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ABSTRACT: In this paper we consider a problem of distance selection in the arrangement of

hyperplanes induced byn given points. Given a set ofn points ind-dimensional space and a

numberk, 1 ≤ k ≤
(

n

d

)

, determine the hyperplane that is spanned byd points and at distance

ranked byk from the origin. For the planar case we present anO(n log2
n) runtime algorithm

using parametric search partly different from the usual approach [21]. We establish a connection

between this problem in3-d and the well-known3SUM problem using an auxiliary problem of

counting the number of vertices in the arrangement ofn planes that lie between two sheets

of a hyperboloid. We show that the3-d problem is almost3SUM-hard and solve it by an

O(n2 log2
n) runtime algorithm. We generalize these results to thed-dimensional (d ≥ 4)

space and consider also a problem of enumerating distances.

Keywords: distance selection problem, parametric search, lower bound, counting

1 Introduction

In this paper we consider the following problem:

Hyperplane Distance Selection in R
d. Let S be a set ofn distinct points ind-
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dimensional space,d ≥ 2, and letF be the set of
(

n
d

)

hyperplanes, each defined

by ad-tuple of points. Letα1, α2, . . . , α(n
d)

be the sorted distances in increasing order

between hyperplanes ofH and the origin. For a given number1 ≤ k ≤
(

n
d

)

determine

a hyperplane inH that producesαk. (We assume, for simplicity,general position of

the points, so that (1) nod+1 points lie in the same hyperplane and (2) any hyperplane

that passes throughd points is not perpendicular to the hyperplanexd = 0.) Ford = 2

we call this problemline distance selection problem.

The planar version of the problem considered in our paper hasa military application.

Consider then input points serving as the military bases. Each pair of bases has a

communication connection. The intruder (the disk with the center at the origin) tries

either to disturb the normal communication between the bases (closestk connections

to his location) or to listen the information transmitted over these communications.

It is also known that any communication noise on the line connecting any two bases

leads to bad quality communication or even broken communication between these two

bases. Thus, the goal of intruder is to touch at leastk closest lines to its location.

This version of the problem continues a list of optimizationselection problems and

very close by its nature to the well-knownslope selection problem anddistance selec-

tion problem. The slope selection problem, where we are givenn points in the plane

and an integerk, and we want to find a line passing through two given points with kth

ranked slope, received a lot of attention during the past twodecades. Cole et al. [9]

gave anO(n log n) time solution, using the parametric searching of Megiddo [21].

Using the duality transform the problem is to find an intersection point between two

lines from a collection ofn non-vertical lines that has thek-th smallestx-coordinate.

The decision algorithm which counts the number of intersection points of lines inside

a given slab is based on the counting the number of inversionsin the permutation.

Another alternative approach which is based on randomization has been proposed by

Matoušek [18] and by Dillencourt et al. [10]. Brönnimann and Chazelle consider the

problem applying thecuttings technique. Katz and Sharir [17] usedexpanders and ob-

tained conceptually simpler than the other deterministic algorithmsO(n log n) time

solution.
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The solution to the distance selection problem, where we aregiven n points in

the plane and an integerk, and we want to find thek-th smallest distance between

a pair of given points, can be obtained using a parametric searching. The deci-

sion problem is to compute, for a given realr, the sumΣp∈S |Dr(p) ∩ (S − {p})|,
whereDr(p) is the closed disk of radiusr centered atp. Agarwal et al. [2] gave an

O(n
4
3 log

4
3 n) expected-time randomized algorithm for the decision problem, which

yields anO(n
4
3 log

8
3 n) expected-time algorithm for the distance selection problem.

Goodrich [15] derandomized this algorithm, at a cost of an additional polylogarithmic

factor in the runtime. Katz and Sharir [17] obtained an expander-basedO(n4/3 log2 n)-

time deterministic algorithm for this problem. By applyinga randomized approach

Chan [7] was able to obtain anO(n log n + n2/3k1/3 log5/3 n) expected time algo-

rithm for this problem.

The line distance selection problem is also closely relatedto the problem considered

by Efrat et al. [11] where a set ofn non-intersecting segments is given in the plane with

an integerk ≤ n and one wants to find the smallest disk intersectingk segments. They

[11] show how to solve this problem inO(nk log2 n) (resp.O(nk log2 n log n
k )) time

andO(nk) (resp. O(n log n)) space. Gupta et al. [16] presentO(log n + k log2 n)

time output-sensitive solution that findsk lines (among then input lines) that are

intersected by the query disk after preprocessing timeO(n2 log n).

