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Abstract

A wireless ad-hoc network consists from a collection of transceivers positioned in the plane.
Each transceiver is equipped with a limited battery charge. The battery charge is reduced after
each transmission, depending on the transmission distance. One of the major problems in wire-
less network design is to route network traffic efficiently, so as to maximize the network lifetime,
i.e., the number of successful transmission rounds. In this paper we consider Rooted Maximum

Lifetime Broadcast/Convergecast problems in wireless settings. The instance consists of a di-
rected graph G = (V,E) with edge-weights {w(e) : e ∈ E}, node capacities {b(v) : v ∈ V }, and
a root r. The goal is to find a maximum size collection {T1, . . . , Tk} of Broadcast/Convergecast
trees rooted at r so that

∑k
i=1 w(δTi(v)) ≤ b(v), where δT (v) is the set of edges leaving v in T .

In the Single Topology version all the Broadcast/Convergecast trees Ti are identical. We present
constant ratio approximation algorithms for various broadcast and convergecast problems, im-
proving the previously best known approximation Ω(b1/ log nc) by [9]. We also consider a more
general Rooted Maximum Lifetime Mixedcast problem, where we are also given γ ≥ 0, and the
goal is to find the maximum integer k so that k Broadcast and γk Convergecast rounds can be
performed. We also consider the model with partial level aggregation.

Index terms: Minimal energy control, Optimization methods, Ad-hoc networks, Low Power
Algorithms and Protocols, Sensor networks.

1 Introduction

Wireless ad-hoc networks received a lot of attention in recent years due to massive use in a large
variety of domains, from life threatening situations, such as battlefield or rescue operations, to
more civil applications, like environmental data gathering for forecast prediction. The network is
composed of nodes located in the plane, communicating by radio. A transmission between two
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nodes is possible if the receiver is within the transmission range of the transmitter. The underlying
physical topology of the network depends on the distribution of the nodes as well as the transmission
power assignment of each node. Since the nodes have only a limited initial power charge, energy
efficiency becomes a crucial factor in wireless networks design.

1.1 The model

The transmission range of node v is determined by the power p(v) assigned to that node. Let
w(v, u) denote the minimum transmission power at v so that u can receive transmissions from v.
Thus u receives transmissions from v if p(v) ≥ w(v, u). It is customary to assume that the minimal
transmission power required to transmit to distance d is dφ, where the distance-power gradient φ

is usually taken to be between 2 and 4 (see [24]). This implies w(v, u) = w(u, v) = d(u, v)φ, where
d(v, u) is the Euclidean distance between v and u. We note however that our algorithms do not
use this assumption, and apply for arbitrary (non-negative) transmission powers w(v, u).

There are two possible models: symmetric and asymmetric. In the symmetric model, also
referred to as the undirected model, there is an undirected communication link between two nodes
v, u ∈ V , if p(v) ≥ w(v, u) and p(u) ≥ w(u, v), that is if v and u can reach each other. The
asymmetric variant allows directed (one way) communication links between two nodes. Krumke et
al. [18] argued that the asymmetric version is harder than the symmetric one. This paper addresses
the asymmetric model.

Ramanathan and Hain [26] initiated the formal study of controlling the network topology by
adjusting the transmission range of the nodes. Increasing the transmission range allows more distant
nodes to receive transmissions but leads to faster battery exhaustion, which results in a shorter
network lifetime. We are interested in maximizing the network lifetime under two basic transmission
protocols – data broadcasting and data gathering (or convergecast). Broadcasting is a network task
when a source node r wishes to transmit a message to all the other nodes in the network. In
convergecast there is a destination node r, and all the other nodes wish to transmit a message to it.
Here we consider convergecast with aggregation, meaning that a node uses aggregation mechanism
to encode the data available at that node before forwarding it to the destination. We consider
the case of unidirectional antennas, hence the message is transmitted to every node separately.
The advantages to use unidirectional antennas over omnidirectional are reduced signal interference,
increase in system throughout and improved channel reuse, see [3, 4, 17].

