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Abstract

We consider the data gathering problem in wireless ad-hoc networks where a data
mule traverses a set of sensors, each with vital information on its surrounding, and
collects their data. The mule goal is to collect as much information as possible
thereby reducing the information uncertainty but in the same time avoid visiting
some of the nodes to minimize its travel distance. We study the problem when the
mule travels over a tree or a tour and propose a 3-approximation algorithm that
minimizes both the information uncertainty and travel distance. We also show the
applicability of our approach for solving data collection problems in varying do-
mains such as temperature monitoring, surveillance systems and sensor placement.
Simulation results show that the proposed solution converges to the optimal for
varying set of topologies, such as grids, stars, linear and random networks.

Key words: Data gathering; mule traversal; optimization; approximation
algorithm.

1 Introduction

Ad-hoc networks have become a popular research area both theoretically [32]
and practically [15, 24, 28]. One of the most interesting and practical class of
applications for sensors networks is agriculture and environmental monitor-
ing [8, 22], where wireless nodes are scattered over a geographical area and
form a dynamic, infrastructure-less ad-hoc network. Typical monitoring sce-
narios consist of two stages. In the first step, the sensors periodically sense
their surroundings, collect data and process it if needed. In the second step,
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the collected data is delivered to a base station using either local or global
data collection process. In local data collection [21], the nodes use multi-hop
communication over a static topology [5] or dynamic topology [17] to relay
their message to the base station. This communication schema is most suit-
able when the distribution of nodes is dense, since the close proximity between
nodes reduces the cost of transmitting and receiving messages [23]. In global
data collection [1,6,21,25,26], the nodes are visited by a traveling mule, which
uses short-range wireless communication to collect data from nearby nodes.
The mule aggregates the information received from the nodes and delivers it to
the base station. The data mule approach is most suitable when the network
topology is sparse, the distance to the nearest node or base station is too large,
or when the communication infrastructure between nodes is unstable. In ad-
dition, this approach reduces the responsibility for message routing from the
nodes thereby minimizing their processing power. Most papers that use the
data collector mule focus on energy efficiency [1, 16] or travel time optimiza-
tion [30] without considering the quality of the collected data. Since data in
each node is closely linked to the monitored area, deciding which data is signif-
icant and which is redundant can greatly contribute to the performance of the
data collecting algorithm. For example, consider an environmental monitoring
system with large distribution of sensors in a specific geo-location. The added
knowledge from visiting one node in the area might contribute significantly
to the overall understanding of the environment. However, the knowledge ob-
tained by visiting additional nodes in nearby locations may not be worth the
time and transmission cost of the visit. Thus, the value from visiting a node
is not a constant and depends on the nodes that were visited before it. In
this paper we study a dual-objective optimization problem, where the goal
is to minimize the mule’s traveling distance while minimizing the amount of
information uncertainty caused by not visited a subset of nodes by the mule.

Our contribution. We present a framework for solving the mule problem
when data each node sense is correlated with its neighbors. Our novel tech-
nique is used to find a tour or a tree under varying objective functions and
has a 3-approximation ratio guarantee.

Outline of the paper. The rest of the paper is organized as follows: In
Section 2, we present the system model, provide motivation and present the
Mule Tree Problem (MTP) and Mule Cycle Problem (MCP). In Section 3
we discuss about problem background and previous work. We show a dual-
primal formulation of the problem in Section 4, develop our 3-approximation
algorithm for MTP and MCP in Section 5 and also show how to apply the
algorithms for multiple optimization functions. We numerically evaluate the
performance of our solutions against several common algorithms in Section 6
and conclude in Section 7.
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(a) The communication tree. Visited
nodes are marked by dotted circles
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(b) Area covered by the visited nodes

Figure 1. Communication tree and covered areas.

2 Network Model

Let G = (V,E, r) be a complete graph embedded in the Euclidean plane,
where V is the set of wireless nodes (|V | = n) and E is the set of undirected
edges between nodes. Here r is the base station and the other nodes represent
sensors. For each v ∈ V , let i(v) ∈ R+ be the amount of data sensed by v and
for each e ∈ E, let ce be the mule’s cost of traversing an edge e. Consider a
mobile entity with wireless capabilities called mule that visits a subset of nodes
Vm ⊆ V and collect the information they sense. The mule tour or cycle starts
at r and traverse along a subset Em of of the edge of E. The mule can decide
to skip over some nodes Vm = V \ Vm and to absorb a penalty ϕ(Vm) ∈ R+.
The value of the penalty reflects the data the mule would not collect. It is
worth noting that the mule does not always have to visit a node to know its
stored value; in many cases, this value could be inferred from knowing values
in different part of the graph. For example, in aggregation binary tree, where
nodes store the sum of values of their descendants, knowing the sum at a node
v and one of its children would reveal the value of the other child (by merely
performing subtraction).

