
Using Data Mules for Sensor Network

Resiliency

Jon Crowcroft, Fellow, IEEE

Computer Laboratory

Cambridge University

Cambridge, United Kingdom

Email: Jon.Crowcroft@cl.cam.ac.uk

Liron Levin Michael Segal, Senior member, IEEE

Communication Systems Engineering Department

Ben-Gurion University of the Negev

Beer-Sheva, Israel

Email: levinlir@gmail.com, segal@bgu.ac.il

Abstract—In this paper, we study the problem of
efficient data recovery using the data mules approach,
where a set of mobile sensors with advanced mobility
capabilities re-acquire lost data by visiting the neighbors
of failed sensors, thereby improving network resiliency.
Our approach involves defining the optimal communica-
tion graph and mules’ placements such that the overall
traveling time and distance is minimized regardless to
which sensors crashed. We explore this problem under
different practical network topologies such as general
graphs, grids and random linear networks and provide
approximation algorithms based on multiple combinato-
rial techniques. Simulation experiments demonstrate that
our algorithms outperform various competitive solutions
for different network models, and that they are applicable
for practical scenarios.

I. PROBLEM FORMULATION

A data mule is a vehicle that physically carries a

computer with storage between remote locations to

effectively create a data communication link [1]. In

ad-hoc networks, data mules are usually used for data

collection [2] or monitoring purposes [3] when the

network topology is sparse or when communication

ability is limited. In this paper, we propose to extend

the usage of data mules to the critical task of network

reliability. That is, using the advantages of mobility

capabilities to prevent losing crucial information while

taking into consideration the additional operational

costs. We propose to model the penalty of a sensor crash

as the cost of restoring its information loss, and present

several algorithms that minimize the total cost given any

combination of failures. We use concepts from graph

theory to model the deployment of the ad-hoc network

and give special attention to linear and grid graph

models, whose unique network characteristics makes

them well suited for many sensor applications such as

monitoring of international borders, roads, rivers, as

well as oil, gas, and water pipeline infrastructures [3],

[4].

Let T be a data gathering tree rooted at root ρ
spanning n wireless sensors positioned in the Euclidean

plane, where data propagates from leaf nodes to ρ. We

model the environment as a complete directed graph

G = (V,E), where the node set represents the wireless

sensors and the edge represents distance or time to

travel between that sensors. We assume the sensors

are deployed in rough geographic terrain with severe

climatic conditions, which may cause sporadic failures

of sensors. Clearly, if a sensor v fails, it is undesirable

to lose the data it collected from its children in T ,

δ(v, T). Thus, a group of data gathering robots must

travel through δ(v, T) and restore the lost information.

We define this problem as (α, β)-Mule problem, where

α is the number of simultaneous node failures and β
is the number of traveling mules. For α = 1, β = 1,

m

u

v
w

ρ

x
y

Fig. 1: Example for the mule tour when 2 nodes fail.

The red nodes represent sensors that experienced failure

and the blue dashed lines represent the mule tour; the

tour starts and ends at node m.

the mule visits the children of v over the shortest tour,

t(m, δ(v, T)), starting at node m ∈ V , where the length

of the tour is equal to the Euclidean length of distances;

the goal is to find a data gathering tree T , the placement

of the mule m, and the shortest tours, t(m, δ(v, T)) for

all v ∈ V , which minimize the total traveling distance

given any sensor can fail. Formally, the objective is to

have minT,m

∑

v∈V |t(m, δ(v, T))|. In a similar way,

we can define the problem for α > 1, β = 1 (see

example for α = 2 in Figure 1, where the edges are

directed towards the root). Formally, the objective is to

have minT,m

∑

{F⊂V :|F |=α} |t(m,
⋃

v∈F δ(v, T))|. We

can extend this scenario to the case where instead of a

single mule, we have β mules m̄ = {m1,m2, ...,mβ}
deployed at different coordinates of the graph. When

a node fails, its descendants must be visited by one

of the mules to restore the lost data, which can be

viewed as a mule assignment per node for the single

node failure, or per unique node failure combination

for the multi-failures case. In addition to T , we must

find the location of all mules m̄, and an assignment of

each node v ∈ V to a mule mi ∈ m̄ that minimizes

the total travel cost of all mules. Formally, for β > 1,

let t(mi, δ(v, T)) be the shortest path tour that includes

mule mi and the descendants of node v that mule mi

should visit. The optimization problem is (for α = 1)

to obtain minT,m

∑

v∈V

∑

mi∈m̄ |t(mi, δ(v, T))|.
We consider two network models, general graphs and

unit disc graphs. In the general graph model, there is a

directed edge between any pair of nodes in the graphs

while in the unit disc graph model, there is an edge if

and only if d(u, v) ≤ 1, where d(u, v) is the Euclidean

distance between nodes u and v.

A. Our contribution

To the best of our knowledge, this is the first work

exploring the mule approach for increasing network

resiliency to communication failures. Our results are

summarized in the following table:

Network Problem Topology Approximation Ratio

General

(1, 1)-Mule

General

1 + 1/c, c > 1
(α, 1)-Mule min (3, 1 + s∗),

s∗ = minv∈V
max d(v,u)
min d(v,w)

(1, β)-Mule 2

UDG

(1, 1)-Mule Line OPT

(α, 1)-Mule Line OPT

(1, 1)-Mule Random Line 4

(1, 1)-Mule Grid 1 + (2 +
√
2)/

√
n

B. Paper Outline

The paper is organized as follows. In the next Section

we discuss the previous related work to our problem.

We analyze different variations of the mule problem

under the general graph model and the Unit Disc Graph

model in Sections III and IV, respectively. Section V

outlines a possible distributed implementation of our

algorithms. In Section VI we present numerical analysis

of our algorithms under practical settings.

