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Abstract—We study the problem of data collection in Wireless
Sensor Networks (WSN). A typical WSN is composed of wireless
sensor nodes that periodically sense data and forward it to
the base station in a multi-hop fashion. We are interested
in designing an efficient data collection tree routing, focusing
on three optimization objectives: energy efficiency, transport
capacity, and hop-diameter (delay).

In this paper we develop single- and multi-hop data collection,
which are based on two definitions of node centrality: centroids
and balance nodes. We provide theoretical performance analysis
for both approaches, present their distributed implementation
and discuss the different aspects of using each. Most of our
results are for two-dimensional WSNs, however we also show
that the centroid-based approach is asymptotically optimal in
three-dimensional random node deployments. We also show
several simulation results that support our theoretical findings.

I. INTRODUCTION

A wireless sensor network (WSN) consists of small au-
tonomous low-cost low-power devices that carry out mon-
itoring tasks. Initially developed for military use, WSNs
can nowadays be found in many civil applications, such
as environmental monitoring, biomedical research, seismic
monitoring, and precision agriculture [1]. The devices are
called sensor nodes and the monitored data is typically
collected at a base station, following a specific collection
pattern of activated wireless links.

As these networks have no hard-wired underlying topol-
ogy, one of the most fundamental issues when a WSN is
deployed is the formation of an efficient communication
backbone, or in other words, answering the question which
links to use in order to collect the data from the sensor nodes?

Efficiency can be defined in many ways, for example it
can be maximizing the rate at which data is collected ([19],
[41], [43]) from the sensor nodes, prolonging the network
lifetime by reducing the energy consumption ([5], [8], [30],
[32], [36]), minimizing the number of hops from the sensor
nodes to the collecting base station ([13], [18]), and other
optimization objectives. It is apparent that the topological
structure of the communication backbone plays a vital role
in its efficiency. However, it is also important to note that
a communication backbone which has good performance
in some of the criteria can have a bad one in others. For
example, using the minimum spanning tree (MST) as the

backbone provides an optimal network lifetime performance
for same initial battery charges [4], however it can have a very
poor hop-diameter, which is critical for delay minimization.1

Thus, the network designer has to take special care when
deciding which links to activate for the purpose of data
collection, as different optimization objectives may be have
a negative effect on each other.

The problem of data collection can be divided into two
major paradigms. Data collection with aggregation ([21],
[39]) allows each sensor node to accumulate the messages
of its descendants and then pass only one fixed-size message
towards the base station. The second paradigm, is data
gathering without aggregation ([25], [26]) which requires that
all messages initiated by the sensors will eventually reach the
base station.

Our main objective in this paper is to construct efficient
communication backbones for single- and multi-hop data
collection with aggregation in WSNs for both random and
arbitrary sensor node deployments, while measuring the
efficiency based on the next three metrics.

• The transport capacity metric represents the sum of rate-
distance products over all the active links. It is measured
in bit-meters and was first introduced by [16]. The idea
behind this measure is to capture both the notion of the
overall rate and distance that the information travels in
a network.

• Hop-diameter is another important metric which reflects
the depth of the data gathering tree, i.e. the maximum
number of hops from any of the sensor nodes to the
base station.

• Total energy consumption is probably one of the most
important parameters of a WSN as the sensor nodes
are often deployed in areas where battery replacement
is infeasible [7]. Wireless communication is a major
contributer to the energy budget of a node. In this paper
we focus on minimize the total energy consumed by all
nodes for communication purposes.

We propose a novel approach for the construction of

1Imagine n sensor nodes located on a straight horizontal segment, with
the base station being to the right of the right-most sensor. It is easy to show
that the hop-diameter of MST in this case is n.
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communication backbones by identifying central locations
in the deployment area and routing all data through these
regions. The general idea is that these locations would serve
as aggregation points both on a local and global scale.
In particular, we use an interesting geometrical notion of
centroids, which is defined as the central geometrical position
of a collection of nodes, which are used as a guide for the
construction of hierarchical aggregation trees. In addition, we
also examine balance nodes, where the main motivation is to
build data collection routes based on centrally located nodes
in topologies which are already efficient in terms of some of
the metrics.

The rest of this paper is organized as follows. In Section II
we present our system settings and state our objective.
Related works are surveyed in Section III. Sections IV and
V are the technical sections of the paper and show the
construction of data collection communication backbones for
three scenarios, single-hop general network and multiple-hop
random network. Simulation results for random networks are
presented in Section VI. Finally, we conclude and discuss
future work in Section VII.

