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Abstract—We consider the data gathering problem in wireless
ad-hoc networks where a data mule traverses a set of sensors,
each with vital information on its surrounding, and collects their
data. The mule goal is to collect as much data as possible,
thereby reducing the information uncertainty, while minimizing
its travel distance. We show that the problem is solvable by a
generalized version of the Prize Collecting Steiner Tree Problem,
and present a dual-primal 6-approximation algorithm for solving
it. Simulation results show that the proposed schema converges
to the optimal results for varying set of topologies, such as grids,
stars, linear and random networks.

I. INTRODUCTION

Ad-hoc networks have become a popular research area
both theoretically [1] and practically [2]–[4]. One of the most
interesting and practical class of applications for such networks
is agriculture and environmental monitoring [5], [6], where
wireless nodes are scattered over a geographical area and
form a dynamic, infrastructure-less ad-hoc network. Typical
monitoring scenarios consist of two stages. In the first step,
the sensors periodically sense their surroundings, collect data
and process it if needed. In the second step, the collected
data is delivered to a base station using either local or global
data collection process. In local data collection [7], the nodes
use multi-hop communication over a static [8] or dynamic
[9] topology to relay their message to the base station. This
communication schema is most suitable when the distribution
of nodes is dense, since the close proximity between nodes
reduces the cost of transmitting and receiving messages [10].

In global data collection [7], [11]–[14], the nodes are
visited by a traveling mule, which uses short-range wireless
communication to collect data from nearby nodes. The mule
aggregates the information received from the nodes and de-
livers it to the base station. The data mule approach is most
suitable when the network topology is sparse, the distance to
the nearest node or base station is too large, or when the
communication infrastructure between nodes is unstable. In
addition, this approach reduces the responsibility for message
routing from the nodes thereby minimizing the processing
power.

Most papers that use the data collector mule focus on
energy efficiency [14], [15] or travel time optimization [16]
without considering the quality of the collected data. Since data
in each node is closely linked to the monitored area, deciding

which data is significant and which is redundant can contribute
greatly to the performance of the data collecting algorithm.
For example, consider an environmental monitoring system
with large distribution of sensors in a specific geo-location.
The added knowledge from visiting one node in the area
might contribute significantly to the overall understanding of
the environment. However, the knowledge learned by visiting
additional nodes in nearby locations may not be worth the
time and transmission cost of the visit. Thus, the value from
visiting a node is not constant and depends on the nodes that
were visited before it. In this paper we study a dual-objective
optimization problem, where the goal is to minimize the mule’s
traveling distance and the amount of information uncertainty,
which depends on the total information collected so far.

Our contribution. We present a framework for solving the
mule problem when data inside nodes is correlated. Our novel
technique is used to find a tour or a tree under varying objective
functions with 6-approximation ratio guarantee.

Outline of the paper. The rest of the paper is organized as fol-
lows: In Section II, we present the system model, provide mo-
tivation and present the Mule Tree Problem (MTP) and Mule
Cycle Problem (MCP). We show a dual-primal formulation of
the problem in Section III and discuss about background and
previous work In Section IV. Our 6-approximation algorithm
for MTP and MCP is developed in Sections V and VI, and in
Section VII we show how to apply the algorithms for multiple
optimization functions. We evaluate the performance of the
algorithms against several common algorithms in Section VIII
and conclude in Section IX.

II. NETWORK MODEL

Let G = (V,E, r) be a complete graph in the Euclidean
plane, where V is the set of wireless nodes (|V | = n), E is
the set of undirected edges between nodes (|E| = n2), and
r is the root. For each v ∈ V , let i(v) ∈ R+ be the amount
of data sensed by v and for each e ∈ E, let ce be the cost
of traversing edge e. Consider a mule that visits a subset of
nodes,Vm ⊆ V , to collect their information over some edges
Em starting from r. The mule can decide to skip over some
nodes, Vm and to absorb a penalty ϕ(Vm) ∈ R+. The value of
the penalty reflects the data the mule didn’t cover. A natural



question arises whether the mule should visit all nodes, or
skip over some and absorb the penalty. We ask how to find a
tour that is not too long, but contains enough monitored data.
Formally, the problem is defined as follows:

