Selecting Distances in Arrangements

of Hyperplanes Spanned by Points

SERGEI BESPAMYATNIKH,Computer Science Department,
University of British Columbia, Vancouver, B.C. Canada V6T 1Z4.
E-mail: besp@cs.ubc.ca

MICHAEL SEGAL, Communication Systems Engineering
Department, Ben-Gurion University of the Negev, Beer-Sheva 84105,
Israel. E-mail: segal @cse.bgu.ac.il

ABSTRACT: In this paper we consider a problem of distance selectioménatrangement of
hyperplanes induced hy given points. Given a set of points ind-dimensional space and a
numberk, 1 < k < (Z), determine the hyperplane that is spanned! Ippints and at distance
ranked by from the origin. For the planar case we presentdn log® n) runtime algorithm
using parametric search partly different from the usuataggh [21]. We establish a connection
between this problem iB-d and the well-knowr3SUM problem using an auxiliary problem of
counting the number of vertices in the arrangement gflanes that lie between two sheets
of a hyperboloid. We show that thed problem is almos8SUM-hard and solve it by an
O(n?log?n) runtime algorithm. We generalize these results todkdimensional ¢ > 4)

space and consider also a problem of enumerating distances.

Keywords: distance selection problem, parametric search, lowendocounting

1 Introduction

In this paper we consider the following problem:

Hyperplane Distance Selection in R?. Let S be a set ofn distinct points ind-
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dimensional space] > 2, and letF’ be the set of("dL) hyperplanes, each defined
by ad-tuple of points. Letvy, as, . .., a(m) be the sorted distances in increasing order
between hyperplanes éf and the origin. For a given numberK & < (Z) determine

a hyperplane irf that producesy,. (We assume, for simplicityeneral position of

the points, so that (1) nd+ 1 points lie in the same hyperplane and (2) any hyperplane
that passes throughpoints is not perpendicular to the hyperplae= 0.) Ford = 2

we call this problentine distance selection problem.

The planar version of the problem considered in our papea haitary application.
Consider then input points serving as the military bases. Each pair of b&ses a
communication connection. The intruder (the disk with thater at the origin) tries
either to disturb the normal communication between the bédesesk connections
to his location) or to listen the information transmitteceothese communications.
It is also known that any communication noise on the line eating any two bases
leads to bad quality communication or even broken commtinicaetween these two
bases. Thus, the goal of intruder is to touch at Iéadbsest lines to its location.

This version of the problem continues a list of optimizatsathection problems and
very close by its nature to the well-knowiope sel ection problem andlistance selec-
tion problem. The slope selection problem, where we are givpoints in the plane
and an integek, and we want to find a line passing through two given pointh wit
ranked slope, received a lot of attention during the pastdacades. Cole et al. [9]
gave anO(nlogn) time solution, using the parametric searching of Megiddh.[2
Using the duality transform the problem is to find an intetisecpoint between two
lines from a collection of. non-vertical lines that has thieth smallest:-coordinate.
The decision algorithm which counts the number of inteisaqgtoints of lines inside
a given slab is based on the counting the number of inversiotise permutation.
Another alternative approach which is based on randoroizditas been proposed by
MatouSek [18] and by Dillencourt et al. [10]. BronnimamdaChazelle consider the
problem applying theuttingstechnique. Katz and Sharir [17] usexpandersand ob-
tained conceptually simpler than the other determinidgothmsO(nlogn) time

solution.
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The solution to the distance selection problem, where wegamn n points in
the plane and an integér and we want to find thé-th smallest distance between
a pair of given points, can be obtained using a parametricchiesy. The deci-
sion problem is to compute, for a given realthe sumL,cs|D.(p) N (S — {p})|,
whereD..(p) is the closed disk of radiuscentered ap. Agarwal et al. [2] gave an
O(n3 10g% n) expected-time randomized algorithm for the decision poblwhich
yields anO(n% log% n) expected-time algorithm for the distance selection proble
Goodrich [15] derandomized this algorithm, at a cost of aditawhal polylogarithmic
factor in the runtime. Katz and Sharir [17] obtained an exfgarbased (n*/3 log® n)-
time deterministic algorithm for this problem. By applyiagandomized approach
Chan [7] was able to obtain ad(n logn + n%/3k'/310g®/® n) expected time algo-
rithm for this problem.

