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Abstract

Traffic classification in the Internet is a crucial mechanisuessary to support network services. Using
Ternary Content Addressable Memories (TCAMS) to perforghtspeed packet classification has become
the de facto standard in industry. TCAMs concurrently mdtah packet headers against the rules in a
classification database providing high throughput unjeleal by software-based solutions. The complexity
of packet classification policies has been growing rapidglyhee number of Internet services continues to
increase. Many complex classification policies are naturapresented in a hierarchical fashion, where
different layers perform classification based on the adstri@iiive domain and the traffic QoS parameters.
However, multiple levels of classification hierarchy in¢ugh lookup latency while high TCAM memory
requirements of flattened classification policies is a miague since TCAMs have very limited capacity. In
this paper we focus on the fundamental trade-off betweed @%M space and the number of lookups in
the TCAM classification policies. We consider two optimiaatproblems of dual nature: the first problem
is to minimize the number of TCAM entries subject to the caaist on the maximum number of levels in
the policy hierarchy; the second problem is to minimize thmher of levels in the policy hierarchy subject
to the constraint on the maximum number of TCAM entries. Wappse efficient algorithms for these
problems, which do not require any hardware changes. Todked§ our knowledge, this is the first work
to study these problems. We also show experimental resaltstupport our findings.
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Figure 1: Application of Hierarchical QoS for MPLS VPN service.

1 Introduction

Packet classification is a crucial function for a variety of emerging nétwervices such as Quality of Service
(QoS), firewalling, and traffic monitoring and accounting, to hame just a few

An important characteristic influencing the network services is so calledonletwerarchy, that is the de-
gree of concentration of traffic flows at interconnection points within thievoik. Hierarchies are important
since they help to determine the sizes of networks, including the routing anessihg configurations as well
as the scaling of network technologies, performance, and service.|lBugthermore, service-level agreements
can include support for delay-constrained applications and may contaiiedy of capacity and control mech-
anisms, such as traffic shaping and policing at multiple levels in the network.

Network devices maintain service policies under which incoming or outgoicleps are classified by
matching against a hierarchical set of rules. For example, bandwidthecahared between different users at
the top level matching traffic according to the administrative affiliation while thersettier of the hierarchy can
further classify the traffic according to the QoS class based on the &itiated Services Code Point (DSCP),
protocol type, or some other criteria. In addition, each rule can alsafg@eset of actions to be taken on
packets matching this rule.

Several types of services such\slti Play, MPLS VPNVPDN, to name just a few, require implementation
of hierarchical policies [31]. For instance, consider the following implemat@n of MPLS VPN service that
is described in [31]. Th€ustomer EdgéCE) side of theProvider Edge(PE) router links the branches of an
enterprise, where each branch has a special bandwidth requirerhergénfierprise has a limit on the outgoing
traffic and the tunnels between PE routers bear traffic from diffenetetrgrises, which have different QoS
requirements. The tunnels also have bandwidth limitations of their own. Fig{@edepicts the MPLS VPN
service model. Though for the CE side the traditional QoS can improve thieseuality of each branch, it
cannot manage the traffic of branches and that of the whole enterpriB&.oThe problem is that for tunnels
between PEs, the traditional QoS applies to either the tunnel or the intefffialdeparately without being able
relate between the two. On the other hand, the hierarchical QoS model eathe&oS requirement of MPLS
VPN service. Figure 1 (b) demonstrates a hierarchical structure ofg@ly that can be applied on CE and
PE sides. Observe that on a PE side the hierarchy has five levels in dégttefore, supporting hierarchical
service policies is a challenging task, which requires to perform higcalanatching at the line rate.

Hierarchical classification polices are widely used in today’s commeraig¢re [28, 29, 30, 31]. However,



most hierarchies have only a few levels due to the speed (line rate) dotsstrin this work we study how
to overcome this performance limitation. Specifically, we explore severakstieg tradeoffs between the
speed and the required space for wire-speed hierarchical pdeksifiers that are implemented Tiernary
Content-Addressable MemofTCAM).

