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Abstract In this paper, we study strategies for allocating
and managing friendly jammers, so as to create virtual bar-
riers that would prevent hostile eavesdroppers from tapping
sensitive wireless communication. Our scheme precludes the
use of any encryption technique. Applications include do-
mains such as (i) protecting the privacy of storage locations
where RFID tags are used for item identification, (ii) secure
reading of RFID tags embedded in credit cards, (iii) pro-
tecting data transmitted through wireless networks, sensor
networks, etc. By carefully managing jammers to produce
noise, we show how to reduce the SINR of eavesdroppers to
below a threshold for successful reception, without jeopar-
dizing network performance.
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In this paper, we present algorithms targeted towards op-
timizing power consumption and number of jammers needed
in several settings. Experimental simulations back up our re-
sults.
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1 Introduction

Wireless communication is especially susceptible to eaves-
dropping due to its broadcast nature. Ensuring private com-
munication has typically been considered at higher layers of
the network stack by using cryptographic techniques. How-
ever, in many types of communication, such as RFID com-
munication and sensor networks, sophisticated cryptographic
techniques are often impractical or impossible to implement,
due to power or other hardware constraints. Therefore, it is
of interest to consider physical layer-based techniques to se-
cure the communication by exploiting the nature of the wire-
less channel. Such techniques rely on reducing the Signal-
to-Interference-plus-Noise Ratio (SINR) of eavesdroppers
to below a threshold required for successful reception, while
taking care not to reduce the SINR at legitimate receivers too
much so as to prevent reception.

Consider the following scenario motivating the applica-
tion of such a technique. We have a warehouse where items
are stored with RFID tags embedded on them for inventory
management. These items are perpetually being transported
in or out and can even be moved inside the warehouse. The
RFID tags on them may contain private information such
as the history of transactions on the item, which must be
secured form eavesdroppers. We may ensure physical se-
curity of warehouses by building a fence around the ware-
house such that potential eavesdroppers may not enter the
fence. However, communication security is complicated by
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Fig. 1 An example application scenario. Jammers secure communica-
tion in the warehouses against eavesdroppers outside the fence.

the fact that RFID devices have limited capability precluding
the implementation of cryptographic techniques. To compli-
cate matters further, although we may be able to guess at
the capabilities of eavesdroppers, we are unaware of their
exact locations. Thus, to ensure the privacy of communica-
tion, friendly jammers which transmit artificial noise need
to be deployed so that, (i) at any potential eavesdropper lo-
cation, sufficient interference is caused to prevent reception,
and (ii) any legitimate communication inside the warehouse
is not disrupted; see Figure 1. Where should the jammers be
placed and what should be their transmission powers such
that the above requirements are satisfied?

RFID communication is an especially important appli-
cation since, although the information stored may be es-
pecially sensitive, it is relatively easy to eavesdrop since
the capabilities of tags are extremely limited. For example,
in [10], the authors demonstrated the vulnerability of credit
card RFID tags by successfully performing various attacks
including eavesdropping using a device built at a cost of
about $150. Although there do exist RFID tags that possess
cryptographic capabilities [21], these have been shown to be
weak and vulnerable to even a brute-force attack (in [20], the
authors showed the weakness of the algorithms in a widely
used cryptographic RFID tag).

In general, friendly jamming may be applied in any sce-
nario where cryptographic techniques are not preferred or
where we desire additional security to cryptography. Physi-
cal methods such as insulation of the environment by some
means of padding or physically ensuring that eavesdrop-
pers cannot get near may oftentimes be cost-prohibitive and
therefore, friendly jamming may provide a cheaper alterna-
tive. For example, it may not be cost-effective to use such
methods in hospitals, warehouses or other large areas where
important communication may take place.