The Mule Tree/Cycle Problem (MTP/MCP)
Input: Graph G = (V,E), cost ce per edge, information
sensed by each node i(v) and a root r
Output: A tree/tour Tmule = (Vm, Em)

Objective: min(ϕ(Vm) +
∑

e∈Em

ce)

In our problem ϕ represents the penalty function of not vis-
iting Vm. We present a framework for approximating the mule
problem for a variety of penalty functions. The approximation
holds as long as the following condition is fulfilled:

Condition 1: For any two disjoint node sets, Si and Sj ,
ϕ(Si) ≤ ϕ(Si ∪ Sj).

Specifically, we show that different penalty functions cover
a variety of practical scenarios and present two concrete
examples for the mule problem:

Temperature monitoring. Let i(v) be the average temper-

ature in the area covered by v and T = (V,E
′

, r) be a
communication tree rooted at r, which is used to relay tem-
perature samples between adjacent nodes. We assume channel
capacity is limited so transmitting large messages in T is
not possible. Let d(v) be the set of the descendents of v
in T , because of the capacity limitation, v can only send
i(v) and its descendant data

∑

u∈d(v) i(u) to its parent in

T . We define this process as data aggregation. After data
aggregation is completed by all nodes, each node v maintains
the aggregated information, I(v) =

∑

u∈d(v) i(u) + i(v),
which represents what v knows about the temperature in its
surrounding. When the mule visits a node v, it can learn
the information stored in it i(v) and the aggregated infor-
mation I(v). From this information, the mule can infer on
the data discrepancy between v’s data to its descendants that
was visited, U(v) = I(v) − ∑

u∈d(v)∩Vm
I(u). Since U(v)

decreases as the amount of data we collect increases, we define
this measure as information uncertainty. U(v) is illustrated in
Figure 1. In Figure 1a, we have the input tree T , visited nodes
Vm = {r, v1, v2, v3}, and d(r) = {v1, v2, v3}. The amount
of information per node v, I(v), is depicted in Figure 1b.
Intuitively, by visiting only 3 nodes, we learn the temperature
of almost the entire area.

As the number of visited nodes becomes higher, the amount
of uncertainty decreases. Specifically, the following penalty
functions can be used to minimize the uncertainty:

ϕ1(Vm) =

∑

v∈Vm
U(v)2

|V |
ϕ2(Vm) = max

v∈Vm

U(v)

The first function guarantees that on average we learn sufficient
information from each node (w.l.o.g the normalization factor
is removed to simplify the calculation). The second function
guarantees that sufficient information is known on every area
in the graph. We provide an example for MCP with penalty
function ϕ1(Vm). The input communication graph G = (V,E)

with 4 nodes, r, v1, v2 and v3, is depicted in Figure 1c. the
tree T , on which the messages get aggregated, is depicted
by the non dotted directed edges in the figure. The dotted
edges does not belong to T but can be used by the mule to
traverse the graph. Each edge is marked with the Euclidean
cost of traversing it. The Euclidean area each node covers I(v),
is depicted by surronding circles in Figure 1d. The cost of
selecting each subset of nodes S is depicted in Table I. The
optimal mule tour is traversing nodes r and v2, with total cost
of 88.

Military surveillance system. We explore the following
penalty function:

ϕ3(Vm) =
∑

v∈Vm

f(v)

Where f(v) is a monotonic increasing function. Given n
surveillance sensors partitioned to k different areas. We would
like to find a mule tour that visits as many areas as pos-
sible. We use ϕ3 and set f(v) to α ∈ R+ if all nodes
from specific area belong to Vmor 0 otherwise. The penalty
function ensures that sufficient area is under surveillance.
Another option is to set f(v) = |Vm|i(v), and then we get,
ϕ3(Vm) = |Vm|

∑

v∈Vm
i(v), which ensures that in addition to

information loss per node we don’t skip on too many nodes.