The line distance selection problemis also closely relti¢ie problem considered
by Efrat et al. [11] where a set efnon-intersecting segments is given in the plane with
anintegek < n and one wants to find the smallest disk intersectisggments. They
[11] show how to solve this problem @(nk log” n) (resp.O(nk log® nlog %)) time
andO(nk) (resp. O(nlogn)) space. Gupta et al. [16] preseBtlogn + klog® n)
time output-sensitive solution that findslines (among the: input lines) that are
intersected by the query disk after preprocessing tinwe? log n).

We show that the decision version of the hyperplane distaaletion problem is
dual to the problem of determining whether the arrangementhyperplanes irR?
contains at most a given number of vertices lying betweerstveets of a hyperboloid.
We begin with the line distance selection problem. We preaarD(n logn) time
solution for the decision problem using the technique of Maand Netanyahu[19].
For the optimization, we apply Megiddo’s [21] parametrias®. However, since
our decision algorithm is not parallelizable, we had to findadgorithm that solves
a completely different problem, but is both parallelizahtel enables to generate the
optimal solution when the parametric search techniquep$iegbto it. We also apply
Cole’s technique for speeding up standard parametriclsiear{3] in order to produce

O(nlog® n) solution to the line distance selection problem.
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Unfortunately, the hyperplane distance selection probiesadimensional space is
more difficult than its planar version. In contrary to therdacase it seems that the
technique of counting the number of inversions in the peatirt cannot be gener-
alized. In fact, we prove tha#-dimensional hyperplane distance selection problem
is almost3SUM-hard (see Section 3 for exact definition). In other wottere is
almost no hope to get a subquadratic solution fordtmensional case. In Section
3 we discuss this issue and generalize it to higher dimessipace by reducing a
problem which we caliSUM problem to thei-dimensional hyperplane distance se-
lection problem. We dedicate Section 4 to the problem of esratmgk closest line

distances. Finally we conclude in Section 5.

2 Planar linedistance selection

In this section we present ai(n log® n) algorithm for the planar version of the line
distance selection problem. First we show how to ob&@{n log n) time algorithm
for the decision problem. In order to apply the Megiddo'simtation scheme [21]
we have to parallelize our decision algorithm. However rttan part of our decision
algorithm is not parallelizable, so, as in [1], we come upghvah auxiliary problem

whose parallel version will generate the optimal solutmotr problem.

2.1 Thedecision algorithm

The decision version of the planar line distance selectioblpm can be formulated
as follows. Given a sef of n points in the plane, an integérl < k£ < (g) and a
real valueR > 0, determine whether a diskr centered at origin with radiug is
intersected by at leastlines passing through pairs of pointsS$n
We use the following dual transformation. The pgirg R? with coordinatega, b)

in the primal plane maps to the lige= ax — b in the dual plane. The ling=az + b
in the primal plane corresponds to the pojntvith coordinateqa, —b) in the dual
plane. LetD} be the image of the set of all lines intersecting di3k. In the dual

plane the decision problem is stated as: Given aSsetf n lines in the plane, an
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FiG. 1. The shaded region i97,.

integerk,1 < k < (%) and a real valugz > 0, determine whetheb, contains at
leastk vertices of the arrangement of lines§ri.
LEMMA 2.1

The regionD7, in the dual plane is bounded by two hyperbola bran(%ées z? =1.

PROOFE Consider a poinfz*,y*) € D%, see Figure 1. It corresponds to the line

y = z*zr — y* in the primal plane. The distance between origin and this i

7—(‘Z;L+1' By definition of D7, \/% < R. The proof follows. i

Our strategy, thus, is to find the number of the vertices ofatinangement of lines
in S* in the hyperbolic regiotD7,. Notice, that there might be lines that either inter-
sect one of the boundaries bf;, twice or do not intersect any of them. We apply a
counting technigue due to Mount and Netanyahu [19] (see[aBjp Their technique
works for a closed region with a connected boundary. Theslmest satisfy (they
[20] have also considered the general pseudolines) thewfmly boundary intersec-

tion properties:

1. Each line intersects the boundary of this region an evembeu of times.

2. The number of intersections between a line and the bowiiglaounded above by

some constant, and
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3. The intersections of lines along the the region’s boundan be cyclically sorted

in O(nlogn) time.