We show that the decision version of the hyperplane distanceselection problem is

dual to the problem of determining whether the arrangement of n hyperplanes inRd

contains at most a given number of vertices lying between twosheets of a hyperboloid.

We begin with the line distance selection problem. We present an O(n log n) time

solution for the decision problem using the technique of Mount and Netanyahu[19].

For the optimization, we apply Megiddo’s [21] parametric search. However, since

our decision algorithm is not parallelizable, we had to find an algorithm that solves

a completely different problem, but is both parallelizableand enables to generate the

optimal solution when the parametric search technique is applied to it. We also apply

Cole’s technique for speeding up standard parametric searching [8] in order to produce

O(n log2 n) solution to the line distance selection problem.
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Unfortunately, the hyperplane distance selection problemin 3-dimensional space is

more difficult than its planar version. In contrary to the planar case it seems that the

technique of counting the number of inversions in the permutation cannot be gener-

alized. In fact, we prove that3-dimensional hyperplane distance selection problem

is almost3SUM-hard (see Section 3 for exact definition). In other words, there is

almost no hope to get a subquadratic solution for the3-dimensional case. In Section

3 we discuss this issue and generalize it to higher dimensions space by reducing a

problem which we calldSUM problem to thed-dimensional hyperplane distance se-

lection problem. We dedicate Section 4 to the problem of enumeratingk closest line

distances. Finally we conclude in Section 5.

2 Planar line distance selection

In this section we present anO(n log2 n) algorithm for the planar version of the line

distance selection problem. First we show how to obtainO(n log n) time algorithm

for the decision problem. In order to apply the Megiddo’s optimization scheme [21]

we have to parallelize our decision algorithm. However, themain part of our decision

algorithm is not parallelizable, so, as in [1], we come up with an auxiliary problem

whose parallel version will generate the optimal solution to our problem.

2.1 The decision algorithm

The decision version of the planar line distance selection problem can be formulated

as follows. Given a setS of n points in the plane, an integerk, 1 ≤ k ≤
(

n
2

)

and a

real valueR > 0, determine whether a diskDR centered at origin with radiusR is

intersected by at leastk lines passing through pairs of points inS.

We use the following dual transformation. The pointp ∈ R
2 with coordinates(a, b)

in the primal plane maps to the liney = ax− b in the dual plane. The liney = ax+ b

in the primal plane corresponds to the pointq with coordinates(a,−b) in the dual

plane. LetD∗
R be the image of the set of all lines intersecting diskDR. In the dual

plane the decision problem is stated as: Given a setS∗ of n lines in the plane, an
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FIG. 1. The shaded region isD∗

R.

integerk, 1 ≤ k ≤
(

n
2

)

and a real valueR > 0, determine whetherD∗
R contains at

leastk vertices of the arrangement of lines inS∗.

LEMMA 2.1

The regionD∗
R in the dual plane is bounded by two hyperbola branchesy2

R2 − x2 = 1.

PROOF. Consider a point(x∗, y∗) ∈ D∗
R, see Figure 1. It corresponds to the line

y = x∗x − y∗ in the primal plane. The distance between origin and this line is
|y∗|√

(x∗)2+1
. By definition ofD∗

R, |y∗|√
(x∗)2+1

≤ R. The proof follows.

Our strategy, thus, is to find the number of the vertices of thearrangement of lines

in S∗ in the hyperbolic regionD∗
R. Notice, that there might be lines that either inter-

sect one of the boundaries ofD∗
R twice or do not intersect any of them. We apply a

counting technique due to Mount and Netanyahu [19] (see also[20]). Their technique

works for a closed region with a connected boundary. The lines must satisfy (they

[20] have also considered the general pseudolines) the following boundary intersec-

tion properties:

1. Each line intersects the boundary of this region an even number of times.

2. The number of intersections between a line and the boundary is bounded above by

some constant, and
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3. The intersections of lines along the the region’s boundary can be cyclically sorted

in O(n log n) time.

Mount and Netanyahu [19] show that it is possible to compute the number of intersec-

tions between lines that occur within the region inO(n log n) time andO(n) space.

