
Maximizing the number of obnoxious facilities to

locate within a bounded region

Shimon Abravaya∗ Michael Segal†

Abstract. This paper deals with the problem of locating a maximal cardinality set of obnoxious

facilities within a bounded rectangle in the plane such that their pairwise L∞-distance as well as

the L∞-distance to a set of already placed demand sites is above a given threshold. We employ

techniques and methods from computational geometry to design an optimization algorithm

and an efficient 1/2-approximation algorithm for the problem, and employ the optimization

algorithm to design a PTAS based on the shifting strategy [7]. As a byproduct we improve the

algorithm for placing obnoxious facilities given by Katz et al. [9].

1 Introduction

An obnoxious facility incorporates both attractive and noxious location aspects. On one hand,

it is necessary to the development of its customers due to the essential service it supplies, and

hence should be located somewhat close to its customers. On the other hand, however, it poses

some by-product negative external effects to the area nearby and hence better not reside within

a predefined distance from each customer. General examples of obnoxious facilities are nuclear

power plants, garbage dump sites, polluting industrial factories, and chemical plants.

The problem of locating one or several obnoxious facilities inside a bounded region in the

plane amidst existing demand points has been extensively investigated in the literature under

various constraints, distance functions, and objective criteria (for surveys see [5, 12]). Note that

while many single facility versions of this problem have been strongly investigated, multifacility

instances have hardly been considered. Furthermore, in most of the problems dealing with

a multifacility location, the number of obnoxious facilities to be located is known in advance

and the goal is to maximize the distance between them. Ben-Moshe et al. [3] deal with the

problem of locating a set of obnoxious facilities with respect to a given set of demand sites and

a given set of regions, where the goal is to maximize the minimal distance between a demand

site and facility under the constraint that each of the given regions must contain at least one

facility. Qin et al. [14] solve the problem of locating a set of obnoxious facilities amidst a set

of demand sites placed within a convex polygon, so as to maximize the minimum distance

between the demand sites and the unified set of demand sites and obnoxious facilities. By
∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
†Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105,

Israel. Partially supported by INTEL and REMON consortium.

1

employing Voronoi diagrams, they design a general method that enables solving approximately

the problem when the demand sites are either points or weighted convex polygons. Tamir [15]

presents subquadratic algorithms for the problem of locating two obnoxious facilities within a

compact polygonal set in the plane, so as to maximize the minimum of all the weighted distances

between the two new facilities and a given set of demand points placed in the compact polygonal

set, and the distance between the pair of new facilities. Welch et al. [16] introduce two branch-

and-bound algorithms for solving the problem of locating a set of obnoxious facilities in the

plane under the maximin criterion.

In this paper we employ techniques and methods from computational geometry to solve

obnoxious multifacility problems with a number of facilities not known in advance. This, in

turn, emphasizes the essentiality and contribution of our paper. For instance, the problem of

locating trash sites within an urban area where the goal is to locate as many as possible sites

such that each site is far enough from any population concentration, motivates our research. A

more specified motivation for the problem is given in Section 1.3.

1.1 Model and results

Let {p1, . . . , pn} be a set of demand points enclosed in a bounded rectangle R ⊂ R2. We define

the obnoxious multifacility location problem as follows. Locate as many as possible obnoxious

facilities within R under the constraints that the smallest L∞-distance between each demand

point and the facilities is at least a given r, and the L∞-distance between any two facilities is

at least a given d. We supply an optimization algorithm, a 1/2-approximation algorithm, and a

PTAS for the problem, and a solution for its corresponding decision version where the problem

is to determine whether it is possible to locate a given number of obnoxious facilities within R

under the problem distance constraints. We denote by k the number of facilities in a maximal

location when dealing with the optimization problem, and the given number of facilities to be

located when dealing with the decision problem. Clearly, in the optimization problem, k is

not known in advance, whereas in its corresponding decision problem, k is given in advance

as input. Each of our solutions repeatedly locates a facility under the defined constraints and

computes the resulting sub-region of R, which is valid for the next facility to locate. We denote

by N = O(n+k) the number of vertices on the boundary of each such sub-region of R computed

throughout our algorithms. The following theorems summarize our results:

Theorem 1.1 There is an O
(
(N/4)k logN log logN

)
time algorithm for the obnoxious multi-

facility location problem.

Theorem 1.2 The decision version of the obnoxious multifacility location problem, where k is

known in advance and the problem is to determine whether it is possible to locate k facilities

within R under the problem distance constraints, can be solved in O
(
(N/4)k−2 logN

)
time.

Theorem 1.3 A 1/2-approximation for the obnoxious multifacility location problem can be

computed in O (max(n log n, k logN log logN)) time.

2

Theorem 1.4 There is a Polynomial Time Approximation Scheme for the obnoxious multifa-

cility location problem, such that the approximation algorithm with parameter l has an error

ratio of at least (1− 1/l)2 and runs in O
(
l2(N/4)l2 logN log logN

)
time.

Remark 1 To improve clearness and readability, we regard throughout this paper the special

case of common thresholds r and d. However, each of our solutions solves, without further

extensions, the general case where the distance between each demand point pi, 1 ≤ i ≤ n, and

the new facilities must be above a given corresponding threshold ri.