II. SYSTEM SETTINGS

A WSN consists of n wireless sensor nodes, S =
{s1, . . . , sn}, distributed in some area A. These nodes per-
form monitoring tasks and periodically report to a base
station r which is located somewhere within the area A (we
consider different locations throughout the paper). During
the report phase, the sensor nodes propagate a message
to the base station through a data collection tree, TS =
(S ∪ {r}, ES), rooted at r. We consider data collection with
aggregation, where every node s ∈ S forwards a single
unit size report message to its parent. The message holds
an accumulated information collected from a subtree of TS

rooted at s. An example of this scenario can be found in
temperature monitoring systems for fire prevention, intrusion
detection, seismic readings, etc.

We assume the use of frame-based MAC protocols which
divide the time into frames, containing a fixed number of
slots. The main difference from the classic TDMA is that
instead of having one access point which controls trans-
mission slot assignments, there is a localized distributed
protocol mimicking the behavior of TDMA. The advantage
of a frame-based (TDMA-like) approach compared to the
traditional IEEE 802.11 (CSMA/CA) protocol for a Wireless
LAN is that collisions do not occur, and that idle listening
and overhearing can be drastically reduced. When scheduling
communication links, that is, specifying the sender-receiver
pair per slot, nodes only need to listen to those slots in which
they are the intended receiver – eliminating all overhearing.
When scheduling senders only, nodes must listen in to all
occupied slots, but can still avoid most overhearing by
shutting down the radio after the MAC (slot) header has been
received. In both variants (link and sender-based scheduling)
idle listening can be reduced to a simple check if the slot is

used or not. Several MAC protocols were developed to adapt
classical TDMA solutions which use access points to ad-hoc
settings that have no infrastructure; these protocols employ
a distributed slot-selection mechanism that self-organizes a
multi-hop network into a conflict-free schedule (see [31],
[42]).

Let d(u, v) be the Euclidean distance between two sensor
nodes u, v ∈ S. It is customary to estimate that the energy
required to transmit from u to v is proportional to d(u, v)α,
where α is the path-loss coefficient. In perfect conditions
α = 2, however in more realistic settings (in presence
of obstructions or noisy environment) it can have a value
between 2 and 4 (see [29]). In this paper we assume α = 2
for simplicity. However, it is possible to extend our results
for other values of α which are greater than 2.

Let E(TS) be the energy requirement to execute a
single report phase. Note that every sensor performs a single
transmission, during which it sends a single message to its
parent in TS . Thus, the energy requirement is proportional
to the sum of squares of lengths of the edges ES . The
focus of this paper is to study the asymptotic performance of
data collection trees, thus we can express E(TS) as follows,
E(TS) =

∑
(u,v)∈ES

d(u, v)2.
Minimizing the energy requirement is one of the primary

optimization objectives when deploying a WSN due to the
very low battery reserves at the sensor nodes and the high
costs that are associated with replacing these batteries (if at
all possible).

Another critical aspect in the design of a WSN is the hop-
diameter of TS . The data flows from the leafs of the delivery
tree to the base station, where each intermediate node waits
to receive the report messages from all its children, before
sending its own report message to its parent. Therefore, the
hop-diameter of TS , denoted as H(TS), determines the delay
of data collection.

The third measure that we are interested in is transport ca-
pacity, D(TS), of the data collection tree TS . As mentioned
earlier, the main idea which stands behind this metric is to
capture the spatial rate of the network, which is represented
by the total rate over some distance. In our scenario, the rate
on all links is fixed as all the nodes transmit an aggregated,
unit-size message, to the parent in the collection tree and
the schedule is conflict-free. Thus, to maximize the transport
capacity we need to minimize the total distance traveled by
information, which is the sum of lengths of all the links,
D(TS) =

∑
(u,v)∈ES

d(u, v).
Unfortunately it is impossible to achieve optimal perfor-

mance in all three measures at the same time. For example,
minimizing the hop-diameter results in all nodes transmitting
to the base station, which is disastrous in terms of energy
consumption, whereas the best topology to minimize energy
consumption2 results in a relatively high hop-diameter.

Our main objective in this paper is to construct data

2As described later in the paper, using the Euclidean minimum spanning
tree minimizes the energy consumption.
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collection trees for several node distribution scenarios which
produce good performance in all three measures simultane-
ously.