III. PROBLEM FORMULATION

We formulate MTP as an ILP by using a variable xe for
each edge, and an boolean variable, γC , on any set C ⊂ V ,
which determines whether all nodes in C are excluded or
included from the tree (i.e., γC = 1 iff C = Vm).

min
∑

e∈E

xece +
∑

C⊂V ;r/∈C

γCϕ(C)

s.t.
∑

e∈δ(S)

xe +
∑

S⊆C

γC ≥ 1 S ⊂ V ; r /∈ S

∑

C⊂V ;r/∈C

γC ≤ 1

(MTP− IP) xe ∈ {0, 1} e ∈ E

γC ∈ {0, 1} C ⊂ V ; r /∈ C

The formulation is standard for constraint tree problems. Let
δ(S) be the number of outgoing edges from S. The linear
constraint enforces that for each set of nodes S, either S has at
least one outgoing edge or S is fully contained in the excluded
set Vm, i.e., it must be part of the tree or excluded. The target
function is to minimize the sum of edges in the tree and the
cost of the excluded set. To effectively solve the problem we
create a linear programming relaxation MTP-LP by replacing
the integer constraints with xe ≥ 0 and γC ≥ 0.
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Figure 1: Communication tree and covered areas.

Vm

∑

v∈Vm
U(v)2 ∑

e∈Em
ce Total

{r} 102 = 100 0 100

{r, v2} (10− 8)2 + 82 = 68 20 88

{r, v1} (10− 1)2 + 12 = 82 20 102

{r, v1, v2} (10− 8− 1)2 + 82 + 12 = 66 30 96

{r, v3} (10− 4)2 + 42 = 52 174 226

{r, v3} (10− 4)2 + 42 = 52 174 226

{r, v2, v3} (10− 8)2 + (8 − 4)2 + 42 = 36 177 213

{r, v1, v3} (10− 4− 1)2 + 42 + 12 = 42 177 219

{r, v1, v2, v3} (10− 8− 1)2 + (8− 4)2 + 42 + 12 = 34 180 214

Table I: Mule tour cost when using penalty function ϕ1.

The dual of the LP is as follows:

max
∑

S⊂V ;r/∈S

ys − λ

s.t.
∑

S|e∈δ(S)

yS ≤ ce e ∈ E

(MTP−DP)
∑

S⊆C

yS − λ ≤ ϕ(C) C ⊂ V ; r /∈ C

ys ≥ 0 S ⊂ V ; r /∈ S

λ ≥ 0

In the dual formulation, the variable yS represents the cost
of node set S. Let e be an edge that has one endpoint in S,
the first constraint ensures that the total cost of this set is at
most ce. The second constraint ensures that the sum of dual
variables for any set C is at most ϕ(C).

IV. PREVIOUS WORK.

Most of the work on data mules in ad-hoc networks is
focused on finding efficient algorithms by means of energy
or scheduling. For example, in [11], the authors purpose a
schema for collecting data from sensors that transmit messages
at a specific rate. They define the time a collector spends in
collecting messages as the stability of the system, provide
sufficient conditions for network stability, and derive upper
bounds on the message delay of specific algorithms. Another
interesting model was proposed in [17], where a collector with
a bounded travel path must visit a set of sensors. A collector

successfully receives a message only when it is within the
transmission range of a sensor. The optimization criterion is
to minimize the sum of transmission costs. Their solution
involves reducing the problem to Traveling Salesman Problem
with Neighborhoods [18]. Another approach was suggested in
[12], where the authors considered a three-tier architecture that
consists of sensors, transport agents (mules) and a top tier
wireless access network (WAN). Assuming the mules perform
a random walk, they analyze the time to collect data from
all sensors and reach the top tier. In a subsequent paper [15],
the authors extend their analysis with additional performance
and model metrics, such as data transfer, latency, power and
mobility pattern. Other work includes an experiment of the
mule’s three-tier architecture using real Mica2 sensors running
the TinyOS operating system [19].