A natural question arises whether the mule should visit all nodes, or skip
over some and absorb the penalty. We ask how to find a tour that is not too
long, but contains enough monitored data. Formally, the problem is defined
as follows:

The Mule Tree/Cycle Problem (MTP/MCP)
Input: Graph G = (V,E), cost ce per edge, information sensed by each node

i(v) and a root r
Output: A tree Tmule = (Vm, Em) or a cycle Cmule = (Vm, Em)
Objective: min(ϕ(Vm) +

∑

e∈Em

ce)
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In our problem ϕ represents the penalty function of not visiting the nodes of
Vm. We present a framework for approximating the mule problem for a variety
of penalty functions. The approximation ratio holds as long as the following
condition is fulfilled:
Condition 1. For any two disjoint node sets, Si and Sj, ϕ(Si) ≤ ϕ(Si ∪ Sj).

Specifically, we show that different penalty functions cover a variety of practi-
cal scenarios and present two concrete examples for the mule problem. First,
we show an example related to environmental monitoring:

Temperature monitoring. For simplicity, we discuss the case where each
sensor measures temperature (though, of course, this is not a restriction). Let
i(v) be the average temperature in the area covered by v. The objective is for
the base station r to “know” the temperature measured by each sensor, but
this goal might require too many relays (forwarding) in a multi-hoop fashion,
which might be beyond accessible network resources such as battery life and
channels capacities. Hence we opt to use an aggregation tree, and once needed
(as formally articulated below), send the mule to retrieve to r more measure-
ments from a (carefully-selected) subset of the sensors, so the uncertainty will
decrease below a desired threshold.

Let T = (V,E
′

, r) be a communication tree rooted at r. Along its edges,
sensors sends (summarizations of) measured temperature samples between
adjacent nodes toward r. We assume channel capacity and sensors batteries’
life are limited, hence transmitting all measurement using large messages in T
is not prohibited. Instead, we assume that only summarizations are sent. Let
D(v) be the set of the descendants of v in T . Due to the capacity limitation,
node v can only send i(v) and its descendant data

∑

u∈D(v) i(u) to its parent
in T . We define this process as data aggregation. After data aggregation is
completed by all nodes, each node v maintains the aggregated information,
I(v) =

∑

u∈D(v) i(u) + i(v), which represents what v knows about the tem-
perature in its surrounding. When the mule visits a node v, it can learn the
local information sensed i(v) and the aggregated information I(v). From this
information, the mule can infer on the data discrepancy between v’s data to
its descendants that was visited, U(v) = I(v) − ∑

u∈D(v)∩Vm
I(u). Since U(v)

decreases as the amount of data we collect increases, we define this measure as
information uncertainty. U(v) is illustrated in Figure 1. In Figure 1a, we have
the input tree T , visited nodes Vm = {r, v1, v2, v3}, and D(r) = {v1, v2, v3}.
The amount of information per node v, I(v), is depicted in Figure 1b. Intu-
itively, by visiting only 3 nodes, we learn the temperature of almost the entire
area. As the number of visited nodes becomes higher, the amount of uncer-
tainty decreases. Specifically, the following penalty functions can be used to
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minimize the uncertainty:

ϕ1(Vm) =

∑

v∈Vm
U(v)2

|V |

ϕ2(Vm) = max
v∈Vm

U(v)
The first function guarantees that on average we learn sufficient information
from each node (w.l.o.g the normalization factor is removed to simplify the cal-
culation). The second function guarantees that sufficient information is known
on every area in the graph. We provide an example for MCP with penalty
function ϕ1(Vm). The input communication graph G = (V,E) with 4 nodes,
r, v1, v2 and v3, is depicted in Figure 2. The tree T , on which the messages
get aggregated, is depicted by the non dotted directed edges in the figure.
The dotted edges do not belong to T but can be used by the mule to traverse
the graph. Each edge is marked with the Euclidean cost of traversing it. Each
node covers the Euclidean area I(v), which is is depicted by surrounding cir-
cles in the middle figure. The cost of selecting each subset of nodes S that
includes the root r is depicted in table from the right. The optimal mule tour
is traversing nodes r and v2, with total cost of 88.

Surveillance system. We explore the following penalty function:

ϕ3(Vm) =
∑

v∈Vm

f(v),

where f(v) is a monotonic increasing function, and Vm = V \ Vm. Given n
surveillance sensors partitioned to k different regions, we would like to find
a mule tour that visits as many regions as possible. To solve the surveillance
problem we use ϕ3 and set f(v) to α ∈ R+ if all nodes from specific region
belong to Vm or 0 otherwise. The penalty function ensures that sufficient area
is under surveillance. Another option is to set f(v) = |Vm|i(v), and then we
get, ϕ3(Vm) = |Vm|

∑

v∈Vm
i(v), which ensures that in addition to information

loss per node we don’t skip over too many nodes. This penalty function can
also incorporate the spatial locality by correlating the definition of i(v) with
the number of the readings and frequency of users per region. For example,
by setting i(v) ∝ P (k), where P (k) is the probability that region k is visited
by some smartphone users, we ensure that areas with high visit frequency will
be covered by the mule [33].