A TCAM is a memory device that stores data as a massive array of fixed-teidtary entries. A ternary
entry is a string of bits where each bit is eithlerl or x (*don’t care”). The TCAM searches the packet in
parallel against all the ternary entries stored in the memory and producésstirule that matches the packet.
Remarkably, TCAM guarantees that each lookup is done in constant timallysach TCAM entry is wide
enough to contain the concatenation of all the packet fields to be matctssihlgdaving room for some extra
bits. If a matching rule consists solely of fields that specify exact or prefitches, then it can be represented
by a TCAM entry in a straightforward manner (a prefix match field is paddédtive appropriate number of
%’s in the least significant bits). A range value may be converted to multiplexpsefir exact entries to fit the
TCAM format.

2 Our Results

We study two fundamental problems dealing with hierarchical packet ctzgif using TCAM. We are given
a policy P with d levels of hierarchy and the goal is to convéttto an equivalent policy”’ that needs to
fulfill certain constraints minimizing the number of lookups or TCAM entries megli Our algorithms do not
require any hardware modifications being very easy to deploy.

In the space optimization problem, we aim to minimize the number of TCAM entriegeeday P’ subject
to the limit on the maximum number of hierarchy levels. The motivation behind thidguois to reduce the
required TCAM space allowing packet classification in wire-speed witlmauirring a possibly huge memory
blowup if P is flattened to a single level. We propose two dynamic programming algorithmsdqrtblem:
the first algorithm is more efficient but is restricted only to policies that matgbididields in a packet header
at different levels of the hierarchy; the second algorithm is slightly monepticated and can process general
policies.

In the speed optimization problem, our goal is to minimize the number of hierareblg i P’ subject
to the limit on the maximum number of TCAM entries. The rationale behind this protdem utilize the
available TCAM capacity as efficiently as possible to reduce the number kafipgo We propose an algorithm
that applies one of our speed optimization algorithms as a subroutine. Thigtalyadds a factor of) (log d)
to the running time of the corresponding speed optimization algorithm. Pleasevelibat the suggested
algorithms are orthogonal to different approaches that minimize TCAM ergtieh as removing of redundant
rules, conversion of ranges to prefixes, etc. (see SubSection 3)ragla hierarchical level. All our algorithms
operate on already optimized classification rules at each hierarchickdieligansparent to any specific TCAM
HW architecture.

3 Reated Work

Designing algorithms that scale to millions of rules and millions of searches pemgé&as been and continues
to be an important line of research. Many software-based sophisticapedaghes have been proposed in
the past few years including Recursive Flow Classification [10], Qwoskicting [6, 22, 24], HyperCuts [21],



Extended Grid-of-Tries [2] and Aggregated Bit Vector [3], to name gufw. Comprehensive surveys on this
subject can be found in [8, 12, 23, 25]. The complexity bounds dgfiyemeans of computational geometry
imply that any software-based packet classifier withrules andk > 2 fields, uses eithe®(N*) space and
O(log N) time orO(NN) space and (log*~ N) time [19]. Thus, many software-based approaches are either
too slow or too memory intensive fdr > 2. Though packet classification algorithms using decision trees
achieve better time-space tradeoffs (see [11, 26]), they exploit stdtihi@eacteristics that are not reliable in
general.

Due to the inherent limitations of software-based approaches, industigdraasingly employed hardware-
basedlernary Content Addressable MemdlyCAM) for performing packet classification making it the dom-
inant method [32, 33, 34]. A large class of packet classification systeatgdfuire up to a few hundred
thousand rules have adopted TCAM for packet classification at multigigpééds [4, 9].

Some previous works consider TCAM space minimization for a packet ckxséifi example [14, 18]. For
the best of our knowledge all of them deal with a single level of hieramdmncentrating on elimination of
overlapping rules and representation of filters ranges. Severahssh®r converting ranges to TCAM rules
have been proposed in [5, 13, 14, 15, 16, 17, 18]. Reducing ofM@awer consumption and increasing of
throughput is explored in [1, 20, 27].

4 Paper Organization

The rest of the paper is organized as follows. The model descriptiogaapn Section 5. The algorithms
for space and speed optimization are presented in Section 6 and Sectspéd;tively. The generalization of
space optimization problem is considered in Section 7. Finally, we concludeéseittion 10.