II. RELATED WORK

Exploiting mobile data carriers (mules) in ad-hoc

networks has received significant attention recently.

The subject of major interest in most works is using

the mules to relay and collect messages in sparse

network settings, where adjacent sensors are far from

each other, in order to substantially reduce the cost of

indeterminate sensors communication and data aggre-

gation. For example, Wu et al. [5], investigate how to

use the mule architecture to minimize data collection

latency in wireless sensor networks. They reduce this

problem to the well-known k-traveling salesperson with

neighborhood and provide a constant approximation

algorithm and two heuristic for it. In a related pa-

per by Ciullo et al. [6], the collector is responsible

for gathering data messages by choosing the optimal

path that minimizes the total transmitted energy of all

sensors subject to a maximum travel delay constraint.

In their model, each sensor sends different amount of

data. The authors also use the k-traveling salesperson

with neighborhood problem in their solution technique

and prove both analytically and through simulation that

letting the mobile collector come closer to sensors with

more data to transmit leads to significant reduction in

energy consumption. Cheong et al. [7] investigate how

to find a data collection path for a mobile base station

moving along a fixed track in a wireless sensor network

to minimize the latency of data collection. Levin et

al. [8] considered the problem where the goal was to

minimize the mules traveling distance while minimizing

the amount of information uncertainty caused by not

visited a subset of nodes by the mule. A supplementary

paper by Jea et al. [9] studies the practical advantages

of offloading the collection using multiple data mules.

Another key aspect we discuss is ensuring network

resiliency to sensor failures. In [10], the authors propose

a mechanism for backing up cell phone data using

mobile sensor nodes. The goal of their protocol and

infrastructure is to prevent losing data when the cell

phone is lost, malfunction or stolen. In [11], Kim et

al. propose a new algorithm based on results from

algebraic graph theory, which can find the critical

points in the network for single and multiple failure

cases. They present numerical results that examine the

correlation between the number of critical points and

sensor density.

Multiple works in ad-hoc network examine the per-

formance of graph related communication algorithms

under linear or grid network topologies. The justi-

fication to explore such topologies is that multiple

algorithms have been tested under realistic network

conditions. In [3], Fraser et al. explore the usage of

sensor networks for bridge monitoring. They build a

continuous monitoring system, capable of handling a

large number of sensor data channels and three video

signals and deployed on a four-span, 90-m long, re-

inforced concrete highway bridge. In [4], Jawhar et

al. consider a protocol for linearly structured wireless

sensors to decrease installation, maintenance cost, and

energy requirements, in addition to increasing relia-

bility and improving communication efficiency. Their

protocol takes advantage of the unique characteristics

of linear networks and is well suited to be used in many

sensor applications such as monitoring of international

borders, roads, rivers, as well as oil, gas, and water

pipeline infrastructures.

III. GENERAL GRAPHS

In this section, we study the (α, β)-Mule problem

under the general graph model, where the underlying

graph structure is complete (i.e., there is an edge

between any pair of nodes).

A. (1, 1)-Mule problem in general graphs

Let S be a star over V and ρ be its root. We claim

the following:

Lemma 1. The optimal data gathering tree for the

(1, 1)-Mule problem in general graphs is a star.

Proof: For any data gathering tree each node in V \
{ρ} must be traversed at least once. The proof follows

since the travel distance of the mule for a star is:

|t(m, {v})| =

0 v 6= ρ
Length of shortest tour otherwise

over V \ {ρ}
is optimal.

Lemma 1 implies that the (1, 1)-Mule problem is

equivalent to the problem of finding a node ρ ∈ V
and a tour over V \ ρ, such that the cost of the tour

is minimized. We use this fact to prove the NP-

completeness of the (1, 1)-Mule problem. Consider the

standard decision TSP problem: Given a set S of n
points, and length K , we need to find whether exist a

cycle that goes through all points in S whose length is

at most K? The decision version for the (1, 1)-Mule

problem is as follows: given a set P of n points, and

parameter L, we need to find whether we can remove

one of the points so the cycle for the remained points

will be of length at most L?

Claim 2. The (1, 1)-Mule problem is NP-complete.

Proof: It’s easy to see that the problem is NP.

We only show TSP ≤P (1, 1)-Mule . Given n points

and parameter K from TSP instance, we construct the

instance for our problem as follows. We set P to contain

S and one more point x. The parameter L will be equal

to K . We put point x far way from all other points of

P so that the distance from x to any of them will be

more than K . Clearly, there is a solution to (1, 1)-Mule

problem for P and L if and only if there is solution to

TSP problem.

Next, we present an approximation algorithm for the

problem.

Lemma 3. For any fixed c > 1, there is an 1 + 1
c

-

approximation algorithm for (1, 1)-Mule problem.

Proof: Using the 1 + 1
c
-approximation algorithm

for TSP [12], we can search for ρ ∈ V that minimizes

|t(m, δ(ρ))|, where m is picked arbitrarily from V \{ρ}.

The running time is is O(n(log n)O(c)).
We remark that alternative implementation can use

Christofides’s 3
2 -approximation algorithm [13] for find-

ing the tour. The running time is O(n2).

B. (α, 1)-Mule problem in general graphs

By similar argument as in Lemma 1, it is easy to

see that the optimal topology for (α, 1)-Mule is a star

rooted as some node ρ. We introduce Algorithm BUILD

TREE 1. Let topt be the optimal tour, ρopt be the root

BUILD TREE 1

1 For each node v ∈ V , calculate s(v) =
maxu∈V \{v} d(v,u)

minw∈V \{v}d(v,w)
,

the ratio between the maximum to the minimum edge with
respect to v. Set ρ to be the node that minimizes this ratio and
let s∗ = s(ρ) (ties are broken arbitrarily).