Sensor placement with reduced uncertainty Another practical scenario
where the mule algorithm can be used is sensor placement with reduced un-
certainty. Assume we have discrete set of rooms, where the temperature in the
rooms varies according to some probabilistic distribution function P . Our goal
is to distribute a set of nodes in different rooms, such that the temperature
uncertainty and the travel distance between the nodes is minimized (i.e., we
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can choose to leave some rooms empty). Let Vm be the set of rooms which are
not covered by the sensors, T be a selected placement of nodes, and T (v) be
a random variable representing the temperature sensing of sensor v in a spe-
cific room. The conditional probability that the temperature sensing in room
v is equal to t, Pr(v = t|T ), is defined as the probability that v’s tempera-
ture is equal to t given the total temperature measured so far

∑

v∈T i(v). The
uncertainty function of not visiting those rooms can be defined is follows:

ϕ4(Vm) =
∑

v∈Vm

H(T (v)|T ),

where H(T (v)|T ) is the conditional entropy of T (v) given a specific placement
T . Here we use entropy since it describes well the temperature uncertainty of
the measured rooms (see [19, 31]).

Clearly the complexity of the solution depends on the selection of P , and the
exact definition of the conditional entropy. For example, if P is taken from the
discrete uniform distribution (e.g., temperature in each node varies between
0◦ to 10◦), then the conditional probability Pr(v = t|T ) is equal to one divided
by the number of restricted partitions of

∑

v∈T i(v)−∑

v∈Vm
i(v)− t with size

of at most |Vm| − 1, which can be polynomially calculated [2]. As long as
the computation time of ϕ4 is polynomially bounded, other more complex
probability distribution functions can also be used. For example, Gaussian
process or a function that depends on the temperature covariance matrix [20].

r

v1v2

v3

8080

87

1010

I(v3) = 4

I(v2) = 8

I(v1) = 1

I(r) = 10

Vm
∑

v∈Vm
U(v)2 ∑

e∈Em
ce Total

{r} 102 = 100 0 100

{r, v2} (10− 8)2 + 82 = 68 20 88

{r, v1} (10− 1)2 + 12 = 82 20 102

{r, v1, v2} (10− 8− 1)2 + 82 + 12 = 66 30 96

{r, v3} (10− 4)2 + 42 = 52 174 226

{r, v3} (10− 4)2 + 42 = 52 174 226

{r, v2, v3} (10− 8)2 + (8− 4)2 + 42 = 36 177 213

{r, v1, v3} (10− 4− 1)2 + 42 + 12 = 42 177 219

{r, v1, v2, v3} (10− 8− 1)2 + (8− 4)2 + 42 + 12 = 34 180 214

Figure 2. Physical example for the Mule Problem. The left image depicts the input
graph with traveling cost and information per node i(v) and the area each node
sense is illustrated in the middle image. The right table summarizes the mule cost
of selecting each subset of nodes.

3 Previous Work

Most of the work on data mules in ad-hoc networks is focused on finding
efficient algorithms by means of energy or scheduling. For example, in [6],
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the authors propose a schema for collecting data from sensors that transmit
messages at a specific rate. They define the time a collector spends in collect-
ing messages as the stability of the system, provide sufficient conditions for
network stability, and derive upper bounds on the message delay of specific
algorithms. Another interesting model was proposed in [10], where a collector
with a bounded travel path must visit a set of sensors. A collector successfully
receives a message only when it is within the transmission range of a sensor.
The optimization criteria is to minimize the sum of transmission cost of all
nodes and their solution involves reducing the problem to Traveling Salesman
Problem with Neighborhoods [3]. Another approach was suggested in [26],
where the authors considered a three-tier architecture that consists of sensors,
transport agents (mules) and a top tier wireless access network (WAN). As-
suming the mules perform a random walk, they analyze the time to collect
data from all sensors and reach the top tier. In a subsequent paper [16], the
authors extend their analysis with additional performance and model met-
rics, such as data transfer, latency, power and mobility pattern. Other work
includes an experiment of the mule’s three-tier architecture using real Mica2
sensors running the TinyOS operating system [11].

The foundation of the algorithms proposed in this paper lies in a general
framework for solving constraint degree forest problems, which is also used
to solve the Prize Collecting Traveling Salesman Problem (PCTSP) [4]. In
PCTSP, a salesman must travel to a known number of sites using the shortest
tour, but it may skip over some sites and pay a constant penalty per site omit-
ted. PCTSP was subject to several studies [12,14] and has a 2-approximation
algorithm. As opposed to the dynamic penalty of not visiting nodes in the
mule problem, in PCTSP the penalty of not visiting a subset of the sites is
equal to the sum of penalties of the sites. Similar to the approach we show in
this paper, there were several attempts to solve the problem for more general
penalty functions. For example, the authors in [27] show a 3-approximation
algorithm to the problem when the penalty function is sub-modular (for any
two set S and T ϕ(S) +ϕ(T ) ≥ ϕ(S ∪ T ) + ϕ(S ∩ T )); this assumption is not
valid for the penalty function we propose.

