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Abstract

Traffic classification in the Internet is a crucial mechanismnecessary to support network services. Using
Ternary Content Addressable Memories (TCAMs) to perform high-speed packet classification has become
the de facto standard in industry. TCAMs concurrently matchthe packet headers against the rules in a
classification database providing high throughput unparalleled by software-based solutions. The complexity
of packet classification policies has been growing rapidly as the number of Internet services continues to
increase. Many complex classification policies are naturally represented in a hierarchical fashion, where
different layers perform classification based on the administrative domain and the traffic QoS parameters.
However, multiple levels of classification hierarchy incurhigh lookup latency while high TCAM memory
requirements of flattened classification policies is a majorissue since TCAMs have very limited capacity. In
this paper we focus on the fundamental trade-off between theTCAM space and the number of lookups in
the TCAM classification policies. We consider two optimization problems of dual nature: the first problem
is to minimize the number of TCAM entries subject to the constraint on the maximum number of levels in
the policy hierarchy; the second problem is to minimize the number of levels in the policy hierarchy subject
to the constraint on the maximum number of TCAM entries. We propose efficient algorithms for these
problems, which do not require any hardware changes. To the best of our knowledge, this is the first work
to study these problems. We also show experimental results that support our findings.1
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3. We explicitly stated the assumptions related to the availability of header valuesat different stages of classification process.
4. We added a new section 7 with generalization of space optimization problem.
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Figure 1: Application of Hierarchical QoS for MPLS VPN service.

1 Introduction

Packet classification is a crucial function for a variety of emerging network services such as Quality of Service
(QoS), firewalling, and traffic monitoring and accounting, to name just a few.

An important characteristic influencing the network services is so called network hierarchy, that is the de-
gree of concentration of traffic flows at interconnection points within the network. Hierarchies are important
since they help to determine the sizes of networks, including the routing and addressing configurations as well
as the scaling of network technologies, performance, and service levels. Furthermore, service-level agreements
can include support for delay-constrained applications and may contain avariety of capacity and control mech-
anisms, such as traffic shaping and policing at multiple levels in the network.

Network devices maintain service policies under which incoming or outgoing packets are classified by
matching against a hierarchical set of rules. For example, bandwidth canbe shared between different users at
the top level matching traffic according to the administrative affiliation while the second tier of the hierarchy can
further classify the traffic according to the QoS class based on the Differentiated Services Code Point (DSCP),
protocol type, or some other criteria. In addition, each rule can also specify a set of actions to be taken on
packets matching this rule.

Several types of services such asMulti Play, MPLS VPN, VPDN, to name just a few, require implementation
of hierarchical policies [31]. For instance, consider the following implementation of MPLS VPN service that
is described in [31]. TheCustomer Edge(CE) side of theProvider Edge(PE) router links the branches of an
enterprise, where each branch has a special bandwidth requirement. The enterprise has a limit on the outgoing
traffic and the tunnels between PE routers bear traffic from different enterprises, which have different QoS
requirements. The tunnels also have bandwidth limitations of their own. Figure 1(a) depicts the MPLS VPN
service model. Though for the CE side the traditional QoS can improve the service quality of each branch, it
cannot manage the traffic of branches and that of the whole enterprise on PE. The problem is that for tunnels
between PEs, the traditional QoS applies to either the tunnel or the internal traffic separately without being able
relate between the two. On the other hand, the hierarchical QoS model can meet the QoS requirement of MPLS
VPN service. Figure 1 (b) demonstrates a hierarchical structure of QoSpolicy that can be applied on CE and
PE sides. Observe that on a PE side the hierarchy has five levels in depth.Therefore, supporting hierarchical
service policies is a challenging task, which requires to perform hierarchical matching at the line rate.

Hierarchical classification polices are widely used in today’s commercial routers [28, 29, 30, 31]. However,
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most hierarchies have only a few levels due to the speed (line rate) constraints. In this work we study how
to overcome this performance limitation. Specifically, we explore several interesting tradeoffs between the
speed and the required space for wire-speed hierarchical packet classifiers that are implemented inTernary
Content-Addressable Memory(TCAM).