Each node v, has an initial battery charge b(v). The battery charge decreases with each trans-
mission. The network lifetime is the number of transmission rounds performed from network
initialization to the first node transmission failure due to battery depletion.

We assume that all the nodes share the same frequency band, and time is divided into equal
size slots that are grouped into frames. Thus, the study is conducted in the context of TDMA,
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see [8]. In TDMA wireless ad-hoc networks, a transmission scenario is valid if and only if it satisfies
the following three conditions:

1. A node is not allowed to transmit and receive simultaneously.

2. A node cannot receive from more than one neighboring node at the same time.

3. A node receiving from a neighboring node should be spatially separated from any other
transmitter by at least some distance D.

However, if nodes use unique signature sequences (i.e., a joint TDMA/CDMA scheme), then the
second and third conditions may be dropped, and the first condition only characterizes a valid
transmission scenario. Thus, our MAC layer is based on TDMA scheduling [5, 7, 15], such that
collisions and interferences do not occur.

In this paper, the energy model that we are dealing with accounts for only the transmission
power (see [29]) since this can be a good approximation in the case of long-range techniques,
although the actual energy consumption is given by a fixed part (receiving power and the power
needed to keep the electric circuits on) plus the transmission power component. The authors
in [29] also mention the number of techniques for reducing reception cost by reducing the number
of packets received by, but not intended for, a node.

Many papers considered fractional version of the problem when splitting of data packets into
fractional portions is allowed. This versions admits an easy polynomial time algorithm via linear
programming, c.f., [2, 10, 14, 16, 23, 32]. As data packets are usually quite small, there are situations
where splitting of packets into fractional ones is neither desirable nor practical. We consider a model
where data packets are considered as units that cannot be split, i.e., when the packet flows are of
integral values only. This discrete version was introduced by Sahni and Park [25].

To summarize, our communication network works under the following conditions:

• The links between nodes are directed.

• The nodes use unidirectional antennas.

• TDMA scheduling scheme is applied.

• Data packets cannot be split.

• The cost for message receipt is negligible.

1.2 Formal definition of the problems

In many Network Design problems one seeks a subgraph H with prescribed properties that mini-
mizes/maximizes a certain objective function. Such problems are vastly studied in Combinatorial
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Optimization and Approximation Algorithms. Some known examples are Max-Flow, Min-Cost k-

Flow, Maximum b-Matching, Minimum Spanning/Steiner Tree, and many others. See, e.g., [27, 12].

Definition 1.1 An out-arborescence, or simply an arborescence, is a directed tree that has a path
from a root r to every node; an in-arborescence is a directed tree that has a path from every node
to r. For a node v of a graph H, let δH(v) denote the set of edges leaving v in H, and let δin

H (v)
denote the set of edges entering v in H.

Formally, we consider variants of the following problem, which is the “wireless” variant of the
classic arborescence packing problems. Recall that for an edge e = (u, v), w(e) is the transmission
power needed at u so that v can receive transmission from u.

Maximum Network Lifetime Broadcast
Instance: A directed graph G = (V, E) with edge-weights {w(e) : e ∈ E}, battery capacities
{b(v) : v ∈ V }, and a root r ∈ V .
Objective: Find a maximum size collection T = {T1, . . . , Tk} of k out-arborescences in G rooted at
r that satisfies the energy constraints

k∑

i=1

w(δTi(v)) ≤ b(v) for all v ∈ V (1)

Another two variants of the problem are:

• Maximum Network Lifetime Convergecast: here we seek a maximum size collection of
in-arborescences that are directed to r.

• Maximum Network Lifetime Mixedcast: here we are also given an integer γ ≥ 0, and
the goal is to find the maximum integer k so that k Broadcast and γk Convergecast rounds
can be performed.