Since, in our case, it may happen that a line may either intersect a boundary only

once or not intersect it at all, we can find an axis-parallel rectangleD̄ that contains

all the intersection points and apply Mount and Netanyahu’salgorithm for the region

D̄ ∩ D∗
R. This bounding rectanglēD is defined by the rightmost, leftmost, highest

and lowest intersection points which can be computed inO(n log n) time using the

algorithm for the slope selection problem. Thus, we conclude by the theorem.

THEOREM 2.2

Given a setS of n points in the plane, an integerk, 1 ≤ k ≤
(

n
2

)

and a real value

R > 0, in O(n log n) time andO(n) space we can determine whether a diskDR

centered at origin with radiusR is intersected by at leastk lines passing through pairs

of points inS.

2.2 The optimization stage

Given a setS of n points in the plane, and integerk, 1 ≤ k ≤
(

n
2

)

we need to

determine the smallest radius̃R such that the diskDR̃ centered at origin is intersected

by at leastk lines passing through pairs of points inS. Our algorithm is based on

the parametric search optimization scheme [21]. LetTs denote the runtime of the

sequential decision algorithm, andTp, resp. P , the time and number of processors

of the parallel algorithm for the decision problem; then theoptimal solution can be

computed in sequential timeO(PTp + TsTp log P ) [21].

In order to apply the Megiddo optimization scheme we have to parallelize our deci-

sion algorithm. However, the counting algorithm of Mount and Netanyahu proceeds

incrementally using a stack, thus making the problem of fastparallelization very dif-

ficult. Fortunately, as in [1], we come up with an auxiliary problem whose parallel

version will generate the optimal solution to our problem.
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The auxiliary problem is described as follows. Assume we have a setS of n points

and a fixed radiusR. For a pointpi ∈ S outsideDR we build two tangent linesl1i , l
2
i

to DR passing throughpi. Let T be a set of such linesl1i , l
2
i . The cardinality ofT is

at most2n.

Theauxiliary problem is to find the sorted order of the slopes of lines inT . This

can be done in parallelO(log n) time usingO(n) processors.

We now want to apply (generically) this parallel algorithm for finding the opti-

mal radiusR̃. First we get an initial intervalI0 whereR̃ resides. Clearly,I0 =

[0, max1≤i≤n dist(O, pi)], pi ∈ S. Consider now a single step in the parallel sort (the

auxiliary problem). In this step we performO(n) slope comparisons, each compari-

son involving a pair of lines. For each such pair of lines we computecritical values

of R where the sorted order of lines can change. There are two cases: (a) the two

compared slopes are defined by the same point, and (b) the two compared slopes are

defined by the distinct points. In case (a) we have (at most) two critical values: when

one of the rays becomes horizontal (the slope is changing signs). For case (b) let one

such comparison involve the pointspi andpj. In order to resolve this comparison,

we must compute the slopes oflhi and lkj , h, k ∈ {1, 2} and sort them. Of course,

we do not knowR̃, so we again compute the constant number of critical values:two

values defined by the events when one of the lines becomes horizontal, third value is

defined when the lines coincide and the last value can be derived from the situation

when the lines do not coincide but remain parallel. Now we apply the decision algo-

rithm of the subsection above to perform a binary search overtheO(n) critical values

that were computed. Thus we find an intervalI ⊆ I0 whereR̃ resides, resolve all the

comparisons of this parallel stage, and proceed to the next parallel stage.

What does resolving mean here? If the crucial valueR̃ does not belong toI, then

we simply ignore it. Otherwise, the slope ordering of two lines is defined uniquely,

because the intervalI does not contain any critical value produced at this stage (except

maybe endpoints) The closed intervalI is always guaranteed to contaiñR but we need

to show that a comparison is made whereR = R̃.
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CLAIM 2.3

The slope order of the lines changes asR′ changes from values slightly smaller than

R̃ to values slightly larger thañR.

PROOF. The valueR̃ is defined by some line passing through two points ofpi, pj ∈ S.

One of the critical values obtained by comparison of slopes of the l1i , l
2
i , l

1
j , l

2
j is R̃.

SinceR̃ is a critical value for two lines, the slope order of these lines changes from

values slightly smaller thañR to values slightly larger thañR.