Mount and Netanyahu [19] show that it is possible to comphwenumber of intersec-
tions between lines that occur within the region(iir log n) time andO(n) space.
Since, in our case, it may happen that a line may either ieters boundary only
once or not intersect it at all, we can find an axis-paralletaiegle D that contains
all the intersection points and apply Mount and Netanyaalgjsrithm for the region
D N D%. This bounding rectangl® is defined by the rightmost, leftmost, highest
and lowest intersection points which can be compute@(nlogn) time using the

algorithm for the slope selection problem. Thus, we coneloglthe theorem.

THEOREM2.2

Given a setS of n points in the plane, an integér1 < k£ < () and a real value
R > 0, in O(nlogn) time andO(n) space we can determine whether a di3k
centered at origin with radiuR is intersected by at leastlines passing through pairs

of pointsinS.

2.2 The optimization stage

n

Given a setS of n points in the plane, and integét1l < k& < (2) we need to
determine the smallest radi@ssuch that the disl ; centered at origin is intersected
by at leastk lines passing through pairs of points.$h Our algorithm is based on
the parametric search optimization scheme [21]. Tetdenote the runtime of the
sequential decision algorithm, afdd, resp. P, the time and number of processors
of the parallel algorithm for the decision problem; then tiptimal solution can be
computed in sequential tim@(PT), + T,T, log P) [21].

In order to apply the Megiddo optimization scheme we havetaltelize our deci-
sion algorithm. However, the counting algorithm of Mountasetanyahu proceeds
incrementally using a stack, thus making the problem ofgasallelization very dif-
ficult. Fortunately, as in [1], we come up with an auxiliaryoplem whose parallel

version will generate the optimal solution to our problem.
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The auxiliary problem is described as follows. Assume weeslasetS of n points
and a fixed radiug. For a pointp; € S outsideDx we build two tangent lineg', /2
to Dg, passing through;,. Let T be a set of such lindg, [?. The cardinality off" is
at most2n.

Theauxiliary problem is to find the sorted order of the slopes of lineginThis
can be done in parall€(log n) time usingO(n) processors.

We now want to apply (generically) this parallel algorithor finding the opti-
mal radiusR. First we get an initial interval, where R resides. Clearly/, =
[0, maxi<i<n dist(O, p;)], p; € S. Consider now a single step in the parallel sort (the
auxiliary problem). In this step we perfor®(n) slope comparisons, each compari-
son involving a pair of lines. For each such pair of lines wmpatecritical values
of R where the sorted order of lines can change. There are twa:.c@@gthe two
compared slopes are defined by the same point, and (b) theotwpared slopes are
defined by the distinct points. In case (a) we have (at most)ctitical values: when
one of the rays becomes horizontal (the slope is changimgkid-or case (b) let one
such comparison involve the points andp;. In order to resolve this comparison,
we must compute the slopes Gf andi”, h, k € {1,2} and sort them. Of course,
we do not knowR, so we again compute the constant number of critical valives:
values defined by the events when one of the lines becomemohtal, third value is
defined when the lines coincide and the last value can beeatkfiom the situation
when the lines do not coincide but remain parallel. Now welafiye decision algo-
rithm of the subsection above to perform a binary searchtbegp(n) critical values
that were computed. Thus we find an inter¥at I, whereR resides, resolve all the
comparisons of this parallel stage, and proceed to the ragatlpl stage.

What does resolving mean here? If the crucial valudoes not belong td, then
we simply ignore it. Otherwise, the slope ordering of twaelris defined uniquely,
because the intervdldoes not contain any critical value produced at this staxgefe
maybe endpoints) The closed intervas always guaranteed to contdibut we need

to show that a comparison is made whére- R.
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CLAIM 2.3
The slope order of the lines changeskischanges from values slightly smaller than

R to values slightly larger thaR.