A related problem is minimizing the battery capacity b so that for b(v) = b for all v ∈ V at least
k rounds of communications can be performed. Formally, this problem can be stated as follows:

Minimum Battery k-Broadcast
Instance: A directed graph G = (V, E) with edge-weights {w(e) : e ∈ E}, a root r ∈ V , and an
integer k.
Objective: Find a minimum battery capacity b so that if b(v) = b for all v ∈ V , then there exists a
collection T = {T1, . . . , Tk} of k arborescences in G rooted at r so that (1) holds.
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This problem also has the following two variants:

• Minimum Battery k-Convergecast: here we seek a collection of k in-arborescences, that
are directed to r.

• Minimum Battery k-Mixedcast: here we are also given an integer γ ≥ 0, and the goal is
to perform k Broadcast and γk Convergecast rounds.

More generally, we characterize the class of Maximum Network Lifetime problems as follows.
In these problems, every node v has a limited battery capacity b(v), and a transmission energy
w(v, u) to any other node u is known. In transmission round i, we choose a subnetwork Hi with
given properties, and every node transmits one message to each one of its neighbors in Hi; in
many applications, each Hi is an arborescence (see [9]). The goal is to maximize the lifetime of
the network, that is to find a maximum length feasible sequence H1,H2, . . . ,Hk of subnetworks;
feasibility means that every graph Hi satisfies the required properties, and that for every node
v the total transmission energy during all rounds is at most b(v). This is the Multiple Topology
version of the problem. In the Single Topology variant, all the networks Hi are identical, c.f., [9] for
more details. Figure 1 shows the difference in obtained solution for single and multiple topology
variants in the case of broadcast. We note that in [21] was given a constant ratio approximation
algorithm for the case when each Hi should be an st-path, for given two nodes s, t ∈ V . Here
we consider Rooted Maximum Network Lifetime problems, when each Hi is an arborescence
rooted from/to the root r.

In a more general setting, we might also be given a cost-function c on the edges, which can
be distinct from the weight-function w, and an integer k, and wish to find a feasible sequence
H1,H2, . . . ,Hk of k communication subnetworks while minimizing their total cost

∑k
i=1 c(Hi). We

call this variant the Min-Cost Network k-Lifetime problem, and Min-Cost Rooted Network
k-Lifetime problem in the Broadcast/Convergecast/Mixedcast cases.

While the Convergecast problems considered in this paper assume aggregation, we also deal
with the problem Partial Level Aggregation Convergecast where we want to find a tree T

of G directed towards the root node r that satisfies the energy constraints
∑

w(δT (v)) ≤ b(v)
level(v)

for all v ∈ V , where level(v) is the length of the longest path between v and its descendant in T .
This problem arises in the context of sensor networks consisting of a number of sensors distributed
randomly in a geographical region. A sensor v is said to be correlated to a set of sensors K ⊂ V

if the data measured by v can be inferred/computed from the data measured by the sensors of K

within an acceptable error bound as defined by the application, see [13]. Partial Level Aggregation
Convergecast problem corresponds to the case where the information gathering process (towards
the root) defines correlated sensors located at the same level of the convergecast tree and having the
same parent (normally, this corresponds to the same proximity geographic area). In this way, the
root of the tree needs to know only one piece of information transmitted by one of the correlated
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since r can be activated only twice.

r

b) Single Topology Broadcast Tree. Lifetime=2,

r

a) G=(V,E), b(v) = 6, w(e) =1.

c) Single Topology Optimal Broadcast Tree. Lifetime=3.

r

T’’T’

d) Multiple Topology Optimal Broadast Trees: T’ and T’’

r r

    Lifetime=4, by running twice T’ and twice T’’.

Figure 1: (a) Initial input network G = (V, E), with all batteries equal to 6 and weight of each
edge is 1; (b) some broadcast tree having lifetime of 2 since for every activation root r spends 3
units of energy; (c) optimal (not unique) broadcast tree having lifetime 3; (d) multiple broadcast
trees may lead to an increase in lifetime (in this case, 4), although the lifetime of each one of them
is only 3, since every tree T ′ and T ′′ has a vertex with 2 outcoming edges.
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sensors.