III. RELATED WORK

To the best of our knowledge, this is the first work
which takes into account all of the above 3 performance
measures simultaneously. Below we discuss some of the
related work on data collection, energy efficiency, bounded-
hop communication, and transport capacity.

In terms of total energy consumption measure, it was
proved in [35] that using the minimum spanning tree for data
collection (gathering) with aggregation achieves optimality.
A different criterion used to measure energy efficiency is
network lifetime, which is defined as the time the first
node depletes all its power reserves due to periodic data
transmission. Segal [34] developed an optimal maximum
lifetime algorithm for data collection with aggregation. One
of the possible variants is to allow the use of different
collection trees, which makes the maximum network lifetime
data gathering problem more challenging. Interestingly, if
aggregation is allowed, the problem is still polynomially
solvable [21], [28], and is NP-complete otherwise [26].
Kalpakis et. al. [21] developed an optimal data collection
with aggregation algorithm in O(n15 log n) time. To counter
the slowness of the algorithm, Stanford and Tongngam [39]
proposed a (1 − ε)-approximation in O(n3 1

ε log1+ε n) time
based on Garg and Könemann [15]. For more details we refer
the reader to a recent survey by Ramanan et al. [23], which
covers a diverse set of data gathering algorithms in ad-hoc
networks.

The notion of transport capacity was introduced by Gupta
and Kumar in [16]. They showed that for any layout of n
wireless nodes in an area of size A, with each node being
able to transmit W bits per second to a fixed range, the
overall transport capacity is at most (W

√
An) bit-meters

per second under both interference models (protocol and
physical). In [20] the authors derive upper bounds on the
transport capacity as a function of the geographic location
of the nodes. It has also been shown that the scaling of
transport capacity depends, among other factors, on channel
attenuation and path loss [44], [45], [46].

Finally, communication backbones with bounded hop-
distances between participating nodes has also been studied.
For the linear layout of nodes and an upper bound on hop-
distance, Kirousis et al. [22] developed an optimal power
assignment algorithm for strong connectivity in O(n4) time.
In the Euclidean case, [10] obtains constant ratio algorithms
for the bounded-hop vertex connectivity for well spread
instances. Beier et al. [3] proposed an optimal algorithm
to find a bounded-hop minimum energy path between paris
of nodes. In [6] the authors obtain bicreteria approximation
algorithms for connectivity and broadcast while minimizing
the hop-diameter and energy consumption. Funke and Laue
[14] provide a PTAS for the h-broadcast algorithm in time

linear in n. Additional results for bounded range assignments
can be found in [9], [11], [37].

IV. SINGLE-HOP COLLECTION

We start be defining the notion of geometric centroids
and then analyze the performance bounds of single-hop
communication backbone which is centroid-based. In the
end we discuss the possible pitfalls of using a single-hop
collection tree.

For n points P = {p1, p2, . . . , pn}, n ≥ 2, placed in
the Euclidean plane, with coordinates (xi, yi), i = 1, . . . , n,
and assuming general position, the centroid c(P ) is a point
defined as c(P ) = (x, y), where x =

∑n
i=1 xi/n and

y =
∑n

i=1 yi/n, which conceptually represents the center
location of P .

Apparently the centroid of n points has two very inter-
esting properties as outlined in the following theorems that
provide an analysis of the sum of squares of distances, which
was done in [24], and sum of distances, which we develop
here, between the points and the centroid.

Theorem 4.1 ([24]): For any set of points P and an arbi-
trary point p′ in the Euclidean plane,

∑
p∈P d(p, c(P ))2 ≤∑

p∈P d(p, p′)2.
Theorem 4.2: For any set of points P and an arbi-

trary point p′ in the Euclidean plane,
∑

p∈P d(p, c(P )) ≤
2
∑

p∈P d(p, p′).
Proof: Let p∗ be the geometric median3 of points

P . Clearly for every p ∈ P , d(p, c(P )) ≤ d(p, p∗) +
d(p∗, c(P )), and thus

∑
p∈P d(p, c(P )) ≤

∑
p∈P d(p, p∗) +

|P | · d(p∗, c(P )). From the convexity of the Euclidean norm
it follows that the norm of an average of a set of points is
at most the average of the norms of the points in the set,
that is d(p∗, c(P )) ≤

∑
p∈P d(p, p∗)/|P |. Therefore for any

p′ ∈ R2, d(p∗, c(P )) ≤ 2
∑

p∈P d(p, p∗) ≤ 2
∑

p∈P d(p, p′).