PROOF The valueR is defined by some line passing through two pointg;0p; € S.
One of the critical values obtained by comparison of slodetbel}, [7, 1}, 13 is R.
SinceR is a critical value for two lines, the slope order of thesedirthanges from

values slightly smaller thaR to values slightly larger thaR. [ |

Note that at some stage the optimal solution will appear etottundary of the interval
I computed at that stage (it could even appear on the bounéldgy.dHowever, once
it appears, it will remain one of the endpoints of all subsetdly computed intervals.
At the end, we run the decision algorithm for the left endpoirthe final interval. If
the answer is positive, then this endpoinfisotherwiseR is the right endpoint of the
final interval.

Plugging the sequential and parallel algorithm into a p&taimsearch machinery
we obtain anO(nlog® n) time algorithm for the optimization problem. However,
we can apply Cole’s technique [8] in order to speed up Medgdarametric search.
Since our parallel algorithm is based on sorting, we can hsesbrting algorithm
based on AKS network [3] in order to shave one logarithm fromrunning time for

the optimization problem. Thus, we conclude by

THEOREMZ2.4

The planar line distance problem can be solve@{n log® n) time usingO(n) space.

3 Lower bound for d > 3

For simplicity we demonstrate a lower bound proof for the énptane distance se-
lection problem in the-dimensional space and then show how to extend it to higher
dimensions. In fact we establish a lower bound for the decisersion of the hyper-
plane distance problem.

Gajentaan and Overmars [14] defirg®lUM-hard class of the problems. The main

characteristics of these problems is the existena@(@f ) barrier in the complexity
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of these problems. Namely, the best algorithms for thesbl@nas take time)(n?),
while no non-trivial lower bounds are known.

We cite the definitions and notations from [14].
DEFINITION 3.1

Given two problems PR1 and PR2 we say that PRf(is)-solvable using PR2 iff
every instance of PR1 of size can be solved using a constant number of instances
of PR2 (of at most linear size) ar@( f(n)) additional time. We denote this as PR1
<t(n) PR2.

LEMMA 3.2 ([14])

Let PR1<y(,) PR2. Letf(n) andg(n) be polynomials. If PR2 can be solved in
O(g(n)) time andf(n) = O(g(n)) then PR1 can be solved ®(g(n)) time. Hence,

if Q(g(n)) is alower bound for PR1 anfi{n) = o(g(n)) thenQ2(g(n)) is also a lower
bound for PR2.

The base problem considered in [14] is the following

3SUM Problem: Given a sefS of n integers, are there b, c € Switha+b+c = 07?
DEFINITION 3.3

We call a problem PR 3SUM-hard if and only if 3SUM jgn)-solvable using PR,

wheref(n) = o(n?).

Gajentaan and Overmars [14] have proved that the follownoglpm is also 3SUM-
hard.

3SUM’ Problem: Given three sets of integers B andC of total sizeO(n), are there
a€ A be Bandce Cwitha+b=c.

We generalize the 3SUM-hardness definition todB&IM-hardness definition.

dSUM Problem: Given a setS of n integers, are there;, z5,...,z4 € S with
¥4 z; = 0? Erickson [13] shows how to solve tHSUM Problem § > 2) in T,;(n)

time, wherel;(n) = O(n# logn) for evend, andO(n“+") for odd values ofl.
DEFINITION 3.4

We call a problem PRISUM-hard if and only ifdSUM is f(n)-solvable using PR,

wheref(n) = o(n? log n) for evend and f (n) = o(n%) for oddd.
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Similarly to Erickson [12] definition we introduce the natiof almost hardness.
DEFINITION 3.5

Given two problems PR1 and PR2 of complexitig$n) andTz(n) respectively, we
say that PR1 is almost PR2-hardif(n) = O(T1(n) logn).