2 Set T to be a star rooted at ρ.
3 Pick an arbitrary node v 6= ρ and set m = v.

4 Find tour C on V \ {ρ} using the algorithm from [12].1

5 Emit T,m,C.

of the optimal tour, t be the tour produced by Algorithm

BUILD TREE 1, and Pα be a permutation of α nodes.

1This step in the algorithm can be accomplished by any approxi-
mation algorithm for TSP, e.g., [13].

Lemma 4. Algorithm BUILD TREE 1 is a (1 + s∗)-
approximation algorithm for (α, 1)-Mule on general

graphs.

Proof: We prove the claim by mapping, showing

that for each combination of node failures Pα, either

the mule travel costs of topt and t are the same, or

that there exists a bijection from a permutation in topt
to a permutation in t such that the solution’s cost

increases by at most (1 + s∗), where s∗ is defined in

Algorithm BUILD TREE 1. Let V (Pα) be the nodes that

are traversed when the nodes in Pα fail. Clearly the

solutions costs are the same if ρ /∈ Pα and ρopt /∈ Pα

or ρ ∈ Pα and ρopt ∈ Pα. For ρopt ∈ Pα and ρ /∈ Pα

the cost of t is 0 (since the tree has a form of star),

while the cost of topt is the optimal tour over V (Pα);
the opposite stands for ρopt /∈ Pα and ρ ∈ Pα. We

show that for this case, for each combination Pα in

t there is a combination P
′
α formed by adding twice

(forward and back) the edge e(ρ, ρopt) to the solution

that the new cost is at most 1 + s∗ times the cost of

topt. Clearly, each edge that connects ρ to the tour costs

at least minu∈V \{ρ} d(ρ, u) and the new edge costs at

most maxu∈V \{ρ} d(ρ, u). Therefore, the cost of the

new tour is at most |topt| + 2maxu∈V \{ρ} d(ρ, u) =
|topt| + 2s∗ minu∈V \{ρ} d(ρ, u) ≤ |topt|(1 + s∗). Last

equality holds since |topt| ≥ 2minu∈V \{ρ} d(ρ, u).
An alternative approach to this solution, is to se-

lect ρ that minimizes the length of minimum edge

e(ρ, w), ∀w ∈ V \ {ρ} with ρ as one of the end-

points. Similar analysis to the above yields (1 +
2s(ρ)
n−α

)-approximation ratio. This is because topt ≥
(n − α)minw∈V \{ρ} d(ρ, w) and the cost of new

tour is |topt| + 2maxu∈V \{ρ} d(ρ, u) = |topt| +

2s(ρ)minw∈V \{ρ} d(ρ, w) ≤ |topt| + 2s(ρ)
|topt|
n−α

=

(1 + 2s(ρ)
n−α

)|topt|. Note that s(ρ) does not necessary

minimize maximum edge to minimum edge ratio.

Next, by carefully choosing ρ, we explain how to

obtain a 3-factor approximation to our problem for a

fixed value of α. Select ρ that maximizes the average

cost of minimal edge (u, v) for each combination of

α− 2 failures. That is, per each node u and every edge

(u, v) we calculate the number of times t(u, v) (per

each combination of α − 2 failures) the edge (u, v)
will be minimum edge from u. Next, we compute

ct(u) =
∑

v∈V d(u, v) · t(u, v). Take ρ to be the

node that maximizes ct(ρ). If we consider the opti-

mal solution OPT (which, according to the definition,

contains many tours), then we notice that the sum of

all edges’ lengths that connect ρ in all tours is larger

than ct(ρ), since it must be equal at least the sum of all

minimums. Thus, the total traveling distance in OPT
is |OPT | ≥ 2ct(ρ). On the other side, by definition

ct(ropt) ≤ ct(ρ). The cost of new solution when adding

ρopt is |OPT |+2c(ρopt) ≤ |OPT |+2ct(ρ) ≤ 3|OPT |.

C. (1, β)-Mule problem in general graphs

In this section, we show how to solve the (1, β)-Mule

problem on the complete Euclidean graph.

Lemma 5. Algorithm BUILD TREE 2 produces is a 2-

approximated solution for the (1, β)-Mule problem.

Proof: Let Ci
OPT be the optimal tour traveled by

mule mi. By the construction of the algorithm and by

the definition of minimum spanning tree:
∑β

i |T i| ≤
∑β

i |Ci
OPT | = OPT . Let Ci be the tour constructed

by traversing the nodes T i using a depth-first-traversal.

We have
∑β

i |Ci| ≤ ∑β

i 2|T i| ≤ 2OPT .

BUILD TREE 2
1 foreach v ∈ V do

2 Find optimal spanning tree Tv on V \ {v}

3 Let T 1
v , T

2
v , . . . , T

β
v be the set of trees created by

removing the β − 1 heaviest edges from Tv

4 Assign the nodes in T i
v to mule mi.

5 end

6 Let v be the node that minimizes
∑β

i=1 |T
i
v|.

7 Set T to be a star rooted at v.

8 Emit T, m̄ = {m1
v , . . . , m

β
v }.

IV. UNIT DISC GRAPHS

In this section, we study the different variation of the

(1, 1)-Mule problem under the Unit Disc Graph model,

where any two nodes u, v ∈ V , can communicate if

and only if d(u, v) ≤ 1.