4 Problem Formulation

At the first step of the algorithm, we express MTP as an ILP by using a
variable xe for each edge, and an boolean variable, γC, for any set C ⊂ V .
This variable specifies whether the nodes of C are all excluded or all included
from the mules tree. (i.e., γC = 1 iff C is the visited set Vm). The formulation
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is as follows:

min
∑

e∈E

xece +
∑

C⊂V ;r /∈C

γCϕ(C)

subject to:
∑

e∈δ(S)

xe +
∑

S⊆C

γC ≥ 1 S ⊂ V ; r /∈ S

∑

C⊂V ;r /∈C

γC ≤ 1

(MTP− IP) xe ∈ {0, 1} e ∈ E

γC ∈ {0, 1} C ⊂ V ; r /∈ C

The formulation is standard for constraint tree problems. Let δ(S) be the set
of outgoing edges from S. The linear constraint enforces that for each set of
nodes S, one of the two conditions holds: S has at least one outgoing edge or
S is fully contained in the excluded set Vm, i.e., it must be part of the tree
or excluded. The target function is to minimize the sum of edges in the tree
and the cost of the excluded set. To effectively solve the problem we create a
linear programming relaxation MTP-LP by replacing the integer constraints
with xe ≥ 0 and γC ≥ 0.

The dual of the LP, which uses variables yS to represent the set S and λ for
the set Vm, is defined as follows:

max
∑

S⊂V ;r /∈S

ys − λ

subject to:
∑

S|e∈δ(S)

yS ≤ ce e ∈ E

(MTP− DP)
∑

S⊆C

yS − λ ≤ ϕ(C) C ⊂ V ; r /∈ C

ys ≥ 0 S ⊂ V ; r /∈ S

λ ≥ 0

In the dual formulation, the variable yS represents the cost of node set S. Let
e be an edge that has one endpoint in S. The first constraint ensures that the
total cost of this set is at most ce and the second constraint ensures that the
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sum of dual variables for any set C is at most ϕ(C).

5 Approximation algorithms for the Mule problem

In this section, we study two algorithm for the mule problem. In Subsection
5.1, we present a 3-approximation when the mule travels through a tree. We
extend the algorithm to produce a tour in Subsection 5.2. We conclude this
section with a discussion on practical implementation of the global algorithm
in a distributed sensor environment.

5.1 Algorithm for Mule Tree Problem

In this section we present Algorithm 1, a 3-approximation dual-primal algo-
rithm for MTP. We begin with some basic notations. We say that an edge
e ∈ δ(S) is tight if the sum of the dual variables of the sets for which e is an
outgoing edge equal to ce, i.e.,

∑

S|e∈δ(S) yS = ce. In each step of the algorithm,
every set of nodes can be in one of the following states: rooted, a set that
contains the root, dead, a set that is not included in the tree, and active, a
set that might be included in the final tree. The dead sets, C1, C2, ..., Ck are
ordered by the round they were declared dead. Algorithm 1 modify the tree
constraint dual-primal approximation algorithm from [12] with a new condi-
tion in Line 17 and a tree finalization technique in Line 23. We show that this
modification only changes the approximation ratio from 2 to 3. First we prove
the dual-primal feasibility of the result of the algorithm:
Lemma 2. After Algorithm 1 completes, the primal problem is feasible

Proof. The output of the algorithm is a rooted tree and a set of dead sets,
which represents Vm. Thus, all primal constrains are satisfied and the solution
is feasible.

Lemma 3. After Algorithm 1 completes, the dual problem is feasible

Proof. Clearly, at the beginning of the algorithm all dual constraints are sat-
isfied since for each S ∈ V , yS is set to be zero. In Algorithm 1, we have two
cases: adding a new edge and declaring a set dead. Consider the former case,
adding a new edge means that the dual constraint became tight and therefore
the dual is still feasible. Now consider the latter case. If the cost of all dead
sets does not exceed their penalty, we are done; otherwise, in a previous step
two active sets Si and Sj were merged, but their cost together with the cost
of all sets that were declared dead has surpassed the total penalty for the
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Algorithm 1: Mule Tree Problem Algorithm

Input: Graph G = (V,E), root node r, and a penalty function ϕ.
Output: A tree T = (Vm, Em).

1 Start with a dual feasible solution by creating a corresponding set
S = {v},∀v ∈ V , with yS = 0, and set λ = 0.

2 Activate all sets except from the one that contains the root.
3 while Some sets are active do

4 Simultaneously increase the weight yS by equal amount for all active sets until
one of the following happens:

5 case An edge e between an active set Si to a set that is connected to r becomes
tight

6 Si becomes deactivated.
7 Si is merged with the set containing r.
8 Em = Em

⋃ {e}.
9 endsw

10 case An edge between two sets Si and Sj becomes tight
11 The sets are merged to a new active set Sw, with ySw = ySj

+ ySi
.