A TCAM is a memory device that stores data as a massive array of fixed-widthternary entries. A ternary
entry is a string of bits where each bit is either0, 1 or ∗ (“don’t care”). The TCAM searches the packet in
parallel against all the ternary entries stored in the memory and produces the first rule that matches the packet.
Remarkably, TCAM guarantees that each lookup is done in constant time. Usually each TCAM entry is wide
enough to contain the concatenation of all the packet fields to be matched, possibly having room for some extra
bits. If a matching rule consists solely of fields that specify exact or prefixmatches, then it can be represented
by a TCAM entry in a straightforward manner (a prefix match field is padded with the appropriate number of
∗’s in the least significant bits). A range value may be converted to multiple prefixes or exact entries to fit the
TCAM format.

2 Our Results

We study two fundamental problems dealing with hierarchical packet classification using TCAM. We are given
a policy P with d levels of hierarchy and the goal is to convertP to an equivalent policyP ′ that needs to
fulfill certain constraints minimizing the number of lookups or TCAM entries required. Our algorithms do not
require any hardware modifications being very easy to deploy.

In the space optimization problem, we aim to minimize the number of TCAM entries required byP ′ subject
to the limit on the maximum number of hierarchy levels. The motivation behind this problem is to reduce the
required TCAM space allowing packet classification in wire-speed withoutincurring a possibly huge memory
blowup if P is flattened to a single level. We propose two dynamic programming algorithms for this problem:
the first algorithm is more efficient but is restricted only to policies that match disjoint fields in a packet header
at different levels of the hierarchy; the second algorithm is slightly more complicated and can process general
policies.

In the speed optimization problem, our goal is to minimize the number of hierarchy levels in P ′ subject
to the limit on the maximum number of TCAM entries. The rationale behind this problemis to utilize the
available TCAM capacity as efficiently as possible to reduce the number of lookups. We propose an algorithm
that applies one of our speed optimization algorithms as a subroutine. This algorithm adds a factor ofO(log d)

to the running time of the corresponding speed optimization algorithm. Please observe that the suggested
algorithms are orthogonal to different approaches that minimize TCAM entries such as removing of redundant
rules, conversion of ranges to prefixes, etc. (see SubSection 3) at asingle hierarchical level. All our algorithms
operate on already optimized classification rules at each hierarchical level and transparent to any specific TCAM
HW architecture.

3 Related Work

Designing algorithms that scale to millions of rules and millions of searches per second has been and continues
to be an important line of research. Many software-based sophisticated approaches have been proposed in
the past few years including Recursive Flow Classification [10], Crossproducting [6, 22, 24], HyperCuts [21],
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Extended Grid-of-Tries [2] and Aggregated Bit Vector [3], to name justa few. Comprehensive surveys on this
subject can be found in [8, 12, 23, 25]. The complexity bounds derived by means of computational geometry
imply that any software-based packet classifier withN rules andk > 2 fields, uses eitherO(Nk) space and
O(log N) time orO(N) space andO(logk−1 N) time [19]. Thus, many software-based approaches are either
too slow or too memory intensive fork > 2. Though packet classification algorithms using decision trees
achieve better time-space tradeoffs (see [11, 26]), they exploit statistical characteristics that are not reliable in
general.

Due to the inherent limitations of software-based approaches, industry has increasingly employed hardware-
basedTernary Content Addressable Memory(TCAM) for performing packet classification making it the dom-
inant method [32, 33, 34]. A large class of packet classification systems that require up to a few hundred
thousand rules have adopted TCAM for packet classification at multigigabitspeeds [4, 9].

Some previous works consider TCAM space minimization for a packet classifier, for example [14, 18]. For
the best of our knowledge all of them deal with a single level of hierarchyconcentrating on elimination of
overlapping rules and representation of filters ranges. Several schemes for converting ranges to TCAM rules
have been proposed in [5, 13, 14, 15, 16, 17, 18]. Reducing of TCAM power consumption and increasing of
throughput is explored in [1, 20, 27].

4 Paper Organization

The rest of the paper is organized as follows. The model description appears in Section 5. The algorithms
for space and speed optimization are presented in Section 6 and Section 8, respectively. The generalization of
space optimization problem is considered in Section 7. Finally, we conclude withSection 10.

5 Model Description

In this section we introduce the formal notation and define the Hierarchical Speed and Space Optimization
problems.