1.3 Previous work

The authors in [22] show that for Broadcast, the problem is NP-Hard in the case of Single
Source/Single Topology and has a polynomial solution for fractional version in the case of Single
Source/Multiple Topology. They also show that it is NP-Hard in both of these cases for multicast.
Segal [28] improved the running time of the solution for the Broadcast protocol and also showed
an optimal polynomial time algorithm for the integral version of Single Topology Convergecast;
the latter algorithm simply finds, using binary search, the largest integer k so that the graph
G − {(u, v) ∈ E : w(u, v) > b(v)/k} contains an arborescence directed to the root. For Multiple
Topology Convergecast fractional version Kalpakis et al. [16] does have a polynomial solution in
O(n15 log n) time. To counter the slowness of the algorithm, Stanford and Tongngam [30] proposed
a (1−ε)-approximation in O(n3 1

ε log1+ε n) time based on the algorithm of Garg and Könemann [11]
for packing linear programs. Elkin et al. [9] gave an Ω(b1/ log nc)-approximation for the discrete
version of Multiple Topology Convergecast problem. Regarding the case without aggregation, some
partial results were given in [1], [19] and [31]. The paper [31] considered the conditional aggregation
where data from one node can be compressed in the presence of data from other nodes. Liang and
Liu [19] present a number of heuristics for different types of aggregation problems. Buragohain et
al. [1] proved the hardness of optimal routing tree problem for non-aggregate queries.

1.4 Our contributions

Let k∗ denote the optimal value of a Maximum Network Lifetime problem at hand. We observe
that the Broadcast version is APX-hard even for unit weights; (however, Convergcast version with
unit weights is polynomially solvable). In fact, for Broadcast, even determining whether k∗ ≥ 1
is NP-complete [9]. Hence it seems that an approximation of the type bk∗/ρc is the best one can
expect. We provide polynomial time algorithms with constant ρ for Rooted Maximum Network

Lifetime Broadcast/Convergecast/Mixedcast; in particular, this improves the ratio ρ = O(log n)
established in [9] for the Broadcast case. Our main result can be stated as follows.

Theorem 1.1 The Rooted Maximum Network Lifetime problem admits a polynomial time algorithm
that finds a solution of value ` ≥ bk∗/β2c where:

• In the Single Topology case: β = 1 for Convergecast, β = 5 for Broadcast and β = 6 for
Mixedcast.

• In the Multiple Topology case: β = 4 for Convergecast, β = 6 for Broadcast, and β = 10 for
Mixedcast.
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Furthermore, for Min-Cost Rooted Network Lifetime the algorithm computes ` ≥ bk/β2c arbores-
cences so that their total cost is at most the total cost of k cost-optimal arborescences.

Recall that for Broadcast, even checking whether k∗ ≥ 1 is NP-complete [9], and thus an approx-
imation of the form bk∗/ρc is the best one can expect. However, as Single Topology Convergecast is
in P [28], for Multiple Topology Convergecast checking whether k∗ ≥ 1 can be done in polynomial
time. This implies:

Corollary 1.2 Multiple Topology version of Rooted Maximum Lifetime Convergecast problem admits
a 1/31-approximation algorithm.

Proof: We return the better solution among two algorithms. The first algorithm is as in Theo-
rem 1.1 that returns a solution of size ` ≥ bk∗/16c. The second algorithm is the one that checks
whether k∗ ≥ 1; if so, it returns a single feasible arborescence, otherwise it declares that no feasible
arborescence exists (namely, returns T = ∅).

Now, if k∗ = 0 then the returned solution is optimal. If 1 ≤ k∗ ≤ 31, then we return a single
arborescence. Finally, if k∗ ≥ 32, then we return at least ` ≥ bk∗/16c arborescences. Following
this, the worst case is for k∗ = 31 where we return a single arborescence. Thus, the approximation
ratio is 1/31. ¤

The following table summarizes our ratios for variants of Rooted Maximum Network Lifetime

problem.