12 Em = Em
⋃ {e}.

13 endsw

14 case The cost of an active set Si is equal to the penalty of of excluding this
set i.e., ySi

≥ ϕ(Si).
15 Si is declared dead.
16 endsw

17 case The cost of an active set Si, including the cost of all other dead sets
∑k

i=1 yCi
is equal to the penalty of the union of those sets, i.e.,

ySi
+

∑k
i=1 yCi

≥ ϕ(Si
⋃k

i=1 Ci).
18 Si is declared dead.

19 if ySi
+

∑k
i=1 yCi

> ϕ(Si
⋃k

i=1 Ci) then

20 λ = λ− (ySi
+

∑k
i=1 yCi

− ϕ(Si
⋃k

i=1 Ci))

21 end

22 endsw

23 Let C =
⋃k

i=1 Ci and yC =
∑k

i=1 yCi

24 while yC < ϕ(C)− λ do

25 Increase yC until one of the following happens:
26 case An edge e between the rooted set and C becomes tight
27 Em = Em

⋃ {e}.
28 Let Cj be the dead set that has e as an outgoing edge.
29 Add all edges in Cj to Em.
30 Remove Cj from C.

31 endsw

32 case yC = ϕ(C)
33 yield break.
34 endsw

35 end

36 Remove as many edges as possible from Em while keeping the following
conditions: a) All nodes that do not belong to dead components are connected
to r, and b) If a node that belongs to a dead component Ci is mandatory to
maintain condition a), then all other nodes in Ci must also be included in Vm.
Vm is constructed from the endpoints of Em.

37 end



combined set. Line 19 fixes this condition by increasing λ and keeps the dual
solution feasible.

Lemma 4. After Algorithm 1 completes, ϕ(Vm) ≤
∑

S⊂V ;r /∈S yS − λ

Proof. A set D is declared dead, either if its cost is equal to its penalty or if
summing its cost and the cost of all sets declared dead beforehand C1, C2, ...Cj

exceeded its penalty. Let C be the union of all dead set. For some penalty
function ϕ, when adding set D to set C the total penalty is much higher than
the current sum of dual variables, i.e.,

∑

S⊆D∪C yS < ϕ(D∪C). This is resolved
in line 23, where we increase the cost of the set C until either the cost of the
dead set is equal to its penalty, or until an outgoing edge from the dead set
becomes tight. In the former case we are done, since the cost of the dead sets
is equal to their penalty. In the latter case, we add the node from the dead set
and reapply the role. For example, see Figure 3, where the root r is connected
to 2 nodes v1 and v2. The penalty of excluding either v1 or v2 is 0 but the
cost of excluding both is 100. Since ϕ3(v2) = ϕ3(v2) = 0, after the first two
steps of the algorithm both v1 and v2 are declared dead. Note that the if the
algorithm terminates here, the approximation ratio is unbounded, since the
primal cost is 100 while the cost of the dual

∑

S⊂V ;r /∈S yS − λ is zero. This
is fixed in line 23, where the dual variable of set {v1, v2} increases until the
edge between r and v1 becomes tight. After this step, v1 is added to the tree,
and the algorithm terminates with the optimal solution (the tree is the edge
between r to v1).

r v2v1
c2 = 100c1 = 1

ϕ3({v1, v2}) = 100

Figure 3. Example where additional steps must be taken to obtain better approxi-
mation of the optimal solution. The penalty of not selecting both v1 and v2 is 100
while the penalty of not selecting only v1 or v2 is zero.

Since we use consider general penalty functions, when merging two sets by a
tight edge, the dual constraint

∑

S⊆C yS − λ ≤ ϕ(C) might be violated. The
following lemma shows that for penalty functions that obey Condition 1, the
violation is at most by 2, so λ can be adjusted by a bounded value in Line 19
and this keeps the dual problem feasible.
Lemma 5. There is always a value of λ that keeps the dual penalty constraint
feasible.

Proof. Let Si and Sj be two components that were joined by a tight edge,
and C1, C2, ..., Ck be the dead components so far. By the construction of the
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algorithm, we get that ySi
+

∑k
l=1 yCl

< ϕ(Si
⋃k

l=1Cl)−λ and ySj
+

∑k
l=1 yCl

<

ϕ(Sj
⋃k

l=1Cl)− λ. When combining the equations we get:

ySi
+ ySj

+ 2
j

∑

l=1

yCl
< ϕ(Si

k⋃

l=1

Cl) + ϕ(Sj

k⋃

l=1

Cl)− 2λ

We also have that:
∑j

l=1 yCl
= ϕ(

⋃j
l=1Cl)− λ. Hence, we have:

ySi
+ ySj

+
j

∑

l=1

yCl
+ ϕ(

j
⋃

l=1

Cl)− λ < ϕ(Si

k⋃

l=1

Cl) + ϕ(Sj

k⋃

l=1

Cl)− 2λ.

According to the definition of the penalty function ϕ, for any disjoint sets Si

and Sj, ϕ(Si) ≤ ϕ(Si
⋃
Sj). Therefore:

ySi
+ ySj

+
j

∑

l=1

yCl
≤

ϕ(Si

k⋃

l=1

Cl) + ϕ(Sj

k⋃

l=1

Cl)− ϕ(
j
⋃

l=1

Cl)− λ ≤

2ϕ(Si

k⋃

l=1

Cl).