1.2 Previous related work

In the decision version of the obnoxious multifacility location problem, the number of new

facilities to be located k is known in advance. The problem is to determine whether it is

possible to locate k obnoxious facilities inside R under the same constraints. Brimberg et al. [4]

solve this problem under the L∞ norm in O(N2k) time. Katz et al. [9] deal with the same

decision problem and supply O(n log n)-time algorithms in cases k = 2 and k = 3, and an

O(Nk−2 logN) time algorithm in case k ≥ 4. The algorithm for the case k ≥ 4 employs a

recursive pattern of locating a facility within the valid region and then computing the resulting

sub-region that is valid for the next facility location. This recursive algorithm runtime results

from the formula

T (k) = N · (O(N) + T (k − 1)) , (1)

where T (3) = O(N logN). One may be tempted to employ the binary search technique that

repeatedly executes the decision algorithm of Katz et al. [9] in order to solve the optimization

problem itself as follows. First, execute the decision algorithm with the increasing values of

k = 2i, i = 0, 1, 2, . . . as long as the algorithm returns YES. Let j be the first value of i such

that the execution of the decision algorithm with k = 2j returns NO. Clearly, 2j−1 and 2j

are the lower bound and the upper bound, respectively, of the maximal number of obnoxious

facilities that may reside within R under the problem constraints. Hence, continue with a

binary search within [2j−1, 2j] to find the required value. Apparently, this approach requires

O(Nk−2 logN log k) time due to the O(log k) executions of the decision algorithm of Katz et

al. [9]. However, in practice, this may not be the case. For instance, denote by kmax the

maximal number of obnoxious facilities that may be located within R, and consider the case of

kmax = 2j−1 + 1 for some natural j > 0. In this case, the execution of the decision algorithm

outputs YES with k = kmax − 1 = 2j−1, and NO with k = 2(kmax − 1) = 2j . Note that the

last execution alone requires O(Nk−2 logN) time, which, in turn, is equal to O(N2kmax−4 logN)

time. This case specifically describes the inefficiency incurred by using this approach to solve

the optimization problem, and emphasizes the need for an efficient solution.

Our paper forms a natural continuation of the work done in [9]. A closer examination of

the decision algorithm for more than three facilities of Katz et al. [9] shows that it can be easily

extended to solve the optimization problem itself in O(Nk+1) time, where k is the number of

3

facilities in a maximal solution, by testing the O(N2)-time recursion stop criterion defined by

equation (7). The runtime of this approach is represented by the formula in (1) where T (1) =

O(N2) is the runtime complexity of the stop criterion. This criterion is explicitly specified in

the description of our optimization algorithm and extensively used by each of our algorithms.

Based on this solution, we design an optimization algorithm and a 1/2-approximation algorithm

for the problem as stated in Theorem 1.1 and Theorem 1.3, respectively. Moreover, the runtime

of our optimization algorithm is represented by the formula

T (k) = N/4 · (O(logN log logN) + T (k − 1)) , (2)

where T (1) = O((N/4) logN log logN). Clearly, equation (2) provides a faster solution than

equation (1), which emphasizes the practical efficiency of our solution compared to the solution

given in [9] with the above required extension. Note that our solution for the optimization

problem consists of two major improvements to the decision algorithm locating more than three

facilities by Katz et al. [9], and these improvements can be easily implemented in the decision

algorithm itself. This yields an O((N/4)k−2 logN) time solution for the decision problem, such

that its runtime is represented by the formula

T (k) = N/4 · (O(logN log logN) + T (k − 1)) , (3)

where T (3) = O(N logN). As with the solution for the optimization problem, equation (3)

provides a faster solution than equation (1), which emphasizes the practical efficiency of our

solution for the decision problem compared to the solution presented in [9].

The dispersion and packing problems deal with locating a set of objects in a region containing

obstacles such that no two objects intersect. While the dispersion problem demands that the

center of each object will reside within the given region, the packing problem demands that each

object will be fully contained in this region. These problems are some of the classic problems in

mathematics and computer science and have been studied extensively under the L∞ and the L2

norms. Baur and Fekete [1] present an O(n38) time 2/3-approximation solution to the problem

of packing n given identical squares in a rectangular region containing obstacles such that their

edge length is as big as possible. Benkert et al. [2] supply a 2/3-approximation algorithm to the

problem of packing a maximal cardinality set of disks within a rectangular region containing

possibly intersecting unit disks as obstacles.

We define a t-square to be an axis-aligned square of size t × t. The obnoxious multifacil-

ity location problem constraints imply that each demand point defines a forbidden 2r-square

centered at the point’s location. Namely, for each such 2r-square, the new facilities must not

reside within this square. Let Pi, 1 ≤ i ≤ n, be these 2r-squares, then the restriction of ∪n
i=1Pi

to R forms the region valid for the future facility placements. Here and throughout the paper

we denote by V the rectilinear polygon resulted by R−∪n
i=1Pi as shown in Figure 1. We define

the max-k-dispersion problem and the max-k-packing problem to be the problems of dispersing

and packing, respectively, a maximal number of d-squares in V . Clearly, the former problem is

equivalent to our obnoxious multifacility location problem.

4

r
r

r
r

rrr -�r

Figure 1: The rectangle R; the given demand points; around each point there is a forbidden
square of length size 2r; the white region is V .

Fowler et al. [6] show that the decision version of max-k-packing is NP-complete, which

immediately yields the NP-completeness of max-k-packing and max-k-dispersion. Hochbaum

et al. [7] supply a PTAS, based on the shifting strategy, for the following discrete version of the

max-k-packing problem. Given a bounded region with a rectilinear grid of unit size placed on it

and a natural number t, locate a maximal set of t-squares within the region so that their sides

coincide with the lines of the overlaying grid. The resulting approximation of their solution has

an error ratio of at least (1−1/l)2 and runs in O(d2l2nl2) time, where l is the shifting parameter.

The natures of max-k-dispersion and max-k-packing imply that designing a PTAS based on the

shifting strategy for the max-k-dispersion problem (equivalently, for the obnoxious multifacility

location problem) is a more complex task. This, in turn, emphasizes the essentiality of the

PTAS we supply, as states Theorem 1.4.