5 Mode Description

In this section we introduce the formal notation and define the Hierarchjedédand Space Optimization
problems.

5.1 Notation

A packet header contairisfields, where a fieldd; (1 < ¢ < k) is a string of/W; bits. In an IPv4 packet,
classifiers usually check the following six fields: the Type of Service (§,kite Destination Address (32 bits),
the Source Address (32 bits), the Destination Port (16 bits), the Soart€lB bits), and the Protocol Type (8
bits). Note that classifiers may access other fields besides TCP/IP Iseatieas MAC or application headers.
Packets are matched according to classification rules stored in a classifitatidase.

The classification database of a router consists of a finite setoles, R; ... R,. Each ruleR specifies
matchings for one or more (up tg fields. For each header field;, a rule can specify a filteF; of length|F;|
(IF3| < |H;]), which can be any of two kinds of matches: exact match or prefix match.

1. A packet header field; exactly matches the filtef; if and only if H; = F;.

2. A packet header fiel#l; is a prefix match for the filteF; if and only if the| F;| bits of H; are equal td-;.
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Figure 2: An example of policy and its gragh),.

A packetp matches ruleR if each ofp’s header fields matches the corresponding filteRdf any. The header
fields for which filters are not specified by the rule are matched in TCAM bWldcard filter ("don’t care”).
Since a packet may match multiple rules, the classification problem is to determfivsttheatching rule in an
ordered sequence of rules.

There is also a third type of matching, so-called range matching, where d@dethealue should fall into a
contiguous interval specified by the filter. In typical packet classifersh fields as the source and destination
port numbers are represented as ranges rather than prefixesgghTiramge rules cannot be directly stored in
TCAMs, they are usually converted to a corresponding set of predigaek of which is stored in a separate
TCAM entry. In this paper we deal with classification rules that reside in AM@evice and assume that
all filters are exact or prefix match (the classification database may undergnversion if necessary [5, 13,
14, 15, 16, 17, 18]. Such transformation of rules is orthogonal foffuture discussion since our algorithms
manipulate with already converted rules on each hierarchical level.

We define aclassC to be an ordered set of rules and a sedafonsto be taken on the packet. For instance,
a QoS action may be packet marking with a pre-defined DSCP value whilaudtgeaction may be packet
accept or reject. We denote by| the number of rules arardinality of C'. We say that the class is matched if
the first matching rule belongs to this classpdlicy P is an ordered set of classes. The last class of a policy is
usually so-calledlefaultclass matching all packets that have not been matched by the other cNssethat
a global order of the rules is obtained by listing the rules in the corresppetisses.

The action of a class can also apply another policy in recursive mamaating ahierarchical policy Each
recursive application creates a n&wvel of hierarchy A hierarchical policy can be viewed as a directed and
acyclic graphGGp with classes acting as nodes and each edge representing a recatisiy@application (see
Figure 2). A directed pati = C; — Cy — ... — C,4 from aroot class with no incoming edges taerminal
class with no outgoing edges is calledlass chain The length of the longest class chain is defined aptliey
depth In order to match all rules on a class chéira packet has to match rul& € Cy, Ro € Cy, ..., Rg €
C,. Observe that the total number of hierarchical class chains is equal hoitiiger of terminal classes.

In the actual implementation of a hierarchical classifier, a special heattbffj is added to a packet at all
levels of the hierarchy to identify the class sub-chéia- C; — Cy — ... — C; (1 < I < d) matched by the
packet up to and including levél In this way, the classifier can track the path of the packét inand take
the appropriate actions as matching proceeds. Furthermore, all the oulesponding to the children of the
classC; in Gp have a common filteFy that identifies the class sub-chain As a result, different class chains
in a hierarchical classifier are independent in the sense that distinatdestaf the same class are created for



each node irG p. Therefore, in order to minimize the number of entries across differerdrigigcal chains it
is sufficient to consider separately each one of the chains. We assurtieetBaze ofFj filter is at least as the
cardinality of all hierarchical class chains in the policy graph. A valué/gfat each hierarchical level (from
the second) is identified as result of the previous TCAM lookup. At theléwl the value of; is known a
priory and its value is identical for all hierarchical chains of the same policy