This paper focuses on application scenarios where com-
munication is geographically restricted, is of short range and
we may ensure some minimal physical security. One addi-
tional form of wireless communication worth mentioning is
the wireless sensor network, for example, in medical appli-
cations [17] and Ambient Assisted Living application [31,

19]. Sensor nodes have low power requirements and fre-
quently operate in adverse environments where packet er-
rors may make security schemes difficult. In general, al-
though sensor hardware may be capable of cryptography,
these schemes rely on either a trusted third party or secure
key management schemes (see [30, 26]). Further, the exact
network topology is hard to determine due to the large size
and random deployment. These properties make the applica-
tion of friendly jamming suitable. Placing jammers in such
a manner creates a “virtual Faraday cage” preventing mali-
cious nodes outside from eavesdropping.

The Environment Model. The model of the environment
is termed as a storage/fence model. We assume that legit-
imate communication takes place in the storage which is
a geographic region physically secured by a fence inside
which eavesdroppers may not enter. The storage is not re-
stricted in any way apart from the requirement that it is en-
closed by the fence. In particular, a wireless network when
the exact topology is known or multiple warehouses inside
which the communication topology is difficult or impossi-
ble to determine are both encompassed by this model. The
fence may not intersect the storage, i.e., we assume some
minimum gap between the storage and fence. If this require-
ment is removed, eavesdroppers may move arbitrarily close
to legitimate transmitters which makes the problem infeasi-
ble. Friendly jammers may be located inside the fence but
not in the storage, termed as jammer space. Further, we as-
sume that some estimate of eavesdroppers’ capabilities or
some desired protection level is known.

A similar model may be developed for the case when
communication outside the fence should not be eavesdropped
upon inside the storage or communication from inside the
storage to outside the fence should be jammed. Such a model
would be applicable in scenarios such as prisons where cell-
phone use is not permitted inside. The algorithms in this pa-
per may be extended to this model as well.

Contributions. We present algorithms for placing and as-
signing power to jammers in the jammer space satisfying
two objectives, as described above: (i) at any potential eaves-
dropper location, sufficient interference is caused to prevent
reception, and (ii) any legitimate communication inside the
warehouse is not disrupted. We consider two problems. The
first problem is one of assigning transmission powers to a
set of fixed jammers, referred to as power assignment and
the second is one of locating a minimum number of fixed-
power jammers. In addition, if we are given a set of candi-
date jammer locations, we show how to solve both problems
simultaneously, i.e., locate a number of jammers and assign
transmission powers to them so that a cost function which
is a weighted sum of the number of jammers and the total
transmission power is minimized. In all cases, we consider
the setting where jammers may be co-operative as well as
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when the jammer are responsible for individually prevent-
ing eavesdropping.

Power Assignment. We present a linear programming formu-
lation for optimally assigning power to the jammers when
both the possible eavesdropper locations as well as possible
storage locations (communication nodes) are discrete sets
of points. In the more general case, where they may be con-
tinuous regions, we present an ε-approximation algorithm
which solves a linear program with O((n2/ε2)(log2(n/ε)+

logL)) constraints in which, given a tunable parameter 0 <

ε < 1/2, the interference at a storage location is approxi-
mated within a factor of (1−2ε), while the total power as-
signed is approximated within factor (1+ ε). Here, n is the
total number of vertices, edges of storage/fence plus jam-
mers and L is the distance between the two farthest points
on the fence.

Jammer Placement. We present a linear programming for-
mulation for placing a minimum number of jammers with
O((n|J|/ε2)(log(n/ε) log(|J|/ε)+ logL)) constraints when
the jammer space is a discrete set of points J of cardinality
|J|. The solution to the linear program yields the minimum
number of jammers so that, if each jammer is assigned fac-
tor (1 + ε) more power, the interference in the storage is
ε-approximated, similar to above. In addition, for the case
when jammers are operating individually, we provide near-
optimal algorithms under restricted settings. When the fence
is restricted to a convex polygon and the jammers’ power
is fixed at a specified value, we provide an almost-optimal
algorithm for placing jammers anywhere in a continuous
jammer space and when we are interested in only jamming
eavesdroppers but are not worried about affecting commu-
nication in the storage, we present a constant-factor approx-
imation algorithms under any setting of storage, fence and
jammers. These results are interesting theoretically and serve
to illustrate many of the difficulties of the problem.