Note that at some stage the optimal solution will appear on the boundary of the interval

I computed at that stage (it could even appear on the boundary of I0). However, once

it appears, it will remain one of the endpoints of all subsequently computed intervals.

At the end, we run the decision algorithm for the left endpoint of the final interval. If

the answer is positive, then this endpoint isR̃, otherwiseR̃ is the right endpoint of the

final interval.

Plugging the sequential and parallel algorithm into a parametric search machinery

we obtain anO(n log3 n) time algorithm for the optimization problem. However,

we can apply Cole’s technique [8] in order to speed up Megiddo’s parametric search.

Since our parallel algorithm is based on sorting, we can use the sorting algorithm

based on AKS network [3] in order to shave one logarithm from the running time for

the optimization problem. Thus, we conclude by

THEOREM 2.4

The planar line distance problem can be solved inO(n log2 n) time usingO(n) space.

3 Lower bound for d ≥ 3

For simplicity we demonstrate a lower bound proof for the hyperplane distance se-

lection problem in the3-dimensional space and then show how to extend it to higher

dimensions. In fact we establish a lower bound for the decision version of the hyper-

plane distance problem.

Gajentaan and Overmars [14] defined3SUM-hard class of the problems. The main

characteristics of these problems is the existence ofO(n2) barrier in the complexity
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of these problems. Namely, the best algorithms for these problems take timeO(n2),

while no non-trivial lower bounds are known.

We cite the definitions and notations from [14].

DEFINITION 3.1

Given two problems PR1 and PR2 we say that PR1 isf(n)-solvable using PR2 iff

every instance of PR1 of sizen can be solved using a constant number of instances

of PR2 (of at most linear size) andO(f(n)) additional time. We denote this as PR1

<f(n) PR2.

LEMMA 3.2 ([14])

Let PR1<f(n) PR2. Letf(n) andg(n) be polynomials. If PR2 can be solved in

O(g(n)) time andf(n) = O(g(n)) then PR1 can be solved inO(g(n)) time. Hence,

if Ω(g(n)) is a lower bound for PR1 andf(n) = o(g(n)) thenΩ(g(n)) is also a lower

bound for PR2.

The base problem considered in [14] is the following

3SUM Problem: Given a setS of n integers, are therea, b, c ∈ S with a+ b+ c = 0?

DEFINITION 3.3

We call a problem PR 3SUM-hard if and only if 3SUM isf(n)-solvable using PR,

wheref(n) = o(n2).

Gajentaan and Overmars [14] have proved that the following problem is also 3SUM-

hard.

3SUM’ Problem: Given three sets of integersA, B andC of total sizeO(n), are there

a ∈ A, b ∈ B andc ∈ C with a + b = c.

We generalize the 3SUM-hardness definition to thedSUM-hardness definition.

dSUM Problem: Given a setS of n integers, are therex1, x2, . . . , xd ∈ S with

Σd
i=1xi = 0? Erickson [13] shows how to solve thedSUM Problem (d ≥ 2) in Td(n)

time, whereTd(n) = O(n
d
2 log n) for evend, andO(n

d+1

2 ) for odd values ofd.

DEFINITION 3.4

We call a problem PRdSUM-hard if and only ifdSUM is f(n)-solvable using PR,

wheref(n) = o(n
d
2 log n) for evend andf(n) = o(n

d+1

2 ) for oddd.
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Similarly to Erickson [12] definition we introduce the notion of almost hardness.

DEFINITION 3.5

Given two problems PR1 and PR2 of complexitiesT1(n) andT2(n) respectively, we

say that PR1 is almost PR2-hard ifT2(n) = O(T1(n) log n).

3.1 d = 3

Now we focus on the3-dimensional case. We apply the following dual transformation:

the pointp ∈ R
3 with coordinates(a, b, c) in the primal space maps to the plane

ax+ by + z + c = 0 in the dual space and the planeAX +BY +CZ + D = 0 in the

primal space corresponds to the pointq with coordinates(A/C, B/C, D/C) in the

dual space (C 6= 0 because the points ofS are in general position). Similarly to the

analysis in Section 2, we letD∗
R be the image of the set of all planes intersecting ball

DR. In the dual space the decision problem for the hyperplane distance problem is:

Given a setS∗ of n planesR3 in , an integerk, 1 ≤ k ≤
(

n
3

)

and a real valueR > 0,

determine whetherD∗
R contains at leastk vertices of the arrangement of hyperplanes

in S∗.