So the increment of λ is bounded by 2ϕ(Si
⋃k

l=1Cl)− ϕ(
⋃j

l=1Cl)− λ and the
proof is complete.

Let T ∗
MTP−LP , T

∗
MTP−DP be the optimal solutions to the primal and dual prob-

lems, T ∗ be the optimal solution to MTP, and yS be the value of the dual
variable after Algorithm 1 completes. We claim the following:
Lemma 6. After Algorithm 1 completes, ϕ(Vm) ≤ T ∗.

Proof. Let Ck be the last set that was declared dead, by the construction of
the algorithm we have:

ϕ(Vm) = ϕ(
k⋃

j=1

Ck) ≤
k∑

j=1

yCj
− λ ≤

∑

S⊂V ;r /∈S

yS − λ.

The first inequality follows from Lemma 4. Finally, using the primal-dual
principle we get:

∑

S⊂V ;r /∈S

yS − λ ≤ T ∗
MTP−DP ≤ T ∗

MTP−LP ≤ T ∗.
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We use the following theorem in our analysis:
Theorem 7. [12, Theorem 2.4] After Algorithm 1 completes,

∑

e∈Em
ce ≤

2T ∗.

We conclude with the following theorem:
Theorem 8. Algorithm 1 is a 3-approximation to MTP problem.

Proof. Combining Theorem 7 and Lemma 6 we get:

∑

e∈Em

ce + ϕ(Vm) ≤ 3T ∗.

Following similar argument as in [12], the running time of Algorithm 1 is
O(n2 logn).

5.2 Algorithm for Mule Cycle Problem

In this section we show how to extend the ideas we developed in the previous
subsection and show a 3 approximation algorithm when the target topology
is a tour. Note that any α-approximation algorithm for MTP can be con-
verted to a 1.5α-approximation algorithm by transforming the tree to a tour
Christofides’ 1.5 approximation algorithm for the traveling salesman prob-
lem [9].

First we formulate MCP as an ILP:

min
∑

e∈E

xece +
∑

C⊂V ;r /∈C

γCϕ(C)

subject to:
∑

e∈δ(S)

xe + 2
∑

S⊂C;r /∈S

γC ≥ 2 S ⊂ V ; r /∈ S

∑

C∈V ;r /∈C

γC ≤ 1

(MCP− IP) xe ∈ {0, 1} e ∈ E

γC ∈ {0, 1} C ⊂ V ; r /∈ C

γC is equal to 1 for the set of nodes that are not selected in the final tour
and 0 otherwise. The second constraint enforces that each node included in
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the tour gets visited at least twice (i.e., the solution is a tour). Similar to
MTP-LP, the linear relaxation MCP-LP is formed by relaxing the second and
third constraints as in MTP-LP. The dual problem is as follows:

max 2
∑

S;r /∈S

yS − λ

subject to:
∑

S|e∈δS

yS ≤ ce e ∈ E

(MCP− DP) 2
∑

S⊆C

yS − λ ≤ ϕ(C) C ⊂ V ; r /∈ C

ys ≥ 0 S ⊂ V ; r /∈ S

λ ≥ 0

We use the following algorithm to solve MCP:

Algorithm 2: Mule Cycle Problem Algorithm

Input: graph G = (V,E)
Output: A tour T = (Vm, Em), and a set of nodes Vm not in the tour.

1 Produce tree T ′ by running algorithm 1 on G with penalty ϕ(S)
2

.

2 Produce a tour T by running a depth first traversal on T
′

.

We claim the following.
Lemma 9. Algorithm 2 is a 3-approximation for MCP

Proof. First note that the output of Algorithm 2 is a tour on the subset of V
thus a valid solution to the primal problem. The dual solution also holds since
we have

∑

S yS ≤ ϕ
2
. Let y∗S be the value of set S in the optimal solution, yS be

the value of set S after running Algorithm 2, and T ∗ be the optimal solution
to MCP-IP. The cost of the depth-first traversal is 2

∑

e∈Em
ce. Thus, we get:

2
∑

e∈Em

ce + ϕ(Vm) ≤ 4
∑

S

yS + 2
∑

S

yS ≤ 3(2y∗S) ≤ 3T ∗.

5.3 Penalty functions

We turn to prove that ϕ1 and ϕ2 are valid penalty functions and therefore
can be used in Algorithms 1 and 2. The proof for ϕ3 follows directly from its
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definition.

Let C be the set of dead nodes in some iteration of the algorithm. We show
that by increasing C by any number of nodes, the cost functions ϕ1 and ϕ2

are always not decreasing and therefore satisfy Condition 1. W.l.o.g we prove
the claim on adding a single node v to C.
Lemma 10. Cost function ϕ1 satisfies Condition 1

Proof. ϕ1(C) is equal to:

(I(u)−
∑

z∈D(u)\{v}

I(z)− I(v))2

︸ ︷︷ ︸

#1

+

(I(v)−
∑

l∈D(v)

I(l))2

︸ ︷︷ ︸

#2

+
∑

w∈V \c∪{v,u}

U(w)2.