Some of our algorithms are based on a general framework
for solving constraint degree forest problems. To solve the
data gathering problem, we extended a well-known primal-dual
framework for solving the Prize Collecting Traveling Salesman
Problem (PCTSP) [20]. PCTSP extends the well-known Trav-
eling Salesman Problem (TSP), where a salesman must travel
to a known number of cities of the shortest tour, by enabling
the salesman to skip over some cities and pay a constant
penalty per city omitted. PCTSP was subject to several studies
[21], [22] and has an 2-approximation algorithm. In PCTSP,
the penalty of not visiting a subset of the cities is equal to
the sum of penalties of the cities. There were several attempts
to solve the problem for more general penalty functions. For
example, the authors in [23] show a 3-approximation algorithm
to the problem when the penalty function is sub-modular (for
any two set S and T ϕ(S) +ϕ(T ) ≥ ϕ(S ∪ T )+ϕ(S ∩ T )).



V. ALGORITHM FOR MULE TREE PROBLEM

In this section, we present a 6-approximation for MTP.
Before presenting our algorithm, we introduce some basic
definitions. We say that an edge e ∈ δ(S) is tight if the sum of
dual cost of the sets that have e as an endpoint is equal to ce,
i.e.,

∑

S|e∈δ(S) yS = ce. In any step of the algorithm, any set

of nodes can be in one of the following states: not-active, a set
that contains the root, dead, a set that is not included in the
tree, and active, a set that still ”grows” and might be included
in the final tree. The dead sets, C1, C2, ..., Ck are ordered by
the round they were declared dead. Algorithm 1 uses standard
tree constraint dual-primal approximation technique [21] with
modification to the set killing condition in Line 14. We show
that even with this modification, the approximation ratio of the
algorithm remains constant.

Algorithm 1: Mule Tree Problem Algorithm

Input: Graph G = (V,E), root node r, and a penalty
function ϕ.

Output: A tree T = (Vm, Em).
1 Start with a dual feasible solution by creating a

corresponding set S = {v}, ∀v ∈ V , with yS = 0, and
set λ = 0.

2 Activate all sets except from the one that contains the
root.

3 while Some sets are active do
4 Simultaneously increase the weight yS by equal

amount for all active sets until one of the following
happens:

5 case An edge e between an active set Si to a set
that is connected to r becomes tight

6 Si becomes deactivated.
7 Si is merged with the set containing r.
8 Em = Em ∪ {e}.
9 end

10 case An edge between two sets Si and Sj becomes
tight

11 The sets are merged to a new active set Sw,
with ySw

= ySj
+ ySi

.
12 Em = Em ∪ {e}.
13 end
14 case The cost of an active set Si, including the

cost of all other dead sets
∑k

i=1 yCi
is equal to or

larger than the penalty of the union of those sets,

i.e., ySi
+
∑k

i=1 yCi
≥ ϕ(Si ∪k

i=1 Ci).
15 Si is declared dead.
16 end
17 Remove as many edges as possible from Em while

keeping the following conditions: a) All nodes that
do not belong to dead components are connected to
r, and b) If a node that belongs to a dead
component Ci is mandatory to maintain condition
a), then all other nodes in Ci must also be included
in Vm. Vm is constructed from the endpoints of Em.

18 end

Lemma 2: After k components are declared dead,
the penalty constraint is violated by at most 2, i.e.,
∑

S⊆∪k
l=1

Cl
yS − λ ≤ 2ϕ(∪k

l=1Cl).

Proof: Let Si and Sj be two components that were joined
by a tight edge, and C1, C2, ..., Ck be the dead components. By

the construction of the algorithm, we get that ySi
+
∑k

l=1 yCl
<

ϕ(Si ∪k
l=1 Cl) and ySj

+
∑k

l=1 yCl
< ϕ(Sj ∪k

l=1 Cl). By

definition of a dead set, ϕ(∪k
l=1Cl) ≤

∑k
l=1 yCl

. When
combining the equations and setting λ = 0 we get:

ySi
+ ySj

+ 2ϕ(∪k
l=1Cl) < ϕ(Si ∪k

l=1 Cl) + ϕ(Sj ∪k
l=1 Cl)