O

X

Z

Y

FIG. 2. Two-sheeted circular hyperboloid.

LEMMA 3.6

The regionD∗
R in the dual space is bounded by two sheets of circular hyperboloid
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oriented along thez-axisx2 + y2 − z2

R2 = −1.

PROOF. See Figure 2. Consider a point(x∗, y∗, z∗) ∈ D∗
R. It corresponds to the plane

x∗x+y∗y+z+z∗ = 0 in the primal space. The distance between origin and this plane

is |z∗|√
(x∗)2+(y∗)2+1

. By definition ofD∗
R, |z∗|√

(x∗)2+(y∗)2+1
≤ R. The proof follows.

Let us define the following two problems.

Hyperboloid Counting Problem (HCP) in R
3: Given a collection ofn planes inR3

and the hyperboloidPa = {x2 + y2 − z2

a2 = −1}, a > 0 determine the number of the

vertices of the arrangement of the planes between two sheetsof Pa.

Hyperboloid Rank Problem (HRP) in R
3: Given a collection ofn planes inR3, an

integerk, 1 ≤ k ≤
(

n
3

)

and the hyperboloidPa = {x2 + y2 − z2

a2 = −1}, a > 0

determine whether the number of the vertices of the arrangement of the planes between

two sheets ofPa is at leastk.

Notice that the HRP problem is the decision version of the HCPproblem. We can

solve the HCP problem by a binary search over the
(

n
3

)

possible values fork using

a HRP algorithm at each step at the search. By Lemma 3.6 the decision version of

the hyperplane distance selection problem inR
3 is equivalent to the HRP problem in

R
3 (for a = R). Therefore, the decision version of the hyperplane distance selection

problem inR
3 is almost HCP-hard.

COMMENT 3.7

PROOF. We use the following dual transformation. The pointpi ∈ S with coordinates

(ai, bi, ci) in the primal space maps to the planez = aix + biy + ci in the dual space.

The planeax + by + cz + d = 0 in the primal space corresponds to the pointq with

coordinates(a/c, b/c,−d/c) in the dual space. Recall thatH = {h1, h2, . . . , h(n
3)
} is

the set of planes, each defined by a triple of points ofS andα1, α2, . . . , α(n
3)

are the

corresponding sorted angles between planes ofH and planez = 0. Assume that the

planeax + by + cz + d = 0 defines the solution of the slope selection problem for a

given value ofk, i.e. the angle formed byax + by + cz + d = 0 andz = 0 is equal to

αk. This angleαk is defined ascosαk = c√
a2+b2+c2

. Since the points are in general

position,cosαk = 1√
( a

c
)2+( b

c
)2+1

. In other words,cosαk = 1√
x(q)2+y(q)2+1

, where

qx andqy are the coordinates of the pointp. Let Q be the vertices in the dual space
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a1 a2 a3 ai

b
1

b2

b3

bj

cm

c2

c1
X

Y

O

FIG. 3. Arrangement of planes with hyperboloid viewed fromz = +∞.

corresponding to the planes ofH and letqi ∈ Q be the image ofhi ∈ H . Sinceqk has

coordinates(a/c, b/c,−d/c) in the dual space,cosαk = 1/
√

x(qk)2 + y(qk)2 + 1.

Taking into account thatcosx is the decreasing function in[0, π
2 ] we obtain that the

sequence{x2(qi)+ y2(qi)}(
n
3)

i=1 is increasing. Hence, there are
(

n
3

)

−k+1 of Q above

paraboloidP containingqk on its boundary.

Next, we prove the main result of this subsection.

THEOREM 3.8

The hyperboloid counting problem inR3 is 3SUM-hard.

