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distance function between the facility (e.g., a service) and the sites (e.g., the customers). To ourbest knowledge nothing has been done in the area of facility location for continuously moving points.Surprisingly, the data structures and algorithms that have been developed for the static problems(i.e., customers are not moving) are not directly applicable to the setting of moving points whenthe motion of the facilities must satisfy natural constraints. In this paper we begin the study ofmobile versions of the two classical facility location problems:1. k-center: Given a set S of n demand points in d-dimensional space (d � 1), �nd a set P ofk supply points so that the radius de�ned as the maximum Lp distance between a demandpoint and its nearest supply point in P is minimized. Note that for some metrics such a setP is not necessarily unique even for k = 1 and d = 2.2. k-median: Given a set S of n demand points in d-dimensional space (d � 1), �nd a set P ofk supply points so that the dispersion de�ned as the sum of the Lp distances between demandpoints and their nearest supply points in P is minimized. Again, it is possible that for somemetrics the solution is not unique.These problems have been well studied in both the exact [2, 7, 8, 9, 12, 13, 15, 16, 22, 27] andapproximate [3, 10, 11, 12, 14, 19, 21, 24] versions. In approximate versions a set P provides (1+")-approximate k-center (k-median) if the associated radius (dispersion) is at most (1 + ") times theoptimal radius (dispersion), for any " > 0. Facility location problems for time varying networks(when edge distances satisfy the triangle inequality) also have been studied, see [18, 20]. Wede�ne the mobile k-center (mobile k-median) problem as follows. Given a set S = fp1; p2; : : : ; pngof n continuously moving points speci�ed by a piecewise di�erentiable functions fg1; g2; : : : ; gng,where gi; 1 � i � n maps time interval [0; T ] to Rd , we want to determine whether there exist kcontinuous functions f1; : : : fk; fi : [0; T ]! Rd such that at any given moment t 2 [0; T ], the pointsf1(t); : : : ; fk(t) form a k-center (k-median) for the points at locations g1(t); : : : ; gn(t), and, if so, �ndf1; : : : ; fk. The mobile approximate k-center (k-median) problem is de�ned similarly. In this paperwe focus on the instances of these mobile facility location problems, when k = 1; p = f1; 2;1g. Wealso assume that d = 2 if the dimension is not speci�ed. Even these simple instances pose severalchallenging algorithmic and geometric questions. We also consider velocity restricted versions ofthese instances, i.e., when the velocity of the facility may vary in some range.The mobile approximate 1-center and related problems are studied by Agarwal and Har-Peled [1]very recently. For the Euclidean 1-center in the plane, they presented an approximation algorithmbased on a notion of extent. Their algorithm aims to maintain an approximate 1-center with afew events only. However, the velocity of the facility can be arbitrary large (Lemmas 10 and 11).We designed strategies that guarantee both an approximation factor and a bounded velocity of thefacility (Theorem 12 and Lemma 14).Our algorithms for these problems are based on a new class of data structures | kinetic datastructures (KDS)| aimed at keeping track of attributes of interest in systems of moving objects [6,17]. In the kinetic setting, a set of points is assumed to be continuously changing, or moving. Eachpoint follows a posted 
ight plan, but a plan can change at any moment through a 
ight planupdate. A KDS maintains a con�guration function of interest (which in our case will be the set P )by watching for critical events as the objects move. A KDS for computing a particular attributefor a set of points in motion maintains a set of certi�cates. A certi�cate based on a tuple of pointsis a continuous function that associates a real number with each con�guration of these points. Forexample, the certi�cates for a convex hull KDS are a collection of the triple of points, each with aparticular orientation. At any one time, the conjunction of all the certi�cates being maintained by2



the kinetic data structure proves the combinatorial correctness of its output. As the points move,some certi�cates may become invalid, e.g., a triple of points changes orientation. When a certi�catefails, the proof structure needs to be modi�ed and the combinatorial description of the con�gurationfunction may need to be updated. Certi�cates are stored in a priority queue, ordered by failuretime, and processed in order as they fail. A good kinetic data structure will take advantage ofthe continuity of the point motions to select certi�cate structures that are easy to update at thesecritical events; a structure satisfying this condition is called responsive. Other criteria for a KDSare e�ciency, i.e., the number of events processed by KDS is not much greater than the number ofcombinatorial changes in the con�guration function itself, compactness, i.e., the number of activecerti�cates at any one time is roughly linear in the complexity of the moving points, and locality,i.e., a 
ight plan update for any one point a�ects only a small number of certi�cates.This paper is organized as follows. In the next section we show several results regarding themobile rectilinear and Euclidean 1-center problems. Section 3 deals with the mobile 1-medianproblem. Section 4 provides some concluding remarks and questions for future investigation.2 Mobile 1-center problemsIn this section we investigate the complexity of mobile 1-center problems under the L1 and L2metrics. We �rst show how to deal with the case of the L1 metric and then extend our result tothe Euclidean case.2.1 Rectilinear 1-centerExact algorithm. We are given a set S of n moving points (customers) in Rd ; d � 1 and we wantto maintain a 1-center of these points (under the L1 metric), i.e., a point c with the property thatthe maximum distance between a point of S and c is minimized. We assume, for simplicity, thatthe motion of each point of S (i.e., its 
