offloading the
collection using multiple data mules. A survey by Di Francesco et al. [9] covers the different aspects,
methodologies and challenges for data collection in wireless sensor networks.
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Another key aspect we discuss is using mules as backup mechanism for data loss resiliency in
case of sensor failures. In [18], the authors propose a mechanism for backing up cell phone data
using mobile sensor nodes. The goal of their protocol and infrastructure is to prevent losing data
when the cell phone is lost, malfunction or stolen. Another approach for handling data loss in sensor
networks is to construct a topology with path redundancy, where multiple paths connect each pair
of nodes and serve as a backup mechanism in the case of node failure. In [15], Kim et al. propose
a new algorithm based on results from algebraic graph theory, which can find the critical points
in the network for single and multiple failure cases. They present simulations that examine the
correlation between the number of critical points and sensor density. In [23], the authors proposed
to build a biconnected communication graph where each pair of nodes in the network has at least
two node disjoint paths between them, and thus, failure at any single node does not partition the
network.

Multiple works in ad-hoc network examine the performance of graph related communication
algorithms under linear or grid network topologies. The justification to explore such topologies is
that multiple algorithms have been tested under realistic network conditions. In [11], Fraser et al.
explore the usage of sensor networks for bridge monitoring. They build a continuous monitoring
system, capable of handling a large number of sensor data channels and three video signals and
deployed on a four-span, 90-m long, reinforced concrete highway bridge. In [13], Jawhar et al.
consider a protocol for linearly structured wireless sensors to decrease installation, maintenance
cost, and energy requirements, in addition to increasing reliability and improving communication
efficiency. Their protocol takes advantage of the unique characteristics of linear networks and is
well suited to be used in many sensor applications such as monitoring of international borders,
roads, rivers, as well as oil, gas, and water pipeline infrastructures.

3. Complete graphs

In this section, we study the (α, β)-Mule problem under the complete graph model, where the
underlying graph structure is complete (i.e., there is an edge between any pair of nodes) and the
network topology is arbitrary.

3.1. (1, 1)-Mule problem in complete graphs

Let S be a star over V and r be its root. We claim the following:

Lemma 1. The optimal structure for the data gathering tree for the (1, 1)-Mule problem on complete

graphs is a star rooted in one of the nodes of V .

Proof. For any data gathering tree each node in V \{r} must be traversed at least once. The proof
follows since the travel distance of the mule for a star is:

|t(m, {v})| =







0 v 6= r
Length of shortest tour otherwise
over V \ {r}

is optimal.

Lemma 1 implies that the (1, 1)-Mule problem is equivalent to the problem of finding a node
r ∈ V and a tour over V \ r, such that the cost of the tour is minimized. We use this fact to prove
the NP-completeness of the (1, 1)-Mule problem. Consider the standard decision TSP problem:
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Given a set S of n points, and length K, we need to find whether exist a cycle that goes through

all points in S whose length is at most K? The decision version for the (1, 1)-Mule problem is as
follows: given a set P of n points, and parameter L, we need to find whether we can remove one of

the points so the cycle for the remained points will be of length at most L?

Claim 2. The (1, 1)-Mule problem is NP-complete.

Proof. It is easy to see that the problem is in NP. We only show TSP ≤P (1, 1)-Mule . Given n
points and parameter K from TSP instance, we construct the instance for our problem as follows.
We set P to contain S and one more point x. The parameter L will be equal to K. We put point
x far way from all other points of P so that the distance from x to any of them will be more than
K. Clearly, there is a solution to (1, 1)-Mule problem for P and L if and only if there is solution
to TSP problem.

Next, we present an approximation algorithm for the problem.

Lemma 3. For any fixed c > 1, there is an 1+ 1
c
-approximation algorithm for (1, 1)-Mule problem.

Proof. Using the 1+ 1
c
-approximation algorithm for TSP [1], we can search for r ∈ V that minimizes

|t(m, δ(r))|, where m is picked arbitrarily from V \{r}. The running time is is O(n(log n)O(c)).

We remark that alternative implementation can use Christofides’s 3
2 -approximation algorithm

[7] for finding the tour. The running time is O(n3).

3.2. (α, 1)-Mule problem in complete graphs

By similar argument as in Lemma 1, it is easy to see that the optimal topology for (α, 1)-Mule
is a star rooted as some node r. We introduce Algorithm Build Tree 1. Let topt be the optimal

Build Tree 1

1 For each node v ∈ V , calculate s(v) =
maxu∈V \{v} d(v,u)

minw∈V \{v}d(v,w)
, the ratio between the maximum to the minimum

edge with respect to v. Set r to be the node that minimizes this ratio and let s∗ = s(r) (ties are broken
arbitrarily).