31 d=3

Now we focus on th8-dimensional case. We apply the following dual transfoiamat
the pointp € R? with coordinatega, b, ¢) in the primal space maps to the plane
azx + by + z+ ¢ = 0in the dual space and the plad&X + BY + CZ + D = 0in the
primal space corresponds to the pojnivith coordinate A/C, B/C, D/C) in the
dual space@ # 0 because the points ¢f are in general position). Similarly to the
analysis in Section 2, we b}, be the image of the set of all planes intersecting ball
Dg. In the dual space the decision problem for the hyperplastanice problem is:

Given a set5* of n planesk? in, an integet, 1 < k < (%) and a real valug& > 0,

3
determine whetheb7, contains at least vertices of the arrangement of hyperplanes
in S*.

AN
D

FIG. 2. Two-sheeted circular hyperboloid.

LEMMA 3.6

The regionD7, in the dual space is bounded by two sheets of circular hypeitbo
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oriented along the-axisz? + 32 — ;—22 = -1

PrROOF See Figure 2. Consider a poiat*, y*, z*) € D, It corresponds to the plane
x*x+y*y+z+2z* = 0in the primal space. The distance between origin and thigepla

is 1=l By definition of D%, SN o — < R. The proof follows.
V(@) 2+ (y*)2+1 (z7)2+(y*)2+1

Let us define the following two problems.

Hyperboloid Counting Problem (HCP) in R3: Given a collection of: planes inR?
and the hyperboloi®, = {22 + y* — Z—z = —1},a > 0 determine the number of the
vertices of the arrangement of the planes between two sbe&ls

Hyperboloid Rank Problem (HRP) in R3: Given a collection of: planes inR3, an
integerk, 1 < k < (%) and the hyperboloid, = {z? + y* — Z—i = —1},a > 0
determine whether the number of the vertices of the arrargéai the planes between
two sheets of, is at least.

Notice that the HRP problem is the decision version of the @blem. We can
solve the HCP problem by a binary search over@)s possible values fok using
a HRP algorithm at each step at the search. By Lemma 3.6 thsiatewersion of
the hyperplane distance selection problerRinis equivalent to the HRP problem in
R3 (for a = R). Therefore, the decision version of the hyperplane distaselection

problem inR? is almost HCP-hard.

COMMENT 3.7

PrRoOOF. We use the following dual transformation. The pgine S with coordinates
(ai, b, ¢;) in the primal space maps to the plane- o, + b;y + ¢; in the dual space.
The planeax + by + ¢z + d = 0 in the primal space corresponds to the pgimtith
coordinatesga/c,b/c,—d/c) in the dual space. Recall th&t = {hy, ha, ..., h(g)} is

the set of planes, each defined by a triple of point§ ehda;, s, . . ., a(ny are the
corresponding sorted angles between plangd aind planez = 0. Assume that the
planeax + by + ¢z + d = 0 defines the solution of the slope selection problem for a
given value oft, i.e. the angle formed byx + by + cz +d = 0 andz = 0 is equal to
ﬁ Since the points are in general

ag. This angleny, is defined asos a, =
. In other wordsgos o, = L

1 S S
(2)2+(2)2+1 (q)2+y(q)2+1"

¢ andg, are the coordinates of the point Let () be the vertices in the dual space

position,cos a, = where
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FiG. 3. Arrangement of planes with hyperboloid viewed frora: +oc.

corresponding to the planes Bfand letg; € @ be the image of; € H. Sinceg; has
coordinatega/c,b/c, —d/c) in the dual spaceos ax = 1/v/z(qx)? + y(gx)? + 1.
Taking into account thatos z is the decreasing function {0, ] we obtain that the
sequencéz?(g;) + y2(qi)}i@1 is increasing. Hence, there af§) — k+ 1 of Q above
paraboloidP containingg on its boundary.

|
Next, we prove the main result of this subsection.
THEOREM 3.8

The hyperboloid counting problem &? is 3SUM-hard.