5.1 Notation

A packet header containsk fields, where a fieldHi (1 ≤ i ≤ k) is a string ofWi bits. In an IPv4 packet,
classifiers usually check the following six fields: the Type of Service (8 bits), the Destination Address (32 bits),
the Source Address (32 bits), the Destination Port (16 bits), the Source Port (16 bits), and the Protocol Type (8
bits). Note that classifiers may access other fields besides TCP/IP headersuch as MAC or application headers.
Packets are matched according to classification rules stored in a classification database.

The classification database of a router consists of a finite set ofn rules,R1 . . . Rn. Each ruleR specifies
matchings for one or more (up tok) fields. For each header fieldHi, a rule can specify a filterFi of length|Fi|

(|Fi| ≤ |Hi|), which can be any of two kinds of matches: exact match or prefix match.

1. A packet header fieldHi exactly matches the filterFi if and only if Hi = Fi.

2. A packet header fieldHi is a prefix match for the filterFi if and only if the|Fi| bits ofHi are equal toFi.
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Figure 2: An example of policy and its graphGp.

A packetp matches ruleR if each ofp’s header fields matches the corresponding filter ofR if any. The header
fields for which filters are not specified by the rule are matched in TCAM by awildcard filter (”don’t care”).
Since a packet may match multiple rules, the classification problem is to determine thefirst matching rule in an
ordered sequence of rules.

There is also a third type of matching, so-called range matching, where the header value should fall into a
contiguous interval specified by the filter. In typical packet classifiers,such fields as the source and destination
port numbers are represented as ranges rather than prefixes. Though range rules cannot be directly stored in
TCAMs, they are usually converted to a corresponding set of prefixeseach of which is stored in a separate
TCAM entry. In this paper we deal with classification rules that reside in a TCAM device and assume that
all filters are exact or prefix match (the classification database may undergo a conversion if necessary [5, 13,
14, 15, 16, 17, 18]. Such transformation of rules is orthogonal for our future discussion since our algorithms
manipulate with already converted rules on each hierarchical level.

We define aclassC to be an ordered set of rules and a set ofactionsto be taken on the packet. For instance,
a QoS action may be packet marking with a pre-defined DSCP value while a security action may be packet
accept or reject. We denote by|C| the number of rules orcardinality of C. We say that the class is matched if
the first matching rule belongs to this class. ApolicyP is an ordered set of classes. The last class of a policy is
usually so-calleddefaultclass matching all packets that have not been matched by the other classes.Note that
a global order of the rules is obtained by listing the rules in the corresponding classes.

The action of a class can also apply another policy in recursive manner, creating ahierarchical policy. Each
recursive application creates a newlevel of hierarchy. A hierarchical policy can be viewed as a directed and
acyclic graphGP with classes acting as nodes and each edge representing a recursive policy application (see
Figure 2). A directed pathC = C1 → C2 → . . . → Cd from aroot class with no incoming edges to aterminal
class with no outgoing edges is called aclass chain. The length of the longest class chain is defined as thepolicy
depth. In order to match all rules on a class chainC, a packet has to match rulesR1 ∈ C1, R2 ∈ C2, . . . , Rd ∈

Cd. Observe that the total number of hierarchical class chains is equal to thenumber of terminal classes.

In the actual implementation of a hierarchical classifier, a special header fieldH0 is added to a packet at all
levels of the hierarchy to identify the class sub-chainS = C1 → C2 → . . . → Cl (1 < l ≤ d) matched by the
packet up to and including levell. In this way, the classifier can track the path of the packet inGP and take
the appropriate actions as matching proceeds. Furthermore, all the rules corresponding to the children of the
classCl in GP have a common filterF0 that identifies the class sub-chainS. As a result, different class chains
in a hierarchical classifier are independent in the sense that distinct instances of the same class are created for
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each node inGP . Therefore, in order to minimize the number of entries across different hierarchical chains it
is sufficient to consider separately each one of the chains. We assume that the size ofF0 filter is at least as the
cardinality of all hierarchical class chains in the policy graph. A value ofH0 at each hierarchical level (from
the second) is identified as result of the previous TCAM lookup. At the first level the value ofH0 is known a
priory and its value is identical for all hierarchical chains of the same policy.