2 Set T to be a star rooted at r.
3 Pick an arbitrary node v 6= r and set m = v.
4 Find tour C on V \ {r} using the algorithm from [1].1

5 Emit T,m,C.

tour, ropt be the root of the optimal tour, t be the tour produced by Algorithm Build Tree 1,
and Pα be a permutation of α nodes.

Lemma 4. Algorithm Build Tree 1 is a (1 + s∗)-approximation algorithm for (α, 1)-Mule on

complete graphs.

Proof. We prove the claim by mapping, showing that for each combination of node failures Pα,
either the mule travel costs of topt and t are the same, or that there exists a bijection from a
permutation in topt to a permutation in t such that the solution’s cost increases by at most (1+s∗),

1This step in the algorithm can be accomplished by any approximation algorithm for TSP, e.g., [7].
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where s∗ is defined in Algorithm Build Tree 1. Let V (Pα) be the nodes that are traversed when
the nodes in Pα fail. Clearly the solutions costs are the same if r /∈ Pα and ropt /∈ Pα or r ∈ Pα

and ropt ∈ Pα. For ropt ∈ Pα and r /∈ Pα the cost of t is 0 (since the tree has a form of star), while
the cost of topt is the optimal tour over V (Pα); the opposite stands for ropt /∈ Pα and r ∈ Pα. We
show that for this case, for each combination Pα in t there is a combination P

′

α formed by adding
twice (forward and back) the edge e(r, ropt) to the solution that the new cost is at most 1+s∗ times
the cost of topt. Clearly, each edge that connects r to the tour costs at least minu∈V \{r} d(r, u)
and the new edge costs at most maxu∈V \{r} d(r, u). Therefore, the cost of the new tour is at most
|topt| + 2maxu∈V \{r} d(r, u) = |topt| + 2s∗ minu∈V \{r} d(r, u) ≤ |topt|(1 + s∗). Last equality holds
since |topt| ≥ 2minu∈V \{r} d(r, u).

An alternative approach to this solution, is to select r that minimizes the length of minimum
edge e(r, w),∀w ∈ V \ {r} with r as one of the endpoints. Similar analysis to the above yields

(1 + 2s(r)
n−α

)-approximation ratio. This is because topt ≥ (n − α)minw∈V \{r} d(r, w) and the cost of

new tour is |topt| + 2maxu∈V \{r} d(r, u) = |topt| + 2s(r)minw∈V \{r} d(r, w) ≤ |topt| + 2s(r)
|topt|
n−α

=

(1+ 2s(r)
n−α

)|topt|. Note that s(r) does not necessary minimize maximum edge to minimum edge ratio.
Next, by carefully choosing r, we explain how to obtain a 3-factor approximation to our problem

for a fixed value of α. Select r that maximizes the average cost of minimal edge (u, v) for each
combination of α − 2 failures. That is, per each node u and every edge (u, v) we calculate the
number of times t(u, v) (per each combination of α − 2 failures) the edge (u, v) will be minimum
edge from u. Next, we compute ct(u) =

∑

v∈V d(u, v)·t(u, v). Take r to be the node that maximizes
ct(r). If we consider the optimal solution OPT (which, according to the definition, contains many
tours), then we notice that the sum of all edges’ lengths that connect r in all tours is larger than
ct(r), since it must be equal at least the sum of all minimums. Thus, the total traveling distance in
OPT is |OPT | ≥ 2ct(r). On the other side, by definition ct(ropt) ≤ ct(r). The cost of new solution
when adding ropt is |OPT |+ 2c(ropt) ≤ |OPT |+ 2ct(r) ≤ 3|OPT |.

3.3. (1, β)-Mule problem in complete graphs

In this section, we show how to solve the (1, β)-Mule problem on the complete Euclidean graph.

Lemma 5. Algorithm Build Tree 2 produces is a 2-approximated solution for the (1, β)-Mule

problem.

Proof. Let Ci
OPT be the optimal tour traveled by mule mi. By the construction of the algorithm

and by the definition of minimum spanning tree:
∑β

i |T i| ≤ ∑β
i |Ci

OPT | = OPT . Let Ci be the

tour constructed by traversing the nodes T i using a depth-first-traversal. We have
∑β

i |Ci| ≤
∑β

i 2|T i| ≤ 2OPT .