Further Extensions. We also show how to extend the algo-
rithms to find a combined optimum solution for both power
allocation and jammer location when the jammer space is
discrete. In addition, when eavesdroppers or jammers use
directional antennas to reduce the interference region, we
show how to extend many of our algorithms to take this into
account.

Finally, we present the results of some preliminary sim-
ulations to compare individual jammers versus co-operating
ones.

Prior Work. In wireless networks, active jamming as a
communications disruption technique has been extensively
studied. In [4], the authors formulate the problem of locat-
ing jammers to disrupt a known communications network as
an integer program similar to the formulation in this paper.
More relevant are [5, 6], where the network to be jammed is
uncertain and assumed to exist either within a geographic re-

gion [5] or be one of given candidate networks [6]. In these
works, there is no issue of protecting legitimate communica-
tion and a simple communication model is assumed where
jammers have fixed coverage. In this paper, we consider the
use of jamming as a protective technique with a more realis-
tic communication model making the problem significantly
more complex.

In contrast to the above works, there exists an extensive
body of research into characterizing scenarios where secrecy
may be achieved through the physical layer alone. Follow-
ing the seminal information-theoretic paper of Wyner [32]
on the analysis of channel secrecy even when eavesdroppers
have unlimited resources but listen on a degraded channel,
a number of works analyze the channel capacity or level of
secrecy achievable under fixed scenarios. Csiszar and Ko-
rner [7] show that both confidential and public messages
may be broadcasted by one receiver to a single destination in
the presence of an eavesdropper (through schemes). Lai and
El Gamal [15] explore the use of a relay node to hide mes-
sages between two nodes from an eavesdropper and charac-
terize the effectiveness of different relay and coding strate-
gies even when the eavesdropper’s channel is not degraded.
Again considering the scenario of a single transmission be-
tween two nodes, Negi and Goel [18] show that artificial
noise added to the signal is sufficient to provide secrecy.
Tang et al. [27] also consider a similar scenario and chara-
terize the secrecy capacity. Vilela et al. [29] characterize the
regions where eavesdroppers may lie so that jamming is suc-
cessful from an information-theoretic perspective and study
jammer placement. Other directions include game-theoretic
approaches for power allocation to jammers [9]. The issue
with these works is that only a simple single transmission
scenario is considered and that the focus is more on mathe-
matically quantifying the channel capacity than optimizing
power consumption or number of jammers. Moreover, the
geometry of the environment where communication takes
place has not been explored.

From a more practical perspective, RFID security [11,
22] is an important research area. Although active jamming
has been identified as a possible approach [13], to the best
of our knowledge, it has not been fully explored. This is
partly because most works are interested in the security of
a specific RFID tag. A similar approach to active jamming
is explored in [13] where a single tag, placed in a container
such as a bag, triggers a second “blocker” tag on the bag
which sends interference to untrusted readers. This has also
been extended to software approaches through “soft block-
ing” [12]. These approaches are special-purpose and require
modification of RFID tags. In contrast with these approaches,
in our model, the focus is on the communication region.
The communicating devices may themselves be constantly
changing. To the best of our knowledge, such an approach is
novel. In the context of sensor networks [23], the focus has
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mostly been on using cryptography. Asymmetric key cryp-
tography is, in general, resource intensive and hence, the fo-
cus is on symmetric key cryptography where the primary
problem is key management [26]. This still exposes vulner-
abilities to eavesdropping during the key distribution phase
where active jamming would be helpful.

Outline of the paper. We begin, in Section 2, by describ-
ing the problem settings. In Section 3, we show that, un-
der reasonable assumptions, it is sufficient to consider only
the fence as possible eavesdropper locations irrespective of
where eavesdroppers could lie. Section 4 describes our al-
gorithms for power assignment and Section 5 for jammer
placement. In Section 6, we show how to extend our algo-
rithms for providing combined solutions as well as when
eavesdroppers use directional antennas. Simulation results
are presented in Section 7 followed by a few concluding re-
marks in Section 8.

