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Abstract In this paper we prove improved lower and upper bounds for the loca-
tion of mobile facilities (in L∞ and L2 metrics) under the motion of
clients when facility moves faster than clients. This paper continues the
research started in our joint paper where we present lower bounds and
efficient algorithms for exact and approximate maintenance of the 1-
center for a set of moving points in the plane. Our algorithms are based
on the kinetic framework introduced by Basch, Guibas and Hershberger.
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1. Introduction

The goal of this paper is to study problems related to the location of mobile
facilities serving a set of customers. The notion of mobile servers has been well studied
in connection with stationary but transitory customer sets [24]. Here we deal with the
problems related to the location of mobile facilities, where customers are modelled by
points moving continuously in d-dimensional space, d ≥ 1. Specific example of such
problems is the maintenance of the 1-center for moving points under the Lp metric.
This has applications, for example in mobile wireless communication networks when
the broadcast range should contain all the customers so as to provide service to
the cellular phones. There are likely to be many applications of mobile facilities,
particularly with respect to tactical mobile packet-radio networks. Servers such as
battlefield map servers, or even servers whose sole purpose is to provide support for
network control (such as those that maintain entity-to-address information) could be
considered to be mobile facilities. Another application of these problems is locating a
welding robot in an automobile manufacturing plant. Both problems are interesting
from both theoretical and practical points of view.

Facility location is a classical problem of operations research that has also been
examined in the computational geometry community. Most of the problems described
in the facility location literature are concerned with finding a “desirable” facility
location: the goal is to minimize a distance function between the facility (e.g., a
service) and the sites (e.g., the customers). As was pointed out in [6], the data
structures and algorithms that have been developed for the static problems (i.e.,
customers are not moving) are not directly applicable to the setting of moving points
when the motion of the facilities must satisfy natural constraints. In this paper we
continue the study of mobile version of the classical facility location problem:

k-center: Given a set S of n demand points in d-dimensional space (d ≥ 1),
find a set P of k supply points so that the radius defined as the maximum
Lp distance between a demand point and its nearest supply point in P is
minimized. If P is a subset of S then P called a set of discrete centers. Note
that for some metrics such a set P is not necessarily unique even for k = 1 and
d = 2.

This problem has been well studied in both the exact [2, 7, 8, 9, 10, 11, 13, 21, 25]
and approximate [10, 12, 18] versions. In approximate versions a set P provides
(1 + ε)-approximate k-center if the associated radius is at most (1 + ε) times the
optimal radius, for any ε > 0. Facility location problems for time varying net-
works (when edge distances satisfy the triangle inequality) also have been studied,
see [16, 19]. Let us define the mobile k-center problem as follows. Given a set
S = {p1, p2, . . . , pn} of n continuously moving points specified by a piecewise dif-
ferentiable functions {g1, g2, . . . , gn}, where gi, 1 ≤ i ≤ n maps time interval [0, T ]
to R

d, we want to determine whether there exist k continuous functions f1, . . . fk;
fi : [0, T ] → R

d such that at any given moment t ∈ [0, T ], the points f1(t), . . . , fk(t)
form a k-center for the points at locations g1(t), . . . , gn(t), and, if so, find f1, . . . , fk.
In this paper we concentrate mainly on the instances of the mobile 1-center prob-
lem, when p = {1, 2,∞} and assume that d = 2 if the dimension is not specified.
We present improved lower and upper bounds for mobile rectilinear and Euclidean
1-center when facility is allowed to move faster than the clients.

The mobile approximate 1-center and related problems are studied by Agarwal and
Har-Peled [1] very recently. For the Euclidean 1-center in the plane, they presented
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an approximation algorithm based on a notion of extent. Their algorithm aims to
maintain an approximate 1-center with a few events only. However, the velocity
of the facility can be arbitrary large (Lemma 4). We describe improved strategies
that guarantee both an approximation factor and a bounded velocity of the facility
(Theorem 5 and Lemma 7).