Clearly, the bounds shown above represent the total energy
consumption and transport capacity measure for a single-hop
data collection tree if the base station is located at the centroid
of the sensors, which is reasonable to expect.

Unfortunately, if we consider a single-hop tree TS rooted at
the centroid and spanning all the nodes it may be inefficient in
terms of energy consumption and transport capacity. Consider
the linear layout of nodes as depicted at Figure 1. If we
consider the minimum spanning tree (MST) of the nodes, we
obtain D(MST ) = E(MST ) = n − 1. On the other hand,
for TS , we have D(TS) = Ω(n2) and E(TS) = Ω(n3), which
is quite poor compared to the one obtained by the MST.

In the next section we describe a hierarchical topological
structure, the k-layer centroid network, which is used for
multi-hop data collection in random WSNs and achieves
better performance than the single-hop tree.

3The geometric median p∗ of a point set P is the point in the Euclidean
plane that minimizes the sum of distances between itself and the points in
P , i.e. ∀p′ :

∑
p∈P d(p, p∗) ≤

∑
p∈P d(p, p′).
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Fig. 1. Worst case performance of single-hop centroid-based data collection
tree.

V. MULTI-HOP COLLECTION FOR RANDOM
DEPLOYMENTS

Our first construction of multi-hop data collection is for
randomly deployed sensor networks. In this scenario we
assume that n sensor nodes are randomly and independently
placed in the area A with uniform distribution. We also
assume that A is a unit square. We show an efficient commu-
nication backbone construction which is based on centroid
networks, which are hierarchical geometrical structures on
top of a point set P which represents the sensor nodes. As
in the single-hop scenario, we assume the base station is
located at c(P ).

1) k-layer centroid networks: We start by providing the
definitions and notation used in the context of k-layer cen-
troid networks and then proceed to presenting several useful
properties and observations regarding these networks.

The k-layer centroid network, k > 2, based on a point
set P (in short, k-centroid network), is a k-layer undirected
tree TP = (V,E) , where V and E are the node and edge
sets, respectively. The leafs of the tree VP ⊂ V represent the
points P , and the internal nodes VC = V \ VP represent
the centroids of subsets of P . Let r be the root of the
tree. For convenience we use the notion of node and point
interchangeably instead of saying node that represents a
point.

The nodes V are divided into k layers, V1, . . . , Vk such
that V1 = {r}, VC = V1 ∪ . . . ∪ Vk−1, and Vk = VP . The
edges E connect between nodes in adjacent layers such that
the parent of u ∈ Vi, π(u), is in Vi−1 and the children of
v ∈ Vj , N(v), are in Vj+1, for any i, j, 1 < i ≤ k, 1 ≤ j < k.
We use Ei to denote the set of edges between layers i and
i+ 1, 1 ≤ i ≤ k − 1. In a k-centroid network the following
two conditions hold for any node v ∈ VC :

• |N(v)| > 0.
• Let Tv be a subtree of T , rooted at v ∈ VC , and let Pv

be the points represented by the leafs of Tv. Then, v is
the centroid of Pv.

For example, Fig. 2 shows a 3-centroid network where the
second layer nodes are centroids of points sets P1, P2, P3, P4.

Note that according to the second condition above, the root
of the tree is the centroid of the whole point set P . Next we
provide several useful properties of k-centroid networks. We
start with an observation which follows directly from the
definition above.

Observation 5.1: Let TP be a k-centroid network, k > 2,
and let v be a non-leaf node in TP with a height of l. Then
Tv is an (l + 1)-centroid network based on Pv and if l > 1

Fig. 2. An example of a k-centroid network.

then for every u ∈ N(v), Tu is an l-centroid network based
on Pu.

Another interesting characteristic of k-centroid networks
is that it is possible to easily add or remove layers with only
local changes to the edge set E. We refer to the process
of adding layers as extension and to the removal of layers
as simplification. Let TP be the original k-centroid network.
A simplified network T

(−i)
P = (V (−i), E(−i)) is obtained

by removing the i-th layer, 1 < i < k (the root and the
leafs cannot be removed), and connecting the parent of every
removed node to its grandchildren in TP . Formally,

V (−i) = V \ Vi

and

E(−i) = (E \ Ei) ∪ {(π(u), v) : u ∈ Vi, v ∈ N(u)}.