Hierarchical policies allow a high degree of flexibility and modularity in policyirdéon. However, a
separate TCAM lookup needs to be performed for each level of thertigrin the process of classification,
which may incur large delays for policies with high depth. To speed up thsifitadion process, a hierarchical
policy can be converted to an equivalent policy of lower depth. At the simms such a conversion can
significantly increase the number of TCAM entries required to store the cheuyes. We define th€ CAM
spaceM of a policy as the total number of rules in all levels of the classification hieyarc

The operations defined below deal with policy flattening. We will descrilve todntersecttwo filters F;
and F! specified for a common header fielfi. Suppose without loss of generality that| < |F/|. If F; is
a prefix of F/, then a resulted filteF; N £/ will consist of filter /. Otherwise, a resulted filter; N F is an
empty filterthat does not match any value of header figld The merge of rule®2 ® R’ is defined as a set
of intersections of the corresponding filtersiihand R'. If at least one empty filter is produced during this
operation then the merged rule® R’ is called anempty rulethat does not match any packet. We define the
mergeof two classe€’ @ C’ as a class consisting of all possible merges of riles’ that are not empty, where
R € CandR’ € (' that sequentially applies actions@fandC’. Foraclasschai = C; — Cy — ... — Cy
we define avirtual classC, g asCi ® C2 @ ... ® Cy that represents the merge of all classeS.in

Observe thatC; @ Cy...Cy| < |C1||Cy|...|Cy]. Let Cy consist of three rulef'oS = 1], [ToS = 2]
and[ToS = 3] andC consist of two rulegDstPort = 21] and[DstPort = 80]. In this case|C; ® Cs| =
6 as the filters are specified for disjoint header fields @hd» C, contains the following rules{T'0S =
1, DstPort = 21], [ToS = 2,DstPort = 21], [ToS = 3, DstPort = 21], [ToS = 1, DstPort = 80,
[ToS = 2,DstPort = 80|, [ToS = 3,DstPort = 80]. At the same time, the TCAM space required
to represent the merge of classes may be smaller than the cardinality of tbesdlaemselves if filters are
specified for common header fields. For instance, suppos€ihatntains three rulel§'oS = 1], [T0S = 2]
and[ToS = 3] andC> contains two rule$7’oS = 3] and[T'0oS = 4]. We obtain tha{C; ® C3| = 1 and
C1 ® Oy includes just one rulfl’oS = 3.

5.2 Problem Statement

We say that two packet classifiers are (semantically) equivalent if alydfahey apply the same actions on
each packet. Next, we define the optimization problems studied in this paper.

Hierarchical Space Optimization Problem: Given a hierarchical policy’ with depthd > 1, the goal is to
convertP to an equivalent policy”’ with depth of at most (I < d) that minimizes the required TCAM space.

Hierarchical Speed Optimization Problem: Given a hierarchical policy’ that requires TCAM space of
M, the aim is to converP to an equivalent policy”’ that minimizes the policy depth subject to the constraint
that the TCAM space cannot exceed the available TCAM splagé > M).

For now we assume that a set of classified packet headers is knovamia pr
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Figure 3: Example of well-structured hierarchy.

6 Space Optimization

In this section we consider the case where the values of classified peeaddrs are known a priori and are
not changed during classification process. We consider the problermihizing the TCAM space subject to
the constraint on the policy depth. First, we present an algorithm for thewhere rules in any class chain
apply only to disjoint header fields. Then we propose an algorithm for¢hergl case where we impose no
restrictions on the policy whatsoever.

6.1 Weél-Structured Hierarchies

In this section we studyvell-structuredhierarchical policies in which rules in any class chain apply only to
disjoint header fields. The example of well-structured hierarchy is pteden Figure 3. We can learn from
the same figure the importance of decision which sub-chains should bednéigene hand, if we merge the
classe€’; andCj; then the cardinality of flattened hierarchical chaif(is| + |Co ® C3| = 4+ 4 = 8. From the
other hand, if we merge the classésandC, then the cardinality of the flattened chainds @ Cs| + |Cs| =
8+2=10.

Well-structured hierarchies have the following important property, whildwa us to use a fast dynamic
programming algorithm operating merely with cardinalities of merged classesuwigfotually merging the
rules themselves until the final stage.