Remark 2 Consider the general case where the distance between each pi, 1 ≤ i ≤ n, and the

new facilities must be above the given corresponding threshold ri. Each of our solutions forms

a similar runtime solution to this general problem with the following slight adjustment. Each

forbidden square Pi, 1 ≤ i ≤ n, is now a 2ri-square centered at the location of pi. No further

adjustments are required.

1.3 Motivation

Our interest in the problem arises from the physical design process of electronic circuits [10],

where an electronic board with several already placed components is given and some new com-

ponents are to be located (this problem is also known as finding the optimal layout of chips

in VLSI). The performance of the circuit is measured by two criteria. The major criterion is

the total throughput of components that immediately emphasizes the importance of locating

as many new components as possible. The minor criterion is the system delay incurred due

5

to the components functioning and the rectilinear connections between them. This criterion

implies that the new components should be located somewhat close to each other and to the

already existing components. However, the new components produce heat that spreads along

their connections and may damage other components. Hence, their mutual distance as well as

the distance to the set of already placed components should be above a given threshold. For

better understanding of these criteria, regard the case where each new component to be located

is a processor in a multi-processor parallel system.

Consider a rectangular board R with components p1, . . . , pn already placed. For each 1 ≤
i ≤ n, let βi be the maximal permitted heat at the location of pi. For ease of presentation we

regard the special case where each of these components can tolerate the same amount of heat

β. Namely, for each 1 ≤ i ≤ n, we have βi = β. Each new component fl produces δ amount of

heat and can tolerate additional heat of amount γ. We denote by w the linear rate of the heat

decrease along the circuit rectilinear connections starting from the heat production point. Let

d(pi, fl) be the rectilinear distance between pi and fl, then a valid location for fl achieves

δ − wd(pi, fl) ≤ β, (4)

which, in turn, yields

d(pi, fl) ≥
δ − β
w

. (5)

Similarly, a valid location for any two new components fl and ft achieves

d(fl, ft) ≥
δ − γ
w

, (6)

where d(fl, ft) is the rectilinear distance between fl and ft. Transforming the system into L∞
metric distances we get a special case of our problem such that r is the resulting transformation

of the right handside of (5), and d is the resulting transformation of the right handside of (6).

2 Obnoxious multifacility

Our problem is to locate as many obnoxious facilities as possible within V such that the L∞-

distance between any two facilities is greater than d. Our solutions employ a repeating pattern

of locating a facility within the region valid for the current location, and then computing the re-

sulting sub-region valid for the next facility location. This creates the necessity of a dynamic al-

gorithm for updating V upon placement of a new facility. In Section 2.1 we supply an O(n log n)

time algorithm for computing the initial V . Moreover, this algorithm supports dynamic up-

dates upon location of a new facility in O(logN) time. Section 2.2 begins with an introduction

of an O(Nk logN) time optimization algorithm for the problem and continues with a presen-

tation of an improvement to the same algorithm that requires only O
(
(N/4)k logN log logN

)
time. Section 2.2 ends with the presentation of the O((N/4)k−2 logN)-time algorithm for the

corresponding decision version of the problem. In Section 2.3 we give a 1/2-approximation algo-

rithm for the problem that runs in O (max(n log n, k logN log logN)) time. Finally, we present

a PTAS in Section 2.4.

6

2.1 Computing the region valid for future facility locations

Recall that each demand point defines the forbidden 2r-square where the facilities must not

reside. Similarly, each facility defines a forbidden 2d-square centered at its location where the

other facilities must not reside. Denote by Fi the forbidden 2d-square defined by fi. For any

given t, let f1, . . . , ft be a set of already located facilities within V , and ft+1 be the next facility

to be located. The definitions of V and F1, . . . , Ft immediately show that the restriction of

∪t
i=1Fi to V forms the region valid for the location of ft+1. This, in turn, yields that once

ft+1 is located within V − ∪t
i=1Fi, the restriction of ∪t+1

i=1Fi to V forms the region valid for the

location of ft+2, and so on. Based on this observation, we supply below an O(n log n) time

algorithm for the initial computation of V that supports the dynamic update of the region valid

for future facility locations in O(logN) time.

Huang et al. [8, Section 5] introduce a graph representation of the regions resulting from the

complement of a given squares union. The vertices and edges of the graph G in the representa-

tion correspond to the vertices and edges comprising the boundaries of the resulting regions as

follows. Each stand alone square in the union is represented by eight vertices and eight edges

as shown in Figure 2 ([8]). For every corner x of a square, two vertices x and x′ are considered.

Thus, G consists of O(m) vertices and edges, where m always denotes the current number of

squares in the union. The extra vertices help to efficiently maintain the graph when squares

start to move and intersect on the plane. When two squares meet, at most two pairs of line

segments of their boundaries intersect. Without loss of generality, suppose a vertical edge b′c

intersects with a horizontal edge e′f at a point z, and the new boundary comprises edges b′z and

zf . Then we simply reallocate vertices c and e′ to z, insert an edge ce′ and remove edges cc′ and

ee′ from G. This operation is illustrated in Figure 2. The cases of a vertical edge intersecting

with a vertical edge, and of a horizontal edge intersecting with a horizontal edge are analogous,

and thus handled by at most two edge insertions and at most two edge deletions.

Huang et al. [8] proved that such graph supports, edge Insertions, and deletions that may

occur upon insertion of a new square into the squares union, in O(logm) time, where m is the

current number of squares in the union. We first compute the forbidden 2r-squares correspond-

ing to the n demand points, and then compute the complement of their union restricted to R.

We construct the graph representation of the resulting regions as in [8]. This preprocessing

phase requires O(n log n) time. Locating a new facility in one of the resulting regions yields the

insertion of its corresponding forbidden 2d-square into the squares union, which actually yields

the update of the graph in the representation in O(logN) time. The resulting graph represents

the region valid for the next facility to be located.