ight plan) is determined by a linear function. We assumethat the velocities of points are bounded by 1. During a 
ight plan update the velocity of the pointcan change but still not exceed 1.Observation 1 Let �1; �2; : : : ; �n be �xed numbers such that ai � 0 for all i andPni=1 �i = 1. Thepoint p de�ned as the linear combination of the customer points in Rd ; d � 1, i.e., p =Pni=1 �ipi,pi 2 S moves with velocity at most 1.Next, we observe that the exact 1-center c can move faster than all the points. See Figure 1.Observation 2 For any instance of the mobile 1-center problem in Rd ; d � 1 there is a rectilinear1-center whose velocity is bounded by pd. Furthermore, there is an instance of the problem with aunique solution moving with velocity pd.Proof. The bounding box �di=1[ai; bi] of the point set S is de�ned by 2d points (some of themmay coincide). The center of the bounding box has coordinates ((a1 + b1)=2; : : : ; (ad + bd)=2). Thecenter of the bounding box can serve as a rectilinear 1-center. The i-th coordinate of the centerof bounding box cannot move faster than velocity 1. Hence, the center of bounding box can movewith velocity at most pd. On the other hand, Figure 1 shows an example when the rectilinear1-center moves with velocity p2 in the plane. This can be extented to Rd ; d � 1 directly.The center of the bounding box and, thus, the rectilinear 1-center can be maintained usingelementary data structures. The idea is to maintain points pl,pr, pt, pb under motion of points.3
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Figure 1: Rectilinear 1-center moves with velocity p2.The problem is equivalent to the maximum maintenance problem [6]. Basch et al. [6] present severaldata structures to solve di�erent variants of the maximum maintenance problem. For our purposesit su�ces to use the kinetic swapping heap with O(log n) time responsiveness, O(1) locality andO(n log3 n) e�ciency.Lemma 3 A rectilinear 1-center can be maintained under the motion of points in an e�cient KDS.Recall that the approximation factor at moment t is de�ned as a relation between the radiusdetermined by the facility f and the radius determined by the optimal solution at this moment.Our goal is to minimize the approximation factor over all time. A natural question now is: Whatapproximation factor can be achieved if we restrict the velocity of facility f to some constant be-tween 1 and pd? First, we consider the case of unit velocity. Notice that with restricted velocitywe are not able to track the exact location of the rectilinear 1-center and, thus, kinetic versionsof static 1-center algorithms do not su�ce. Moreover, the approximation factor now depends onthe initial position of the facility. In what follows we provide simple algorithms with guaranteedapproximation factor 2 and then present a lower bound for the approximation factor when thefacility moves with velocity at most 1.2-approximation factor. If at the beginning of the motion of points we are allowed to putour facility f on any point in the plane, the simple way to achieve 2-approximation factor is to putour facility on any demand point and follow its 
ight plan. Obviously, our facility will always beinside the bounding box of S, thus, providing a 2-approximation factor since the exact radius isequal to half the length of the largest side of the bounding box. In fact the same approximationfactor can be achieved even in the case when the starting location of the facility is restricted to beany point inside the convex hull of S.Lemma 4 Starting with the facility at an arbitrary location inside the convex hull of S in Rd ; d � 1there is a 
ight plan for a single facility that guarantees a 2-approximation of the rectilinear 1-centerof S and can be maintained e�ciently.Proof. As a preprocessing step we compute the convex hull and a triangulation T of S. We �ndthe simplex � in T that contains the facility f . Let p1; : : : ; pd be the vertices of �. See Figure 2.Our goal is to keep the facility inside �. A simple way is to �nd the convex combinationf = �1p1 + : : : + �dpd, Pdi=1 �i = 1 and maintain f according to this formula. By Observation 1,f moves with velocity at most 1. 4
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Figure 2: Facility lies inside triangle � with vertices p1, p2, p3.Being inside the convex hull (initially) is crucial for achieving a guaranteed approximationfactor.Observation 5 No approximation factor can be guaranteed if the initial location of the facility isoutside the convex hull of S in Rd ; d � 1.Proof. The points of S can move according to the following strategy. They will move towardsome point r in the plane such that the distance from f to r is larger than any distance from r topoints in S. Such a point always exists since f is outside convex hull. Thus, at point r the radiusdetermined by the optimal 1-center is equal to 0 and the radius determined by f is greater than 0which violates any approximation factor.Following Observation 5 we note that if the facility is restricted to move with velocity less that1 then no approximation factor is achievable.Improvement of the approximation factor. Now we present a new algorithm with aslightly improved approximation factor for a facility moving with unit velocity. The key idea is touse the notion of the center of mass. Given a set S of n points we can de�ne mass in various ways:� Point mass. The weight 1n is assigned to each point.� Region mass. The mass is uniformly distributed in the convex hull.� Boundary mass. The mass is uniformly distributed on the boundary of the convex hull.By Observation 1, the center of mass of the points moves with velocity at most 1. In contrast, thecenter of mass of the convex hull and the center of mass of the boundary of convex hull can movewith velocity exceeding the maximum velocity of customers (See Figure 3(a)).Figure 3(a) illustrates an example of four points p1; p2; p3; p4 moving with unit velocity over oneunit of time. Initially, the center of mass of the convex hull (or its boundary) is on the segment(p2; l) and its �nal location is on the segment (p3;m). Any segment that connects interiors of(p2; l) and (p3;m) has a length larger than 1. Hence, the center of mass of the convex hull (or itsboundary) moves with the velocity exceeding 1.We have shown already an example (Figure 1) where the rectilinear 1-center moves with velocityp2 while the points move with unit velocity. When we allow the facility to move with unit velocitythe best approximation factor that can be achieved in this example is 2�1=p2. This approximationfactor is de�ned by the facilities f and f 0 on the segment cc0 in Figure 3(b) such that the lengthof the segment connecting f and f 0 is 1. It is interesting to note that the center of mass of the5