4. Unit disc graphs

In this section, we study the different variation of the (1, 1)-Mule problem under the Unit Disc
Graph model, where any two nodes u, v ∈ V , can communicate if and only if d(u, v) ≤ 1.
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Build Tree 2

1 foreach v ∈ V do

2 Find optimal spanning tree Tv on V \ {v}

3 Let T 1
v , T

2
v , . . . , T

β
v be the set of trees created by removing the β − 1 heaviest edges from Tv

4 Assign the nodes in T i
v to mule mi.

5 end

6 Let v be the node that minimizes
∑β

i=1 |T
i
v|.

7 Set T to be a star rooted at v.

8 Emit T, m̄ = {m1
v, . . . ,m

β
v}.

4.1. (1, 1)-Mule problem in line topology

Here, n nodes, with unit distance between them, are placed in the Euclidean plane. The
construction ensures that a node can communicate only with its adjacent neighbors. For the line
topology under those communication constraints, only the placement of the root r is required to
define the structure and orientation of the tree. Thus, the cost of a solution is solely determined
by the placement of r and m. For clarity, we number the nodes from 1 to n and use m and r as
the indices of the mule and the root in the solution. From symmetry, we assume r ≥ m, since
c(m, r) = c(n−m+1, n− r+1), where c(m, r) is the cost of the optimal solution when the mule is
located at m and the root is placed at r when the topology is entirely determined by the location
of r (e.g., line). A sample instance of the problem is depicted in Figure 2.

m, r

(a) c(m, r) = 0 + 10 + 8 + 6 + 4 + 2 = 30

m r

(b) c(m, r) = 0 + 4 + 2 + 0 + 2 + 4 = 12

m, r

(c) c(m, r) = 0 + 4 + 4 + 4 + 6 + 0 = 18

m r

(d) OPT. c(m, r) = 0 + 4 + 2 + 0 + 6 = 12.

Figure 2: Line topology illustration. The figure contains 6 nodes with two different solutions for
T and two different choices for locating the mule. Each value in sum represents the cost of failing
node i, i ∈ {1, ...6}.

Lemma 6. For the line topology, the optimal placement for the root r is n− 1.

Proof. Assume m < r, if a node i ∈ V fails, we have four cases:

1. i < m, the cost is 2(m− i+ 1) regardless to the location of r.

2. i < m < r, the cost is 2(r −m− 1).

3. r < i, i 6= n, the cost is 2(r −m+ 1).

4. r < i, i = n, the cost is 0 (since i has no children).
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The claim follows since we want to minimize the number of nodes that are placed after r, but can
use the fact that the cost is zero for r < i = n.

Lemma 7. For line topology, the optimal placement for the mule is ⌈n2 ⌉.

Proof. For optimality r = n − 1. Then c(m, r) = 2(
∑m−1

i=1 i +
∑n−m−1

i=1 i + 2) is maximized for
⌈n2 ⌉.

4.2. (α, 1)-Mule in the line topology

In this section, we show how to handle α simultaneous failures on the line topology. We show
a formula for calculating c(m, r) and prove that the values that minimize c(m, r) are m = n

2 and
r = n−1. The highlights of the proof are as follow: we show that for r = n, c(m,n) is monotonically
decreasing for m < n

2 and monotonically increasing for m > n
2 , which implies a global minimum for

m = n
2 . Next, we extend the proof and show that this global minimum for r = n− 1 is still m = n

2 .
To illustrate the concepts behind the proof, the costs of c(m,n) and c(m,n− 1) for varying values
of m are given in Figure 3.

2 4 6 8 10 12 14

1.4

1.6

1.8

2

2.2
·104

m

c(
m

n
)

c(m,n)

c(m,n − 1)

(a) c(m,n) for n = 14.

5 10 15

6.5

7

7.5

8

8.5

·105

m

c(
m

n
)
c(m,n)

c(m,n − 1)

(b) c(m,n) for n = 20.

Figure 3: c(m, r) for varying values of m.