Adding a layer to extend the network is essentially
providing an additional level of grouping the points into
subsets. To add a layer below an existing i-th layer, 1 ≤ i < k
(it is not possible to extend the network below the leafs layer),
we need to remove the edges that connect layers Vi and
Vi+1, and to add new edges which connect the new layer
to the rest of the tree. Formally, for a k-centroid network,
the new (k + 1)-centroid network, T (+i) = (V (+i), E(+i)),
is defined as follows. For each node uj ∈ Vi, 1 ≤ j ≤ |Vi|,
we partition its children N(uj) into mj , 1 ≤ mj < |N(uj)|
disjoint subsets U j

1 , . . . , U
j
mj
⊆ N(uj). Then, the new nodes

of the added layer, V[i]↔[i+1], are the centroids of the union
of the leafs in the trees rooted at the nodes of these subsets,
that is

V[i]↔[i+1] = {uj
l : 1 ≤ j ≤ |Vi|, 1 ≤ l ≤ mj},

where
uj
l = c({p : p ∈ Pv, v ∈ U j

l }).

The edge set is modified by disconnecting Vi and Vi+1 and
connecting these layers to the new nodes,

E(+i) =(E \ Ei) ∪ {(uj , u
j
l ) : 1 ≤ j ≤ |Vi|, 1 ≤ l ≤ mj}

∪ {(uj
l , v) : 1 ≤ j ≤ |Vi|, 1 ≤ l ≤ mj , v ∈ U j

l }.
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It is easy to see that in both cases, the result of either
simplification or extension is a proper (k − 1)- or (k + 1)-
centroid network, respectively. Also note that the simplifica-
tion process is deterministic for every removed layer, whereas
in the case of extension there are multiple possible outcomes.

The following theorem shows that by extending an existing
k-centroid network we actually reduce the sum of squares
of distances in the network. For the ease of exposition we
denote by d(u, v) the distance between the points or centroids
represented by the nodes u, v ∈ V , and by S2(TP ) the sum of
squares of distances in TP , i.e. S2(TP ) =

∑
(u,v)∈E d(u, v)2.

Theorem 5.2: Let TP be a k-centroid network based on a
point set P . For any l-centroid network, T ′

P , which can be
obtained through a series of extensions from TP , it holds that
S2(TP ) ≥ S2(T

′
P ).

Proof: In order to prove the theorem, it is enough
to show that for l = k + 1 it holds S2(TP ) ≥ S2(T

′
P ).

Let T ′
P be obtained from TP by adding a layer below

some existing i-th layer, for some i, 1 ≤ i < k. We
are going to show, separately for each centroid uj ∈ Vi,
1 ≤ j ≤ |Vi|, that Σ(xm,ym)∈N(uj)d(uj , (xm, ym))2 ≥
Σ

mj

l=1d(uj , u
j
l )

2 + Σ
mj

l=1Σp∈Uj
l
d(uj

l , p)
2. Subtract from the

left side of the inequality the right side. If the theorem is
true, the result should be non-negative.
Σ(xm,ym)∈N(uj)d(uj , (xm, ym))2 − Σ

mj

l=1d(uj , u
j
l )

2 −
Σ

mj

l=1Σp∈Uj
l
d(uj

l , p)
2 =

⟨
Σ

mj

l=1|U
j
l |x2

uj
−2Σ

mj

l=1|U
j
l |xujxuj

l
+

Σ
mj

l=1|U
j
l |xuj

l

2−Σ
mj

l=1x
2
uj
+2Σ

mj

l=1xujxuj
l
−Σ

mj

l=1|U
j
l |xuj

l

2
⟩
+⟨

Σ
mj

l=1|U
j
l |y2uj

− 2Σ
mj

l=1|U
j
l |yujyuj

l
+ Σ

mj

l=1|U
j
l |yuj

l

2 −
Σ

mj

l=1y
2
uj

+ 2Σ
mj

l=1yujyuj
l
− Σ

mj

l=1|U
j
l |yuj

l

2
⟩
= Σ

mj

l=1(|U
j
l | −

1)(xuj −xuj
l
)2+Σ

mj

l=1(|U
j
l |−1)(yuj −yuj

l
)2 = Σ

mj

l=1(|U
j
l |−

1)((xuj −xuj
l
)2+(yuj −yuj

l
)2) = Σ

mj

l=1(|U
j
l −1)d(uj , u

j
l )

2.

Clearly the last expression is equal or larger than 0.

Fig. 3. Extending a k-network does not always improve the sum of
distances.