Let u be the first ancestor of v that is does not belong to C. After removing
v, the penalty ϕ1(C ∪ {v}) is:

(I(u)−
∑

z∈D(u)

I(z))2 +
∑

w∈V \C∪{v,u}

U(w)2.

Clearly the increase in term #1 is at least I(v)2, while the decrease in term
#2 is at most I(v)2. Therefore, the target function is not decreasing.

Lemma 11. Cost function ϕ2 satisfies Condition 1

Proof. The penalty ϕ2(Si) is equal to:

max{I(u)−
∑

z∈(D(w)\{v})

I(z)− I(v)
︸ ︷︷ ︸

#1

, I(v)−
∑

l∈D(v)

I(l)
︸ ︷︷ ︸

#2

,

max
w∈(V \C∪{v,u})

U(w)}
︸ ︷︷ ︸

#3

.

After v is removed we get that the penalty ϕ2(C ∪ {v}) is:

max{I(u)−
∑

z∈D(w)

I(z), max
w∈(V \C∪{v,u})

U(w)}.

Since the increase in term #1 I(v), is larger than term that was removed #2,
the target function increases.
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5.4 Practical implementation in a large distributed sensor network

The algorithms described in previous sections require solving a global opti-
mization problem which is very hard to decentralize. Thus, it might not be
practical in real sensor networks. We can adjust the algorithms to real net-
works by using the mule for calculation and adding the time dimension, i.e.,
the mule first traverse all nodes in the network and retrieve their data, then
run the algorithm locally and decide which nodes are vital and which can be
skipped. The mule can repeatably perform the above routine every predefined
number of tours or when the variance in the information learned significantly
changes. Further optimization of the algorithm can recalculate the information
gain only for a specific areas or a subset of nodes and take the old measurement
from the rest of the graph.

6 Simulations

In this section, we present numerical results corresponding to the analysis from
previous sections. Using a custom simulator, we compare the performance of
Algorithms 1 and 2, referred as MULE, to competitive algorithms on varying
topologies, such as linear networks, stars, grids and random graphs. We choose
a versatile set of rival algorithms. These include: distance greedy algorithm,
a competitive incentive based algorithm COMP and when computationally
feasible, the optimal algorithm OPT. The greedy algorithm selects k ∈ [1, n]
nodes and traverse them using the optimal tree or tour. To gain insights on
the effect of node selection on the optimization function we set k to n, logn,√
n and 1 (i.e., only the root is selected). The second competitive algorithm

COMP, deliberately tries to optimize the optimization criteria by selecting
edges that maximizes the information gain but minimizes the traveling dis-
tance. In each round, the algorithm expands the constructed tree or tour by
finding the edge that minimize the travel cost but maximize the information
gain. If the cost of this edge is positive (i.e., the travel cost is larger than the
information gain), the algorithm randomly selects it with uniform distribu-
tion. The randomness is required since a distant node, which will never be
visited by a greedy solution, may contains large amount of information. In-
tuitively, the mule must perform a leap of faith, and traverse an edge despite
the decrease in the optimization function. The algorithm terminates when a
round completes without selecting an edge. This algorithm was used since for
the best of our knowledge, no competitive algorithms exist that optimize both
information gain and travel distance. In practice, the algorithm yields good
results under all topologies, but not as good as MULE and OPT.

In our simulations, we assume sensors are stationary, and have limited wireless

16



Figure 4. Simulation results for temperature monitoring problem under different
topologies. The 3-approximation algorithm is compared to several greedy functions
that selects the closet nodes
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(e) Grid network - ϕ1
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Figure 5. Simulation results on line topology using penalty function ϕ3. The left
figure shows the results on a topology where the mule has high incentive to skip
visiting nodes farther from the root. The right figure shows the results where the
farther the nodes, the higher the penalty of skipping it. For both figures, the Mule
algorithm plot it closest to OPT plot.

(a) Linear network - ϕ3

0 50 100 150 200

101

102

103

Number of nodes

C
os
t

No nodes
logn nodes
All nodes
MULE

COMP

OPT

(b) Linear network - ϕ3

0 50 100 150 200

102

103

Number of nodes

C
os
t

No nodes
log n nodes
All nodes
MULE

COMP

OPT

transmission power [29,30]. Under such settings, to receive the data stored in
a sensor, the mule must visit the sensor’s exact location in the network (i.e.,
the mule travels along the trajectory found by Algorithms 1 and 2).