Single Topology Multiple Topology

Convergecast Broadcast Mixedcast Convergecast Broadcast Mixedcast

k∗ bk∗/25c bk∗/36c max{bk∗/16c, 1} bk∗/36c bk∗/100c

Table 1: Summary of the ratios for variants of Rooted Maximum Network Lifetime problem. Except
the polynomial solvability of the Single Topology Convergecast that has been proved in [28], the
other ratios are proved in this paper.

Theorem 1.3 Minimum Battery Rooted k-Broadcast/Convergecast/Mixedcast problem admits a β-
approximation algorithm, where β is as in Theorem 1.1.

For Partial Level Aggregation Convergecast we gave a number of optimal and approximate solu-
tions and discuss the possibilities to extend them to more general case.

This paper is organized as follows. In Section 2 we briefly survey the results from [20] for
the Weighted Degree Constrained Network Design problems, which are the basis for our algorithms.
Theorems 1.1 and 1.3 are proved in Section 3. In Section 4 we consider the model with partial level
aggregation mechanism. Finally, some conclusions are presented in Section 5.
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2 Weighted Degree Constrained Network Design

In what follows we present a number of observations from a graph theory that lie in the basis of
our algorithms. Our proof of Theorems 1.1 and 1.3 is based on a recent result due to Nutov [20]
for directed Weighted Degree Constrained Network Design problems with intersecting supermodular
demands. The purpose of this section is to present this result (see Theorem 2.1 at the end of this
section). In Degree Constrained Network Design problems (without weights) one seeks a subgraph
H of a given graph G that satisfies both prescribed connectivity requirements and degree con-
straints. One such type of problems are the Matching/Edge-Cover problems, which are solvable in
polynomial time, c.f., [27]. For other degree constrained problems, checking whether there exists a
feasible solution is NP-complete. Hence one considers approximation algorithms when the degree
constraints are relaxed.

The connectivity requirements can be specified by a set function f on V , as follows.

Definition 2.1 For an edge set of a graph H and node set S let δH(S) (δin
H (S)) denote the set of

edges in H leaving (entering) S. Given a set-function f on subsets of V and a graph H on V , we
say that H is f -connected if

|δin
H (S)| ≥ f(S) for all S ⊆ V. (2)

Several types of f are considered in the literature, among them the following known one:

Definition 2.2 A set function f on V is intersecting supermodular if any X,Y ⊆ V with X∩Y 6= ∅
satisfy the supermodularity condition

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ) . (3)

Nutov [20] considered network design problems with weighted-degree constraints. The weighted
degree of a node v in a graph H with edge-weights w(e) is w(δH(v)) =

∑
e∈δH(v) w(e).

Directed Weighted Degree Constrained Network (DWDCN)
Instance: A directed graph G = (V, E) with edge-weights {w(e) : e ∈ E}, a set-function f on V ,
and degree bounds {b(v) : v ∈ V }.
Objective: Find an f -connected subgraph H of G that satisfies the weighted degree constraints

w(δH(v)) ≤ b(v) for all v ∈ V (4)

The function f is usually not given explicitly, but is assumed to admit an evaluation oracle (or
other relevant oracles). Since for many functions f , DWDCN is NP-complete, one considers ap-
proximation algorithms. A β-approximation algorithm for DWDCN either computes an f -connected
subgraph H of G that satisfies w(δH(v)) ≤ β · b(v) for all v ∈ V , or correctly determines that the
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problem has no feasible solution. Note that even if the problem does not have a feasible solution,
the algorithm may still return a subgraph that violates the degree constraints (4) by a factor of β.