p1 p2 p3; p4l m(a) (b)p1 p2p3; p4c c0f 0fFigure 3: (a) Center of mass of the convex hull (or the boundary of convex hull) moves withvelocity exceeding 1. (b) Center of mass of the boundary of convex hull is optimal strategy forgiven example.boundary of the convex hull achieves this approximation factor. Clearly, that the center of massthe boundary of the convex hull is always on the segment cc0. Using the de�nition of the center ofmass one can show that the x-coordinate of the center of mass the curve f(x) de�ned on interval[a; b] is R ba xp1 + (f 0(x))2dxl , where l is the length of the curve. It can be veri�ed that the initialposition of the center of mass of the triangle �p1p2p3 coincides with the position of facility f and�nally with the position of f 0.Lemma 6 (Center of Mass) The center of mass of points guarantees a (2 � 2n)-approximationof the rectilinear 1-center of S in Rd ; d � 1 and can be maintained e�ciently under the motion ofpoints in S.Proof. By Observation 1 the velocity of the center of mass of the points does not exceed themaximal velocity of the customers. Clearly, the worst possible case is when n� 1 points coincidewith the origin and the other point has coordinates (1; 0; : : : ; 0). The center of mass of the pointshas coordinates ( 1n ; 0; : : : ; 0). The relation between the radius determined by the center of massand the radius determined by the optimal solution is (1 � 1n)=12 = 2 � 2n . In our kinetic modelwe maintain the queue of events: changing velocity of the points and changing 
ight plan of thepoints. We also maintain the location and velocity of the center of mass. Given a new event wecan calculate in constant time the current location of the center of mass and its new velocity.Surprisingly, the approximation factor stated in the previous lemma is, in fact, asymptoticallyoptimal. It is also interesting that the bound is optimal for any metric in any dimension.Theorem 7 (Lower Bound) Consider the mobile approximate 1-center problem in Rd ; d � 2 withany underlying metric. Any algorithm that starts with the facility inside the convex hull and movesthe facility with at most unit velocity achieves an approximation factor of at least 2 (asymptotically)for the exact 1-center in the worst case.Proof. It su�ces to prove the lower bound for d = 2 since two-dimensional worst case scenariocan be embedded into Rd ; d � 3. We prove this theorem by an adversary argument. The adversarypicks a set S that contains points at vertices A;B;C of an equilateral triangle in Figure 4. Withoutloss of generality we assume that there are arbitrary many points at each of the vertices A, B andC of triangle. The edge size of the triangle is 2. An algorithm starts with some initial locationof facility f inside triangle �ABC. In order to prove a lower bound, the adversary will force an6
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Figure 4: Adversary strategy for achieving lower bound for approximation factor.algorithm to put a facility f to the boundary of the bounding box of S. This goal can be achieveddoing the following strategy. The adversary checks which one of the triangles AoB;BoC;CoAcontains the facility, where o is the center of �ABC. Depending on location of the facility theadversary moves points into the next equilateral triangle. For example, if the facility is located intriangle AoB the adversary moves all the points to the right triangle in Figure 4. All points atvertices A and B move towards vertex C and the points at vertex C are split into two halves thatmove to the two remaining vertices of right triangle in Figure 4. Similarly, if the facility is locatedin triangle BoC the adversary moves the points to the left triangle (the symmetric case of triangleCoA is not shown in Figure 4). Notice that all points of S move distance 2 from one triangle toanother. The adversary continues to play this game until it forces the facility to be arbitrarily closeto a vertex of the current triangle. To show this we de�ne the distance of the facility to the centerof the current triangle using a hexagon centered at the center of the triangle. Assume that thefacility is located in �ABC on the left side of the hexagon centered at o. We show that the nextlocation of the facility will be outside the hexagon of the same size, shaded in Figure 4. This followseasily from the fact that the distance between points a and b is 2. Consider the smallest hexagon(dashed in Figure 4) that can be reached by the facility. Let c be the lowest point in the left sideof the hexagon centered at o and d be the highest point on the left side of the dashed hexagon.The distance between c and d is 2. Let xn be the length of the segment Ac, i.e., xn = jAcj andxn+1 = jCdj. By Pythagoras's Theorem we have((xn+1 � xn)p3=2 + 1)2 + (xn + xn+1)24 = 1: (1)Solving this equation we obtainxn+1 = xn �p3 +q3� 3x2n + 2p3xn2 = xn �p3 +p3q1� x2n + 2xn=p32First we observe that q1� x2n + 2xn=p3 < 1 + (1 � xn)xn=p3 if xn < 1�p2p3� 3. Therefore,xn+1 < xn � x2n2 for xn < 1 �p2p3� 3. Notice that x4 < 0:3 < 1 �p2p3� 3 assuming thatx1 = 1p3 = jAoj. As we have shown above the sequence fxng1n=1 is monotonically decreasing. Hencexn+1 < xn� x2n2 for all n � 4. It can be shown by induction that xn < 2n . Therefore, limn!1 xn = 07



and the facility is forced to be either outside the current triangle or arbitrarily close to one of thevertices of the current triangle. In the �rst case, the customers can run away from the facility sinceit is outside their convex hull.