Hierarchical policies allow a high degree of flexibility and modularity in policy definition. However, a
separate TCAM lookup needs to be performed for each level of the hierarchy in the process of classification,
which may incur large delays for policies with high depth. To speed up the classification process, a hierarchical
policy can be converted to an equivalent policy of lower depth. At the sametime, such a conversion can
significantly increase the number of TCAM entries required to store the merged rules. We define theTCAM
spaceM of a policy as the total number of rules in all levels of the classification hierarchy.

The operations defined below deal with policy flattening. We will describe how to intersecttwo filtersFi

andF ′
i specified for a common header fieldHi. Suppose without loss of generality that|Fi| ≤ |F ′

i |. If Fi is
a prefix ofF ′

i , then a resulted filterFi ∩ F ′
i will consist of filterF ′

i . Otherwise, a resulted filterFi ∩ F ′
i is an

empty filterthat does not match any value of header fieldHi. The merge of rulesR ⊗ R′ is defined as a set
of intersections of the corresponding filters inR andR′. If at least one empty filter is produced during this
operation then the merged ruleR ⊗ R′ is called anempty rulethat does not match any packet. We define the
mergeof two classesC⊗C ′ as a class consisting of all possible merges of rulesR⊗R′ that are not empty, where
R ∈ C andR′ ∈ C ′ that sequentially applies actions ofC andC ′. For a class chainC = C1 → C2 → . . . → Cd

we define avirtual classC1,d asC1 ⊗ C2 ⊗ . . . ⊗ Cd that represents the merge of all classes inC.

Observe that|C1 ⊗ C2 . . . Cn| ≤ |C1||C2| . . . |Cn|. Let C1 consist of three rules[ToS = 1], [ToS = 2]

and[ToS = 3] andC2 consist of two rules[DstPort = 21] and[DstPort = 80]. In this case,|C1 ⊗ C2| =

6 as the filters are specified for disjoint header fields andC1 ⊗ C2 contains the following rules:[ToS =

1, DstPort = 21], [ToS = 2, DstPort = 21], [ToS = 3, DstPort = 21], [ToS = 1, DstPort = 80],
[ToS = 2, DstPort = 80], [ToS = 3, DstPort = 80]. At the same time, the TCAM space required
to represent the merge of classes may be smaller than the cardinality of the classes themselves if filters are
specified for common header fields. For instance, suppose thatC1 contains three rules[ToS = 1], [ToS = 2]

and [ToS = 3] andC2 contains two rules[ToS = 3] and [ToS = 4]. We obtain that|C1 ⊗ C2| = 1 and
C1 ⊗ C2 includes just one rule[ToS = 3].

5.2 Problem Statement

We say that two packet classifiers are (semantically) equivalent if and only if they apply the same actions on
each packet. Next, we define the optimization problems studied in this paper.

Hierarchical Space Optimization Problem: Given a hierarchical policyP with depthd > 1, the goal is to
convertP to an equivalent policyP ′ with depth of at mostl (l < d) that minimizes the required TCAM space.

Hierarchical Speed Optimization Problem: Given a hierarchical policyP that requires TCAM space of
M , the aim is to convertP to an equivalent policyP ′ that minimizes the policy depth subject to the constraint
that the TCAM space cannot exceed the available TCAM spaceA (A > M ).

For now we assume that a set of classified packet headers is known a priori.
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Figure 3: Example of well-structured hierarchy.

6 Space Optimization

In this section we consider the case where the values of classified packetheaders are known a priori and are
not changed during classification process. We consider the problem ofminimizing the TCAM space subject to
the constraint on the policy depth. First, we present an algorithm for the case where rules in any class chain
apply only to disjoint header fields. Then we propose an algorithm for the general case where we impose no
restrictions on the policy whatsoever.

6.1 Well-Structured Hierarchies

In this section we studywell-structuredhierarchical policies in which rules in any class chain apply only to
disjoint header fields. The example of well-structured hierarchy is presented on Figure 3. We can learn from
the same figure the importance of decision which sub-chains should be merged. At one hand, if we merge the
classesC2 andC3 then the cardinality of flattened hierarchical chain is|C1|+ |C2⊗C3| = 4+4 = 8. From the
other hand, if we merge the classesC1 andC2 then the cardinality of the flattened chain is|C1 ⊗C2|+ |C3| =

8 + 2 = 10.