First, we introduce some basic definitions. We define a direct visit when the mule visits node i
where i is the leftmost node if i < m or the rightmost node if i > m. Let π(i,m, r) be the number
of times the mule at placement m directly visits node i for root placement r. We separate between
left and right movement and define πl(m, r) =

∑m−1
i=1 π(i,m, r) and πr(m, r) =

∑n
i=m+1 π(i,m, r)

to be the number of times that the mule must travel left or right when placed at location m ∈ [1, n].
We begin by showing an optimal but inefficient algorithm for the problem:

Lemma 8. For m ∈ [1, n−2], c(m,n−1) has a closed formula, which can be calculated in polynomial

time.

Proof. First note that we only visit node at i, when node at i+ 1 fail. For m < i < n− 2 we have
π(i,m, n−1) =

∑n−i−2
j=1

(

i−1
α−j

)

+
∑n−i−1

j=1

(

i−1
α−j−1

)

. The left expression represents the case where node
at placement n did not fail and the right expression represents the case where node at placement n
did fail. For i = n−2 we have π(n−2,m, n−1) =

(

n−3
α−2

)

+
(

n−3
α−1

)

. For i = n: π(n,m, n−1) =
(

n−2
α−1

)

.
The expression π(i,m, n−1) for i < m represents the case where j consecutive nodes from the right
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side of i failed and equals
∑min(α−1,i−1)

j=1

(

n−(i+1)
j

)

. Let d(m, i) be the Euclidean distance between m

and i, the cost is c(m,n− 1) =
∑n

i=1 π(i,m, n− 1) · d(m, i). which we can calculate in polynomial
time.

From Lemma 6 we know that the optimal placement for the root is n − 1. Therefore, to find
the optimal solution, we can search for the value of m that minimizes c(m,n− 1). Using dynamic
programming and the memoization table, in O(n2) time we can compute the values of c(i, j), and
calculate the total cost. Thus, the running time of the algorithm is O(n2).

Now we show that the optimal cost is obtained for m = n
2 and r = n − 1. First we claim the

following:

Lemma 9. For m < i, π(i,m, r) = π(i,m + 1, r) and for m > i, π(i,m, r) = π(i,m− 1, r).

Proof. As long as m 6= i the orientation of the mule with respect to i does not change.

Lemma 10. c(m+1, r) = c(m, r)+πl(m, r)+π(m,m+1, r)−πr(m, r) and c(m−1, r) = c(m, r)−
πl(m, r) + π(m,m− 1, r) + πr(m, r).

Proof. Let d(m, i) be the distance between m to i. Thus, c(m, r) =
∑m

i=1 π(i,m, r)d(m, i) +
∑n

i=m+1 π(i,m, r)d(m, i). Assume we place the mule at location m + 1. From Lemma 9 we have

c(m+1, r) =
∑m−1

i=1 π(i,m, r)(d(m, i) + 1) + π(m,m+1, r) +
∑n

i=m+1 π(i,m, r)(d(m, i)− 1). Since
d(m,m)=0 we get c(m+ 1, r)− c(m, r) = πl(m, r) + π(m,m+ 1, r)− πr(m, r). And when placing
the mule in m− 1 we obtain c(m− 1, r)− c(m, r) = −πl(m, r) +π(m,m− 1, r)+ πr(m, r). and the
claim follows.

Next, we show that:

Lemma 11. For r = n, πl(
n
2 , n) = πr(

n
2 , n).

Proof. When r = n, we show that for each node on the right side r, there is a bijection to a
node on the left side l, such that π(r,m, n) = π(j,m, l). This means that the number of times
the mule travels specifically to l is equal to the number of times it travels to r (note that this
does not necessarily imply that the distances of l and i from m are the same or that they equally
contribute to c(m, r)). To see this, we look at the number of permutations when some node
r > n

2 fails. We travel directly to r when a set of j consecutive nodes with respect to r fail (i.e.,
r+1, r+2, . . . ,min r + j, α) and α− j nodes that are on the left hand side of r fail. Formally, this
is equal to π(r,m) =

∑n−r
j=1

(

r−1
α−j

)

. For some node l < n
2 , we travel to l when a set of j consecutive

nodes from the leftmost node fail (i.e., 1, 2, . . . ,min j, α), and another j node that are on the right
hand side of l fail. Formally, this is equal to π(l,m) =

∑l−1
j=1

(

n−(l+1)
α−j

)

. We have the expressions
equal for l = n− i+ 1 and the claim follows.

Lemma 12. For increasing m πl(m, r) is monotonically increasing and πr(m, r) is monotonically

decreasing.