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Figure 5: Final step of the adversary strategy.In the second case, we continue the game according to the following rules, see Figure 5. Supposethat the facility is close to the vertex A. The points from the vertices B and C move toward any�xed point b outside triangle ABC that lies on the bisector of \BAC and the points from thevertex A move along the bisector to the point a (jBbj = jAaj). When the points from the verticesB and C meet at b, the exact radius is equal to jabj2 and the facility is arbitrarily close to a (to theright). Thus, the approximation factor is arbitrarily close to 2.Motion with bounded velocity. Suppose now, that the velocity of the facility is boundedby vmax 2 [1;p2]. Recall that for values of vmax = 1 and p2 the best approximation factors are 2and 1, respectively. We mix our two strategies | the center of mass of the points and the centerof the bounding box | in the following way. Let (f1; v1) be the location (vector in the plane) andvelocity of the center of mass of the points. Similarly, (f2; v2) are the location and velocity of thecenter of the bounding box. The mixing strategy is to maintain the mixing center (f; v) de�ned as(�f1+(1��)f2; �v1+(1��)v2), where � = (p2�vmax)(p2�1). We analyze the mixing strategyand show how it can be improved in the following theorem.Theorem 8 (Bounded Velocity) Suppose that the facility is allowed to move with velocity atmost vmax 2 [1;p2]. Let a1(v) be the linear function de�ned by a1(1) = 2 and a1(v0) = a0 where v0 =p2 cos(�=8) and a0 = 1:25. Let a2(v) be the linear function de�ned by a2(v0) = a0 and a2(p2) = 1.There is a strategy of the facility that guarantees an approximation factor max(a1(vmax); a2(vmax)).Proof. First we show that the velocity of the mixing center is bounded by vmax. We want to provethe inequality �v1 + (1 � �)v2 � vmax. In order to do this, we replace v1 by 1 and v2 by p2. Itcan easily be seen that the value of the expression �+ (1� �)p2 when � = (p2� vmax)(p2� 1)is equal to vmax.Regarding the approximation factor we consider the case in which the center of mass is atlargest L1 distance from the center of the bounding box. This distance is 1�2=n if the radius thatis determined by the center of the bounding box is 1. Then the L1 distance between the mixingcenter and the center of the bounding box is p2�vmaxp2�1 (1� 2n). The approximation factor bound is1 + p2� vmaxp2� 1 �1� 2n� :The smallest bound that suits all n is the linear function 1 + (p2� vmax)(p2� 1).8
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Figure 6: 8-gon strategy.It turns out that the mixing strategy is not easy to improve. The reason is that the worstcase velocities of two strategies, the center of mass (of all the points or a linear combination of afew points from S) and the center of bounding box, can be in the same direction as in Fig. 3(b).In this case the best motion of the facility is to move in this direction withthe maximum allowedvelocity which corresponds to mixing strategy. The idea now is to interpolate two strategies thathave the worst case velocities in di�erent directions. Note that the maximum velocity of the centerof bounding box depends on the direction and varies from 1 to p2, see Fig. 6(a). A good candidatefor the interpolation is the strategy of the center of bounding box aligned to the coordinate axisrotated by 45�. The range of the maximum velocity is depicted in Fig. 6(b). Consider the midpointof two centers. We call this 8-gon strategy since the range of its maximum velocity forms theregular 8-gon, see Fig. 6(c). The maximum velocity of the facility following the 8-gon strategy isv0 = p2 cos(�=8) and the approximation in worst case is a0 = 1:25 for three points S = fp1; p2; p3g,see Fig. 6(d). One can show that the approximation factor of the 8-gon strategy is smaller thanone of the mixing strategy for vmax = v0. In order to improve the approximation for other valuesof vmax we(i) interpolate (or mix) the strategy of the center of mass and the 8-gon strategy for vmax inthe range [1; v0], and(ii) interpolate the strategy of the center of the bounding box and the 8-gon strategy for vmax 2[v0;p2].The theorem follows.Variants of mixing strategy. We consider two di�erent ways to improve the mixing strategy.First we notice that the mixing strategy described above constrains the initial location of the facilityto some particular point. We avoid this by replacing the center of mass of the points in the mixingstrategy by the algorithm described in Lemma 4. In other words, the initial location of the facilityis a linear combination of any point p inside the convex hull and the center c of the bounding box.The resulting approximation factor, however, grows slightly to 1 + p2�vmaxp2�1 .The second improvement concerns the approximation factor. The mixing center in the previousstrategy sometimes may move with velocity less than vmax. In this case, we may use the excess ofthe velocity to improve the approximation factor by moving the mixing center f towards the centerof the bounding box. When the mixing center f moves, the coe�cient � in the linear combinationof p and c becomes invalid. We would like to preserve the initial value of �. It can be viewedas a new motion of point p. However, the point p, which initially lies in some triangle �pipjpk9