PROOF We show the reduction from 3SUM’ problem to the hyperboloddinting
problem. Given an instancé, B andC, |A| + |B| + |C| = n of the 3SUM’ problem,
we can assume that all the integers in the skt$3 andC' are positive; otherwise
we can add the same large numbldeto the elements oA and B and add2[L to

the elements of®. We define an instance of the hyperboloid counting problem by
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taking hyperboloidPr with R = 1 and defining» planes as follows x = \/a;,a; €
A1 <i<|Aly=/bj,bj € B1<i<|Blandz = £\/c;, + 1,cm € C,1 <

m < |C|. Notice that the circles obtained by intersection the jdane: ++/c,,, + 1
with hyperboloidP; have radius,/c,,. Itis clear that a vertex of the arrangement
of thesen planes lies onP; if and only if exista € A,b € B,c € C, such that
V(@)% + /(b)? = \/(c)? holds (Pythagoras’ Theorem). In other words, if and only
if a + b = c holds and the 3SUM’ problem has a solution. See Figure 3.

In order to detect whether such a vertex exists we apply thenfimg strategy. We
apply the HCP algorithm and determine the number of vertigex the arrangement
of the planes between two sheetsgf A vertex of the arrangement of planes lies on
P, if and only if for sufficiently smalk > 0 the number of vertices of the arrangement
of the planes between two sheetsif, . is less than;,. So, by applying the HCP
algorithm again we can answer the question. The only proidahe finding a suffi-
ciently smalle > 0. One can imagine a situation when no vertex of the arrangemen
of planes lies orP; but for some values afthe number of vertices of the arrangement
of the planes between two sheetsiyf, . is less than;.

We show that by taking

1
e=,/1+ -1 (3.2)
maxg;ca a; + maxp,ep by + 2

we guarantee that there are no vertices of the arrangemasiaioés lying on the

hyperboloidPg foranyl < R < 1+e. Apointp(z,y, z) € Pg satisfies the equation
R?(2% + y? + 1) = 22. Letp be arbitrary vertex of the arrangement of planes with
coordinates: = \/a;, y = \/bj, z = /¢, + 1 for somei, j, m. By the equation (1)
I1<R’<1+ L foranyl < R < 1+ . Assuming thap lies

maXa; e A ai+maxbj eB b;+2

on Pp we have:R? = —tmtl_ ThusR? —1 = “2—%-b% - (andc,, —a; —b; > 0.

ai+bj+1 : ai+bj+1
It follows thatc,,, — a; — b; > 1 and
1 1
R?—1>

> .
Ta;+bj+1° maxg,ecaa; +maxyep by + 2

It contradictsR < 1 + «. [ |
COROLLARY 3.9

The decision version of the hyperplane distance selectioblgm inRR? is almost
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3SUM-hard.

We can obtain an algorithm wit(n? log n) runtime performance for the decision
version of the hyperplane distance selection problef®inFollowing duality above
we consider the HRP problem. The HRP problem can be solvedbyting the
number of vertices of the arrangement in a plane for eachpfnes separately. Let
us call these problems HRFHRP,, . . ., HRP,, problems. To avoid multiple counting
of the same vertex we apply a search for the planes in a lesapbir order, i.e. for
the first plane we count the vertices obtained by all plarmsthfe second plane we
count the vertices obtained by all planes except the first,Feir each plane we apply
a planar algorithm similarly to one described in Section 2.

In order to solve the hyperplane distance selection protirei®® we apply ap-
proach similar to the planar case. We define an auxiliarylprolas follows. Assume
we have a sef of n points inR? and a ballB of fixed radiusR centered at the ori-
gin. Fix a pointp;, € S outsideB. For each poinp € S build two tangent planes
to B passing through andp;. LetT; be a set of such tangent planes. The auxiliary
problem is to sort all the planes ify by their slopes (angle formed by a plane with
OXY axis), separately for each We useO(n?) of processors (by assignin@(n)
processors to each poipt € S) in the parallel algorithm in order to solve this prob-
lem in O(log n) time. The solution for the optimization problem can be afedi by
combining this parallel algorithm with the sequential alfon for the HRP problem.
At each parallel step we perfor@(n) comparisons for each poipt yielding in total
O(n?) comparisons. Th&(n) comparisons for each poipt are resolved using the
decision algorithm of the HRRproblem, similarly to the optimization stage described
in Section 2. One can show that the hyperplane distancetisglgroblem inR? can

be solved inD(n? log® n) time.