Proof. Regardless of the mule placement, from Lemma 9 and as long as i > m, the number of
times the mule travel to a specific node is constant. Since increasing m means less nodes are on
the right hand side, with no change in orientation with respect to m, πl(m, r) is increasing. Since
more nodes are added from the left side of m, πr(m, r) is decreasing.
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Lemma 13. For r = n, the function c(m,n) has global minimum at ⌈n2 ⌉.

Proof. Follows from Lemmas 11 and 12.

We have shown that for c(m,n) yields optimal value for m = n
2 . To complete the proof, we

turn to handle the case of r = n− 1.

Lemma 14. For r = n− 1, the function c(m,n− 1) has global minimum at ⌈n2 ⌉.

Proof. For l < m, π(m, l) is not impacted by this change. However, for each node r < n− 2 on the
right of m, we separate to two cases: directly visiting r when node n fails or nodes n and n−1 do not
fail. Formally, π(r,m, n − 1) =

∑n−r−2
j=1

(

r−1
α−j

)

+
∑n−r−1

j=1

(

r−1
α−j−1

)

=
∑n−r−2

j=1

(

r−1
α−j

)

+
∑n−r

j=2

(

r−1
α−j

)

=
∑n−r−2

j=1

(

r−1
α−j

)

+
∑n−r

j=n−r−1

(

r−1
α−j

)

+
∑n−r−2

j=2

(

r−1
α−j

)

=
∑n−r

j=1

(

r−1
α−j

)

+
∑n−r−2

j=2

(

r−1
α−j

)

. For r = n − 2,

we have π(n − 2,m, n − 1) =
(

n−3
α−2

)

. Finally, for r = n, π(m,m,n − 1) =
(

n−2
α−1

)

. Thus, we obtain

πr(m,n)−πr(m,n− 1) =
(

n−3
α−1

)

−∑n−3
r=m+1

∑n−r−2
j=2

(

r−1
α−j

)

= ∆. To complete this proof, all we have
to show is that the function c(m,n− 1) is monotonicity increasing when m > n

2 and monotonicity
decreasing when m < n

2 , which means that the minimum is achieved at m = n
2 .

Combining Lemmas 10 and 11, we have to show that: 0 ≤ c(m + 1, n − 1) − c(m,n − 1) =
πl(m,n−1)−πr(m,n−1)+π(m+1,m, n−1) = πl(m,n−1)−(πr(m,n)−∆)+π(m+1,m, n−1) =
π(m + 1,m, n − 1) + ∆ and that: 0 ≤ c(m − 1, n − 1) − c(m,n − 1) = −πl(m,n − 1) + πr(m,n −
1) + π(m− 1,m, n − 1) = π(m− 1,m, n − 1)−∆.

Clearly the first expression is true since π(m + 1,m, n − 1) + ∆ is positive. To complete the
proof, we show that ∆ ≤ π(m − 1,m, n − 1). Reversing the order of summation yields ∆ =
(

n−3
α−1

)

−∑n−m−3
j=2

∑n−3−(j−1)
r=m+1

(

r−1
α−j

)

. Using the binomial coefficient identity:
∑n

i=0

(

i
c

)

=
(

n+1
c+1

)

we

get ∆ =
(

n−3
α−1

)

−∑n−m−3
j=2 (

(

n−3−(j−1)
α−j+1

)

−
(

m
α−j+1

)

) =
(

n−3
α−1

)

−∑n−m−5
j=0 (

(

n−4−j
α−j−1

)

−
(

m−2
α−j−1

)

). Using

the binomial coefficient identity
∑c

i=0

(

n−i
c−i

)

=
(

n+1
c

)

and assuming n − m − 5 ≥ α we obtain

∆ =
(

n−3
α−1

)

−
(

n−3
α−1

)

+
∑n−m−5

j=0

(

m−2
α−1−j

)

. Setting m = n
2 , we have ∆ =

∑

n
2
−5

j=0

( n
2
−2

α−1−j

)

. Finally,

by setting m = n
2 in π(m − 1,m, n − 1) it results in: π(m − 1,m, n − 1) = π(n2 − 1, n2 , n − 1) =

∑

n
2
−1

j=1

(n−(n
2
−1+1)

α−j

)

=
∑

n
2
j=0

( n
2

α−1−j

)

≥ ∆ and the proof is complete.

We conclude with the following:

Theorem 15. The optimal placement for (α, 1)-Mule on the line topology is r = n−1 and m = n
2 .