inside the convex hull of S (since c is inside the convex hull), may move outside this triangle. Wecan calculate this event and put it into the queue of events. When this event happens the pointp is still inside the convex hull and we need to compute a new triangle that contains p. It canbe done as follows. We may assume that only points on the convex hull form a triangulation T .The mobile convex hull can be maintained kinetically [5] with O(log n) locality and O(log2 n) timeresponsiveness. We introduce three new types of events:1. one of the vertices of �pipjpk no longer serves as a vertex of the convex hull,2. a new vertex appears on the convex hull,3. the facility reaches the boundary of �pipjpk.In the �rst case we can update T in O(1) time and �nd a new triangle that contains p and calculatethe three new certi�cates providing the proof of p inside this triangle. The second case is reverseto the �rst one and can be maintained similarly. In the third case p moves from one triangle� in T to an adjacent triangle �1, the vertices of �1 can be found in constant time using themaintained convex hull. From the practical point of view this strategy is more useful than thestrategies described above.Remark. It is well known that the metrics L1 and L1 are dual in the plane, in the sense thatnearest neighbors under L1 in a given coordinate system are also nearest neighbors under L1 in a45 degrees rotated coordinate system (and vice versa). The distances, however, are di�erent by amultiplicative factor of p2. Thus, the results for L1 carry over to the L1 metric and vice versa.Lower bound for an approximation factor when vmax 2 [1;p2]. In fact we can show twodi�erent lower bound estimates. The �rst bound is based on the example depicted in Figure 3(b)when jff 0j = vmax and jp1p4j = jp2p4j = 1. In this case the exact rectilinear radius is 12 and theapproximate radius is 1� vmax2p2 . Thus, the approximation factor �(vmax) = 2� vmaxp2 .The second lower bound is based on the proof of Theorem 7. In fact, a similar proof can beapplied for vmax 2 [1; 2p3 ]. If vmax � 2p3 the facility can follow the center o of the triangle. Forvmax 2 [1; 2p3 ] the facility can always be inside a hexagon of some �xed size. Let x = jAaj andjcej = 2v on Figure 4. One can show that x = p3v2max � 3. The rectilinear distance from c to Bis p3 � xp3 and the distance from c to C is 2 � x. The exact radius is equal to 1. Therefore, theapproximation factor is 
(vmax) = max (2� x;p3� xp3), for x =p3v2max � 3. One can show that�(vmax) > 
(vmax) if vmax > 2=p3. Combining all the results together we obtainLemma 9 If the facility's maximal allowed velocity is vmax 2 [1;p2], then the worst-case approx-imation factor of any algorithm is at least max (�(vmax); 
(vmax)).2.2 Euclidean 1-centerAlthough the static Euclidean 1-center problem, like the static rectilinear 1-center problem, canbe solved in linear time [25], the mobile versions of these problems are quite di�erent. In contrastto the rectilinear 1-center problem (see Observation 2) we show an example providing that theEuclidean 1-center may move with unbounded velocity. See Figure 5.Lemma 10 (Unbounded Velocity) For any velocity V � 0 there is a motion of three pointsp1; p2; p3 in Rd ; d � 2 with unit velocity whose Euclidean 1-center moves instantaneously withvelocity faster than V . 10
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p03 p04(a) (b)Figure 7: Euclidean 1-center may move with unbounded velocity.Proof. The Lemma can be shown using an example of three points p1; p2; p3 lying in any planeof Rd and moving to points p01; p02; p03, respectively, see Figure 5 (a). We use another example withfour points p1; : : : ; p4 which provides a better bound of the velocity of the exact Euclidean 1-center,see Figure 7 (b). The points p1; : : : ; p4 are located on the unit circle centered at c1. A pointpi; i = 1; : : : ; 4 moves toward the point p0i. The points pi make the same length paths since c1c2p02p1and c1c2p04p3 are rectangles.Let x = jc1c2j be the length of the path made by the 1-center and let y = jp1p01j be the lengthof the path made by the point p1. It su�ces to show that y=x tends to 0 if x tends to 0. Indeed,1+x2 = (1+y)2 since the triangle c1c2p1 is right. It implies x2 = 2y+y2 and 2y=x = x�y2=x � x.The Lemma follows.We show that velocity of an approximate 1-center must be high.Lemma 11 (Lower Bound) For every " > 0, any (1+")-approximate mobile Euclidean 1-centerhas velocity at least 1=4(p2"+ ") = 1=(4p2")�O(1) in worst case.Proof. Let x = jc1c2j and y = jp1p01j. The value of y depends on x that will be speci�edlater. The exact Euclidean 1-center moves from c1 to c2. Consider the points a1 and a2 de�ned byjc1a1j = ja2c2j = x=4, see Figure 7 (b). Suppose that an approximate 1-center of points p1; : : : ; p4 isat a1. Then the smallest radius of a disk covering the points is jp1a1j. We assume that jp1a1j = 1+".Then any (1+")-approximate 1-center must traverse the distance at least ja1a2j = x=2. Its velocityis at least ja1a2j=jp1p01j = x=2y.We obtain (1 + ")2 = 1 + (x=4)2 from the triangle c1a1p1. Hencex = 4p2"+ "2:We can bound x � 4p2" + 4" since 16(2" + "2) � 16(2" + "2 + 4"p"). Note that y � x2=2 sincex2 = 2y + y2. Therefore the velocity of an approximate 1-center is at leastV � x2y � 1x � 14p2"+ 4":11



It remains to show that 1=(4p2"+ 4") = 1=(4p2")�O(1="). Indeed,14p2" � 14p2"+ 4" = 14p2(p2 +p") ! 18 as "! 0:We show that the lower bound of the velocity needed to approximate mobile Euclidean 1-centerestablished in Lemma 11 is optimal up to a constant factor.Theorem 12 (Upper Bound) For any " > 0 there is a strategy for mobile approximate Euclidean1-center that guarantees the approximation factor 1+" using velocity of the facility 4=p"+o(1=p")in the worst case.Proof. We apply the following strategy for the mobile facility. Let V be the maximum velocity ofthe facility that will be speci�ed later. Consider the initial con�guration. We assume that in thebeginning the facility f is located so that the radius of the smallest circle enclosing all the customerpoints is at most (1 + �) times the optimal radius where � � " and will be speci�ed later. Thegoal of the facility now is to reach the position of the exact Euclidean 1-center at this moment.The facility heads to the target using the velocity V . We can compute the time t needed for this.After reaching the target we repeat the procedure. It is interesting that the motion of the facilityis independent on the motion of customers during the time when facility moves from one positionto another. It is also interesting that the exact 1-center can achieve any velocity sometimes andthe approximate facility just ignores any acceleration of the exact 1-center.Let c be the position of the exact Euclidean 1-center at the initial time t0 and let a be theposition of the facility (the approximate 1-center) at the same time. Let t1 be the time whenthe facility reaches c. Let r denote the radius associated with c at the time t0. Without loss ofgenerality we can assume that r = 1.