A. (1, 1)-Mule problem in line topology

Here, n nodes, with unit distance between them,

are placed in the Euclidean plane. The construction

ensures that a node can communicate only with its

adjacent neighbors. For the line topology under those

communication constraints, only the placement of the

root ρ is required to define the structure and orientation

of the tree. Thus, the cost of a solution is solely

determined by the placement of ρ and m. For clarity,

we number the nodes from 1 to n and use m and

ρ as the indices of the mule and the root in the

solution. From symmetry, we assume ρ ≥ m, since

c(m, ρ) = c(n−m+1, n−ρ+1), where c(m, ρ) is the

cost of the optimal solution when the mule is located

at m and the root is located at r when the topology is

entirely determined by the location of r (e.g., line). A

sample instance of the problem is depicted in Figure 2.

Lemma 6. For the line topology, the optimal placement

for the root ρ is n− 1.

Proof: Assume m < ρ, if a node i ∈ V fails, we

have four cases:

1) i < m, the cost is m − i + 1 regardless to the

location of ρ.

2) i < m < ρ, the cost is ρ−m− 1.

3) ρ < i, i 6= n, the cost is ρ−m+ 1.

4) ρ < i, i = n, the cost is 0.

The claim follows since we want to minimize the

number of nodes that are placed after ρ, but can use

the fact that the cost is zero for ρ < i = n.

m, ρ

(a) c(m, ρ) = 2
∑n

i=1 i = 30

m ρ

(b) c(m, ρ) = 2
∑n

i=1 i− 2n = 20

m, ρ

(c) c(m, ρ) = 2
∑⌈n/2⌉

i=1 i = 12

m ρ

(d) OPT. c(m, ρ) = 6.

Fig. 2: Line topology illustration. The figure contains

5 nodes with two different solutions for T and two

different choices for locating the mule.

Lemma 7. For line topology, the optimal placement for

the mule is ⌈n
2 ⌉.

Proof: For optimality ρ = n− 1. Then c(m, ρ) =
2(
∑m−1

i=0 i+
∑n−m−1

i=0 i+2) is maximized for ⌈n
2 ⌉.

B. (α, 1)-Mule in the line topology

In this section, we show how to handle α simultane-

ous failures on the line topology. We show a formula

for calculating c(m, ρ) and prove that the values that

minimize c(m, ρ) are m = n
2 and ρ = n − 1. The

highlights of the proof are as follow: we show that

for ρ = n, c(m,n) is monotonically decreasing for

m < n
2 and monotonically increasing for m > n

2 ,

which implies a global minimum for m = n
2 . Next, we

extend the proof and show that this global minimum

for ρ = n− 1 is still m = n
2 . To illustrate the concepts

behind the proof, the costs of c(m,n) and c(m,n− 1)
for varying values of m are given in Figure 3.

First, we introduce some basic definitions. We define

a direct visit when the mule visits node i where i is

the leftmost node if i < m or the rightmost node if

i > m. Let π(i,m, ρ) be the number of times the mule

at placement m directly visits node i for root placement

ρ. We separate between left and right movement and

define πl(m, ρ) =
∑m−1

i=1 π(i,m, ρ) and πr(m, ρ) =
∑n

i=m+1 π(i,m, ρ) to be the number of times that the

mule must travel left or right when placed at location

m ∈ [1, n].
We begin by showing an optimal but inefficient

algorithm for the problem:

Lemma 8. For m ∈ [1, n−2], c(m,n−1) has a closed

formula, which can be calculated in polynomial time.

Proof: First note that we only visit node at i, when

node at i + 1 fail. For m < i < n − 2 we have

π(i,m, n − 1) =
∑n−i−2

j=1

(

i−1
α−j

)

+
∑n−i−1

j=1

(

i−1
α−j−1

)

.

The left expression represents the case where node at

placement n did not fail and the right expression rep-

resents the case where node at placement did fail. For

i = n−2 we have π(n−2,m, n−1) =
(

n−3
α−2

)

+
(

n−3
α−1

)

.

For i = n: π(n,m, n − 1) =
(

n−2
α−1

)

. The expression

π(i,m, n − 1) for i < m represents the case where

j consecutive nodes from the right side of i failed

and equals
∑min(α−1,i−1)

j=1

(

n−(i+1)
j

)

. Let d(m, i) be

the Euclidean distance between m and i, the cost is

c(m,n− 1) =
∑n

i=1 π(i,m, n− 1) · d(m, i). which we

can calculate in polynomial time.

From Lemma 6 we know that the optimal placement

for the root is n − 1. Therefore, to find the optimal

solution, we can search for the value of m that min-

imizes c(m,n − 1). Using dynamic programming and

the memoization table, in O(n2) time we can compute

the values of c(i, j), and calculate the total cost. Thus,

the running time of the algorithm is O(n2).
Now we show that the optimal cost is obtained for

m = n
2 and ρ = n− 1. First we claim the following:

Lemma 9. For m < i, π(i,m, ρ) = π(i,m+1, ρ) and

for m > i, π(i,m, ρ) = π(i,m− 1, ρ).

Proof: As long as m 6= i the orientation of the

mule with respect to i does not change.

Lemma 10. c(m + 1, ρ) = c(m, ρ) + πl(m, ρ) +
π(m,m+1, ρ)−πr(m, ρ) and c(m−1, ρ) = c(m, ρ)−
πl(m, ρ) + π(m,m− 1, ρ) + πr(m, ρ).

Proof: Let d(m, i) be the distance between m
to i. Thus, c(m, ρ) =

∑m

i=1 π(i,m, ρ)d(m, i) +
∑n

i=m+1 π(i,m, ρ)d(m, i). Assume we place the mule

at location m+1. From Lemma 9 we have c(m+1, ρ) =
∑m−1

i=1 π(i,m, ρ)(d(m, i) + 1) + π(m,m + 1, ρ) +
∑n

i=m+1 π(i,m, ρ)(d(m, i)− 1). Since d(m,m)=0 we

get c(m+1, ρ)−c(m, ρ) = πl(m, ρ)+π(m,m+1, ρ)−
πr(m, ρ). And when placing the mule in m − 1 we

obtain c(m− 1, ρ)− c(m, ρ) = −πl(m, ρ)+π(m,m−
1, ρ) + πr(m, ρ). and the claim follows.