Well-structured hierarchies have the following important property, which allows us to use a fast dynamic
programming algorithm operating merely with cardinalities of merged classes without actually merging the
rules themselves until the final stage.

Input: policyP of depthd, integerl (l < d)
Output: policyP ′ equivalent toP of depthl

• Step 1: Merging Long Chains. For each class chainC = C1 → C2 → . . . → Cd in P such thatd > l create a
virtual classC1,d = C1 ⊗ C2 ⊗ . . . ⊗ Cd that represents the merge of all classes inC (without merging the rules).

• Step 2: Splitting Merged Chains. Split each merged virtual classl − 1 times using the Level Splitting Algorithm
(see Figure 6).

• Step 3: Merging Rules. For each virtual class, merge the rules of the correspondingmerged classes.

• Step 4: Creating Output Policy. OutputP ′ as a union of all the original chains of length at mostl and the
converted long chains.

Figure 4: Space optimization algorithm (SOAW ) for well-structured hierarchies.

Observation 1 In a well-structured hierarchy, for any class chainC = C1 → C2 → . . . → Cd the cardinality
of the classes’ merge inC, that is|C1 ⊗C2 ⊗ . . .⊗Cd|, equals the product of the cardinalities of the individual
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classes|C1||C2| . . . |Cd|.

The space optimization algorithm for well-structured hierarchies (SOAW ) is presented on Figure 4.SOAW

proceeds by first merging all chains of length greater thanl into a singlevirtual class without actually merg-
ing the rules. Then each virtual merged class is splittedl − 1 times in an optimal way using a level splitting
algorithm based on the dynamic programming technique. Finally, for each virtual class the rules of the corre-
sponding merged classes are merged to produce the output policy. Observe that class chains of length smaller
thanl are left untouched bySOAW . The running time ofSOAW is output sensetive. Basically, it build the
optimized policy according to the output of level splitting algorithm, which is appliedto all long chains inP .
Recall that the total number of class chains equals the number of terminal classes.

Now we describe how to divide the level splitting problem into two sub-problemsand combine solutions to
these sub-problems into a solution to the original problem. For an merged classC1,d = C1 ⊗ C2 ⊗ . . . ⊗ Cd,
we denote byV (i, j, n) (1 ≤ i < d, i < j ≤ d) the cost of an optimal solution for the problem ofn splittings
in the merged sub-classCi,j = Ci ⊗ Ci+1 ⊗ . . . ⊗ Cj . The cost is measured as the cumulative cardinality of
the resultingn + 1 sub-classes.

We define initial values for the special case ofn = 0 where nothing needs to be done and the special case
of n > j − i where no feasible solution exists:

V (i, j, n) =

{

|Ci,j | : n = 0,

∞ : n > j − i.
(1)

The main recurrence relation is defined as follows forn > 0 andn ≤ j − i:

V (i, j, n) = min
u

(V (i, u, 0) + V (u + 1, j, n − 1)) (2)

for i ≤ u ≤ j − n.

Basically, in order to maken level splittings we consider all possibilities for the first splitting and perform
exhaustive search over all the remained at mostn−1 splittings inCu+1,j sub-class. The Figure 6.1 demonstrates
this process.

0 n-1

ci cu... cj...cu+1

splittings

x x x x

Figure 5: Dynamic programming for well-structured policy.

Our aim is to minimize the overall cost of the produced solution. The level splittingalgorithm (LSA)
appears on Figure 6.

It is easy to see that the space complexity ofLSA is O(d2l) and the running time isO(max(dl2, d2l)),
which is very reasonable sinced andl are typically small numbers. The next theorem shows the correctness of
LSA.

Theorem 6.1 The level splitting algorithm (LSA) finds an optimal solution of minimum cost for the problem
of n splittings (n > 1) in a class formed as the merge ofd classes (d > n).
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Input: hierarchical chainC consisting ofd classes, integerl (l < d)
Output: chainC′ of lengthl

• Step 1: Initialization. Initialize V (i, j, n) for n = 0 andn > j − i according to Equation 1.

• Step 2: Calculation. Calculate all valuesV (i, j, n) starting fromn = 1 up ton = l − 1 for n ≤ j − i using the
recurrence Equation 2 and record the splitting of minimum cost.

• Step 3: Reconstructing the optimal solution. Construct the chainC′ by splitting the classes ofC with respect to
the optimal solution of minimum costV (1, d, l − 1).