For an edge set I, let x(I) =
∑

e∈I x(e). A natural LP-relaxation for DWDCN is obtained by
considering the following polytope Pf :

x(δin
G (S)) ≥ f(S) for all S ⊂ V (Cut Constraints)∑

e∈δG(v)

x(e)w(e) ≤ b(v) for all v ∈ V (Weighted Degree Constraints)

0 ≤ x(e) ≤ 1 for all e ∈ E

Similarly, we may consider the version of DWDCN where the Cut Constraints are on edges
leaving S, namely when we require x(δG(S)) ≥ f(S) for all S ⊂ V . In the min-cost version of the
problem, we are also given edge-costs {c(e) : e ∈ E} and require that H has low cost. In this case,
the LP-relaxation seeks to minimize c · x over the polytope Pf .

Let us fix parameters α and β as follows:

• Single Topology Convergecast, or DWDCN with Cut Constraints on the edges entering S and
0, 1-valued f :
α = β = 1.

• Single Topology Broadcast, or DWDCN with Cut Constraints on the edges leaving S and
0, 1-valued f :
α = 2 and β = 5.

• Multiple Topology Convergecast, or DWDCN with Cut Constraints on the edges entering S:
α = 1 and β = 4.

• Multiple Topology Broadcast, or DWDCN with Cut Constraints on the edges leaving S:
α = 3 and β = 6.

Theorem 2.1 ([20]) DWDCN with intersecting supermodular f admits a polynomial time algo-
rithm that computes an f-connected graph H so that the weighted degree of every v ∈ H is
at most β · b(v). Furthermore, in the min-cost version of the problem, c(H) ≤ α · τ∗ where
τ∗ = min{c · x : x ∈ Pf}.

3 Proof of Theorems 1.1 and 1.3

Now we are ready to prove Theorems 1.1 and 1.3 based on Theorem 2.1. We start with some
definitions. A graph H is k-edge-outconnected from r if it has k-edge-disjoint paths from r to any
other node; H is k-edge-inconnected from r if it has k-edge-disjoint paths from every node to r.

10



The DWDCN problem includes as a special case the Weighted Degree Constrained k-Outconnected

Subgraph problem, by setting f(S) = k for all ∅ 6= S ⊆ V \ {r}, and f(S) = 0 otherwise. For
k = 1 we get the Weighted Degree Constrained Arborescence problem. Note that our problem are
equivalent to the problem of packing a maximum number k∗ of edge-disjoint arborescences rooted
at r such that their union H satisfies (4). By Edmond’s Theorem [6], this is equivalent to requiring
that H is k∗-edge-outconnected from r (or k∗-edge in-connected to r, in the case of Convergecast)
and satisfies (4). This gives the following problem:

Weighted-Degree Constrained Maximum k-Outconnected Subgraph
Instance: A directed graph G = (V,E) with edge-weights {w(e) : e ∈ E}, degree bounds
{b(v) : v ∈ V }, and a root r ∈ V .
Objective: Find a k-edge-outconnected from r spanning subgraph H of G that satisfies the
weighted degree constraints (4) so that k is maximized.

In the Weighted-Degree Constrained Maximum k-Inconnected Subgraph problem, we
require from H to be k-edge-inconnected to r.

A natural LP-relaxation for the Weighted-Degree Constrained Maximum k-Outconnected Sub-

graph problem seeks to find the maximum integer k so that the following polytope Pk is non-empty:

x(δin
G (S)) ≥ k for all ∅ 6= S ⊆ V \ {r} (Cut Constraints)∑

e∈δG(v)

x(e)w(e) ≤ b(v) for all v ∈ V (Weighted Degree Constraints)

0 ≤ x(e) ≤ 1 for all e ∈ E

Namely, here we have Pk = Pf for

f(S) =

{
k if ∅ 6= S ⊆ V \ {r}
0 otherwise

In the Convergecast case the Cut Constraints are on edges leaving S, namely we have x(δG(S)) ≥
f(S) for all S ⊂ V , with f as defined above. In both cases, the function f is intersecting super-
modular, hence Theorem 2.1 applies.

The Weighted-Degree Constrained Maximum k-Outconnected/k-Inconnected Subgraph problem is
related to our problem via binary search. Note that the maximum number k∗ of arborescences is
in the range 0, . . . , nq where

q = max
v∈V

b(v)
min{w(e) : e ∈ δG(v), w(e) > 0} .