Gao et al. [14] proposed a randomized algorithm for maintaining a set of clusters
among moving points in the plane. They presented algorithms with expected ap-
proximation factor (on the optimal number of centers) of c log n for intervals and of
c
√

n log n for squares. The probability that there are more than expected number

of centers is O(1/nΘ(c2)) for the case of intervals and O(1/nc2 log n) for the case of
squares. An extension of this basic algorithm led to a hierarchical algorithm, also
presented in [14], based on kinetic data structures [5] with expected constant approx-
imation factor on the number of discrete centers, where the approximation factor also
depends linearly on the constant c. The dependency of the approximation factor and
the probability that the algorithm chooses more than a constant times the optimal
number of centers is similar to that of the non-hierarchical algorithm for the squares
case. The constant c, which has not been explicitly determined in [14], can be shown
to be very large. Their algorithm has an expected update time of O(log3.6 n), the
number of levels used in the obtained hierarchy is O(log log n) with O(n log n log log n)
space. Har-Peled [17] found a scheme of determining centers in advance, i.e. if in the
optimal solution the number of centers is k and r is the optimal radius for the points
moving with the degree of motion l, then his scheme guarantees 2l+1-approximation
of the radius with kl+1 centers chosen from the set of input points before the points
start to move. Huang et al. [20] present fully distributed (decentralized) constant-
factor approximation algorithms for k-center problem in the L1- and L∞ norms for
any d-dimensional space R

d, d ≥ 1, and for the L2 norm in R
2 and R

3, which either
match or improve the best known constant approximation factors of a centralized
algorithm, or have (asymptotically) optimal update costs improving [14].

Our algorithms for mobile 1-center problem are based on a relatively new class of
data structures (used also in [6, 14]) — kinetic data structures (KDS) — aimed at
keeping track of attributes of interest in systems of moving objects [5, 15]. In the
kinetic setting, a set of points is assumed to be continuously changing, or moving.
Each point follows a posted flight plan, but a plan can change at any moment through
a flight plan update. A KDS maintains a configuration function of interest (which in
our case will be the set P ) by watching for critical events as the objects move. A
KDS for computing a particular attribute for a set of points in motion maintains a
set of certificates. A certificate based on a tuple of points is a continuous function
that associates a real number with each configuration of these points. For example,
the certificates for a convex hull KDS are a collection of the triple of points, each
with a particular orientation. At any one time, the conjunction of all the certificates
being maintained by the kinetic data structure proves the combinatorial correctness
of its output. As the points move, some certificates may become invalid, e.g., a triple
of points changes orientation. When a certificate fails, the proof structure needs
to be modified and the combinatorial description of the configuration function may
need to be updated. Certificates are stored in a priority queue, ordered by failure
time, and processed in order as they fail. A good kinetic data structure will take
advantage of the continuity of the point motions to select certificate structures that
are easy to update at these critical events; a structure satisfying this condition is
called responsive. Other criteria for a KDS are efficiency, i.e., the number of events
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processed by KDS is not much greater than the number of combinatorial changes in
the configuration function itself, compactness, i.e., the number of active certificates
at any one time is roughly linear in the complexity of the moving points, and locality,
i.e., a flight plan update for any one point affects only a small number of certificates.

2. Mobile 1-center problems

In this section we present new lower and upper bounds for mobile 1-center problems
under the L∞ and L2 metrics for facility moving faster than the clients and also extend
a lower bound proof for unit velocity of the facility presented in [6] to work in any
metric and any dimension.

2.1. Rectilinear 1-center

We consider the case when the velocity of the facility belongs to the range [1,
√

2],
define the mixing strategy and analyze it. Then we show the lower bound on the
approximation factor for this case. At the end of this section we show an extended
lower bound presented in [6] for facility moving with velocity 1 that works for any
dimension and any metric.

Motion with bounded velocity. Suppose now, that the velocity of the facility
is bounded by vmax ∈ [1,

√
2]. We notice that for values of vmax = 1 and

√
2 the best

approximation factors are 2 and 1, respectively (see [6]). We mix our two strategies
— the center of mass of the points and the center of the bounding box — in the
following way. Let (f1, v1) be the location (vector in the plane) and velocity of the
center of mass of the points. Similarly, (f2, v2) are the location and velocity of the
center of the bounding box. (Bespamyatnikh et al. [6] explain how to maintain the
center of bounding box and the center of mass of points using kinetic data structures.)
The mixing strategy is to maintain the mixing center (f, v) defined as (αf1 + (1 −
α)f2, αv1 + (1 − α)v2), where α = (

√
2 − vmax)(

√
2 − 1). We analyze the mixing

strategy and show how it can be improved in the following theorem.