2.2 Optimization and decision algorithms

The following lemma is equivalent to [9, Lemma 2.5]. For the sake of completeness, we present

below its proof, which is very similar (but yet simpler and more elegant) to the proof of [9,

Lemma 2.5], since we use it later to design an improved optimization algorithm for the problem.

7

(i)

a b

cd

��

rd′ r
d

@@ra ra′

��

rb rb′

@@
rcr

c′

(ii)

a b

cd

e f

gh

rz
��

rd′ r
d

@@ra ra′

@@
rc re′

rb rb′

@@
r

c′ re@@
@@
rf rf ′

��
rgr

g′
@@ r
h

rh′

Figure 2: Graph G of the representation. (i) A square represented by 8 vertices. (ii) Dynamics
of vertices and edges when two squares intersect. Vertices c, c′, e, and e′ are relocated. Edges
cc′ and ee′ are removed, and edges ce′ and ec′ are inserted.

Lemma 2.1 At least one of the facilities in any maximal location is located at a vertex on the

boundary of V .

Proof. By contrary, assume there exists a maximal location with facilities f1, . . . , fk within V ,

such that none of the facilities is located at a vertex on the boundary of V . For each facility

fi, let ci be a d-square centered at the location of fi. Clearly, in the given initial positioning

the ci’s do not intersect. Our approach is to move the ci’s such that at least one of the fi’s

will eventually coincide with some vertex on the boundary of V . Moreover, at the end of the

movement, the ci’s remain pairwise disjoint. We first push the ci’s as much to the left as possible,

so that they still do not intersect and the center of each square resides within V throughout the

motion. If at any point throughout this movement one of the fi’s coincides with some vertex on

the boundary of V , then we are done. At the end of this stage, the leftmost facility fi is lying

on a vertical edge of the boundary of V (if there are several leftmost facilities, then fi is the

lowest among them). We continue pushing the ci’s down as much as possible so that they still

do not intersect and the center of each square resides within V throughout the motion. As with

the horizontal movement, we stop if at some point one of the fi’s coincides with some vertex on

the boundary of V . At the end of this stage, the bottommost facility fj is lying on a horizontal

edge of the boundary of V (if there are several bottommost facilities, then fj is the leftmost

among them).

If ci = cj , then the facility fi is located at a vertex v on the boundary of V , and we are done.

Otherwise, ci is blocked below by another square ct, and cj is blocked on its left by another

square cl. Note that ft is not lying on any horizontal edge of the boundary of V , since then

we can push ct to the left until ft coincides with a vertex of V . Thus, ft is lying on a vertical

edge of the boundary of V . Considering similar arguments, we conclude that fl is lying on a

8

horizontal edge of the boundary of V . Repeating this process, we obtain a sequence of blocking

squares from below with their corresponding facilities lying on vertical edges of the boundary

of V , and a sequence of blocking squares on the left with their corresponding facilities lying on

horizontal edges of the boundary of V . Since the boundary is finite, at some point one of these

facilities coincides with some vertex v on the boundary of V . �

The following algorithm is based on the algorithm in [9] for the decision problem in the case

of k ≥ 4. We first compute the graph representation of V as shown in Section 2.1, and then

consider positioning a facility at each vertex v on the boundary of V . For each such positioning,

we first locate a forbidden 2d-square Qv at v and then compute V − Qv, the region valid for

the next facility to locate, using the graph representation. We continue recursively with the

updated V = V − Qv. The algorithm stops only when the computation of the valid region

for the next facility to locate with each vertex on the boundary of the current region yields an

empty set. Hence, the stop criterion is given by the formula

∀v ∈ V : V −Qv = ∅, (7)

where V is the current region valid for the facility location. Once the algorithm stops, it returns

the maximal cardinality set of facility locations over all the recursively computed sets. The run-

ning time for a maximal solution with k facilities is given by T (k) = N · (O(logN) + T (k − 1)).

Observe that T (1) = O(N logN), which yields T (k) = O(Nk logN). Recall that the optimiza-

tion problem can be solved in a similar manner by the algorithm for the decision version in

[9] with the same worst-case time complexity, as suggested in Section 1.2. However, this worst

case time complexity is given by T (k) = N · (O(N) + T (k − 1)), and hence our solution forms

a more efficient solution.

A closer examination of the proof of Lemma 2.1 produces the following conclusion. Let v

be the vertex on the boundary of V found at the end of the movement process. The vertex

v forms the left endpoint of some horizontal edge bounding V on its bottom, and the bottom

endpoint of some vertical edge bounding V on its left. We call such vertex a left-bottom vertex

of V . The proof of the lemma yields that at least one of the facilities is located at a left-bottom

vertex of V . Consider the analogous definitions of right-bottom, left-top, and right-top vertices

of V . To clarify these vertex definitions, we specify in Figure 3 the type of each vertex on the

boundary of the region valid for the facility locations from Figure 1. The proof of the lemma

can be easily changed to prove that at least one of the facilities is located at a right-bottom, a

left-top, or a right-top vertex of V , by changing the direction of the ci’s movement. Hence,

Lemma 2.2 For each type of vertex, i.e., a left-bottom, a right-bottom, a left-top, or a right-

top vertex of V , at least one of the facilities in a maximal location is located at a vertex on the

boundary of V of this type.