c xp1 + x2l a1

Figure 8: (1 + ")-approximation of Euclidean 1-center.First we estimate the distance between the exact and approximate centers at the time t0. Denotex = jacj. The line l orthogonal to the line ac passing through c partition the unit circle centeredat c into 2 arcs, see Fig. 8. Each arc contains at least one customer point since the exact radiusof the 1-center disk is 1. The minimum distance from a to the arc beyond l is p1 + x2. Clearly,p1 + x2 � 1 + �. Therefore x = jacj � p2� + �2.12



Let t be the time the facility need to get the exact center c, i.e., t � jacj=V . Consider themoment t1. The radius associated with the approximate 1-center c is at most 1 + t since thevelocities of the customers are bounded by 1. Let c0 be the location of the exact 1-center. We showthat the associated radius is at least 1� t. Construct the line passing through c and orthogonal tocc0. The arc of the unit circle centered at c from which the exact center moves toward c0 containsat least one customer point at the moment t0. This customer is at distance at least 1 � t from c0at the moment t1. Thus, the approximation ratio at the moment t1 is at least1 + t1� t = 1 + 2t1� t :We want to show that this is at most 1 + �. It follows from2t1� t � � or, equivalently, t � �2 + � : (2)We also want the approximation factor to be at most 1 + " for any moment t0 +� 2 [t0; t1]. Theradius associated with the approximate 1-center is at most 1+ �+�. The radius is at least 1��.Their ratio is at most 1 + � +�1�� = 1 + 2�+ �1�� :The largest value of the upper bound is achieved when � = t. It su�ces to have2t+ �1� � � " or, equivalently, t � "� �2 + ": (3)Making the right sides of the equations 2 and 3 we obtain �2+4��2" = 0 and � = p4 + 2"�2 � "=2.By the equation 2 we can set t = �=(2 + �) � "=4. Therefore, the velocity of the facility can beV = p2� + �2=t � 4=p". The theorem follows.Lemmas 10 and 11 demonstrate negative results. Fortunately, results analogous to Lemma 4and Lemma 6 for the Euclidean 1-center can easily be obtained.Theorem 13 (Bounding Box Strategy) The strategy of tracing the center of the bounding boxof n � 3 points has an approximation factor of (1 +p2)=2 for the mobile Euclidean 1-center andthis bound is tight.Proof. Let s = (1 +p2)=2. Without less of generality we can assume that the bounding box isB = [0; 2] � [0; 2t] for some t � 1, see Fig. 9 (a). Let S be any con�guration of n � 3 points in Bsuch that each side of B contains at least one point of S. Let r be the approximate radius, i.e.,ra = maxp2Sfjpojg where ca = (1; t) is the center of B. Let r be the exact radius of 1-center. Wewant to prove that ra � sr.We �rst consider the case where one of the points of S is located at a vertex of B, say p1 = (2; 2t).It implies ra = p1 + t2. Two sides of B contain p1, and there are at least two points p2 and p3lying on the sides of B along x- and y-axis, respectively. We can assume that p2 6= p3, otherwisep2 = p3 = (0; 0) and r = ra. If t > 2 then r � jp1p2j � t and one can check thatrar � p1 + t2t =r 1t2 + 1 �r114 < s:13
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Figure 9: Bounding box strategy for approximating Euclidean 1-center.We assume that t 2 [1; 2]. The smallest value of r is achieved when p2 is strictly below the 1-centerand p3 is to the left of it, see Fig. 9 (a). Thus the exact 1-center has coordinates c = (r; r). The1-center is at distance r from p1, (2� r)2 + (2t� r)2 = r2:This can be transformed to the quadratic equationr2 � 4(t+ 1)r + 4(t2 + 1) = 0:r = 2(t+ 1�p2t) since the root with \+" is greater than 2t which is impossible.ra and r can be viewed as functions of t. In order to prove that ra=r � s for t 2 [1; 2] weshow that (i) ra(1)=r(1) = s, and (ii) (ra=r)0 � 0 for any t 2 [1; 2]. If t = 1 then ra = p2 andr = 2(2 �p2). One can check that ra=r = s. Note that this gives an example with tight bound,see Fig. 9 (b).To prove the second condition we di�erentiate r and rar0 = 2(1 � 1=p2t) and r0a = t=p1 + t2:We want to prove that r0ar � rar0 � 0 or, equivalently,2tp1 + t2 �t+ 1�p2t� � 2p1 + t2�1� 1p2t� :Let x =pt=2. Then t = 2x2 for x 2 [p2=2; 1] and the inequality can be written as2x2(2x2 + 1� 2x) � (1 + 4x4)�1� 12x� :Multiplying by 2x we obtain (12x4 � 4x3) + (2x� 1) � 0:Clearly, 12x4 � 4x3 � 0 and 2x� 1 � 0. 14



It remains to consider the case where there is no point of S at a vertex of B. Let p1 be a pointof S at distance ra from the center of B, see Fig. 9 (c). Note that ra < p1 + t2. The idea is toshrink the bounding box B so that p1 is the vertex of new bounding box B0. To achieve this wemove every point of S n B0 toward the exact 1-center c until it reaches the boundary of B0 (notethat c 2 B). The approximate radius does not change but the exact radius can be reduced only.The exact radius can be bounded from below as described above and the inequality ra � sr holds.The theorem follows.Lemma 14 (Mixing Strategy) If the facility is allowed to move with velocity vmax 2 [1;p2],the approximation factor�1 +p22 + (1� �)�2� 2n� ; where � = p2� vmaxp2� 1 (4)is achievable.Proof. The same mixing strategy described in Lemma 8 can be applied to the Euclidean 1-centerproblem for the facility moving with velocity vmax 2 [1;p2]. Let cm be the center of mass and letcb be the center of the bounding box. Let r be the exact radius of 1-center and let rm, rb be theradii determined by cm and cb, respectively. The mixing center is de�ned as cmix = �cm+(1��)cb.By Lemma 6 and Theorem 13 rm � (2� 2=n)r and rb � (p2 + 1)r=2. Let p be any point in S.It su�ces to prove that jpcmixj � Ar, where A is the