Theorem 1 (Bounded Velocity) Suppose that the facility is allowed to move with
velocity at most vmax ∈ [1,

√
2]. Let a1(v) be the linear function defined by a1(1) = 2

and a1(v
′) = a′ where v′ =

√
2 cos(π/8) and a′ = 1.25. Let a2(v) be the linear

function defined by a2(v
′) = a′ and a2(

√
2) = 1. There is a strategy of the facility

that guarantees an approximation factor max(a1(vmax), a2(vmax)).

Proof. First we show that the velocity of the mixing center is bounded by vmax. We
want to prove the inequality αv1+(1−α)v2 ≤ vmax. In order to do this, we replace v1

by 1 and v2 by
√

2. It can easily be seen that the value of the expression α+(1−α)
√

2
when α = (

√
2 − vmax)(

√
2 − 1) is equal to vmax.

Regarding the approximation factor we consider the case in which the center of
mass is at largest L∞ distance from the center of the bounding box. This distance
is 1 − 2/n if the radius that is determined by the center of the bounding box is 1.
Then the L∞ distance between the mixing center and the center of the bounding box

is
√

2−vmax√
2−1

(1 − 2
n
). The approximation factor bound is

1 +

√
2 − vmax√

2 − 1

(

1 − 2

n

)

.

The smallest bound that suits all n is the linear function 1 + (
√

2 − vmax)(
√

2 − 1).
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Figure 1. Movement of the center.

It turns out that the mixing strategy is not easy to improve. The reason is that
the worst case velocities of two strategies, the center of mass (of all the points or a
linear combination of a few points from S) and the center of bounding box, can be in
the same direction as shown in Figure 1.

(a) (b) (c) (d)
fp1

p2
p3

Figure 2. 8-gon strategy.

In this case the best motion of the facility is to move in this direction within the
maximum allowed velocity which corresponds to mixing strategy. The idea now is to
interpolate two strategies that have the worst case velocities in different directions.
Note that the maximum velocity of the center of bounding box depends on the direc-
tion and varies from 1 to

√
2, see Fig. 2(a). A good candidate for the interpolation

is the strategy of the center of bounding box aligned to the coordinate axis rotated
by 45◦. The range of the maximum velocity is depicted in Fig. 2(b). Consider the
midpoint of two centers. We call this 8-gon strategy since the range of its maximum
velocity forms the regular 8-gon, see Fig. 2(c). The maximum velocity of the facility
following the 8-gon strategy is v′ =

√
2 cos(π/8) and the approximation in worst case

is a′ = 1.25 for three points S = {p1, p2, p3}, see Fig. 2(d). One can show that the
approximation factor of the 8-gon strategy is smaller than one of the mixing strategy
for vmax = v′. In order to improve the approximation for other values of vmax we

(i) interpolate (or mix) the strategy of the center of mass and the 8-gon strategy
for vmax in the range [1, v′], and

(ii) interpolate the strategy of the center of the bounding box and the 8-gon strat-
egy for vmax ∈ [v′,

√
2].

The theorem follows.

Lower bound for an approximation factor when vmax ∈ [1,
√

2]. In fact
we can show two different lower bound estimates. The first bound is based on the
example depicted in Figure 1 when |ff ′| = vmax and |p1p4| = |p2p4| = 1. In this case
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the exact rectilinear radius is 1
2

and the approximate radius is 1 − vmax

2
√

2
. Thus, the

approximation factor β(vmax) = 2 − vmax√
2

.
In order to prove the second lower bound estimate, we first consider the case when

vmax = 1. The original proof for this case is presented in [6]. We extend the proof to
work for any dimension and any metric.