Next, we show that:

Lemma 11. For ρ = n, πl(
n
2 , n) = πr(

n
2 , n).

Proof: When ρ = n, we show that for each node

on the right side r, there is a bijection to a node on the

left side l, such that π(r,m, n) = π(j,m, l). This means

that the number of times the mule travels specifically

to l is equal to the number of times it travels to r (note

that this does not necessarily imply that the distances

of l and i from m are the same or that they equally

contribute to c(m, ρ)). To see this, we look at the

number of permutations when some node r > n
2 fails.

We travel directly to r when a set of j consecutive nodes

with respect to r fail (i.e., r+1, r+2, . . . ,min r + j, α)

and α − j nodes that are on the left hand side of r
fail. Formally, this is equal to π(r,m) =

∑n−r

j=1

(

r−1
α−j

)

.

For some node l < n
2 , we travel to l when a set of

j consecutive nodes from the leftmost node fail (i.e.,

1, 2, . . . ,min j, α), and another j node that are on the

right hand side of l fail. Formally, this is equal to

π(l,m) =
∑l−1

j=1

(

n−(l+1)
α−j

)

. We have the expressions

equal for l = n− i+ 1 and the claim follows.

Lemma 12. For increasing m πl(m, ρ) is monoton-

ically increasing and πr(m, ρ) is monotonically de-

creasing.

Proof: Regardless of the mule placement, from

Lemma 9 and as long as i > m, the number of times

the mule travel to a specific node is constant. Since

increasing m means less nodes are on the right hand

side, with no change in orientation with respect to m,

πl(m, ρ) is decreasing. Since more nodes are added

from the left side of m, πr(m, ρ) is increasing.

Lemma 13. For ρ = n, the function c(m,n) has global

minimum at ⌈n
2 ⌉.

Proof: Follows from Lemmas 11 and 12.

We have shown that for c(m,n) yields optimal value

for m = n
2 . To complete the proof, we turn to handle

the case of ρ = n− 1.

Lemma 14. For ρ = n − 1, the function c(m,n − 1)
has global minimum at ⌈n

2 ⌉.

Proof: For l < m, π(m, l) is not impacted by

this change. However, for each node r < n − 2 on

the right of m, we separate to two cases: directly

visiting r when node n fails or nodes n and n− 1 do

not fail. Formally, π(r,m, n − 1) =
∑n−r−2

j=1

(

r−1
α−j

)

+
∑n−r−1

j=1

(

r−1
α−j−1

)

=
∑n−r−2

j=1

(

r−1
α−j

)

+
∑n−r

j=2

(

r−1
α−j

)

=
∑n−r−2

j=1

(

r−1
α−j

)

+
∑n−r

j=n−r−1

(

r−1
α−j

)

+
∑n−r−2

j=2

(

r−1
α−j

)

=
∑n−r

j=1

(

r−1
α−j

)

+
∑n−r−2

j=2

(

r−1
α−j

)

. For r = n − 2, we

have π(n − 2,m, n− 1) =
(

n−3
α−2

)

. Finally, for r = n,

π(m,m, n− 1) =
(

n−2
α−1

)

. Thus, we obtain πr(m,n)−
πr(m,n−1) =

(

n−3
α−1

)

−∑n−3
r=m+1

∑n−r−2
j=2

(

r−1
α−j

)

= ∆.

To complete this proof, all we have to show is that the

function c(m,n − 1) is monotonicity increasing when

m > n
2 and monotonicity decreasing when m < n

2 ,

which means that the minimum is achieved at m = n
2 .

Combining Lemmas 10 and 11, we have to show that:

0 ≤ c(m + 1, n− 1) − c(m,n − 1) = πl(m,n − 1) −
πr(m,n− 1) + π(m+ 1,m, n− 1) = πl(m,n− 1)−
(πr(m,n)−∆)+π(m+1,m, n−1) = π(m+1,m, n−
1) +∆ and that: 0 ≤ c(m− 1, n− 1)− c(m,n− 1) =
−πl(m,n− 1)+ πr(m,n− 1)+π(m− 1,m, n− 1) =
π(m− 1,m, n− 1)−∆.

Clearly the first expression is true since π(m +
1,m, n − 1) + ∆ is positive. To complete the proof,

we show that ∆ ≤ π(m − 1,m, n − 1). Revers-

ing the order of summation yields ∆ =
(

n−3
α−1

)

−
∑n−m−3

j=2

∑n−3−(j−1)
r=m+1

(

r−1
α−j

)

. Using the binomial co-

efficient identity:
∑n

i=0

(

i
c

)

=
(

n+1
c+1

)

we get ∆ =
(

n−3
α−1

)

−∑n−m−3
j=2 (

(

n−3−(j−1)
α−j+1

)

−
(

m
α−j+1

)

) =
(

n−3
α−1

)

−
∑n−m−5

j=0 (
(

n−4−j
α−j−1

)

−
(

m−2
α−j−1

)

). Using the binomial

coefficient identity
∑c

i=0

(

n−i
c−i

)

=
(

n+1
c

)

and assum-

ing n − m − 5 ≥ α we obtain ∆ =
(

n−3
α−1

)

−
(

n−3
α−1

)

+
∑n−m−5

j=0

(

m−2
α−1−j

)

. Setting m = n
2 , we have

∆ =
∑

n
2 −5
j=0

(n
2 −2

α−1−j

)

. Finally, by setting m = n
2 in

π(m − 1,m, n − 1) it results in: π(m − 1,m, n −
1) = π(n2 − 1, n2 , n − 1) =

∑

n
2 −1
j=1

(

n−(n
2 −1+1)
α−j

)

=
∑

n
2
j=0

(n
2

α−1−j

)

≥ ∆ and the proof is complete.