Indeed, if G contains an arborescence of weight 0, then k∗ is infinite. Otherwise, every arborescence
contains a node v that uses an edge e ∈ δG(v) with w(e) > 0. As there are n nodes, this implies
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the bound k∗ ≤ nq. As an edge of G may be used several times, we add nq copies of each edge
of G. Equivalently, we may assign to every edge capacity nq, and consider the corresponding
”capacitated” problems; this will give a polynomial algorithm, rather than a pseudo-polynomial
one. For simplicity of exposition, we will present the algorithm in terms of multigraphs, but it can
be easily adjusted to capacited graphs.

As has been mentioned, for the Convergecast case checking whether k∗ ≥ 1 can be done
in polynomial time [28]. Now we observe that Theorem 2.1 implies Theorem 1.3, as well as a
”pseudo-approximation” algorithm for Weighted-Degree Constrained Maximum k-Outconnected/k-

Inconnected Subgraph:

Corollary 3.1 Weighted-Degree Constrained Maximum k-Outconnected/k-Inconnected Subgraph prob-
lems admit a polynomial time algorithm that either correctly establishes that the polytope Pk is
empty, or finds a k-outconnected subgraph H that violates the energy constraints by a factor at
most β, namely ∑

e∈δH(v)

w(e) ≤ β · b(v) for all v ∈ V . (5)

The above corollary immediately implies Theorem 1.3. We show how to derive from it also
Theorem 1.1. For Broadcast, the algorithm from Theorem 1.1 is as follows:

1. Set b′(v) ← b(v)/β for all v ∈ V , where β is as in Corollary 3.1.

2. Find the maximum integer ` so that for bounds b′(v) the algorithm as in Corollary 3.1 returns
an `-outconnected from r spanning subgraph H of G so that

∑
e∈δH(v) w(e) ≤ β · b′(v) for all

v ∈ V .

In the Convergecast case H is `-inconnected to r. In the Mixedcast case H is the union of an
`-inconnected to r and γ`-outconnected from r spanning subgraphs denoted by Hout and Hin, each
computed using the corresponding parameters βout and βin.

The maximum integer ` at Step 2 of the algorithm can be found using binary search in the
range 0 ≤ ` ≤ nq, so the running time is indeed polynomial. Also, the computed solution H is
feasible since

∑
e∈δH(v) w(e) ≤ β · b′(v) = b(v) for all v ∈ V .

For the approximation ratio, all we need to prove is that if the original instance admits a k-
outconnected/k-inconnected subgraph, then the new instance with weighted-degree bounds b(v)/β

admits an `-outconnected/`-inconnected spanning subgraph with ` = bk/β2c; in the min-cost
version we also need that H has low cost. This is achieved via the following lemma.

Lemma 3.2 Let Hk be a k-outconnected from r (k-inconnected to r) directed graph with costs c(e)
and weights w(e) on the edges. Then for any integer 0 ≤ ` ≤ k the graph Hk contains an `-
outconnected from r (an `-inconnected to r) spanning subgraph H` so that w(δH`

(v)) ≤ w(δHk
(v)) ·

(β`/k) for all v ∈ V . Furthermore, c(H`) ≤ c(Hk) · (α`/k) in the min-cost version.
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Proof: Consider the Weighted Degree Constrained `-Outconnected Subgraph (Weighted Degree Con-

strained `-Inconnected Subgraph) problem on Hk with degree bounds b(v) = w(δHk
(v)) · (`/k).

Clearly, x(e) = `/k for every e ∈ F is a feasible solution of cost c(Hk) · (`/k) to the LP-relaxation
min{c · x : x ∈ P`}. By Corollary 3.1, our algorithm computes a subgraph H` as required. ¤

Substituting ` = bk/β2c in Lemma 3.2 and observing that α · bk/β2c/k ≤ 1 in all cases, we
obtain:

Corollary 3.3 Let H be a k-outconnected from r (k-inconnected to r) directed graph with edge
weights w(e). Then H contains a subgraph H ′ so that H ′ is bk/β2c-outconnected from r (bk/β2c-
inconnected to r), c(H ′) ≤ c(H), and w(δH′(v)) ≤ w(δH(v))/β for all v ∈ V .