A

o

B

C
a

b

c

de

Figure 3. Adversary strategy for achieving lower bound for approximation factor.

Theorem 2 (Lower Bound for Unit Velocity) Consider the mobile approximate
1-center problem in R

d, d ≥ 2 with any underlying metric. Any algorithm that starts
with the facility inside the convex hull and moves the facility with at most unit velocity
achieves an approximation factor of at least 2 (asymptotically) for the exact 1-center
in the worst case.

Due to lack of space the proof is omitted.

Now we are ready to prove the second lower bound estimate for an approximation
factor when vmax ∈ [1,

√
2]. It is based on the proof of the theorem above. In fact, a

similar proof can be applied for vmax ∈ [1, 2√
3
]. If vmax ≥ 2√

3
the facility can follow

the center o of the triangle. For vmax ∈ [1, 2√
3
] the facility can always be inside a

hexagon of some fixed size. Let x = |Aa| and |ce| = 2v on Figure 3. One can show that
x =

√
3v2

max − 3. The rectilinear distance from c to B is
√

3 − x√
3

and the distance
from c to C is 2 − x. The exact radius is equal to 1. Therefore, the approximation
factor is γ(vmax) = max (2 − x,

√
3 − x√

3
), for x =

√
3v2

max − 3. One can show that

β(vmax) > γ(vmax) if vmax > 2/
√

3. Combining all the results together we obtain

Lemma 3 If the facility’s maximal allowed velocity is vmax ∈ [1,
√

2], then the worst-
case approximation factor of any algorithm is at least max (β(vmax), γ(vmax)).

2.2. Euclidean 1-center

Bespamyatnikh et al. [6] provided an example with three points showing that the
Euclidean 1-center may move with unbounded velocity. See Figure 5(a). We found
another example with four points (see Figure 5(b)) that can be used for the same
purpose and at the same time provides a better bound of the velocity of the exact
Euclidean 1-center.
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1 2a1a2
p2

p3 p4p4
p1

1 2
p1 = p01

p2 p3p02 p03
p02p01

p03 p04(a) (b)
Figure 4. Euclidean 1-center may move with unbounded velocity.

To see this we observe that points p1, . . . , p4 are located on the unit circle centered
at c1. A point pi, i = 1, . . . , 4 moves toward the point p′

i. The points pi make the
same length paths since c1c2p

′
2p1 and c1c2p

′
4p3 are rectangles. Let x = |c1c2| be the

length of the path made by the 1-center and let y = |p1p
′
1| be the length of the path

made by the point p1. It suffices to show that y/x tends to 0 if x tends to 0. Indeed,
1 + x2 = (1 + y)2 since the triangle c1c2p1 is right. It implies x2 = 2y + y2 and
2y/x = x − y2/x ≤ x.

Next, we show that velocity of an approximate 1-center must be high.

Lemma 4 (Lower Bound) For every ε > 0, any (1 + ε)-approximate mobile Eu-
clidean 1-center has velocity at least 1/4(

√
2ε + ε) = 1/(4

√
2ε) − O(1) in worst case.

Due to lack of space the proof is omitted.
We show that the lower bound of the velocity needed to approximate mobile Eu-

clidean 1-center established in Lemma 4 is optimal up to a constant factor.

Theorem 5 (Upper Bound) For any ε > 0 there is a strategy for mobile approxi-
mate Euclidean 1-center that guarantees the approximation factor 1+ ε using velocity
of the facility 4/

√
ε + o(1/

√
ε) in the worst case.

Proof. We apply the following strategy for the mobile facility. Let V be the maximum
velocity of the facility that will be specified later. Consider the initial configuration.
We assume that in the beginning the facility f is located so that the radius of the
smallest circle enclosing all the customer points is at most (1 + δ) times the optimal
radius where δ ≤ ε and will be specified later. The goal of the facility now is to reach
the position of the exact Euclidean 1-center at this moment. The facility heads to
the target using the velocity V . We can compute the time t needed for this. After
reaching the target we repeat the procedure. It is interesting that the motion of the
facility is independent on the motion of customers during the time when facility moves
from one position to another. It is also interesting that the exact 1-center can achieve
any velocity sometimes and the approximate facility just ignores any acceleration of
the exact 1-center.