We conclude with the following:

Theorem 15. The optimal placement for (α, 1)-Mule

on the line topology is ρ = n− 1 and m = n
2 .

2 4 6 8 10 12 14

1.4

1.6

1.8

2

2.2
·104

m

c(
m

n
)

c(m,n)

c(m,n− 1)

(a) c(m,n) for n = 14.

5 10 15

6.5

7

7.5

8

8.5

·105

m

c(
m

n
)

c(m,n)

c(m,n− 1)

(b) c(m,n) for n = 20.

Fig. 3: c(m, ρ) for varying values of m.

C. (1, 1)-Mule problem in the random line topology

In this section, we solve the (1, 1)-Mule problem

on the random line, where n nodes are placed on

a line with length n ≫ L such that the distances

between adjacent nodes are sampled from a predefined

distribution function, i.e., the maximum distance is 1.

The communication model is Unit Disc Graph, which

means that an edge is formed between two nodes u, v
if and only if d(u, v) ≤ 1. Note that this implies that

the graph is connected. In what follows, we use the

simplified assumption that the mule m and root ρ are

positioned in the leftmost node of the line and that

L ∈ N.

Algorithm 3: BUILD TREE 3

1 V ′ = B = C = {ρ}
2 E′ = ∅
3 while |C| 6= n do

4 Let C be all nodes reachable by nodes in B.
5 Find furthest node v that is reachable by nodes in B .
6 Find node u ∈ B that minimizes d(u, v).
7 Add v to B.

8 Add the edge e(v, u) to E
′
.

9 For each w ∈ C \ {v}, add a directed edge e(w, v) to

E
′
.

10 V ′ = V ′ ∪C ∪ {v}.
11 end

12 Emit T = (V ′, E′).

Let T be the tree produced by Algorithm BUILD

TREE 3, Topt be the optimal tree and c(T) and c(Topt)
be their costs, respectively. We define TL as the tree

over exactly L nodes such that the distance between

adjacent nodes is exactly one; let c(TL) be its cost.

Observe that in the algorithm, the set B represents the

”backbone” nodes in T that are not leaves. We claim:

Lemma 16. c(TL) ≤ c(Topt).

Proof: Note that at least L nodes are required to

cover an area of length L and that each unit interval

on the line must contain at least one node. Therefore,

we can convert any tree to TL by mapping one of the

nodes in interval [i, i+1] to the node at location i in T ,

and drop all other nodes in that interval. Since m = 0,

this conversion reduces the overall cost of the solution.

This implies, a fortiori, that c(TL) ≤ c(Topt).

Lemma 17. |V (T)| ≤ 2L.

Proof: Let v and l be two non-leaf nodes that

are selected in two consecutive iterations of Algorithm

0 0 + ǫ 1 + ǫ 1 + 2ǫ 2 + 2ǫ2 + 2ǫ 2 + 3ǫ 3

Fig. 4: Placement where approximately 2L nodes are

required to cover an area with length L.

BUILD TREE 3, and vx and lx be their x coordinates

on the line, respectively. The algorithm will converge in

most slowest rate when lx is closest as possible to vx,

but since l is the furthest node in the range [vx, vx+1]
it means the non-leaf node that will be selected after l
must be in [vx+1, vx+1+ ǫ]. Thus, in the worst case,

the algorithm covers a unit distance in two iterations,

which means that it completes after at most 2L steps.

See the illustration in Figure 4.

Lemma 18. c(T) ≤ 4c(TL).

Proof: By definition c(TL) = 2
∑L

i=1 i = L(L +
1). Let ix be the coordinate of non-leaf node selected

in iteration i in Algorithm BUILD TREE 3, we have:

c(T) ≤ 2
∑2L

i=1 ix ≤ 2
∑2L

i=1 i = 2L(2L+ 1). The last

inequality follows since we stretch a line of length L
to a line of length 2L.

Therefore, we have:

Lemma 19. Algorithm BUILD TREE 3 yields a 4-

approximation for the (1, 1)-Mule problem.

D. (1, 1)-Mule problem in grid topology

Next, we assume that the nodes of the graph are

deployed on a
√
n×√

n grid and have unit transmission

radius.

Let dv be the degree of node v ∈ V and dmax be

the maximum degree of any node in the input graph G
and vi,j be the location of node at coordinates i, j, we

claim:

Lemma 20. For a specific mule placement m, the

approximation ratio of any tree to the (1, 1)-Mule

problem is at most dmax.

Proof: Clearly, for any algorithm all non root

nodes must be visited by the mule. In the worst case,

that incurs the least value is when a node v has a single

child in T . Then, the mule’s tour only covers one node.

In the best case, each tour includes all children of v in

G, which is obliviously bounded by its degree. The

claim follows since the ratio between the cost node v
incurs in the worst solution and the optimal solution is

at most dv and since all children of v must be visited

by the mule in the algorithm.

Next, we show a lower bound on OPT.

Lemma 21. OPT ≥ 2

∑√
n

i=1

∑√
n

j=1 d(vi,j ,v√
n
2

,

√
n
2

)

3 .

Proof: Let m = (mx,my) be the location

of the root, and assume that we use a spiral tree

as a solution (see Figure 6). Clearly, the cost is

2
∑

√
n

i=1

∑

√
n

j=1 d(vi,j ,m), which is optimized by m =

(
√
n

2 ,
√
n

2). The proof follows by combining the fact that

except from the root, for any tree in the grid dmax = 3,

and from Lemma 20.