32 d>3

Similarly to the3-dimensional case we prove that the hyperboloid countioglpm
in R? is dSUM-hard. ThedSUM’ problem is defined as: Gived sets of integers
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A1, Ay, ... Ay Of total sizeO(n), are theren; € Ay, a2 € A, ..., aq € Ay With
Zf;lla,- = agq. Itis easy to see that thiSUM’ problem isdSUM-hard.

The idea is to reduce thé&SUM’ problem to the hyperboloid counting problem in
R? by taking hyperboloid® = {X%"'2? = 22 — 1} and definingD(n) hyperplanes
Ty = fa1;, a1; € A1, 1 < < |A1], 22 = Vazi, azi € Az, 1 < i < |As], ...,
zqg = £+/aq;i+ 1, aq; € Ag,1 < i < |Aq|. A vertex of the arrangement of these
O(n) hyperplanes lies o® if and only if there is a solution to the corresponding
dSUM’ problem. By counting the number of vertices of the agament of hyper-
planes between two sheets Bfand comparing with the number of vertices of the
arrangement of hyperplanes between two shee®® of {¥{"'z? = (fﬁv — 1},

where

1
e= |14+ == -1
Y] maxXg;eq,; aj + 2

we can detect whether such a vertex exists.

4 Enumerating k line distances

Given a setS of n points in the plane, an integér1 < k& < (3), we want to enu-
merate (in sorted order) thkesmallest distances between the origin and lines passing
through pairs of points it¥. We explain the idea behind the algorithm using the ki-
netic framework [4, 5]. We assume that we have a distentered at origin with radius
growing from0 to infinity. Our goal is report lines passing through pairgoints and
intersecting diskD. The algorithm stops after reportirigsuch lines. Notice that at
the current moment of time points Sflying inside of D will not participate in future
events. For a poing; € S outsideD we build two tangent lineg', [? to D passing
throughp;. Let L be a set of such linek, 2. The cardinality ofL is at most2n.

Our events are when any two linesihbecome of the same slope during the process
of growing D. Thus, we maintain the following data structure: a binagrek tree

T maintaining the sorted order of slopes of moving lined.iand an event queug@

of sorted events (in increasing order) defined by the adjdiress in the sorted order

maintained inT. We process the current event defined by lines, é}.gandl]? by
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checking whether they tangenti» at the same point. Only if the answer is positive,
we report a line passing through poipisand ;. In both cases we delete this event
from @, swap lineg} andl? in sorted order maintained % and produce two new
events defined by} andl? and their new neighbors. Clearly, the whole process takes
O((n + k) logn) time since we can carry out each even€ifiog n) time.

One may wonder whether the additiod3n log n) factor is really necessary in the
running time. As a matter of fact, a lower boundtifn log n) can be established even
for the casé: = 1 using theset digointness problem [22]. Let A = {a4,...,a,} and
B = {b1,...,b,} be two sets of real nonnegative numbers. To test whethand
B do not share any elements requifg3: logn) comparisons. We can transform set
disjointness to our problem with = 1 by mappingA and B to the first and the third
quadrant of the unit circl€’ in the plane as followsa; is mapped to the intersection
of C' with the liney = a;x in the first quadrant, whilé; is mapped to the analogous
intersection in the third quadrant. L&te the set of thes® intersections. Definitely,
the line defining the closest distance to the origin passesitiin origin if and only if
AN B # (). Thus, the selection of1 (k*") distance between lines and origin requires

Q(nlogn) operations in the algebraic computational-tree model.

5 Conclusions

It would be interesting to obtain an optim@(n logn) (maybe expected) runtime
algorithm for the planar version of the line distance séecproblem. One of the
possible approaches is by applying different dual tramsédion: the point with co-
ordinateg(a, b) maps to the linex + by = 1. Then the obtained search region is a
circle. Another possible way is by applying randomizedmiation techniques, like

randomized halving in order to obtain better results.
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