required approximation factor from (4). Themixing center has a property that pcmix = �pcm + (1� �)pcb. Thereforejpcmixj2 = �2jpcmj2 + (1� �)2jpcbj2 + 2�(1 � �)pcm � pcb� �2jpcmj2 + (1� �)2jpcbj2 + 2�(1 � �)jpcmjjpcbj= (�2jpcmj+ (1� �)jpcbj)2j:Thus, jpcmixj � �jpcmj+ (1� �)jpcbj � �(2 � 2=n)r + (1� �)(p2 + 1)r=2 = Ar and we are done.3 Mobile 1-median problemsSimilarly to the 1-center problem, we consider the 1-median problem under the L1, L1 and L2metric. Intuitively, the maintenance of the 1-median seems harder than that of the 1-center becausenow all points are participating in de�nition of the median (while only four points de�ne the center).3.1 Rectilinear 1-medianWe consider the problem in which the distances are measured by the L1 metric. We create a gridM by drawing a horizontal and a vertical line through each point of S. Assume the points of S aresorted according to their x coordinates and according to their y coordinates. Denote by M(i; j)the grid point that was generated by the ith horizontal line and the jth vertical line in the y and xorders of S respectively. Bajaj [4] observed that the solution to the 1-median problem should be agrid point. As a matter of fact it has been shown that for this problem the point M(bn=2c; bn=2c)is the required point. (For an even n the solution is not unique and there is a whole grid rectanglewhose points can be chosen as the solution.) We are interested in maintaining M(bn=2c; bn=2c)15



under the motion of points of S with unit velocity. It can easily be observed that as in the caseof the rectilinear 1-center (see Observation 2) the velocity of the 1-median can be as large as p2times the maximum velocity of the points.Lemma 15 The rectilinear 1-median can be maintained under the motion of points in an e�cientkinetic data structure.Proof. We show how to maintain e�ciently the x-coordinate of the median. The same approachworks for the y-coordinate. Assume that the indices of the points of S correspond to the sorted xorder of points. The idea is to split the points into two sets S1 and S2 such that S1 = fp1; : : : ; pbn=2cgand S2 = fpbn=2c+1; : : : ; png. We maintain S1 in the kinetic swapping heap H1 (of the maximummaintenance problem) and S2 in the kinetic swapping heap H2 (of the minimum maintenanceproblem). We also need an additional certi�cate that states that x(pbn=2c) � x(pbn=2c+1). As weupdate the maximal value of H1 and the minimal value of H2 we check whether this certi�cate isvalid, and if not, we exchange two points de�ning these two values between H1 and H2. Similarlyto the maximum maintenance case the responsiveness is O(log n) and locality is O(1).Approximating median by the center of mass.Lemma 16 The center of mass of n points provides an approximation factor of 2 � 2n for therectilinear 1-median problem and this bound is tight for facilities with unit velocity.Proof. Let (cx; cy) be the coordinates of the center c of mass of the points of S and (mx;my) bethe coordinates of the rectilinear 1-median m. We want to prove that�ni=1jcpij1 � (2� 2n)�ni=1jmpij1;where j � j1 stands for the L1 distance. Following the de�nition of the L1 distance it is suf-�cient to prove that �ni=1jcx � x(pi)j � (2 � 2n)�ni=1jmx � x(pi)j and �ni=1jcy � y(pi)j � (2 �2n)�ni=1jmy � y(pi)j. We will show the �rst inequality. The second inequality follows analogously.Notice that the �rst inequality can be viewed as the 1-dimensional case of the Lemma for the pointsfx(p1); x(p2); : : : ; x(pn)g because their center of mass is the point cx and their 1-median is the pointmx.Assume that x(p1) � x(p2) � : : : � x(pn). For simplicity, we also assume that n is even. LetM = Pni=1 jmx � x(pi)j. Rewriting M we obtain M = Pni=n=2+1 x(pi) �Pn=2i=1 x(pi). Let C =Pni=1 jcx�x(pi)j. Our goal is to show that C � (2�2=n)M . Let xl and xr be the centers of massesof fx(p1); : : : ; x(pn=2)g and fx(pn=2+1); : : : ; x(pn)g, respectively, i.e., xl = 2(�n=2i=1x(pi))=n and xr =2(�ni=n=2+1x(pi))=n. Clearly, cx = (xl + xr)=2 and xr � xl = 2M=n. Let D = Pni=n=2+1(x(pi) �xl) +Pn=2i=1(xr � x(pi)). We can rewrite D as follows:D = nXi=n=2+1 x(pi)� n=2Xi=1 x(pi) + n=2(xr � xl) =M + n=2(xr � xl) = 2M:First we show that C � D. Let x(pi) and x(pj) be two arbitrary points such that 1 � i � n=2and n=2 + 1 � j � n. Obviously, x(pj) lies to the right of xl. Without any loss of generality weassume that cx � x(pn=2). We show that the contribution of x(pi) and x(pj) in D is greater thantheir contribution in C. We now consider the following two cases:16



Case 1: x(pj) � cx. In this case we have (xr � x(pi)) + (x(pj)� xl) = (cx�x(pi)) + (x(pj)� cx) +(xr � xl) � (cx � x(pi)) + (x(pj)� cx).Case 2: x(pj) < cx. In this case (xr�x(pi))+(x(pj)�xl) = (x(pj)�xl)+(xr�cx)+(cx�x(pi)) �(cx � x(pj)) + (cx � x(pi)), because xr � cx = cx � xl � cx � x(pj).From the above two cases we can conclude that C � D. However, we can make this inequalitya bit tighter. We notice that if we have k pairs of points satisfying Case 1, then actually D =2M � C + k(xr � xl). Since xr � xl = 2M=n, we have in this case (2� 2k=n)M � C. The numberk is de�ned by the number of points lying in interval [xr;1). Obviously there is at least one suchpoint, i.e., k � 1. Thus, (2� 2=n)M � C.The tightness of this bound follows from the Example in Lemma 6. It can be easily veri�edthat in this case M = 1 and C = n�1n + 1� 1n = 2� 2n .Lower bound. We prove the following lower bound.Lemma 17 Any algorithm that moves the facility with at most unit velocity achieves an approxi-mation factor of at least 2� 1p2 for the mobile rectilinear 1-median problem in the worst case.