(a) Stars step

ρ

(b) Orientation step

Fig. 5: Illustration of Algorithm BUILD TREE 4.

Next, we present Algorithm BUILD TREE 4 that

constructs a tree with almost optimal cost. To maximize

the number of nodes visited per failure we try to

produce a tree with maximum number of leaves. We

use the principals presented at [14] and build the tree

on the top of multiple consecutive stars. Let c be the

BUILD TREE 4
1 Stars Build adjusted stars for all nodes with coordinates (x, y)

such that 1 ≡ y mod 3 (Figure 5a).
2 Orientation Connect stars with grid orientation (Figure 5b).

cost of Algorithm BUILD TREE 4 and s be the cost of

the spiral tree. We show:

Lemma 22. Algorithm BUILD TREE 4 is a 1 + 2+
√
2√

n
-

approximation algorithm.

Proof: On the one side c =

2
∑

√
n

i=1

∑

√
n

j=1|1≡j mod 3(d(vi,j ,m) + (1 +
√
2)) +

2
∑

√
n

j=1|1≡j mod 3 j ≤ 2
∑√

n

i=1

∑√
n

j
d(vi,j ,m)

3 +

2
∑

√
n

i=1

∑

√
n

j=1|1≡j mod 3(1 +
√
2) + 2

3n =

OPT + 2
3n(2 +

√
2). On the other side, since

we can project all nodes in the spiral tree solution

to the x-plane and place m at (
√
n

2 , 0) we have

s = 2
∑n

i=1(i −
√
n

2) ≥ n2 − n
√
n ≥ 2n

√
n. The

last inequality holds for n > 9. Since the projection

reduces the travel cost of the solution, together with

Lemma 20 we have OPT ≥ s
3 ≥ 2n

√
n

3 Hence,

c ≤ (1 + 2+
√
2√

n
)OPT .

m

ρ

Fig. 6: Spiral tree with cost 2
∑

√
n

i=1

∑

√
n

j=1 d(vi,j ,m).

V. DISTRIBUTED IMPLEMENTATION

In order to make our solutions feasible, i.e. to allow

them to work in real life node deployments, we outline

how it is possible to implement them in a decentralized

(distributed) (without the need for coordination by a

central unit) and local, based on neighbor knowledge

manner. In the proposed distributed implementations we

make a use of the work [15]. The paper [15] shows

how to find a leader in a distributed fashion (and also

minimum spanning tree) in a network with n nodes

in O(n) time using O(n logn) messages. To establish

connectivity, can follow two different approaches as

described in [16]. The first, described in Dolev et

al. [17] forms a temporary underlying topology in

O(n) time using O(n3) message. The second (better)

approach is given by Halldórsson and Mitra [18] that

shows how to do this in O(poly(log γ, logn)), where γ
is the ratio between the longest and shortest distances

among nodes. After the topology is established, we

can use leader-election algorithm by Awerbuch [15]

that can compute all other relevant information in the

network, i.e. choose an appropriate root ρ or find the

tour. Given each sensor knows the total number of

nodes in the network, the distributed implementation of

BUILD TREE 4 algorithm only requires the local GPS

coordinates of each sensor. To retrieve this information,

we can apply Peleg et al. [19] distributed algorithm

for finding the graph’s diameter and propagate it to all

sensors. VI. SIMULATIONS

In what follows, we describe the simulation results

of the various algorithms and network models proposed

in this paper. To show the clear advantages of using the

20 40 60 80 100

1

2

3

4

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 2 TOUR RANDOM

(a) (α, 1)-Mule for α = 5

20 40 60 80 100

1

2

3

4

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 2 TOUR RANDOM

(b) (α, 1)-Mule for α = 10

Fig. 7: Ratio between the cost of algorithm BUILD

TREE 2 against competitive algorithms

suggested algorithms we introduce the notation of lower

bound OPT, ⌊OPT⌋, which is calculated based on the

different bounds we provide under the different network

settings. In all simulations we compare the ratio of the

proposed algorithm to the lower bound on OPT. In the

first simulation (Figure 7), we investigated the variance

of initiating different input trees in step 1 of Algorithm

BUILD TREE 2. To produce the mule’s tours we used

the heuristic genetic algorithm from [20]. We compared

our results to the following variations: TOUR, building

a tree over the optimal tour with n−1 nodes, RANDOM,

building a random tree, and ⌊OPT⌋, using the minimal

spanning tree instead of tours (thereby making its cost a

lower bound on OPT). We provide results for 5 and 10
sensor failures, correspondingly. From the simulations,

we can see that the rival algorithms substantially suffer

from the increase in failures, which means higher

insufficiency with respect to Algorithm BUILD TREE

2. The results show that the bound proved in Lemma 5

holds and that in practice, might be even better. In the

200 400 600 800 1,000

1

1.5

2

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 3 GREEDY 1 GREEDY 2

(a) Results for exponential distribu-
tion with mean 0.1.

200 400 600 800 1,000

1

1.2

1.4

1.6

1.8

2

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 3 GREEDY 1 GREEDY 2

(b) Results for uniform distribution
with mean 0.5.