Our first experiment studies the quality of our algorithms on linear ad hoc net-
works, which can be used for multiple data collection activities such as railway
or structural monitoring [18]. To construct the topology, we distributed 100
nodes, each with i(v) = 1, on a straight line with equal distances d between
the nodes. We calibrated d between 1 to 200, and compared between Algo-
rithm 2 to the competitive algorithms described earlier. The results for penalty
function ϕ1 are shown in Figure 4a. When d is between 1 to 50, the optimal
solution is to traverse all nodes using the optimal path (since the cost of edges
is relatively negligible to paying the penalty of a node). Note that for lower
values of d the ratio between the cheapest solution to the most expensive one
is above 100, and for those, Algorithm 2 cost is exactly the same as the optimal
solution. When d increases, the cost of selecting edges becomes significantly
expensive to pay the penalty of all nodes, and thus the optimal solution is
to select only the root. In this interval, Algorithm 2 cost converges to the
optimal value. The zig-zag in the mule cost is explained by the fact that the
difference between the no nodes cost and the all nodes cost is negligible, so the
solution may change due to nodes distribution. When this difference becomes
substantial the mule cost converges to the no nodes solution.

The results for penalty ϕ2 are shown in Figure 4b. The results show similar
trends as the first experiment, but since for a subset of nodes S, ϕ2(S) has
lower penalty than ϕ1, the shift between optimal solutions happens for lower
values of d. For example, the cost of empty solution for ϕ1 is 10

4 while the cost

18



for ϕ2 is 102. As the value of d grows, the optimal solution changes between
selecting all nodes to selecting only the root. For all values of d, Algorithm 2
cost converges to the optimal value as well.

In our second experiment, we examined the quality of Algorithm 2 on the star
network. To construct the star, we placed the root r in the center on the graph,
and equally distributed 10 nodes, each with constant distance from r, on the
circumference of the circle covering r. The covered area of each node was
randomly and equally distributed between 1 to some upper bound max I(v).
We compared the performance of Algorithm 2 when using ϕ1 and ϕ2 to the
four rival greedy algorithms.

The results of running the algorithms for varying upper bounds when using
ϕ1 and ϕ2 are plotted in Figure 4c and 4d, respectively. In those experiments,
the value of the star radius was set to 99, which is high enough to drop nodes
if their penalty is too low. Clearly, the cost of not selecting a node increases
proportionally to its covered area. For small values of max I(v), the solution
that contains only the root has the minimum cost, while as max I(v) increases,
the optimal solution is to include all the nodes. The cost of Algorithm 2 always
converges to the optimal value and never exceeds the optimal by more than 2
(which fits the theoretical bound of 3).

In the next experiment, we randomly and uniformly distributed a varying
number of nodes on a 10×10 Euclidean grid. To construct the data gathering
tree T , we start with a tree that contains only r and until all nodes belong
to T , select a leaf v and a random integer k ∈ [1, 5] and connect the closest
k nodes that are not in T to v. The covered area per node is proportional to
the density of nodes. The results for the cost functions ϕ1 and ϕ2 are plotted
in Figure 4g and Figure 4h, respectively. For ϕ1, Algorithm 1 converges to the
optimal solution, achieving the best results in more than 60 percent of the
samples, and for ϕ2 Algorithm 1 has the same results as optimal solution for
all samples.

The next experiment involves placing varying number of nodes in a random
network with dimension

√
n×√

n. The grid topology can be used for reliable
communication in ad hoc networks [7]. The covered area per node is propor-
tional to the density of nodes in the graph (i.e., ∝ area

n
). The results when

using ϕ1 and ϕ2 are plotted in Figures 4e and 4f, respectively. They show
similar trends as in the previous experiments.

In our final experiment, we compared the result of the mule algorithm using
penalty function ϕ3 on the line topologies. In this topology, we were able to
compute the optimal solution, which selects the closest k nodes to root such
that the total penalty and the distance to the farthest node is minimized.
Similar to previous experiment, we also compared the results to the naive al-
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gorithms that select the closest k nodes to the root for varying values of k.
To show that the mule algorithm behaves as expected under different circum-
stances we simulated two scenarios. In the first scenario, plotted in Figure 5a,
we merge the node farthest from the root into a large clusters with big penalty.
As intuition states, our results show that the mule algorithm, similar to the
optimal algorithm, takes only one node from the large cluster and skips the
rest of the nodes in it. Clearly, as the chart shows, the naive algorithms be-
haves very badly under those conditions since they collect unnecessary nodes.
In the second scenario, plotted in Figure 5b, we randomly assigned nodes into
groups of clusters, with penalty that depends on the number of nodes in each
cluster. In this experiment, the mule algorithm have to work much harder to
find the exact subset of nodes that yield optimal results. Opposite to the pre-
vious experiment, here selecting all nodes do yield good results, but the mule
algorithm is still better by at least 10% than all other non-optimal algorithms.

7 Concluding remarks

In this paper, we developed a framework for finding near-optimal route for
data gathering mule when the information gain of a node depends on the data
collected so far. We identified a relationship between the mule problem to an
extended variation of the Prize Collecting Traveling Salesman Problem, and
presented a 3-approximation algorithm for it. This work is a first attempt
towards a framework for solving data gathering problems that focus on the
quality of data collected in addition to scheduling and power efficiency. Fu-
ture extensions of our work could investigate how to solve the mule problem
when the traveling distance is bounded (similar to the constrained orienteer-
ing problem [13]) or explore the case when multiple mules work together to
collect data.
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