Hence, ySi
+ySj

+ϕ(∪k
l=1Cl) < ϕ(Si∪k

l=1Cl)+ϕ(Sj∪k
l=1

Cl) − ϕ(∪k
l=1Cl). According to the definition of the penalty

function ϕ, for any disjoint sets Si and Sj , ϕ(Si) ≤ ϕ(Si∪Sj).
Therefore:

ySi
+ ySj

+ ϕ(∪k
l=1Cl) < 2ϕ(Si ∪ Sj ∪k

l=1 Cl)

Let T ∗
MTP−LP , T

∗
MTP−DP be the optimal solutions to the

primal and dual problems, T ∗ be the optimal solution to MTP,
and yS be the value of the dual variable after Algorithm 1
completes. We claim the following:

Lemma 3: After Algorithm 1 completes,
∑

S yS ≤ 2T ∗.

Proof: Let y∗S be the dual variable value for a set S in
the optimal solution to MTP-DP. From Lemma 2, we have:

∑

S

yS ≤ 2
∑

S

y∗S ≤ 2T ∗

The last inequality follows from the duality principle.

Lemma 4: After Algorithm 1 completes, ϕ(Vm) ≤
∑

S⊂V yS .

Proof: Let Ck be the last set that was declared dead, by
the construction of the algorithm we have:

ϕ(Vm) = ϕ(∪k
j=1Ck) ≤

k∑

j=1

yCj
≤

∑

S⊂V

yS

We use the following theorem in our analysis:

Theorem 5: [21, Theorem 2.4] After Algorithm 1 com-
pletes,

∑

e∈Em
ce ≤ 2

∑

S⊂V yS .

The following theorem summarizes our results:

Theorem 6: Algorithm 1 is a 6-approximation to MTP
problem.

Proof: Combining Theorem 5 and Lemma 4 we get:
∑

e∈Em

ce + ϕ(Vm) ≤ 2
∑

S⊂V

yS +
∑

S⊂V

yS = 3
∑

S⊂V

yS ≤ 6T ∗.

The last inequality follows from Lemma 3.

Following simillar argument as in [21], the running time of
Algorithm 1 is O(n2 logn).

VI. ALGORITHM FOR MULE CYCLE PROBLEM

In this Section we show how to extend the ideas learned in
previous sections to create an efficient algorithm for finding a
tour while keeping the 6-approximation ratio. We note that



any α-approximation algorithm for MTP can be converted
to a 1.5α-approximation algorithm by using Christofides’
algorithm [24] to transform the tree to a tour.

First, we formulate MCP as an ILP:

min
∑

e∈E

xece +
∑

C⊂V ;r/∈C

γCϕ(C)

s.t.
∑

e∈δ(S)

xe + 2
∑

S⊂C;r/∈S

γC ≥ 2 S ⊂ V ; r /∈ S

∑

C∈V ;r/∈C

γC ≤ 1

(MCP− IP) xe ∈ {0, 1} e ∈ E

γC ∈ {0, 1} C ⊂ V ; r /∈ C

γC is equal to 1 for the set of nodes that are not selected
and 0 otherwise. The second constraint enforces that each node
included in the tour gets visited at least twice (i.e., the solution
is a tour). The linear relaxation MCP-LP is formulated by
relaxing the second and third constraints as in MTP-LP. The
dual problem is as follows:

max 2
∑

S;r/∈S

yS − λ

s.t.
∑

S|e∈δS

yS ≤ ce e ∈ E

(MCP−DP) 2
∑

S⊆C

yS − λ ≤ ϕ(C) C ⊂ V ; r /∈ C

ys ≥ 0 S ⊂ V ; r /∈ S

λ ≥ 0

We use the following algorithm to solve MCP:

Algorithm 2: Mule Cycle Problem Algorithm

Input: graph G = (V,E)
Output: A tour T = (Vm, Em), and a set of nodes Vm

not in the tour.
1 Produce tree T ′ by running algorithm 1 on G with

penalty
ϕ(S)
2 .