Unfortunately, we cannot make a similar claim for sum of
distances (as demonstrated in Fig. 3). Let us consider the set
P of k (2a+ 2), k, a ∈ N, points on line, ordered in increas-
ing order by their coordinates xi, i = 1, ..., n. The distance
between points xi and xi+1, for i = 1, ..., k (2a+ 2), i ̸= k,
i ̸= k (a+ 1), i ̸= k (2a+ 1), is 1; for i = k (a+ 1) it is 2;
and for i = k, i = k (2a+ 1), it is d. The coordinate of the
centroid C of the points in P , is x = k (a+ 1) − 1 + d.
We partition P into two sets: P1 =

{
x1, ..., xk(a+1)

}
and P2 - the remaining points. Coordinate of the centroid
C1 of the points in P1, is x1 = k(a+1)2+2ad−3a−1

2(a+1) . The
sum of the distances between C and the points in P1 is
k(a+1)∑
i=1

(x− xi) =
k2(a+1)2+k(a−1)+2kd

2 . The sum of the dis-

tances between C1 and the points in S1 is
k(a+1)∑
i=1

|x1 − xi| =
k2a(a+1)−2ak+2akd

a+1 . When comparing these two sums one
can see that in the case of a > 1 and for any given k there

is such d for which
k(a+1)∑
i=1

|x1 − xi| >
k(a+1)∑
i=1

(x− xi). The

same happens with a symmetric case while considering the
sum of distances between C and C2 (the centroid of P2) and
the points of P2. Thus, we obtain that the sum of distances
from C to the entire set is less than the sum of distances
from C1 to P1 plus the sum of distances from C2 to P2.

A. Data collection using centroid networks

First we describe the k-centroid network T = (V,E)
which we then use to produce the communication backbone.

Let P be the points that correspond to the location of
sensor nodes S. To construct T we repeatedly divide the
unit square area A into sub-areas. First we divide A into 4
equal square sub-areas, then each of these sub-areas is further
divided into 4 sub-areas, and so forth. In every sub-area we
pick one centroid of the points in that sub-area and add it
to T . The connections between these centroids are added
according to the point hierarchy as described above, while
the root of T is the centroid of all the points P . The iteration
proceeds in steps, where at each step we handle subdivision
of sub-areas of the same size; it ends once it is not possible to
continue subdividing the areas into non-empty square regions.
In the final phase, the centroids are connected to the points in
their respective areas. We now describe this process in detail.

1) Let j ← 1, A1 ← {A}, V ← V1 ← {c(P )}, E ← ∅.
2) While it is possible to divide all the areas in Aj into

4 non-empty equal square sub-areas:
a) Initialize Aj+1 ← ∅, Vj+1 ← ∅, Ej ← ∅.
b) For every A′ ∈ Aj :

i) Let P ′ be the points which are within area A′.
ii) Divide A′ into 4 equal square sub-areas

A′
1, A

′
2, A

′
3, A

′
4. Let P ′

1, P
′
2, P

′
3, P

′
4 be the

points sets in these areas, respectively.
iii) Add the centroids c(P ′

1), c(P ′
1), c(P ′

1), and
c(P ′

1) to Vj+1.
iv) Add the edges (c(P ′), c(P ′

1)), (c(P
′), c(P ′

2)),
(c(P ′), c(P ′

3)), and (c(P ′), c(P ′
4)) to Ej .

v) Add the areas A′
1, A′

2, A′
3, and A′

4 to Aj+1.
c) Update V ← V ∪Vj+1, E ← E∪Ej , and increase

j ← j + 1.
3) Initialize Vj+1 ← ∅ and Ej ← ∅.
4) For every A′ ∈ Aj :

a) Let P ′ be the points inside A′.
b) Add all the edges {(c(P ′), p) : p ∈ P ′} to Ej

and P ′ to Vj+1.
5) Update V ← V ∪ Vj+1 and E ← E ∪ Ej .

For example of an execution, see Fig. 4.
Let k be the last value of j in the above scheme. Clearly,

the obtained T = (V,E) is a k-centroid network. We are now
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(a) The single centroid in V1. (b) The centroids V2.

(c) The centroids V3. (d) The 3-centroid network (without
links to the points).