PROOF. We show the reduction from 3SUM’ problem to the hyperboloidcounting

problem. Given an instanceA,B andC, |A|+ |B|+ |C| = n of the 3SUM’ problem,

we can assume that all the integers in the setsA, B andC are positive; otherwise

we can add the same large numberL to the elements ofA and B and add2L to

the elements ofC. We define an instance of the hyperboloid counting problem by
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taking hyperboloidPR with R = 1 and definingn planes as follows :x =
√

ai, ai ∈
A, 1 ≤ i ≤ |A|, y =

√

bj , bj ∈ B, 1 ≤ i ≤ |B| andz = ±√
cm + 1, cm ∈ C, 1 ≤

m ≤ |C|. Notice that the circles obtained by intersection the planes z = ±√
cm + 1

with hyperboloidP1 have radius
√

cm. It is clear that a vertex of the arrangement

of thesen planes lies onP1 if and only if exista ∈ A, b ∈ B, c ∈ C, such that
√

(a)2 +
√

(b)2 =
√

(c)2 holds (Pythagoras’ Theorem). In other words, if and only

if a + b = c holds and the 3SUM’ problem has a solution. See Figure 3.

In order to detect whether such a vertex exists we apply the following strategy. We

apply the HCP algorithm and determine the number of verticesv1 of the arrangement

of the planes between two sheets ofP1. A vertex of the arrangement of planes lies on

P1 if and only if for sufficiently smallε > 0 the number of vertices of the arrangement

of the planes between two sheets ofP1+ε is less thanv1. So, by applying the HCP

algorithm again we can answer the question. The only problemis the finding a suffi-

ciently smallε > 0. One can imagine a situation when no vertex of the arrangement

of planes lies onP1 but for some values ofε the number of vertices of the arrangement

of the planes between two sheets ofP1+ε is less thanv1.

We show that by taking

ε =

√

1 +
1

maxai∈A ai + maxbj∈B bj + 2
− 1 (3.1)

we guarantee that there are no vertices of the arrangement ofplanes lying on the

hyperboloidPR for any1 < R < 1+ε. A pointp(x, y, z) ∈ PR satisfies the equation

R2(x2 + y2 + 1) = z2. Let p be arbitrary vertex of the arrangement of planes with

coordinatesx =
√

ai, y =
√

bj, z =
√

cm + 1 for somei, j, m. By the equation (1)

1 < R2 < 1 + 1
maxai∈A ai+maxbj∈B bj+2 for any1 < R < 1 + ε. Assuming thatp lies

onPR we have:R2 = cm+1
ai+bj+1 . ThusR2−1 =

cm−ai−bj

ai+bj+1 > 0 andcm−ai − bj > 0.

It follows thatcm − ai − bj ≥ 1 and

R2 − 1 ≥ 1

ai + bj + 1
>

1

maxai∈A ai + maxbj∈B bj + 2
.

It contradictsR < 1 + ε.
COROLLARY 3.9

The decision version of the hyperplane distance selection problem inR
3 is almost
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3SUM-hard.

We can obtain an algorithm withO(n2 log n) runtime performance for the decision

version of the hyperplane distance selection problem inR
3. Following duality above

we consider the HRP problem. The HRP problem can be solved by counting the

number of vertices of the arrangement in a plane for each ofn planes separately. Let

us call these problems HRP1, HRP2, . . . , HRPn problems. To avoid multiple counting

of the same vertex we apply a search for the planes in a lexicographic order, i.e. for

the first plane we count the vertices obtained by all planes, for the second plane we

count the vertices obtained by all planes except the first, etc. For each plane we apply

a planar algorithm similarly to one described in Section 2.

In order to solve the hyperplane distance selection problemin R
3 we apply ap-

proach similar to the planar case. We define an auxiliary problem as follows. Assume

we have a setS of n points inR
3 and a ballB of fixed radiusR centered at the ori-

gin. Fix a pointpi ∈ S outsideB. For each pointp ∈ S build two tangent planes

to B passing throughp andpi. Let Ti be a set of such tangent planes. The auxiliary

problem is to sort all the planes inTi by their slopes (angle formed by a plane with

OXY axis), separately for eachi. We useO(n2) of processors (by assigningO(n)

processors to each pointpi ∈ S) in the parallel algorithm in order to solve this prob-

lem in O(log n) time. The solution for the optimization problem can be obtained by

combining this parallel algorithm with the sequential algorithm for the HRP problem.

At each parallel step we performO(n) comparisons for each pointpi yielding in total

O(n2) comparisons. TheO(n) comparisons for each pointpi are resolved using the

decision algorithm of the HRPi problem, similarly to the optimization stage described

in Section 2. One can show that the hyperplane distance selection problem inR
3 can

be solved inO(n2 log2 n) time.