This lemma implies that it is sufficient to consider only vertices of the above defined four types

instead of all the vertices on the boundary of V throughout the algorithm. Note that for at

least one of these types, the number of vertices of this type on the boundary of V is at most

9

b|V |/4c, which in turn is bounded by N/4. Thus, considering only vertices of this type sig-

nificantly improves our algorithm. To support this improvement we maintain four orthogonal

range trees [13]. An orthogonal range tree consists of a balanced binary tree according to the

x-coordinate of the points. Each node w of this tree corresponds to the balanced binary tree

(secondary tree) according to the y-coordinate of points whose x-coordinate belongs to the sub-

tree rooted at w. In our solution each orthogonal range tree stores all the points corresponding

to same type vertices on the boundary of the region that is valid for future facility locations.

ra1

ra2 ra3 r ��	
a4

r
b1

rb2

rb3

rc1

r
c2

rc3 rd1

rd2

r
d3

r
d4

rd5

r
d6

Figure 3: The region valid for future facility locations V is the resulting white region within
R; each of the highlighted vertices on the boundary of V is a left-bottom, a right-bottom, a
left-top, or a right-top vertex of V . The ai’s are left-bottom vertices, the bi’s are right-bottom
vertices, the ci’s are left-top vertices, the di’s are right-top vertices.

Once V is computed, we initialize the orthogonal range trees as follows. For each vertex v on

the boundary of V , we store its corresponding point pv in the appropriate tree according to its

type. Clearly, at the end of this initialization phase, each of the orthogonal range trees contains

at least one point. Let T be the tree containing the minimal number of points. For each point pv

stored in T , we consider positioning a facility at v. For each such positioning, we first compute

the region V −Qv valid for the next facility location and then update each of the four orthogonal

range trees accordingly. The update of each orthogonal range tree includes removing points

related to vertices that have been erased from the boundary of V throughout the update V =

V −Qv, and inserting points related to new vertices that have been added to the boundary of V

throughout the same update. Such an update occurring upon a facility location considering the

example presented in Figure 1 and Figure 3 is illustrated in Figure 4. We continue recursively, as

defined previously, with the slight variation that at any point of the algorithm we consider only

vertices corresponding to points in the orthogonal range tree of minimal cardinality. Note that

we can improve the performance of the orthogonal range trees by using the Dynamic fractional

cascading technique [11]. This gives us a speedup of O(logN/ log logN) in running time of

queries and updates. Observe that the number of tree updates incurred due to the location of

10

a new facility is constant, and the cost of each such update, assuming we use orthogonal range

trees with the dynamic fractional cascading technique, is bounded by O(logN log logN) time.

Thus, the running time of the algorithm, involving this improvement, is given by T (k) = N/4 ·
(O(logN log logN) + T (k − 1)). Since T (1) = O((N/4) logN log logN) time, our improved

algorithm requires O((N/4)k logN log logN) time.

(a)
ra1

ra2

r
b1

rc1

rd2

r
d3

r
d6

Qc2

6

2d

?

���

d7

@@R

b4

���
d8

CCO
c4

f

(b)
ra1

ra2

r
b1

rb4

rc1

r
c4 rd2

r
d3

r
d6

r
d7

rd8

Figure 4: Locating a new facility within the region valid for the current facility location V ,
as shown in Figure 3; the orthogonal range tree containing the points related to the ci’s is of
minimum cardinality. Part (a) illustrates the location of a new facility f at the chosen left-top
vertex c2 and the corresponding location of the 2d-square Qc2 at c2; the black regions are the
parts removed from V throughout the computation of V −Qc2 . Part (b) illustrates the resulting
region valid for the next facility location V − Qc2 ; each of the points related to the vertices
a3, a4, b2, b3, c2, c3, d1, d4 and d5 has been removed from its corresponding containing orthogonal
range tree; the points related to the new right-bottom vertex b4, the new left-top vertex c4,
and the new right-top vertices d7 and d8 are inserted into their corresponding orthogonal range
trees.

Next, we show how to improve the running time of the corresponding decision algorithm

given by Katz et al. [9]. The algorithm for the decision version is similar to the above algorithm

for the optimization problem with the following slight variation. Our decision algorithm employs

the O(N logN)-time decision algorithm for three facilities of Katz et al. [9] as follows. For the

11

first k − 3 facilities, our decision algorithm is similar to the above optimization algorithm.

If the algorithm fails in locating all these k − 3 facilities, our decision algorithm stops and

returns NO. Otherwise, these k − 3 facilities have been successfully located, and our decision

algorithm executes the decision algorithm for three facilities of Katz et al. [9] with the remaining

three facilities. If this execution returns NO, our decision algorithm returns NO and exits.

Otherwise, it returns YES. Clearly, this approach is equivalent to implementing the above two

improvements (i.e., the improvement presented in Section 2.1, and the improvement presented

in Lemma 2.2 and the consequent use of the orthogonal range trees) directly in the decision

algorithm for more than three facilities of Katz et al. [9]. Applying similar considerations to

those taken for the above optimization algorithm, we conclude that our decision algorithm

requires O((N/4)k−2 logN) time, where this runtime results in the formula given in (3) with

T (3) = O(N logN). This proves Theorem 1.2.

2.3 A 1/2-approximation solution

Let v be the leftmost vertex on the boundary of V . If there exist few leftmost vertices, then v is

the lowest among them. We define v to be the leftmost-bottommost vertex on the boundary of

V . The 1/2-approximation factor of our solution implicitly resulted from the following lemma

together with the derived Observation 2.4.

Lemma 2.3 Let k be the number of obnoxious facilities in a maximal location within V (namely,

for any feasible location with t obnoxious facilities, it holds that t ≤ k), then there either exists

a maximal location within V with one of the facilities located at v, or there exists a feasible

location with k − 1 facilities within V with one of the facilities located at v.