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Figure 10: Lower bound for the rectilinear 1-median.Proof. We prove this lemma using the following construction. We pick a set of 4 points such thatthere are 2 points at vertex A, 1 point at vertex B and D of the left square with unit side in Figure10. Obviously, the rectilinear 1-median m coincides with the vertex A and the sum of distancesde�ned by m is 2. We will move points with unit velocity from B and D toward a vertex C, onepoint from A towards B and one point from A towards D. This will guarantee that the new medianm0 will coincide with the vertex C in the right square and the sum of the distances de�ned by m0is also 2. By the symmetry argument, an algorithm starts with some initial location of facility flying in the diagonal in the left square at distance 2x from the vertex A. The �nal position of thefacility is f 0 at distance 2y from the vertex C in the right square. It is easy to see that x = y. Thesum of the distances from f to all the points in the left square is 2 + 4x and equals to the sum ofthe distances from f 0 to all the points in the right square. Thus, the approximation factor is equalto 2+4x2 = 1 + 2x. On the other hand, 2p2x + 1 = p2. Therefore, the approximation factor is1 + 2(p2� 1)=(2p2) = 2� 1=p2.3.2 Euclidean 1-medianThis problem, also known as the Fermat-Weber problem, received a lot of attention during lastcentury. Only iterative algorithms (see, for example, [23]) are known for this problem. The 1-median problem di�ers from the 1-center problem not only by its di�culty but also in terms of17



approximation. Unlike the 1-center case, we now approximate the sum of the distances and notthe distance between the facility f and the exact 1-median. Fortunately, the rectilinear 1-medianprovides a constant approximation for the Euclidean 1-median.Lemma 18 The rectilinear 1-median provides a p2-approximation factor for the Euclidean 1-median.Proof. Let m1 and m2 be the locations of the exact L1 and L2 medians, respectively, for a givenset of points S. Let r1 be the sum of the L1 distances from m1 to points in S and r2 be the sumof the L2 distances from m2 to points in S, i.e., r1 = �ni=1jm1pij1 and r2 = �ni=1jm2pij2. De�ner0 = �ni=1jm1pij2. Note that for any two points a; b in the plane the following holds:jabj2 � jabj1 � p2jabj2. (**)We want to show that r0 � p2r2. Using (**) we obtain r2 = �ni=1jm2pij2 � 1p2�ni=1jm2pij1 � r1p2 .On the other hand, r0 = �ni=1jm1pij2 � �ni=1jm1pij1 = r1 � p2r2. The last inequality follows fromthe bound on r2.Based on this result and Lemma 14 we immediately concludeCorollary 19 The center of mass of the points gives a p2(2 � 2n) approximation factor for theEuclidean 1-median.We can again use the mixing strategy from Lemma 8 for the facility moving with velocity vmax 2[1;p2] by mixing the strategies of the center of mass of the points and the rectilinear 1-median.It provides a better approximation factor since the function s(x; y) = �ni=1p(x� xi)2 + (y � yi)2de�ning the sum of the distances from the point (x; y) in the plane to points of S is concave.4 ConclusionIn this paper we introduced mobile versions of two classical facility location problems and in-vestigated the complexity of the mobile 1-center and 1-median problems in the plane. Futuredirections for the research in this area include: providing tighter bounds for mobile 1-median prob-lem, obtaining precise trade-o�s between the velocities of the facilities and approximation factorsand generalization of our results to the mobile k-center and k-median problems for k � 2 and indimensions d > 2.References[1] P. K. Agarwal and S. Har-Peled. \Maintaining the Approximate Extent Measures of MovingPoints", in Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 148{157, 2001.[2] P. Agarwal and M. Sharir. \Planar geometric location problems", Algorithmica, 11, pp. 185{195, 1994.[3] S. Arora, P. Raghavan and S. Rao \Polynomial time approximation schemes for Euclidean k-medians and related problems", in Proc. 31st ACM Symp. on Theory of Comput., pp. 106{113,1998.[4] C. Bajaj \Geometric optimization and computational complexity", Ph.D. thesis. Tech. ReportTR-84-629. Cornell University (1984). 18
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