4.3. (1, 1)-Mule problem in the random line topology

In this section, we solve the (1, 1)-Mule problem on the random line, where n nodes are placed
on a line with length n ≫ L such that the distances between adjacent nodes are sampled from
a predefined distribution function, i.e., the maximum distance is 1. The communication model
is Unit Disc Graph, which means that an edge is formed between two nodes u, v if and only if
d(u, v) ≤ 1. Note that this implies that the graph is connected. In what follows, we use the
simplified assumption that the mule m and root r are positioned in the leftmost node of the line
and that L ∈ N.

Let T be the tree produced by Algorithm Build Tree 3, Topt be the optimal tree and c(T )
and c(Topt) be their costs, respectively. We define TL as the tree over exactly L nodes such that the
distance between adjacent nodes is exactly one; let c(TL) be its cost. Observe that in the algorithm,
the set B represents the ”backbone” nodes in T that are not leaves. We claim:
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Algorithm 3: Build Tree 3

1 V ′ = B = C = {r}
2 E′ = ∅
3 while |C| 6= n do

4 Let C be all nodes reachable by nodes in B.
5 Find furthest node v that is reachable by nodes in B .
6 Find node u ∈ B that minimizes d(u, v).
7 Add v to B.

8 Add the edge e(v, u) to E
′

.

9 For each w ∈ C \ {v}, add a directed edge e(w, v) to E
′

.
10 V ′ = V ′ ∪ C ∪ {v}.

11 end

12 Emit T = (V ′, E′).

0 0 + ǫ 1 + ǫ 1 + 2ǫ 2 + 2ǫ2 + 2ǫ 2 + 3ǫ 3

Figure 4: Placement where approximately 2L nodes are required to cover an area with length L.

Lemma 16. c(TL) ≤ c(Topt).

Proof. Note that at least L nodes are required to cover an area of length L and that each unit
interval on the line must contain at least one node. Therefore, we can convert any tree to TL by
mapping one of the nodes in interval [i, i + 1] to the node at location i in T , and drop all other
nodes in that interval. Since m = 0, this conversion reduces the overall cost of the solution. This
implies, a fortiori, that c(TL) ≤ c(Topt).

Lemma 17. |V (T )| ≤ 2L.

Proof. Let v and l be two non-leaf nodes that are selected in two consecutive iterations of Algorithm
Build Tree 3, and vx and lx be their x coordinates on the line, respectively. The algorithm will
converge in most slowest rate when lx is closest as possible to vx, but since l is the furthest
node in the range [vx, vx + 1] it means the non-leaf node that will be selected after l must be in
[vx + 1, vx + 1+ ǫ]. Thus, in the worst case, the algorithm covers a unit distance in two iterations,
which means that it completes after at most 2L steps. See the illustration in Figure 4.

Lemma 18. c(T ) ≤ 4c(TL).

Proof. By definition c(TL) = 2
∑L

i=1 i = L(L+1). Let ix be the coordinate of non-leaf node selected

in iteration i in Algorithm Build Tree 3, we have: c(T ) ≤ 2
∑2L

i=1 ix ≤ 2
∑2L

i=1 i = 2L(2L + 1).
The last inequality follows since we stretch a line of length L to a line of length 2L.

Therefore, we have:

Lemma 19. Algorithm Build Tree 3 yields a 4-approximation for the (1, 1)-Mule problem.

11



4.4. (1, 1)-Mule problem in grid topology

Next, we assume that the nodes of the graph are deployed on a
√
n × √

n grid and have unit
transmission radius.

Let dv be the degree of node v ∈ V and dmax be the maximum degree of any node in the input
graph G and vi,j be the location of node at coordinates i, j, we claim:

Lemma 20. For a specific mule placement m, the approximation ratio of any tree to the (1, 1)-Mule

problem is at most dmax.

Proof. Clearly, for any algorithm all non root nodes must be visited by the mule. In the worst case,
that incurs the least value is when a node v has a single child in T . Then, the mule’s tour only
covers one node. In the best case, each tour includes all children of v in G, which is obliviously
bounded by its degree. The claim follows since the ratio between the cost node v incurs in the
worst solution and the optimal solution is at most dv and since all children of v must be visited by
the mule in the algorithm.

Next, we show a lower bound on OPT.

Lemma 21. OPT ≥ 2

∑√
n

i=1

∑√
n

j=1 d(vi,j ,v
√

n
2 ,

√
n
2

)

3 .