2 Produce a tour T by running a depth first traversal on

T
′

.

We claim the following.

Lemma 7: Algorithm 2 is a 6-approximation for MCP

Proof: First note that the output of Algorithm 2 is a tour
on the subset of V thus a valid solution to the primal problem.
The dual solution also holds since we have

∑

S yS ≤ ϕ
2 . Let y∗S

be the value of set S in the optimal solution, yS be the value
of set S after running Algorithm 2, and T ∗ be the optimal
solution to MCP-IP. By similar arguments to Lemma 2 we
have

∑

S yS ≤ ∑

S 2y∗S ≤ 2T ∗. The cost of the depth-first

traversal is 2
∑

e∈Em
ce. Thus, we get:

2
∑

e∈Em

ce + ϕ(Vm) ≤ 4
∑

S

yS + 2
∑

S

yS ≤ 6(2y∗S) ≤ 6T ∗.

VII. PENALTY FUNCTIONS

We turn to prove that ϕ1 and ϕ2 are valid penalty functions
and thus can be used in Algorithms 1 and 2. The proof for ϕ3

follows directly from its definition.

Let C be the set of dead nodes in some iteration of the
algorithm. We show that by increasing C by any number of
nodes, the cost functions ϕ1 and ϕ2 are always not decreasing
and therefore satisfy Condition 1. W.l.o.g we prove the claim
on adding a single node v to C.

Lemma 8: Cost function ϕ1 satisfies Condition 1

Proof: ϕ1(C) is equal to:

(I(u)−
∑

z∈d(u)\{v}

I(z)− I(v))2

︸ ︷︷ ︸

#1

+

(I(v) −
∑

l∈d(v)

I(l))2

︸ ︷︷ ︸

#2

+
∑

w∈V \c∪{v,u}

U(w)2.

Let u be the first ancestor of v that is does not belong to C.
After removing v, the penalty ϕ1(C ∪ {v}) is:

(I(u)−
∑

z∈d(u)

I(z))2 +
∑

w∈V \C∪{v,u}

U(w)2.

Clearly the increase in term #1 is at least I(v)2, while the
decrease in term #2 is at most I(v)2. Therefore, the target
function is not decreasing.

Lemma 9: Cost function ϕ2 satisfies Condition 1

Proof: The penalty ϕ2(Si) is equal to:

max{I(u)−
∑

z∈d(w)\{v}

I(z)− I(v)

︸ ︷︷ ︸

#1

, I(v) −
∑

l∈d(v)

I(l)

︸ ︷︷ ︸

#2

,

max
w∈V \C∪{v,u}

U(w)}
︸ ︷︷ ︸

#3

.

After v is removed we get that the penalty ϕ2(C ∪ {v}) is:

max{I(u)−
∑

z∈d(w)

I(z), max
w∈V \C∪{v,u}

U(w)}.

Since the increase in term #1 I(v), is larger than term that
was removed #2, the target function increases.

VIII. SIMULATIONS

In this section, we present numerical results corresponding
to the analysis from previous sections. We compare the per-
formance of Algorithms 1 and 2 to competitive algorithms on



varying topologies, such as linear networks, stars, grids and
random graphs. We compare our algorithms to several greedy
algorithms that select k nodes (where k varies between 1 to
n) and use the optimal tree or tour. To provide a wide range
of possible costs and node selection, we set k to n, logn,

√
n

and 1 (i.e., only the root is selected).

The first experiment studies the quality of our algorithms
on linear ad hoc networks. Linear ad hoc networks can be
used for multiple data collection activities such as railway
or structural monitoring [25]. To construct the topology, we
distributed 100 nodes, with covered area of 1, on a straight
line with distances d between them. We calibrated d between 1
to 200, and compared between Algorithm 2 to the competitive
algorithms described earlier. The results for penalty function
ϕ1 are shown in Figure 2a. When d is between 1 to 50,
the optimal solution is to select all nodes with optimal path
between them (since the cost of edges is relatively negligible
to paying the penalty of a node). Note that for lower values of
d the ratio between the cheapest solution to the most expensive
one is above 100, and for those, Algorithm 2 cost is exactly
the same as the optimal solution. When d increases, the cost
of selecting edges becomes significantly expensive to pay the
penalty of all nodes, and thus the optimal solution is to select
only the root. In this interval, Algorithm 2 cost converges to
the optimal value. The zig-zag in the mule cost is explained by
the fact that the the difference between the no nodes cost and
the all nodes cost is negligible, so the solution may change due
to nodes distribution. When this difference becomes substantial
the mule cost converges to the no nodes solution.