Input: policy P of depthd, integer! (I < d)
Output: policyP’ equivalent taP of depthl

e Step 1: Merging Long Chains. For each class chath = C; — Cy — ... — Cyin P such thatd > [ create a
virtual classC ¢ = C1 ® C2 ® ... ® Cy that represents the merge of all classes {without merging the rules),

e Step 2: Splitting Merged Chains. Split each merged virtual clags- 1 times using the Level Splitting Algorithm
(see Figure 6).

e Step 3: Merging Rules. For each virtual class, merge the rules of the correspondigrged classes.

e Step 4: Creating Output Policy. Output P’ as a union of all the original chains of length at mésind the
converted long chains.

Figure 4: Space optimization algorithri@ AWW) for well-structured hierarchies.

Observation 1 In a well-structured hierarchy, for any class chain= C, — Cy — ... — Cy the cardinality
of the classes’ merge i, thatis|C; ® C2 ® ... ® Cy|, equals the product of the cardinalities of the individual



classesC||Cal ... |Cyql.

The space optimization algorithm for well-structured hierarch&3 A1) is presented on Figure O AW
proceeds by first merging all chains of length greater thiamo a singlevirtual class without actually merg-
ing the rules. Then each virtual merged class is splittedl times in an optimal way using a level splitting
algorithm based on the dynamic programming technique. Finally, for eaclaMitass the rules of the corre-
sponding merged classes are merged to produce the output policyv®bsatrclass chains of length smaller
than! are left untouched by O AW. The running time oSO AW is output sensetive. Basically, it build the
optimized policy according to the output of level splitting algorithm, which is apgheall long chains inP.
Recall that the total number of class chains equals the number of termirsgxlas

Now we describe how to divide the level splitting problem into two sub-probkmascombine solutions to
these sub-problems into a solution to the original problem. For an mergedglass C; ® C; ® ... ® Cy,
we denote by (i, 7,n) (1 < i < d,i < j < d) the cost of an optimal solution for the problemso§plittings
in the merged sub-clags; ; = C; ® C;41 ® ... ® C;. The cost is measured as the cumulative cardinality of
the resulting: + 1 sub-classes.

We define initial values for the special casenof= 0 where nothing needs to be done and the special case
of n > j — i where no feasible solution exists:

‘Ci,jl Zn:(),
o0t > g — .

Vii.gm = { M

The main recurrence relation is defined as followsrfas 0 andn < j — i:

fori<u<j—n.

Basically, in order to make level splittings we consider all possibilities for the first splitting and perform
exhaustive search over all the remained at mest splittings inC',.11 ; sub-class. The Figure 6.1 demonstrates
this process.

Cix. ..xCur—Cu+1%. . xC;j

\_\/_J
O splittings N-1

Figure 5: Dynamic programming for well-structured policy.

Our aim is to minimize the overall cost of the produced solution. The level splitiggrithm (LS A)
appears on Figure 6.

It is easy to see that the space complexitylsfA is O(d?l) and the running time i€ (maz(di?, d?l)),
which is very reasonable sindeand! are typically small numbers. The next theorem shows the correctness of
LSA.

Theorem 6.1 The level splitting algorithm{,S A) finds an optimal solution of minimum cost for the problem
of n splittings ¢z > 1) in a class formed as the merged€lassesd > n).

8



Input: hierarchical chainC consisting of classes, integer (I < d)
Output: chainC’ of length!

e Step 1: Initialization. Initialize V' (i, j,n) forn = 0 andn > j — i according to Equation 1.

e Step 2: Calculation. Calculate all valued (i, j, n) starting fromn = 1 up ton =1 — 1 forn < j — ¢ using the
recurrence Equation 2 and record the splitting of minimust.co

e Step 3: Reconstructing the optimal solution. Construct the chai@’ by splitting the classes @ with respect to
the optimal solution of minimum codt(1,d,! — 1).

Figure 6: Level splitting algorithmi{(S A) for well-structured hierarchies.