Let c be the position of the exact Euclidean 1-center at the initial time t0 and let
a be the position of the facility (the approximate 1-center) at the same time. Let t1
be the time when the facility reaches c. Let r denote the radius associated with c at
the time t0. Without loss of generality we can assume that r = 1.
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c xp1 + x2l a1
Figure 5. (1 + ε)-approximation of Euclidean 1-center.

First we estimate the distance between the exact and approximate centers at the
time t0. Denote x = |ac|. The line l orthogonal to the line ac passing through c
partition the unit circle centered at c into 2 arcs, see Fig. 5. Each arc contains at
least one customer point since the exact radius of the 1-center disk is 1. The minimum
distance from a to the arc beyond l is

√
1 + x2. Clearly,

√
1 + x2 ≤ 1 + δ. Therefore

x = |ac| ≤
√

2δ + δ2.
Let t be the time the facility need to get the exact center c, i.e., t ≤ |ac|/V .

Consider the moment t1. The radius associated with the approximate 1-center c is at
most 1+t since the velocities of the customers are bounded by 1. Let c′ be the location
of the exact 1-center. We show that the associated radius is at least 1− t. Construct
the line passing through c and orthogonal to cc′. The arc of the unit circle centered
at c from which the exact center moves toward c′ contains at least one customer point
at the moment t0. This customer is at distance at least 1 − t from c′ at the moment
t1. Thus, the approximation ratio at the moment t1 is at least

1 + t

1 − t
= 1 +

2t

1 − t
.

We want to show that this is at most 1 + δ. It follows from

2t

1 − t
≤ δ or, equivalently, t ≤ δ

2 + δ
. (1)

We also want the approximation factor to be at most 1 + ε for any moment t0 + ∆ ∈
[t0, t1]. The radius associated with the approximate 1-center is at most 1 + δ + ∆.
The radius is at least 1 − ∆. Their ratio is at most

1 + δ + ∆

1 − ∆
= 1 +

2∆ + δ

1 − ∆
.

The largest value of the upper bound is achieved when δ = t. It suffices to have

2t + δ

1 − δ
≤ ε or, equivalently, t ≤ ε − δ

2 + ε
. (2)

Making the right sides of the equations 1 and 2 we obtain δ2 + 4δ − 2ε = 0 and
δ =

√
4 + 2ε− 2 ≈ ε/2. By the equation 1 we can set t = δ/(2 + δ) ≈ ε/4. Therefore,

the velocity of the facility can be V =
√

2δ + δ2/t ≈ 4/
√

ε. The theorem follows.
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We also can achieve reasonably good approximation factor for Euclidean 1-center
when we trace the center of the bounding box of the points.

Theorem 6 (Bounding Box Strategy) The strategy of tracing the center of the
bounding box of n ≥ 3 points has an approximation factor of (1+

√
2)/2 for the mobile

Euclidean 1-center and this bound is tight.

Proof. Let s = (1 +
√

2)/2. Without less of generality we can assume that the
bounding box is B = [0, 2] × [0, 2t] for some t ≥ 1, see Fig. 6 (a). Let S be any
configuration of n ≥ 3 points in B such that each side of B contains at least one point
of S. Let r be the approximate radius, i.e., ra = maxp∈S{|po|} where ca = (1, t) is
the center of B. Let r be the exact radius of 1-center. We want to prove that ra ≤ sr.

1 2
t2t ca

p1
p2

p3 r rrc 1 2ca p1
p2p3 r r rc 1 2

t
2t

ca
p1

p2
p3 c

(a) (b) (c)
12

ra

Figure 6. Bounding box strategy for approximating Euclidean 1-center.

We first consider the case where one of the points of S is located at a vertex of B,
say p1 = (2, 2t). It implies ra =

√
1 + t2. Two sides of B contain p1, and there are at

least two points p2 and p3 lying on the sides of B along x- and y-axis, respectively.
We can assume that p2 6= p3, otherwise p2 = p3 = (0, 0) and r = ra. If t > 2 then
r ≥ |p1p2| ≥ t and one can check that

ra

r
≤

√
1 + t2

t
=

√

1

t2
+ 1 ≤

√

1
1

4
< s.