3.2 d > 3

Similarly to the3-dimensional case we prove that the hyperboloid counting problem

in R
d is dSUM-hard. ThedSUM’ problem is defined as: Givend sets of integers
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A1, A2, . . . , Ad of total sizeO(n), are therea1 ∈ A1, a2 ∈ A2, . . . , ad ∈ Ad with

Σd−1
i=1 ai = ad. It is easy to see that thedSUM’ problem isdSUM-hard.

The idea is to reduce thedSUM’ problem to the hyperboloid counting problem in

R
d by taking hyperboloidP = {Σd−1

i=1 x2
i = x2

d − 1} and definingO(n) hyperplanes

x1 =
√

a1,i, a1,i ∈ A1, 1 ≤ i ≤ |A1|, x2 =
√

a2,i, a2,i ∈ A2, 1 ≤ i ≤ |A2|, . . . ,

xd = ±
√

ad,i + 1, ad,i ∈ Ad, 1 ≤ i ≤ |Ad|. A vertex of the arrangement of these

O(n) hyperplanes lies onP if and only if there is a solution to the corresponding

dSUM’ problem. By counting the number of vertices of the arrangement of hyper-

planes between two sheets ofP and comparing with the number of vertices of the

arrangement of hyperplanes between two sheets ofP ′ = {Σd−1
i=1 x2

i =
x2

d

(1+ε)2 − 1},

where

ε =

√

1 +
1

Σd−1
i=1 maxaj∈Ai

aj + 2
− 1

we can detect whether such a vertex exists.

4 Enumerating k line distances

Given a setS of n points in the plane, an integerk, 1 ≤ k ≤
(

n
2

)

, we want to enu-

merate (in sorted order) thek smallest distances between the origin and lines passing

through pairs of points inS. We explain the idea behind the algorithm using the ki-

netic framework [4, 5]. We assume that we have a diskD centered at origin with radius

growing from0 to infinity. Our goal is report lines passing through pairs ofpoints and

intersecting diskD. The algorithm stops after reportingk such lines. Notice that at

the current moment of time points ofS lying inside ofD will not participate in future

events. For a pointpi ∈ S outsideD we build two tangent linesl1i , l
2
i to D passing

throughpi. Let L be a set of such linesl1i , l
2
i . The cardinality ofL is at most2n.

Our events are when any two lines inT become of the same slope during the process

of growingD. Thus, we maintain the following data structure: a binary search tree

T maintaining the sorted order of slopes of moving lines inL and an event queueQ

of sorted events (in increasing order) defined by the adjacent lines in the sorted order

maintained inT . We process the current event defined by lines, e.g.l1i and l2j by
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checking whether they tangent toD at the same point. Only if the answer is positive,

we report a line passing through pointspi andj . In both cases we delete this event

from Q, swap linesl1i andl2j in sorted order maintained byT and produce two new

events defined byl1i andl2j and their new neighbors. Clearly, the whole process takes

O((n + k) log n) time since we can carry out each event inO(log n) time.

One may wonder whether the additionalO(n log n) factor is really necessary in the

running time. As a matter of fact, a lower bound ofΩ(n log n) can be established even

for the casek = 1 using theset disjointness problem [22]. Let A = {a1, . . . , an} and

B = {b1, . . . , bn} be two sets of real nonnegative numbers. To test whetherA and

B do not share any elements requiresΩ(n log n) comparisons. We can transform set

disjointness to our problem withk = 1 by mappingA andB to the first and the third

quadrant of the unit circleC in the plane as follows:aj is mapped to the intersection

of C with the liney = ajx in the first quadrant, whilebj is mapped to the analogous

intersection in the third quadrant. LetS be the set of these2n intersections. Definitely,

the line defining the closest distance to the origin passes through origin if and only if

A∩B 6= ∅. Thus, the selection of 1st (kth) distance between lines and origin requires

Ω(n log n) operations in the algebraic computational-tree model.

5 Conclusions

It would be interesting to obtain an optimalO(n log n) (maybe expected) runtime

algorithm for the planar version of the line distance selection problem. One of the

possible approaches is by applying different dual transformation: the point with co-

ordinates(a, b) maps to the lineax + by = 1. Then the obtained search region is a

circle. Another possible way is by applying randomized optimization techniques, like

randomized halving in order to obtain better results.
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