Except the Mixedcast part, Theorem 1.1 is easily deduced from Corollaries 3.1 and 3.3. For
Mixedcast, note that β = βout + βin, where βout and βin are the parameters in Theorem 1.1 for
Broadcast and Convergecast, respectively. From Lemma 3.2, we obtain that if Hk is k-outconnected
from r and γk-inconnected to r, then for any ` ≤ k, Hk contains two spanning subgraphs: Hout

that is `-outconnected from r and Hin that is γ`-inconnected to r satisfying:

w(δHout(v)) + w(δHin(v)) ≤ w(δH(v)) · βout · (`/k) + w(δH(v)) · βin · (γ`/γk)

= w(δH(v)) · (`/k) · (βout + βin) = w(δH(v)) · (β`/k) .

Then, similarly to Corollary 3.3, we deduce that if H is k-outconnected from r and γk-inconnected
to r, then H contains a subgraph H ′ so that H ′ is bk/β2c-outconnected from r and bγk/β2c-
inconnected to r, c(H ′) ≤ c(H), and w(δH′(v)) ≤ w(δH(v))/β for all v ∈ V .

4 Partial Level Aggregation Convergecast

This section is devoted to the partial level aggregation convergecast problem that rises in the context
of correlated sensors. In the problem of Partial Level Aggregation Convergecast we want to find a
tree T of G directed towards the root node r that satisfies the energy constraints

∑
w(δT (v)) ≤

b(v)
level(v) for all v ∈ V , where level(v) is the length of the longest path between v and its descendant
in T . We consider the following cases.

• Uniform initial batteries. In this case, we note that the optimal solution is achieved by
the tree of minimal depth (in regard to tree’s root). We can find such tree by choosing every
vertex to serve as the root, building the Breadth First Search tree starting at the chosen
vertex, and picking up the tree of minimal depth. The total time complexity of the proposed
algorithm is O(|V |(|V |+ |E|)). Notice, that the problem becomes NP-complete when we are
aiming to find the tree of maximal depth (HAMILTONIAN PATH).

• Arbitrary initial batteries. The simplest way to do is to use the above mentioned algorithm
and to obtain Bmax/Bmin approximate solution, where Bmax = maxv∈V b(v) and Bmin =
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minv∈V b(v). We mention that for the case of complete graph, the optimal solution is the
star, rooted at the node with minimal battery charge.

We can slightly change the definition of the problem in order to introduce the notion of weighted
edges. To reflect this change, we transform the energy constraint to be

∑
w(δT (v)) ≤ b(v)

w(e1) + w(e2) + . . . + w(eh)
,

where w(ei) is the weight of the edge ei located on the most energy consumed path between v

and its descendant in T . For arbitrary initial batteries and arbitrary edge weights we will use the
construction based on Hamiltonian circuit and presented at Elkin et al. [9] where G is the complete
graph. The authors at [9] have shown how to construct a spanning tree T of G that has a bounded
hop-diameter of O(n/ρ + log ρ) with w(e∗T ) = O(ρ2w(e∗)), where e∗T and e∗ are the longest edges
in T and the MST of G, respectively. The tightness of the tradeoff has been also established in [9].
Following this, the best approximation factor that can be given for this problem is Ω(n) which is
achieved by ρ = 1.

5 Conclusions

In this paper we consider a number of broadcast and convergecast problems in wireless settings
under the criterion of maximizing the lifetime of the underlying wireless backbone. For unidi-
rectional antennas, we present constant factor approximate solutions improving previously known
results as well as extending them and dealing with different aggregation cases. One of the main
open questions is obtaining a non-trivial approximation solutions for the case of omnidirectional
antennas.
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