C1 C2 Cs
ToS DstPort SrcPort > ... ToS DstPort SrcPort >l -: ToS DstPort SrcPort
N ‘ 3 ‘ . ‘ R * 4 | 1024 * * * * 3021
* ‘ 4 ‘ * ‘ * * * 1025 * * * * 3022

|C1,3]=|C1x C2x C3|=6<|C1||C2||C3
Figure 7: Example of arbitrary hierarchy.

Proof: The proof is by induction on the number of splittings Clearly, LS A finds an optimal solution for
n = 0 since it just returns the original input as no splittings are necessary.

Suppose thai.S A finds an optimal solution for the number of splittings of at mesind let us show that
it also finds an optimal solution for + 1 splittings. Note that..S A considers all options for making the first
splitting, one of which necessarily corresponds to an optimal solution. gakine an optimal first splitting, it
must be the case that the rest of this optimal solution consists of an indepepdenal solution for the right
sub-class with at most splittings. By the induction hypothesi§,S A finds an optimal solution for the right
sub-class with at most splittings. ThereforeL.S A finds an optimal solution for at most+ 1 splittings. |

6.2 Arbitrary Hierarchies

In this section we deal with the general case of arbitrary hierarchigeriunately, such hierarchies require to
calculate the actual merge of the rules for the classes’ merge in order to ibteardinality as demonstrated
by the next observation.

Observation 2 In an arbitrary hierarchy, for any class chaiti = ¢, — Cy — ... — C4 we have that the
cardinality of the merge of all classes@ thatis|C, @ Co ® ... ® Cyl, is bounded from above but may not be
equal to the product of the cardinalities of the individual clasges|Cs| . . . |Cql.

The example of arbitrary hierarchy is shown on Figure 7.

That necessitates a slightly more complicated dynamic programming algorithmdbmnlerging compared
to the level splitting algorithm used for well-structured hierarchies. Theespptimization algorithm for gen-
eral hierarchies§O AG) appears on Figure 80O AG merges all chains of length greater tHapy running a
level merging algorithm based on the dynamic programming technique. The omapooent ofSO AG is the
level merging algorithm, which processes all long chainBin



Input: policy P of depthd, integeri (I < d)
Output: policyP’ equivalent taP of depthi

=

e Step 1. Merging Long Chains. Merge all chains of length’ greater thar using the level merging algorithm wit
the number of merges = d’ — 1.

e Step 2: Creating Output Policy. Output P’ as a union of all the original chains of length at mésind the
converted long chains.

Figure 8: Space optimization algorithri@ AG) for general hierarchies.

I<U: | Ci®-+®Cu{+{Cus+t>++-— C; i=U:| G ~{Cust—=---—| C;
mergings u-i n_(u_l) n

Figure 9: Dynamic programming for a chain with arbitrary structure.

In what follows we present a way of dividing the level merging problem into sub-problems and com-
bining solutions to these sub-problems into a solution to the original problema Elaiss chaid = C; —

Cy — ... — Cy, defineV (i, j,n) (1 <i < d,i < j < d)as the cost of an optimal solution for the problem of
mergingn levels in the class sub-chaih; = C; — Cj11 — ... — C;. We estimate the cost of a solution as
the total cardinality of the producegd- i — n + 1 sub-classes.

Initial values are set for the special caserof 0 where no merges have to be performed, the special case
of n > j — i which permits no feasible solution and the caserof j — i where all levels are completely
merged. Note that there is no need to merge more déharl levels to obtain the desired solution. We define
initial values for the special case of= 0 where nothing needs to be done and the special case=ofj — i
where no feasible solution exists:

. J |Cul tn=0,00 :n>j—i
V v Jy = ‘v 7 1 3 : 3
() {|Ci,j|:|ci®--~®cj|:n:]_l’n<d_l' o

We specify the main recurrence relation for- 0 andj — i > n in the following way:

Vi,j,n) = nhin(V(i, uyu—1)+V(w+1,j,n—(u—1))) 4)

fori<u<i4n.

Essentially, we cover all options for a leftmost merged class sub-chgiwith « — ¢ mergings. Then we
consider all possible sub-divisions of the remaining (u — i) mergings of the class sub-chaip,; ;.

The goal is to minimize the total cost of the resulting solution. The level mergimgitdg (LM A) can be
found on Figure 10.