Figure 6: Level splitting algorithm (LSA) for well-structured hierarchies.
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Figure 7: Example of arbitrary hierarchy.

Proof: The proof is by induction on the number of splittingsn. Clearly,LSA finds an optimal solution for
n = 0 since it just returns the original input as no splittings are necessary.

Suppose thatLSA finds an optimal solution for the number of splittings of at mostn and let us show that
it also finds an optimal solution forn + 1 splittings. Note thatLSA considers all options for making the first
splitting, one of which necessarily corresponds to an optimal solution. Having done an optimal first splitting, it
must be the case that the rest of this optimal solution consists of an independent optimal solution for the right
sub-class with at mostn splittings. By the induction hypothesis,LSA finds an optimal solution for the right
sub-class with at mostn splittings. Therefore,LSA finds an optimal solution for at mostn + 1 splittings.

6.2 Arbitrary Hierarchies

In this section we deal with the general case of arbitrary hierarchies. Unfortunately, such hierarchies require to
calculate the actual merge of the rules for the classes’ merge in order to obtain its cardinality as demonstrated
by the next observation.

Observation 2 In an arbitrary hierarchy, for any class chainC = C1 → C2 → . . . → Cd we have that the
cardinality of the merge of all classes inC, that is|C1 ⊗C2 ⊗ . . .⊗Cd|, is bounded from above but may not be
equal to the product of the cardinalities of the individual classes|C1||C2| . . . |Cd|.

The example of arbitrary hierarchy is shown on Figure 7.

That necessitates a slightly more complicated dynamic programming algorithm for level merging compared
to the level splitting algorithm used for well-structured hierarchies. The space optimization algorithm for gen-
eral hierarchies (SOAG) appears on Figure 8.SOAG merges all chains of length greater thanl by running a
level merging algorithm based on the dynamic programming technique. The main component ofSOAG is the
level merging algorithm, which processes all long chains inP .
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Input: policyP of depthd, integerl (l < d)
Output: policyP ′ equivalent toP of depthl

• Step 1: Merging Long Chains. Merge all chains of lengthd′ greater thanl using the level merging algorithm with
the number of mergesm = d′ − l.

• Step 2: Creating Output Policy. OutputP ′ as a union of all the original chains of length at mostl and the
converted long chains.

Figure 8: Space optimization algorithm (SOAG) for general hierarchies.

...cu+1

    n

cji<u: ...cu+1
...ci

n-(u-i)

cuxx cj

mergings   u-i

i=u: ci

Figure 9: Dynamic programming for a chain with arbitrary structure.

In what follows we present a way of dividing the level merging problem intotwo sub-problems and com-
bining solutions to these sub-problems into a solution to the original problem. Fora class chainC = C1 →

C2 → . . . → Cd, defineV (i, j, n) (1 ≤ i < d, i < j ≤ d) as the cost of an optimal solution for the problem of
mergingn levels in the class sub-chainCi,j = Ci → Ci+1 → . . . → Cj . We estimate the cost of a solution as
the total cardinality of the producedj − i − n + 1 sub-classes.

Initial values are set for the special case ofn = 0 where no merges have to be performed, the special case
of n > j − i which permits no feasible solution and the case ofn = j − i where all levels are completely
merged. Note that there is no need to merge more thand − l levels to obtain the desired solution. We define
initial values for the special case ofn = 0 where nothing needs to be done and the special case ofn > j − i

where no feasible solution exists:

V (i, j, n) =

{

∑j

u=i |Cu| : n = 0,∞ : n > j − i,

|Ci,j | = |Ci ⊗ . . . ⊗ Cj | : n = j − i, n ≤ d − l.
(3)

We specify the main recurrence relation forn > 0 andj − i > n in the following way:

V (i, j, n) = min
u

(V (i, u, u − i) + V (u + 1, j, n − (u − i))) (4)

for i ≤ u ≤ i + n.

Essentially, we cover all options for a leftmost merged class sub-chainCi,u with u − i mergings. Then we
consider all possible sub-divisions of the remainingn − (u − i) mergings of the class sub-chainCu+1,j .

The goal is to minimize the total cost of the resulting solution. The level merging algorithm (LMA) can be
found on Figure 10.