The results for penalty ϕ2 are shown in Figure 2b. The
results show similar trends as the first experiment, but since
ϕ2 yields a lower penalty than ϕ1, the shift between optimal
solutions happens for lower values of d. For example, the cost
of empty solution for ϕ1 is 104 while the cost for ϕ2 is 102.
As the value of d grows, the optimal solution changes between
selecting all nodes to selecting only the root. For all values of
d, the Algorithm 2 cost converges to the optimal value as well.

In our second experiment, we examined the quality of
Algorithm 2 on star network. To construct the star, we placed
the root r in the center on the graph, and equally distributed
10 nodes, each with a constant distance from r, on the
circumference of the circle covering r. The covered area of
each node was randomly and equally distributed between 1 to
some upper bound maxI(v). We compared the performance of
Algorithm 2 when using ϕ1 and ϕ2 to the four rival algorithms
mentioned earlier.

The results of running the algorithms for varying upper
bounds when using ϕ1 and ϕ2 are plotted in Figure 2c and
2d, respectively. In those experiments, the value of the star
radius was set to 99, which is high enough to drop nodes
if their penalty is too low. Clearly, the cost of not selecting
a node increases proportionally to its covered area. For small
values of maxI(v), the solution that contains only the root has
the minimum cost, while as max I(v) increases, the optimal
solution is to include all the nodes. The cost of Algorithm 2
always converges to the optimal value and never exceeds the
optimal by more than 2 (which fits the theoretical bound of
6).

In the next experiment, we randomly and uniformly dis-

tributed a varying number of nodes o‘n a 10 × 10 Euclidean
grid. To construct the data gathering tree T , we start with a
tree that contains only r. During an iterative process, until all
nodes belong to T , we select a leaf v, and a random integer
k between 1 to 5. Then, we connect the closest k nodes that
are not in T to v. The covered area per node is proportional to
the density of nodes. The results for the cost functions ϕ1 and
ϕ2 are plotted in Figure 2g and Figure 2h, respectively. For
ϕ1, Algorithm 1 converges to the optimal solution, achieving
the best results in more than 60 percent of the samples, and
for ϕ2, Algorithm 1 yields optimal solution over all samples.
The spikes in Figure 2g in the mule solution are due to the
node distribution. When some nodes appear in the corners of
the graph, the mule algorithm may decide to take them, which
can increase the traversal cost. This phenomenon can be solved
by scaling the penalty factor.

In our final experiment, we placed a varying number of
nodes on the

√
n×√

n grid. The grid topology can be used for
reliable communication in ad hoc networks [26]. The covered
area per node is proportional to the density of nodes in the
graph (i.e., ∝ area

n ). The results when using ϕ1 and ϕ2 are
plotted in Figures 2e and 2f, respectively. They show similar
trends as in the previous experiments.

IX. CONCLUDING REMARKS

In this paper, we developed a framework for finding near-
optimal route for data gathering mule when the information
gain of a node depends on the data collected so far. We
identified a relationship between the mule problem to an
extended variation of the Prize Collecting Traveling Salesman
Problem, and presented a 6-approximation algorithm for it.
This work is a first attempt towards a framework for solving
data gathering problems that focus on the quality of data
collected in addition to scheduling and power efficiency. A
future extension of our work could investigate how to solve the
mule problem when the traveling distance is bounded (similar
to the constrained orienteering problem [27]) or when multiple
mules work together to collect data.
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Figure 2: Simulation results for different topologies.