Proof. Let f1, . . . , fk be the facilities participating in a maximal location within V , and

c1, . . . , ck be their corresponding d-squares as defined in the proof of Lemma 2.1. Clearly,

in the given maximal location, the ci’s do not intersect. We show that if we center a d-square

at v, then it may intersect at most 2 squares out of the ci’s. Namely, at most two facilities of

f1, . . . , fk are located at a distance that is smaller than d from v. This, in turn, yields that

by locating a new obnoxious facility at v and removing all the facilities located at a distance

that is smaller than d from v, we get a feasible location with k or k − 1 facilities (clearly, if

it is a feasible location with k facilities, then it also forms a maximal location). Let sv be

the d-square centered at v that represents the forbidden area related to the new facility that

must not intersect with any of the ci’s. Since the location of f1, . . . , fk is maximal and v is the

leftmost-bottommost vertex in V , only one of the following cases is possible:

1. One of the facilities fi is located at v. Thus, its corresponding square ci coincides with

sv. Replacing this facility with the new one, we obtain the same maximal location.

2. None of the facilities is located at v and exactly one of them, denoted by fi, is located at

a point, such that its corresponding square ci intersects sv (see Figure 5-(a)). Replacing

this facility with the new one, we obtain a maximal location with a facility located at v.

12

v r
fi r

fl r
fjr

(a)

v r
fir

fjr

(b)

v r
fi r

fl r
fjr

(c)

Figure 5: Replacing one or two squares of the ci’s with sv.

3. None of the facilities is located at v and exactly two of them, denoted by fi and fj , are

located at points such that their corresponding squares ci and cj , respectively, intersect

sv (see Figures 5-(b) and 5-(c)). Replacing these facilities with the new one, we obtain a

feasible location with k − 1 facilities such that one of them is located at v.

This completes the proof. �

Consider a maximal location within V with facilities f1, . . . , fk and the corresponding feasible

location within V from Lemma 2.3. Recall that each facility fi, 1 ≤ i ≤ k, defines the forbidden

2d-square Fi where the other facilities must not reside. Let F be the union of the Fi’s of the at

most two facilities that have been removed from the maximal location according to the proof

of Lemma 2.3. Consider the location of these facilities only within V , such that each facility is

located at its exact location from the maximal location. Clearly, V − F is the region valid for

the next facility location. Now consider location of a facility at v only. As stated previously,

V − Qv is the region valid for the next facility location resulted by this location. Thus, we

obtain

Observation 2.4 The cardinality of a maximal location within V − Qv is no less than the

cardinality of a maximal location within V − F .

Since (Qv ∩ V) ⊆ (F ∩ V), we get (V − F) ⊆ (V −Qv). Thus, the sub-location resulting from

the restriction of the maximal location to V − F , which in turn is a maximal location within

V − F , forms also a feasible location within V − Qv. Clearly, the cardinality of this feasible

location within V − Qv is smaller than or equal to the cardinality of any maximal location

within V −Qv.

The outline of the algorithm is as follows. We first compute the graph representation of V ,

and insert the points corresponding to the left-bottom vertices of V into an orthogonal range

tree. Then, we locate a facility at the leftmost-bottommost vertex of V . We position at v the

13

2d-square Qv, and update V to be V −Qv, which is the region valid for the location of the next

facility. We continue recursively with the updated V , where the stop criterion is similar to the

one used by the optimization algorithm in Section 2.2. Employing Lemma 2.3 and Observation

2.4 at each recursive step, we get the 1/2-approximation factor of our algorithm for the problem.

Applying similar considerations to those taken for the time complexity analysis of the optimiza-

tion algorithm, this approximation algorithm requires O(max(n log n, k logN log logN)) time.

2.4 A PTAS

The shifting strategy of Hochbaum et al. [7] is a powerful approach for devising polynomial

approximation schemes for many NP-complete problems. It allows us to bound the error of

(b)

-�s
′1
2

s1
2

-�s′′22 -� s′22

s2
2

-�s′′32 -� s′32

s3
2

-�s′′42 -�s
′4
2

s4
2

(a)

-�d
-� 3d

-�s
′′1
1 -� s′11

s1
1

-�s
′′2
1 -� s′21

s2
1

-�s
′′3
1 -� s′31

s3
1

Figure 6: The region valid for future facility locations is V , as shown in Figure 3; the shifting
parameter l = 3. The upper part (a) illustrates the partition s1 and its comprising 3d-strips
s11, s

2
1, and s31; each sj

1, 1 ≤ j ≤ 3, consists of the d-strip s′′j1 and the 2d-strip s′j1; The lower
part (b) illustrates the partition s2 resulting from shifting the partition s1 to the right over one
d-strip; s2 is consist of the d-strip s12, the 3d-strips s22 and s32, and the 2d-strip s42; Recall that
at most two ld-strips may contain less than l consecutive d-strips; indeed, the leftmost strip s12
contains the single d-strip s′12, and the rightmost strip s42 contains the d-strips s′′42 and s′42; each
inner strip sj

2, 1 < j < 4 is a 3d-strip containing the d-strip s′′j2 and a 2d-strip s′j2

14

the simple divide-and-conquer approach by applying it repeatedly and selecting the single most

favorable resulting solution. The framework of this technique consists of the following steps.

First, a shifting parameter l that yields a corresponding (1−1/l)-approximation factor is chosen.

Then, the problem is repeatedly partitioned into smaller sub-problems that can be solved ap-

proximately in polynomial time, and can be combined into one feasible solution to the problem.

The maximal solution over all these repetitions forms the solution for the whole problem. Note

that we re-employ this technique in each of the smaller sub-problems in order to supply a local

approximation solution.