We obtain that the space complexity ofLMA is O(md2) and the running time isO(max(md2, m2d)). The
subsequent theorem demonstrates the correctness ofLMA.

Theorem 6.2 The level merging algorithm (LMA) finds an optimal solution of minimum cost for the problem
of merging (n > 1) levels in a chain of lengthd (d > n).
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Input: chainC (of lengthd), integerm (m < d)
Output: chainC′ of lengthd − m

• Step 1: Initialization. Initialize V (i, j, n) for n = 0, n > j − i, andn = j − i (n ≤ m) according to Equation 3.

• Step 2: Calculation. Calculate all valuesV (i, j, n) starting fromn = 1 up ton = m for n > j − i using the
recurrence Equation 4 and record the merging of minimum costat each stage.

• Step 3: Reconstructing the optimal solution. Construct the chainC′ by merging the classes ofC′ with respect to
the optimal solution of minimum costV (1, d,m).

Figure 10: Level merging algorithm (LMA) for general hierarchies.
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Figure 11: Motivation for generalized space optimization problem.

Proof: The proof is by induction on the number of mergingsn. Obviously,LMA finds an optimal solution
for n = 0 since it just returns the original input as no mergings need to be done. Suppose thatLMA finds an
optimal solution for the number of mergings of at mostn and let us prove that it finds an optimal solution for
n+1 mergings as well. Observe thatLMA examines all possibilities for makingz (1 ≤ z ≤ n+1) mergings in
the leftmost class sub-chain. It must be the case that one of these mergingsis a merging in an optimal solution.
Having done the first merging that is a part of optimal solution, the other mergings in this optimal solution is
independent optimal solution for the right class sub-chain under at mostn+1−z mergings. If the first merging
is an empty merging (i.e.z = 0), then the above argument is applied to the right class sub-chain. According to
the induction hypothesis,LMA finds an optimal solution in the right class sub-chain with at mostn+1−z ≤ n

mergings for the first non-empty merging (i.e.z > 0). Hence,LMA finds an optimal solution for at mostn+1

mergings.

7 Generalization of Space Optimization Problem

In this section we discuss a generalization of the space optimization problem in which we obtain an additional
constraint that the inner protocol header fields cannot be extracted until the outer protocol header fields have
been parsed. The rationale behind this problem is that certain levels of the hierarchy cannot be ”merged” during
optimization of a hierarchical chain as classifying complex protocols based on the analysis of encapsulated
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content often requires sequential parsing of nested protocol headers. For instance, the application header cannot
be extracted directly if the TCP header contains variable length options. Moreover, packet header fields can be
dynamically changed during classification process as a result of class actions.

A barrier is the level of hierarchical chain where two neighboring classes belonging to it could not be
“merged”. The classifier has to issue a separate TCAM lookup for each barrier in hierarchical chain. For
instance, on Figure 11 we consider a packet that is matched to the classC11. For correctness of classification
process we have to update TOS value to3 or 4 according to police action ofC11 that defines a barrier in all
hierarchical chains initiated fromC11. That meansC11 could not be merged withC21 during optimization of
hierarchical chainC = C11 → . . . → C31.

We will show that the generalized version of space optimization algorithms is simplyextendable. The
definition of virtual sub-classCi,j previously being defined asCi ⊗ Ci+1 ⊗ . . . ⊗ Cj now should take into
account permanently located barriers. More precisely, if there is a barrier at thek-th position in an hierarchical
sub-chainCi,j , i ≤ k < j then the virtual sub-classCi,j is defined asCi,k → Ck+1,j and its cardinality|Ci,j |

is equal to|Ci,k| + |Ck+1,j |, i < k < j. We assume that the number of barriersb in any class chainC is
less than|C|; otherwise, no feasible solution exists. The generalized version ofLSA algorithm for the case of
well-structured chain will find optimal placement ofl−b−1 splittings. Moreover, the modified version ofLSA

will not try to place splittings at the predefined barrier positions. The generalized version ofLMA algorithm
for the case of general hierarchical chains can just skip during dynamical programming levels corresponding to
barriers.

8 Speed Optimization

In this section we study the problem of minimizing the number of levels in the policy hierarchy subject to
the constraint on the maximum TCAM space. We utilize the space optimization algorithms from the previous
section. The speed optimization algorithm is presented on Figure 12.