Proof. Let mx,y be the location of the root, and assume that we use a zig-zag tree as a solution

(see Figure 6). Clearly, the cost is 2
∑

√
n

i=1

∑

√
n

j=1 d(vi,j ,mx,y), which is optimized by x =
√
n
2 and

y =
√
n

2 . The proof follows by combining the fact that except from the root, for any tree in the grid
dmax = 3, and from Lemma 20.

(a) Stars step

r

(b) Orientation step

Figure 5: Illustration of Algorithm Build Tree 4.
Next, we present Algorithm Build Tree 4 that constructs a tree with almost optimal cost. To

maximize the number of nodes visited per failure we try to produce a tree with maximum number of
leaves. We use the principals presented at [3] and build the tree on the top of multiple consecutive
stars. Let c be the cost of Algorithm Build Tree 4 and s be the cost of the zig-zag tree. We

Build Tree 4

1 Stars Build adjusted stars for all nodes with coordinates (x, y) such that 1 ≡ y mod 3 (Figure 5a).
2 Orientation Connect stars with grid orientation (Figure 5b).

show:
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Lemma 22. Algorithm Build Tree 4 is a 1 + 2+
√
2√

n
-approximation algorithm.

Proof. On the one side c = 2
∑

√
n

i=1

∑

√
n

j=1|1≡j mod 3
(d(vi,j ,m) + (1 +

√
2)) + 2

∑

√
n

j=1|1≡j mod 3
j ≤

2
∑√

n

i=1

∑√
n

j d(vi,j ,m)

3 + 2
∑

√
n

i=1

∑

√
n

j=1|1≡j mod 3(1 +
√
2) + 2

3n = OPT + 2
3n(2 +

√
2). On the other

side, since we can project all nodes in the zig-zag tree solution to the x-plane and place m at

(
√
n
2 , 0) we have s = 2

∑n
i=1(i −

√
n
2 ) ≥ n2 − n

√
n ≥ 2n

√
n. The last inequality holds for n > 9.

Since the projection reduces the travel cost of the solution, together with Lemma 20 we have

OPT ≥ s
3 ≥ 2n

√
n

3 Hence, c ≤ (1 + 2+
√
2√

n
)OPT .

m

r

Figure 6: Zig-zag tree with cost 2
∑

√
n

i=1

∑

√
n

j=1 d(vi,j ,m).

5. Distributed Implementation

In order to make our solutions feasible, i.e. to allow them to work in real life node deployments,
we outline how it is possible to implement them in a decentralized (distributed) (without the need
for coordination by a central unit) and local, based on neighbor knowledge manner. In the proposed
distributed implementations we make a use of the work [2]. The paper [2] shows how to find a
leader in a distributed fashion (and also minimum spanning tree) in a network with n nodes in
O(n) time using O(n log n) messages. To establish connectivity, can follow two different approaches
as described in [19]. The first, described in Dolev et al. [10] forms a temporary underlying topology
in O(n) time using O(n3) message. The second (better) approach is given by Halldórsson and
Mitra [12] that shows how to do this in O(poly(log γ, log n)), where γ is the ratio between the
longest and shortest distances among nodes. After the topology is established, we can use leader-
election algorithm by Awerbuch [2] that can compute all other relevant information in the network,
i.e. choose an appropriate root r or find the tour. Given each sensor knows the total number of
nodes in the network, the distributed implementation of Build Tree 4 algorithm only requires the
local GPS coordinates of each sensor. To retrieve this information, we can apply Peleg et al. [20]
distributed algorithm for finding the graph’s diameter and propagate it to all sensors.

6. Simulations

In what follows, we describe the simulation results of the various algorithms and network models
proposed in this paper. We have implemented all algorithms described throughout the paper
using standard simulation software written in C# and conducted multiple experiments on different
topologies. For each experiment, we have calculated the mean solution cost after conducting 50

13
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(a) (α, 1)-Mule for α = 5

20 40 60 80 100

1

2

3

4

number of nodes

ra
ti
o

⌊ OPT ⌋ Build Tree 2 Tour Random

(b) (α, 1)-Mule for α = 10

Figure 7: Comparison between the cost of Algorithm Build Tree 2 and the cost of alternative
efficient tree construction solutions.