Consider a division of V into vertical, left-closed, and right-opened strips of width d. We

regard each of these strips as a d-strip, and define a td-strip to be a vertical strip of width td

resulting from the union of t consecutive d-strips. Let l be the shifting parameter, then for

a fixed division of V into d-strips, there are l different ways to partition it into consecutive

ld-strips such that each partition is derived from the previous one by shifting it to the right over

one d-strip. Note that by repeating this right shift l times, we end up with the same partition

we started from. For ease of presentation, we regard each of the strips comprising a partition

as an ld-strip, even though a partition may consist of one or two td-strips with t < l. Denote

these shift partitions by s1, . . . , sl. For each partition si, 1 ≤ i ≤ l, we define |si| to be the

number of consecutive ld-strips comprising it, and s1i , . . . s
|si|
i to be these ld-strips. For each

ld-strip sj
i , 1 ≤ i ≤ l, 1 ≤ j ≤ |si|, we define s′ji to be the (l − 1)d-strip resulting by the union

of the l− 1 rightmost d-strips of sj
i , and s′′ji to be the leftmost d-strip of sj

i . In order to ensure

a legal combination the local solutions at two consecutive ld-strips, the removal of each facility

lying in the leftmost d-strip of the right ld-strip is required (alternatively, the removal of each

facility lying in the rightmost d-strip of the left ld-strip is required). This implies that for any

partition si, 1 ≤ i ≤ l, and each 2 ≤ j ≤ |si|, the (l− 1)d-strip s′ji is used to find a local solution

within sj
i , and the d-strip s′′ji is used to enable the combination of this local solution with the

one of sj−1
i . The first partition s1 of V , as shown in Figure 3, and the partition s2 resulting

from shifting this partition to the right over one d-strip is illustrated in Figure 6 above.

Let A be any algorithm that solves the obnoxious multifacility location problem in the

restriction of V to any strip of width ld or less. For each partition si, 1 ≤ i ≤ l, let A(si)

be the algorithm that invokes A(s1i) and A(s′ji), 2 ≤ j ≤ |si|, and outputs the set of all the

computed locations. Clearly, this set of points computed by A(si) forms a feasible solution

for the obnoxious multifacility location problem defined on V . The shift algorithm SA invokes

A(si) for each partition si, 1 ≤ i ≤ l, and outputs the set of points of maximal cardinality out

of the l computed sets.

We denote by MAX a maximal solution and by |MAX | its value (recall that |MAX | = k

throughout the paper). For an algorithm B, let ZB be the value of the solution computed by it,

and rB be its performance ratio, i.e., the infimum of ZB/|MAX | over all the problem instances.

The following Lemma forms the core of the PTAS we design.

15

Lemma 2.5 (The Shifting Lemma)

rSA
≥ rA

(
1− 1

l

)
, (8)

where A is a local algorithm and l is the shifting parameter.

Proof. We follow the notations from [7]. Consider a partition si, 1 ≤ i ≤ l. The value of the

solution computed by A(si) is given by

ZA(si) = ZA(s1
i) +

|si|∑
j=2

ZA(s′ji).

For each j, 1 ≤ j ≤ |si|, we denote by MAX j
i and MAX ′ji the maximal solutions for the

obnoxious multifacility location problem in the bounded polygons defined by the restrictions of

V to sj
i and s′ji , respectively. Clearly, for each j, 1 ≤ j ≤ |si|, it holds that

∣∣∣MAX ′ji
∣∣∣ ≤ ∣∣∣MAX j

i

∣∣∣.
By this and the definition of the performance ratio rA, we have

ZA(si) ≥ rA
|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ . (9)

Observe that ∪|si|
j=1MAX ′ji forms a feasible solution for the obnoxious multifacility location prob-

lem defined on V . Thus,
|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ ≤ |MAX | . (10)

Consider any j, 1 ≤ j ≤ |si|. We define MAX |sj
i ,MAX |s′ji and MAX |s′′ji to be the restrictions

of MAX to the strips sj
i , s
′j
i , and s′′ji , respectively. Namely, for a strip s ∈ {sj

i , s
′j
i , s
′′j
i}, the

restriction MAX |s contains all the location points from MAX that also reside inside s. Clearly,∣∣∣MAX |s′ji
∣∣∣ =

∣∣∣MAX |sj
i

∣∣∣− ∣∣∣MAX |s′′ji
∣∣∣. The maximality of MAX ′ji yields

∣∣∣MAX ′ji
∣∣∣ ≥ ∣∣∣MAX |s′ji

∣∣∣
which, in turn, yields

|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ ≥ |si|∑

j=1

∣∣∣MAX |sj
i

∣∣∣− |si|∑
j=1

∣∣∣MAX |s′′ji
∣∣∣ . (11)

For each partition si, 1 ≤ i ≤ l, put MAX ′′(i) = ∪|si|
j=1MAX |s′′ji . Using these notations we have

|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ ≥ |MAX | −

∣∣∣MAX ′′(i)
∣∣∣ . (12)

We observe that the sets MAX ′′(1), . . . ,MAX ′′(l) are disjoint and hence can add up to MAX at

most. Thus,

l∑
i=1

|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ ≥ l∑

i=1

|MAX | −
l∑

i=1

∣∣∣MAX ′′(i)
∣∣∣ ≥ (l − 1) |MAX | . (13)

16

Expressions (9) and (13) imply that

max
1≤i≤l

ZA(si) ≥ 1
l

l∑
i=1

ZA(si) ≥ rA
l

l∑
i=1

|si|∑
j=1

∣∣∣MAX ′ji
∣∣∣ ≥ rA(1− 1

l

)
|MAX | . (14)

By the definition of ZSA and (14) we obtain

ZSA = max
1≤i≤l

ZA(si) ≥ rA
(

1− 1
l

)
|MAX | , (15)

which establishes (8). �

We use two nested applications of this shifting strategy with a shifting parameter l to

design the required PTAS for the obnoxious multifacility location problem as follows. We first

divide the plane into vertical ld-strips, and then apply the shifting strategy horizontally in

order to solve the obnoxious multifacility location problem at each restriction of V to these

ld-strips. Thus, we divide each of the vertical ld-strips into squares of side length ld. The set

of horizontal partitions of the 3d-strip s11 from Figure 6 is illustrated in Figure 7. We solve the

obnoxious multifacility location problem at each bounded polygon defined by the restriction of

V to the corresponding ld-square using the optimization algorithm presented at Section 2.2.