Fig. 8: Ratio between the cost of algorithm BUILD

TREE 3 against competitive algorithms

second simulation (Figure 8), we explored how different

leader selection in step 4 of Algorithm BUILD TREE 3

impacts the total cost of the algorithm. We compared

the results of our algorithm against three competitive

algorithms: GREEDY1, randomly selecting one of the

nodes as leader, GREEDY2, selecting the node closest to

the rightmost leader and ⌊OPT⌋, changing the distances

between the adjacent nodes to L/n. In the simulations,

we tested how the distribution function of the adjacent

distance between nodes impacts the performance of

the algorithm. In Figure 8a, we used the exponential

distribution with mean 0.1 and in Figure 8b, the uniform

distribution with mean 0.5. Reviewing the experiment

data, we noticed that the burstness of the exponential

distribution causes increases the travel distance of the

mule, thereby increasing the overall cost of the solu-

tions. Finally, note that the actual approximation ratio

of Algorithm BUILD TREE 3 is much lower than the

one proved in Lemma 18, which may indicate that we

can theoretically tighten the approximation ratio. In the

1,000 2,000 3,000 4,000 5,000 6,000

1

1.5

2

2.5

3

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 4 SPIRAL GREEDY

(a) Results when mule is placed at
center coordinates.

1,000 2,000 3,000 4,000 5,000 6,000

1

1.5

2

2.5

3

3.5

number of nodes

ra
ti

o

⌊ OPT ⌋ BUILD TREE 4 SPIRAL GREEDY

(b) Results when mule is placed at
corner coordinates.

Fig. 9: Ratio between the cost of algorithm BUILD

TREE 4 against competitive algorithms.

final simulation (Figure 9), we compared the results

of Algorithm BUILD TREE 4 against the following

competitive algorithms: SPIRAL, using the spiral tree

(see Figure 6), GREEDY, using the minimum spanning

tree and ⌊OPT⌋, using the spiral tree but diving the

cost by 3 (see Lemma 20). We study two variations,

placing the mule at the leftmost corner coordinate and

placing the mule at the center. Its interesting to note that

although the ratio between algorithms in both simula-

tions remains the same, the actual cost was much higher

when placing the mule at the corner (approximately

twice). This insight demonstrates the significance of

selecting a proper location to the mule.

REFERENCES

[1] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules:
modeling and analysis of a three-tier architecture for sparse
sensor networks,” Ad Hoc Networks, vol. 1, no. 2-3, pp. 215–
233, 2003.

[2] G. D. Celik and E. Modiano, “Dynamic vehicle routing for data
gathering in wireless networks,” in CDC, 2010.

[3] M. Fraser, A. Elgamal, X. He, and J. P. Conte, “Sensor network
for structural health monitoring of a highway bridge,” J. of

Comp. in Civil Engineering, vol. 24, no. 1, pp. 11–24, 2009.
[4] I. Jawhar, N. Mohamed, K. Shuaib, and N. Kesserwan, “Mon-

itoring linear infrastructures using wireless sensor networks,”
in Wireless Sensor and Actor Networks II, 2008, vol. 264, pp.
185–196.

[5] W. Wu, A. O. Tokuta, W. Wang, B. H. Abay, R. Uma,
and D. Kim, “Minimum latency multiple data muletrajectory
planning in wireless sensor networks,” IEEE Transactions on

Mobile Computing, vol. 13, no. 4, pp. 838–851, 2014.
[6] D. Ciullo, G. D. Celik, and E. Modiano, “Minimizing trans-

mission energy in sensor networks via trajectory control,” in
WiOpt, 2010, pp. 132–141.

[7] O. Cheong, R. E. Shawi, and J. Gudmundsson, “A fast algorithm
for data collection along a fixed track,” in COCOON, 2013, pp.
77–88.

[8] L. Levin, A. Efrat, and M. Segal, “Collecting data in ad-hoc
networks with reduced uncertainty,” Ad Hoc Networks, vol. 17,
pp. 71–81, 2014.

[9] D. Jea, A. Somasundara, and M. Srivastava, “Multiple con-
trolled mobile elements (data mules) for data collection in
sensor networks,” in Distributed Computing in Sensor Systems,
ser. LNCS, 2005, vol. 3560, pp. 244–257.

[10] D. Martin-Guillerez, M. Banâtre, and P. Couderc, “Increasing
Data Resilience of Mobile Devices with a Collaborative Backup
Service,” Rapport de recherche, 2006.

[11] T.-H. Kim, D. Tipper, P. Krishnamurthy, and A. L. Swindle-
hurst, “Improving the topological resilience of mobile ad hoc
networks,” in DRCN, 2009, pp. 191–197.

[12] S. Arora, “Polynomial time approximation schemes for eu-
clidean traveling salesman and other geometric problems,” in
Journal of the ACM, 1996, pp. 2–11.

[13] N. Christofides, “Worst-case analysis of a new heuristic for
the travelling salesman problem,” Carnegie Mellon University,
Technical Report 388, 1976.

[14] R. Bhatia, S. Khuller, R. Pless, and Y. J. Sussmann, “The full
degree spanning tree problem.” in SODA, 1999, pp. 864–865.

[15] B. Awerbuch, “Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems,” in ACM STOC 1987, 1987, pp. 230–240.

[16] V. Milyeykovsky, M. Segal, and H. Shpungin, “Location, loca-
tion, location: Using central nodes for efficient data collection
in wsns,” in IEEE WIOPT, 2013.

[17] S. Dolev, M. Segal, and H. Shpungin, “Bounded-hop energy-
efficient liveness of flocking swarms,” IEEE Transactions on

Mobile Computing, vol. 12, no. 3, pp. 516–528, 2013.
[18] M. M. Halldórsson and P. Mitra, “Distributed connectivity of

wireless networks,” in PODC, 2012, pp. 205–214.
[19] D. Peleg, L. Roditty, and E. Tal, “Distributed algorithms for

network diameter and girth,” in Automata, Languages, and Pro-

gramming, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7392, pp. 660–672.

[20] K. Bryant, “Genetic algorithms and the traveling salesman
problem,” Ph.D. dissertation, 2000.