iterations. For large networks, for which calculating the shortest TSP is not computationally
feasible, we have used a TSP heuristic framework based on a genetic algorithm [16]. To show the
clear advantages of using this paper algorithms we introduce the notation of lower bound OPT,
⌊OPT⌋, which is calculated based on the different bounds we provide under the different network
settings. In all simulations we compare the ratio of the proposed algorithm to the lower bound on
OPT. In the first simulation (Figure 7), we investigated the variance of initiating different input
trees in step 1 of Algorithm Build Tree 2. To produce the mule’s tours we used the heuristic
genetic algorithm from [4]. We compared our results to the following variations: Tour, finding the
optimal approximated tour over n− 1 nodes using the heuristic algorithm from [4] and then taking
the minimum spanning tree over those nodes, Random, building a random tree, and ⌊OPT⌋, using
the minimal spanning tree instead of tours (thereby making its cost a lower bound on OPT). We
provide results for 5 and 10 sensor failures, correspondingly. From the simulations, we can see that
the rival algorithms substantially suffer from the increase in failures, which means higher cost of
traveling tours with respect to Algorithm Build Tree 2. The results show that the bound proved
in Lemma 5 holds and that in practice, might be even better. In the second simulation (Figure
8), we explored how different leader selection in step 4 of Algorithm Build Tree 3 impacts the
total cost of the algorithm. We compared the results of our algorithm against three competitive
algorithms: Greedy1, randomly selecting one of the nodes as leader, Greedy2, selecting the
node closest to the rightmost leader and ⌊OPT⌋, changing the distances between the adjacent
nodes to L/n. In the simulations, we tested how the distribution function of the adjacent distance
between nodes impacts the performance of the algorithm. In Figure 8a, we used the exponential
distribution with mean 0.1 and in Figure 8b, the uniform distribution with mean 0.5. Reviewing
the experiment data, we noticed that the burstness of the exponential distribution causes increases
the travel distance of the mule, thereby increasing the overall cost of the solutions. Finally, note
that the actual approximation ratio of Algorithm Build Tree 3 is much lower than the one proved
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(a) Results for exponential distribution with mean 0.1.
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(b) Results for uniform distribution with mean 0.5.

Figure 8: Ratio between the cost of algorithm Build Tree 3 against competitive algorithms

in Lemma 18, which may indicate that we can theoretically tighten the approximation ratio. In
the final simulation (Figure 9), we compared the results of Algorithm Build Tree 4 against the
following competitive algorithms: Zig-zag, using the zig-zag tree (see Figure 6), Greedy, using
the minimum spanning tree and ⌊OPT⌋, using the zig-zag tree but diving the cost by 3 (see Lemma
20). We study two variations, placing the mule at the leftmost corner coordinate and placing
the mule at the center. Its interesting to note that although the ratio between algorithms in both
simulations remains the same, the actual cost was much higher when placing the mule at the corner.

7. Conclusions and Future Work

This work address the topological design of data mules usage for improving resiliency to data
loss caused by network disasters. Our solutions involve constructing the optimal data gathering
tree and finding the optimal node placement under multiple network structures, such as general
graph, linear and grids. We use the topology characteristic to produce multiple approximation
algorithms and validate their performance using simulations.

This paper emphasizes on the problem of minimizing the sum of distances the mule travels.
Instead, we can explore minimizing the maximum traveling distance or time of the mule. Formally,
we can define the (1, 1)-Mule problem as follows: minT,mmaxv∈V |t(m, δ(v, T ))|. Interestingly, the
given objective completely changes the complexity and algorithms of the problem. For example,
while the optimal topology in the min-sum version was a star, in the min-max version it is a line
that traverse all the nodes in the graph. In addition, we can find the optimal solution by carefully
selecting the location of the mule, which means the problem is not NP-hard. It will be interesting
to further explore this objective under different network criteria and to compare the solutions to
the ones proposed in this paper.

Although we study the problem under varying network structures, we did not measured the
impact of geographical surrounding or diverse hardware on the sensor durability. In the future,
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(a) Results when mule is placed at center coordinates.
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(b) Results when mule is placed at corner coordinates.

Figure 9: Ratio between the cost of algorithm Build Tree 4 against competitive algorithms.

we intend to add varying sensor resistances to our model by applying different failure probability
function per sensor, which can help in modeling uneven and rough geographic conditions. Another
interesting variation can explore the impact of transmission radius on the mule tour. That is, given
some minimal transmission radius for the sensor, instead of visiting the actual sensor placement,
the mule only visits the sensor surrounding. This work can reuse existing results [22, 8] to extend
the algorithms proposed here.
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Research Council (EPSRC), United Kingdom and by the Israel Science Foundation (grant No.
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