Fig. 4. An example of the algorithm execution, showing the construction
of a 3-centroid network (the links to the points in the last layer are omitted
for clarity). The triangles represent the centroids in all three layers.

ready to define the data collection tree TS = (S ∪ {r}, ES).
The general idea is to match between the virtual nodes in
V and the sensor nodes S. For every centroid c ∈ V ,
let Pc be the points that produced c, and let Sc be the
sensor nodes that correspond to these points. Then we choose
sc ∈ Sc to be the sensor node which is closest4 to c, i.e.
d(sc) = mins∈Sc d(s, c). Note that we might not have a tree
yet, as it is possible that there are cycles and self-loops. These
are easily removed by running a breadth-first search in the
obtained graph, starting with the root (the node closest to the
centroid of all the sensors). The resulting breadth-first tree is
TS .

In order to estimate the efficiency of the constructed data
collection tree TS we will use the following theorems.

Theorem 5.3 ([40]): The sum of the of edges of an MST
in two (three) dimensional unit size square (cube) for random
uniform points is Ω(n1/2) (Ω(n2/3)).

Theorem 5.4 ([33], Theorem 2.2): The sum of the squares
of edges of an MST in two (three) dimensional unit size
square (cube) for random uniform points is Ω(1) (Ω(n1/3)).

We claim the following.
Theorem 5.5: For the data collection tree TS it holds that

H(TS) = O(log n), E(TS) is O(log n) times the optimal,
and D(TS) is O(1) times the optimal.

Proof: Suppose we run the scheme of constructing T

4The distance between a sensor node and a point is the Euclidean distance
between the location of the sensor node and the coordinates of the point in
the Euclidean plane.

until j = h + 1, h + 1 ≤ k. In other words we perform
step 2 of the scheme h − 1 times and then proceed to step
3. We obtain the h+1-centroid network. Denote the sum of
squares of lengths of edges in Eh by

∑[2]
h and the sum of

squares of lengths of the edges in E \ Eh by
∑[2]

c . Denote
the sum of lengths of edges in Eh by

∑
h and the sum of

squares of lengths of the edges in E \Eh by
∑

c. Obviously,
E(TS) =

∑[2]
h +

∑[2]
c and D(TS) =

∑
h +

∑
c. After h− 1

times of A partition, Ah has 4h−1 square sub-areas, each
of which has diagonal of length

√
2

|Ah| =
√

2
4h−1 . Since,

each A′ ∈ Ah has one centroid (and the total amount of
centroids in Ah is |Vh| = |Ah| = 4h−1), then

∑[2]
h ≤(√

2
|Ah|

)2

(n− |Vh|) ≤ 2
4h−1

(
n− 4h−1

)
= O

(
n

4h−1

)
,

and
∑

t ≤
√

2
|Ah| (n− |Vh|) ≤

√
2

4h−1

(
n− 4h−1

)
=

O
(

n√
4h−1

)
. Suppose the sensors are located on the ver-

tex points of unit size grid, with grid cells of size
1√
n−1

× 1√
n−1

. By applying the scheme of construc-
tion T for this case of sensors arrangement, it is easy
to see that

∑[2]
c = O (log |Ah|) = O

(
log 4h−1

)
and∑

c = O
(√
|Ah|

)
= O

(√
4h−1

)
. Thus, for the case of

grid, E(TS) =
∑[2]

h +
∑[2]

c = O
(

n
4h−1 + log 4h−1

)
and

D(TS) =
∑

h +
∑

c = O
(

n√
4h−1

+
√
4h−1

)
. Returning

to the stochastic case we observe that the sums
∑[2]

c and∑
c are maximal, if in each A′ ∈ Ah there is a sen-

sor. This implies that each A′ ∈ Ai, i = 1, . . . , h −
1, is not empty. Therefore,

∑[2]
c and

∑
c are equal to

those on the grid up to a constant, even if we choose
the centroids arbitrary within their corresponding sub-area.
Thus, E(TS) =

∑[2]
h +

∑[2]
c = O

(
n

4h−1 + log 4h−1
)

and

D(TS) =
∑

h +
∑

c = O
(

n√
4h−1

+
√
4h−1

)
. For h − 1 =

log4 n, E(TS) = O (log n) and D(TS) = O (
√
n). Note

that for the random uniform distribution of sensors in A,
the algorithm for constructing T stops when the area of
square in Ah is at most O

(
logn
n

)
[38]. Since |Ah| ≥ n

logn ,

it follows that k = O
(
log4

n
logn

)
= O (log n). Thus,

E(TS) = O (log n) and D(TS) = O (
√
n).

Following Theorems 5.3 and 5.4, we conclude that E(TS)
is O(log n) times the optimal, and D(TS) is O(1) times the
optimal solution.