We obtain that the space complexitylol/ A is O(md?) and the running time i® (max(md?, m3d)). The
subsequent theorem demonstrates the correctnds&/of.
Theorem 6.2 The level merging algorithm(M A) finds an optimal solution of minimum cost for the problem
of merging ¢ > 1) levels in a chain of length (d > n).

10



Input: chainC (of lengthd), integerm (m < d)
Output: chainC’ of lengthd — m

e Step 1: Initialization. Initialize V (i, j,n) forn = 0,n > j — 4, andn = j — i (n < m) according to Equation 3

e Step 2: Calculation. Calculate all valued/ (i, j, n) starting fromn = 1 up ton = m for n > j — i using the
recurrence Equation 4 and record the merging of minimumatosach stage.

e Step 3: Reconstructing the optimal solution. Construct the chaifi’ by merging the classes 6f with respect to
the optimal solution of minimum co3ft(1, d, m).

Figure 10: Level merging algorithnL(M/ A) for general hierarchies.
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Figure 11: Motivation for generalized space optimization problem.

Proof: The proof is by induction on the number of mergingsObviously, LM A finds an optimal solution
for n = 0 since it just returns the original input as no mergings need to be dongoSaiphatl, M A finds an
optimal solution for the number of mergings of at masand let us prove that it finds an optimal solution for
n+1 mergings as well. Observe thafl/ A examines all possibilities for making(1 < z < n+1) mergings in
the leftmost class sub-chain. It must be the case that one of these mesgangerging in an optimal solution.
Having done the first merging that is a part of optimal solution, the other ngggmthis optimal solution is
independent optimal solution for the right class sub-chain under atnme$t— z mergings. If the first merging
is an empty merging (i.ez = 0), then the above argument is applied to the right class sub-chain. Acgdead
the induction hypothesig, M A finds an optimal solution in the right class sub-chain withat mest —z < n
mergings for the first non-empty merging (iz2> 0). Hence,L.M A finds an optimal solution for at most+ 1
mergings. |

7 Generalization of Space Optimization Problem

In this section we discuss a generalization of the space optimization problemadh we obtain an additional

constraint that the inner protocol header fields cannot be extractédhenouter protocol header fields have
been parsed. The rationale behind this problem is that certain levels aétaechy cannot be "merged” during
optimization of a hierarchical chain as classifying complex protocols basdgtieoanalysis of encapsulated
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content often requires sequential parsing of nested protocol leeddgrinstance, the application header cannot
be extracted directly if the TCP header contains variable length optionsedver, packet header fields can be
dynamically changed during classification process as a result of clésssac

A barrier is the level of hierarchical chain where two neighboring classes belgngiit could not be
“merged”. The classifier has to issue a separate TCAM lookup for eagiebin hierarchical chain. For
instance, on Figure 11 we consider a packet that is matched to thelglasBor correctness of classification
process we have to update TOS value tor 4 according to police action af'y; that defines a barrier in all
hierarchical chains initiated frort;;. That meang’;; could not be merged witf's; during optimization of
hierarchical chai® = Cy; — ... — Cs;.

We will show that the generalized version of space optimization algorithms is siexpindable. The
definition of virtual sub-classC; ; previously being defined aS; ® Cij;1 ® ... ® C; now should take into
account permanently located barriers. More precisely, if there is &batithek-th position in an hierarchical
sub-chairC; j, i < k < j then the virtual sub-class; ; is defined ag’; , — Cj1,; and its cardinality C; ;|
is equal to|C; | + |Ci41,5], @ < k < j. We assume that the number of barriérs any class chairf is
less thar|C|; otherwise, no feasible solution exists. The generalized versidrbef algorithm for the case of
well-structured chain will find optimal placementiof b— 1 splittings. Moreover, the modified version bt A
will not try to place splittings at the predefined barrier positions. The géimed version ofLM A algorithm
for the case of general hierarchical chains can just skip duringndigaprogramming levels corresponding to
barriers.

8 Speed Optimization

In this section we study the problem of minimizing the number of levels in the poliaarttiey subject to
the constraint on the maximum TCAM space. We utilize the space optimization afgeritbm the previous
section. The speed optimization algorithm is presented on Figure 12.