Input: policyP with TCAM spaceM of depthd, TCAM spaceA (A > M )
Output: policyP ′ equivalent toP with TCAM space of at mostA

Performbinary searchon the policy depth between1 andd by applying eitherSOAW or SOAG on P depending on
the structure ofP ’s hierarchy and find the minimum depthl for which the TCAM space of the produced policyP ′

does not exceedA.

OutputP ′.

Figure 12: Speed optimization algorithm.

Generally speaking, we need to find the optimal valuel of the policy depth and then optimize the TCAM
space of the transformed policyP ′ for depthl. The binary search is performed because this value is not known
in advance. Once we have found the optimal depth, the space optimization algorithm guarantees minimization
of the TCAM space. The running time of the speed optimization algorithm isO(log d) times the running
time of SOAW or SOAG, that is at mostO(d3) times the number of terminal classes inP , respectively.
Remarkably, the running time of the speed optimization algorithm does not depend on A, which can be by
orders of magnitude larger thand.

For the case of arbitrary structures the generalized version ofLMA will not try to place mergings at the
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Figure 13: Required TCAM space as a function of a number of splittings.
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Figure 14: Required TCAM space as a function of a number of mergings.

predefined barriers positions. We obtain that the time and space complexities of generalized versions ofLSA

andLMA are the same as original.

9 Experimental Results

In this section, we evaluate the efficiency of the proposed algorithms, whichuse additional TCAM lookups
to minimize the TCAM space required to represent a hierarchical policy. Since hierarchical chains are inde-
pendent, we evaluate the algorithms for merging/splitting of a single hierarchical chain rather than the whole
classification policy. Unfortunately, there is no available for evaluation real-world data for classifiers with more
than two levels of hierarchy. Hence, we synthesize data for our experimental study.

In our simulations we generate hierarchical chains with a length of4. The cardinality of any class belonging
to such a chain is at most16 being chosen uniformly at random. In addition, for the case of general hierarchical
chains that are used for simulation ofLMA algorithm, the intersection between any two neighboring classes is
also chosen uniformly at random. For each simulated algorithm we perform over1000 trials.

Firstly, we considerLSA algorithm. Figure 13 presents the dependency of TCAM space on the number of
splittings for the case of well-structured class chains. The simulation results demonstrate very fast exponential
growth of the required TCAM space when the number of splittings in a hierarchical chain decreases.

Next, we evaluate theLMA algorithm for the case of general class chains. Figure 14 shows the dependency
of TCAM space on the number of mergings. As in the previous case, the simulation demonstrates an exponential
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growth of the required TCAM space with increasing of the number of mergings. Note that as the cardinality
of the intersections between classes of the general hierarchical chain isgrowing, the TCAM space requirement
drops down.

As evidenced by the performed experiments for synthetically created classifiers, there exists a fundamental
tradeoff between the TCAM classifier space requirements and the lookup speed, which is crucial for efficient
implementation of hierarchical classification. Specifically, we need to find the smallest memory footprint that
still satisfies the latency requirement so as to optimize the memory cost.

10 Conclusion

Hierarchical packet classification is a key operation needed in provisioning of many crucial network services.
One of the major challenges in design of the next generation high-speed switches is to deliver wire-speed packet
classification. TCAMs are the dominant industry standard used for multi-gigabit classifiers. However, as packet
classification policies grow in depth and complexity, there arises a fundamental tradeoff between the TCAM
space and the number of lookups for hierarchical policies.

In this paper we propose novel algorithms based on dynamic programming for solving two important prob-
lems concerned with hierarchical packet classification. The algorithms forthe first problem minimize the
TCAM space given a constraint on the policy depth while the algorithm for thesecond problem minimizes
the policy depth subject to the constraint on the maximum TCAM space. Also we study extensions of space
optimization problem. Our algorithms do not require any modification to existing packet classification systems
and can be easily deployed. Exploring tradeoff between required TCAMspace and performance states a good
balance for the future efficient implementation of hierarchical classifications that do not require any hardware
changes. As far as we aware, this is the first work to study TCAM speed and space optimization for hierarchical
packet classification. We believe that studying of the proposed tradeoffs and interconnection between them
is interesting and provides additional insight on generalized classification problem with several hierarchical
levels.
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