Suppose that the sensors are uniformly distributed within a
unit cube. According to the scheme, similar to the above, we
can build the k-centroid network, k = O (log n). Following
the assumptions and arguments similar to the above, it can

be shown, that
∑[2]

h = O

(
n

3
√

(8h−1)2

)
,
∑

h = O
(

n
3√
8h−1

)
,

and
∑[2]

c = O
(

3
√
8h−1

)
,
∑

c = O

(
3

√
(8h−1)

2

)
. Thus,

E(TS) =
∑[2]

h +
∑[2]

c = O

(
n

3
√

(8h−1)2
+

3
√
8h−1

)
and
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D(TS) =
∑

h +
∑

c = O

(
n

3√
8h−1

+
3

√
(8h−1)

2

)
. For

h− 1 = log8 n, E(TS) = O ( 3
√
n) and D(TS) = O

(
3
√
n2

)
.

Using the results of Theorems 5.3 and 5.4, we obtain that for
three-dimensional case E(TS) and D(TS) are O(1) times the
optimal solution.

The distributed implementation of the k-centroid network
is quite straightforward once we established connectivity
between the nodes and chose the leader (the root of the
tree). In order to establish connectivity we can use 2 dif-
ferent approaches. The first, described in Dolev et al. [12]
forms a temporary underlying topology in O(n) time using
O(n3) message. The second (better) approach is given by
Halldórsson and Mitra [17] that show how to do this in
O(poly(log β, log n)), where β is the ratio between the
longest and shortest distances among nodes. After the topol-
ogy is established, we can use leader-election algorithm by
Awerbuch [2] that shows how to find a leader in a distributed
fashion in a network with n nodes in O(n) time using
O(n log n) messages. Next, using the location of every node,
the root of k-centroid network can be determined and the
construction of the k-centroid network is started in recursive
fashion that takes O(k) time and O(n) messages assuming
omnidirectional communication.

VI. SIMULATION RESULTS

In this section we show some simulation results of the
k-centroid network constructed for the multi-hop random
scenario as described in Section V. As we show, the sim-
ulation results fully support and even slightly outperform
our theoretical analysis. In what follows we compare the
k-centroid network topology (KNETW) with the optimal
one, in terms of both energy consumption and total link
distance, which is achieved by using the minimum spanning
tree (MST) as the delivery tree. The optimality of MST is
straightforward in the case of total distances, whereas for
energy consumption it was shown to be the best possible in
[35].

In our experiments we have randomly and uniformly dis-
tributed n sensor nodes in a unit square, with the network size
n ranging from 50 to 950 in steps of 50. We have computed
the total distance of the communication links (Fig. 5), the
energy consumption (Fig. 6), and the hop-diameter (Fig. 7)
of both topologies (KNETW and MST). The results below
are an average of 5 tries for every network size n.

In terms of total distance (Fig. 5), we (KNETW) are
consistently within a factor of 2.2-2.5 from the best possible
(MST), which matches the theoretical result of the O(1)
approximation ratio.

Interestingly, the energy consumption of our scheme
(Fig. 6) slightly outperforms the projected theoretical bound
of O(log n), with the ratio rising from 3 − 4 for smaller
networks and up to 7 for larger ones with n ≥ 800.

Finally, the hop-diameter of our scheme is very close to
the optimum (which is obviously 1), being only 4 for a 950-
node WSN. We have used a logarithmic scale in (Fig. 7) to

Fig. 5. Total link distances, D(·).

Fig. 6. Total energy consumption (sum of square of distances), E(·).

Fig. 7. Max hop-distance from every sensor to the root, H(·).

compare it to the one produced by MST, which is 10 − 15
times greater than KNETW for small networks (n from 50
to 250), and as high as 30 times greater for larger ones (n ≥
750).

VII. CONCLUSIONS

In this paper we developed various data collection topolo-
gies that were based on the location theory notion of centroids
and the graph theory notion of balance nodes. We have
shown that a centroids based hierarchy provides good approx-
imation factor solutions for energy, transport capacity, and
hop-diameter measures, in 2D, and performs asymptotically
optimal in 3D for random sensors locations. For arbitrary
sensors locations we proved that not much could be done
with respect to the energy issue; however we were able
to provide a logarithmic height construction that provides
logarithmic approximation of the transport capacity objective.
Our simulation results verify our theoretical findings and,
in fact, suggest that a possible tighter analysis for two
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dimensional space may exist. It would also be interesting
to investigate the construction, where one of the objectives
is an average hop-count between the nodes in the obtained
network.
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