By the shifting lemma, this process yields a (1− 1/l)-approximation solution for the obnoxious

multifacility location problem defined at each restriction of V to a vertical ld-strip, and thus

a (1− 1/l)2-approximation solution for the obnoxious multifacility location problem defined at

V .

(a)

s1
1

-� 3d 6

?
d

(b)

s1
1

(c)

s1
1

Figure 7: The set of all the horizontal partitions of the 3d-strip s11 from Figure 6. The leftmost
part (a) illustrates the first horizontal partition of s11. The middle part (b) illustrates the second
horizontal partition of s11 resulting from shifting the first horizontal partition to the top over
one d-strip. The rightmost part (c) illustrates the third (and last) horizontal partition of s11
resulting from shifting the second horizontal partition to the top over one d-strip.

17

Let P̃ be a bounded polygon defined by the restriction of V to some ld-square, and ñ the

number of vertices on its boundary. Clearly, the size of a maximal solution for the obnoxious

multifacility location problem within P̃ is at most l2. Thus, our optimization algorithm from Sec-

tion 2.2 solves this local problem in O((Ñ/4)l2 log Ñ log log Ñ) time, where Ñ = O(ñ+l2) is the

upper bound on the number of vertices comprising the boundary of the valid region for facility

locations throughout the optimization algorithm execution. Recall that this optimization algo-

rithm determines in O(ñ log ñ log log ñ) time if P̃ is not valid for a facility location. Thus, we may

conclude that the number of such invalid local polygons is negligible, and omit any related con-

sideration from the complexity analysis. For any two horizontal partitions of some ld-strip, the

number of the ld-squares participating in these partitions are different by at most 1. Similarly,

for any two vertical partitions of the plane, the amounts of the ld-strips participating in these

partitions are different by at most 1. We define t1 to be the size of any such horizontal partition

of a given ld-strip, and t2 to be the size of any such vertical partition of the plane. This, in turn,

yields that our algorithm executes the optimization algorithm l2t1t2 times, such that each exe-

cution applies the optimization algorithm on a different local polygon P̃ . Note that the time re-

quired for t1t2 local executions of the optimization algorithm, where each execution occurs within

a different polygon P̃ , is bounded by O
(

((N + t1t2)/4)l2 log(N + t1t2) log log(N + t1t2)
)

time.

Let k be the number of obnoxious facilities in a maximal location, then the above considerations

yield t1t2 ≤ k. Thus, the algorithm SA requires O
(
l2 ((N + k)/4)l2 log(N + k) log log(N + k)

)
time, which yields O

(
l2(N/4)l2 logN log logN

)
time.

3 Conclusions

In this paper we presented a number of efficient solutions for maximizing the number of ob-

noxious facilities inside a given region under the L∞ metric. One possible future direction is to

extend them for arbitrary metric. It is also challenging to make them work in dynamic settings,

i.e., when the demand points are allowed to be inserted or deleted.

References

[1] C. Baur and S.P. Fekete, Approximation of geometric dispersion problems, Algorithmica

30 (2001), 451–470.

[2] M. Benkert, J. Gudmundsson, C. Knauer, E. Moet, R. van Oostrum and A. Wolff, A

polynomial-time approximation algorithm for a geometric dispersion problem, 22nd Euro-

pean workshop on computational geometry (2006), 141–144.

[3] B. Ben-Moshe, M. J. Katz and M. Segal, Obnoxious facility location: Complete service

with minimal harm, International Journal of Computational Geometry and Applications

10 (2000), 581-592.

18

[4] J. Brimberg and A. Mehrez, Multi-facility location using a maximin criterion and rectan-

gular distances, Location Science 2 (1994), 11–19.

[5] P. Cappanera, A Survey on obnoxious facility location problems, Technical Report (1999).

[6] R.J. Fowler, M.S. Paterson and S.L. Tanimoto, Optimal packing and covering in the plane

are NP-complete, Information Processing Letters 12 (1981), 133–137.

[7] D.S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems

in image processing and VLSI, Journal of the ACM 32 (1985), 130–136.

[8] H. Huang, A. W. Richa and M. Segal, Dynamic coverage in ad-hoc sensor networks, Mobile

Networks and Applications 10 (2005), 9–17.

[9] M. Katz, K. Kedem and M. Segal, Improved algorithms for placing undesirable facilities,

Computers and Operations Research 29 (2002), 1859–1872.

[10] M. Lorenzetti and B. Preas, Physical Design Automation of VLSI Systems, Ben-

jamin/Cummings Publishing Company, California (1988).

[11] K. Mehlhorn and S. Näher, Dynamic fractional cascading, Algorithmica, Springer, New-

York (2005), 215–241.

[12] F. Plastria, Continuous covering location problems, in H. Hamacher and Z. Drezner, Loca-

tion analysis: theory and applications, Springer, New-York (2001), 39–83.

[13] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag, NY, 1985.

[14] Z. Qin, Y. Xu and B. Zhu, On some optimization problems in obnoxious facility location,

Lecture Notes in Computer Science, Springer, 2000.

[15] A. Tamir, Locating two obnoxious facilities using the weighted maximin criterion, Opera-

tions Research Letters 34 (2006), 97–105.

[16] S. B. Welch, S. Salhi and Z. Drezner, The multifacility maximin planar location problem

with facility interaction, IMA Journal of Management Mathematics (2006), 1–16.

19