Input: policy P with TCAM spacé\! of depthd, TCAM spaced (A > M)
Output: policyP’ equivalent taP with TCAM space of at most

Performbinary searchon the policy depth betweehandd by applying eithetlSOAW or SOAG on P depending on
the structure ofP’s hierarchy and find the minimum deptfior which the TCAM space of the produced poliy
does not exceed.

OutputP”’.

Figure 12: Speed optimization algorithm.

Generally speaking, we need to find the optimal vdloéthe policy depth and then optimize the TCAM
space of the transformed poli@/ for depthi. The binary search is performed because this value is not known
in advance. Once we have found the optimal depth, the space optimizatioittelgguarantees minimization
of the TCAM space. The running time of the speed optimization algorithm(isg d) times the running
time of SOAW or SOAG, that is at mosD(d?) times the number of terminal classes/h respectively.
Remarkably, the running time of the speed optimization algorithm does not diepeA, which can be by
orders of magnitude larger thahn

For the case of arbitrary structures the generalized versidmfd will not try to place mergings at the
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Figure 14: Required TCAM space as a function of a number of mergings.

predefined barriers positions. We obtain that the time and space complekiiesavalized versions di.S A
andL M A are the same as original.

9 Experimental Results

In this section, we evaluate the efficiency of the proposed algorithms, wisieladditional TCAM lookups
to minimize the TCAM space required to represent a hierarchical policy.eSimrarchical chains are inde-
pendent, we evaluate the algorithms for merging/splitting of a single hierarcihiaen rather than the whole
classification policy. Unfortunately, there is no available for evaluatiohwead data for classifiers with more
than two levels of hierarchy. Hence, we synthesize data for our expairstudy.

In our simulations we generate hierarchical chains with a length ©he cardinality of any class belonging
to such a chain is at mo$6 being chosen uniformly at random. In addition, for the case of genemarichical
chains that are used for simulationif/ A algorithm, the intersection between any two neighboring classes is
also chosen uniformly at random. For each simulated algorithm we perfeeni @00 trials.

Firstly, we considel. S A algorithm. Figure 13 presents the dependency of TCAM space on the nainbe
splittings for the case of well-structured class chains. The simulation regsultertstrate very fast exponential
growth of the required TCAM space when the number of splittings in a hieiGacchain decreases.

Next, we evaluate the M A algorithm for the case of general class chains. Figure 14 shows teediemcy
of TCAM space on the number of mergings. As in the previous case, the siomd&monstrates an exponential
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growth of the required TCAM space with increasing of the number of mesgihgpte that as the cardinality
of the intersections between classes of the general hierarchical clgaowing, the TCAM space requirement
drops down.

As evidenced by the performed experiments for synthetically createdfidesghere exists a fundamental
tradeoff between the TCAM classifier space requirements and the loplega swhich is crucial for efficient
implementation of hierarchical classification. Specifically, we need to findnttadlest memory footprint that
still satisfies the latency requirement so as to optimize the memory cost.

10 Conclusion

Hierarchical packet classification is a key operation needed in proingiai many crucial network services.
One of the major challenges in design of the next generation high-spéetesis to deliver wire-speed packet
classification. TCAMs are the dominant industry standard used for multbijigassifiers. However, as packet
classification policies grow in depth and complexity, there arises a fundamemtaoff between the TCAM
space and the number of lookups for hierarchical policies.

In this paper we propose novel algorithms based on dynamic programmiggl¥ing two important prob-
lems concerned with hierarchical packet classification. The algorithmghéofirst problem minimize the
TCAM space given a constraint on the policy depth while the algorithm foisdm®nd problem minimizes
the policy depth subject to the constraint on the maximum TCAM space. Alsdudg extensions of space
optimization problem. Our algorithms do not require any modification to existinggbatassification systems
and can be easily deployed. Exploring tradeoff between required T€gdde and performance states a good
balance for the future efficient implementation of hierarchical classificaitioait do not require any hardware
changes. As far as we aware, this is the first work to study TCAM speetd@ace optimization for hierarchical
packet classification. We believe that studying of the proposed tradaoff interconnection between them
is interesting and provides additional insight on generalized classificataigm with several hierarchical
levels.
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