We assume that t ∈ [1, 2]. The smallest value of r is achieved when p2 is strictly
below the 1-center and p3 is to the left of it, see Fig. 6 (a). Thus the exact 1-center
has coordinates c = (r, r). The 1-center is at distance r from p1,

(2 − r)2 + (2t − r)2 = r2.

This can be transformed to the quadratic equation

r2 − 4(t + 1)r + 4(t2 + 1) = 0.

r = 2(t + 1 −
√

2t) since the root with “+” is greater than 2t which is impossible.
ra and r can be viewed as functions of t. In order to prove that ra/r ≤ s for

t ∈ [1, 2] we show that (i) ra(1)/r(1) = s, and (ii) (ra/r)′ ≤ 0 for any t ∈ [1, 2]. If
t = 1 then ra =

√
2 and r = 2(2 −

√
2). One can check that ra/r = s. Note that this

gives an example with tight bound, see Fig. 6 (b).
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To prove the second condition we differentiate r and ra

r′ = 2(1 − 1/
√

2t) and r′a = t/
√

1 + t2.

We want to prove that r′ar − rar′ ≤ 0 or, equivalently,

2t√
1 + t2

(

t + 1 −
√

2t
)

≤ 2
√

1 + t2
(

1 − 1√
2t

)

.

Let x =
√

t/2. Then t = 2x2 for x ∈ [
√

2/2, 1] and the inequality can be written as

2x2(2x2 + 1 − 2x) ≤ (1 + 4x4)

(

1 − 1

2x

)

.

Multiplying by 2x we obtain

(12x4 − 4x3) + (2x − 1) ≥ 0.

Clearly, 12x4 − 4x3 ≥ 0 and 2x − 1 ≥ 0.
It remains to consider the case where there is no point of S at a vertex of B. Let

p1 be a point of S at distance ra from the center of B, see Fig. 6 (c). Note that
ra <

√
1 + t2. The idea is to shrink the bounding box B so that p1 is the vertex of

new bounding box B′. To achieve this we move every point of S \B′ toward the exact
1-center c until it reaches the boundary of B′ (note that c ∈ B). The approximate
radius does not change but the exact radius can be reduced only. The exact radius
can be bounded from below as described above and the inequality ra ≤ sr holds. The
theorem follows.

Lemma 7 (Mixing Strategy) If the facility is allowed to move with velocity vmax ∈
[1,

√
2], the approximation factor

α
1 +

√
2

2
+ (1 − α)

(

2 − 2

n

)

, where α =

√
2 − vmax√

2 − 1
(3)

is achievable.

Proof. The same mixing strategy described for rectilinear 1-center can be applied to
the Euclidean 1-center problem for the facility moving with velocity vmax ∈ [1,

√
2].

Let cm be the center of mass and let cb be the center of the bounding box. Let r
be the exact radius of 1-center and let rm, rb be the radii determined by cm and cb,
respectively. The mixing center is defined as cmix = αcm + (1 − α)cb.

Using the result obtained in [6] which says that the center of mass of points guar-
antees a (2 − 2/n)-approximation of the rectilinear 1-center of S and using Theorem
6 we have rm ≤ (2− 2/n)r and rb ≤ (

√
2 + 1)r/2. Let p be any point in S. It suffices

to prove that |pcmix| ≤ Ar, where A is the required approximation factor from (3).
The mixing center has a property that pcmix = αpcm + (1 − α)pcb. Therefore

|pcmix|2 = α2|pcm|2 + (1 − α)2|pcb|2 + 2α(1 − α)pcm · pcb

≤ α2|pcm|2 + (1 − α)2|pcb|2 + 2α(1 − α)|pcm||pcb|
= (α2|pcm| + (1 − α)|pcb|)2|.

Thus, |pcmix| ≤ α|pcm| + (1− α)|pcb| ≤ α(2 − 2/n)r + (1 − α)(
√

2 + 1)r/2 = Ar and
we are done.
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