2 Settings

Let S ⊂ R2 be the storage region, which is a polygonal re-
gion, not necessarily connected, given by the coordinates of
its vertices along its boundary. Legitimate communication
takes place inside the storage. Let the fence F be the bound-
ary of a polygonal region containing S. Let this polygon be
denoted by PF. Eavesdroppers may lie anywhere in the re-
gion R2 \PF. Let J denote the jammer space which, typi-
cally, is the region between S and F. We denote by n the
description complexity of the problem. For the power assign-
ment problem, n is the total number of vertices and edges of
S and F plus the number of jammers and for the placement
problem, n denotes the total number of vertices and edges of
S and F.

Slightly abusing notation, we refer to a node (eavesdrop-
per, jammer or legitimate node in the storage) by its location,
i.e., a jammer located at point j is referred to as j. For any
two points p1, p2 ∈ R2, ‖p1− p2‖ indicates the Euclidean
distance between them. For two sets of points (possibly infi-
nite) Q,Q′ ⊂ R2, we denote by d(Q,Q′), the minimum dis-
tance ‖q−q′‖ over all points q ∈ Q and q′ ∈ Q′. Given a set
of points Q and a point p, let NN(p,Q) denote the point in
Q closest to p. Assume we normalize distances such that
d(S,F) = 1 and let L denote the distance between the two
farthest points on F. Our algorithms for power assignment
run in time polynomial in n and logL and those for location
depend only on n.

Communication Model. We use the Signal to Interfer-
ence plus Noise Ratio (SINR) model (termed as physical
model in [8]). Assuming all other factors are normalized and
following the standard power dissipation model [24], for a

transmission from p to q given a set of jammers J,

SINRp(q) =
Pp‖p−q‖−γ

∑ j∈J Pj‖ j−q‖−γ
, (1)

where Pp is the transmission power of p, Pj is the transmis-
sion power of jammer j, and γ is the path loss exponent (typ-
ically from 2 to 4). For clarity, we assume no ambient noise
throughout the paper since it only improves the performance
of the algorithms. All our results, with the exception of that
of Section 5.2, can be extended to take this into account. A
receiver q is able to successfully receive a transmission from
p if SINRp(q) is at least a threshold depending on the node
characteristics. We refer to the SINR at any eavesdropper
location p of transmissions from its nearest point on S as
SINR(p). We assume that only jammer signals cause inter-
ference, since typically, we would have some collision res-
olution protocol for transmissions inside the storage. Most
of the paper is dedicated to the case that both jammers and
receivers are assumed to possess omnidirectional antennas,
while the directional antenna case is discussed in Section 6.

Equation (1) assumes a model in which all jammers co-
operate to interfere with a node. We term this the Fully Co-
operative interference model, denoted by Full . In addition,
we define the Nearest Jammer interference model, denoted
by NJ , where a receiver only encounters interference from
the closest jammer to it. Thus, in Equation (1), the denomi-
nator would now incorporate only the interference from the
nearest jammer. The NJ model may be extended to include
the k closest jammers yielding the k-NJ model. In practice,
we expect that the NJ model may not be too far from the
Full interference model, due to the path loss exponent γ in
the power dissipation equation: interference from the closest
jammer is most important, while interference due to farther
jammers fades away fast with distance.

For the purposes of clarity, we assume that legitimate
communication inside S is of short enough range so as to
experience insignificant path loss, but our algorithms can be
extended to the cases where we know an upper bound on
the range, or if, we know the exact topology of the com-
municating nodes. We also assume that all transmitters in
S have the same transmitting power (normalized to 1). This
assumption may be removed if the exact topology of legit-
imate nodes is known in advance. Let the SINR threshold
for successful reception by legitimate receivers be δS and
the threshold for eavesdroppers be δF. The capabilities of
eavesdropper nodes may be different from those of legiti-
mate receivers due to possibly different hardware and there-
fore, we use different thresholds. We note that, for an eaves-
dropper, it is sufficient to jam possible transmissions from
its nearest point on S.

Finally, throughout, we make the assumption that jam-
mers may be assigned a maximum power Pmax (due to hard-
ware constraints, a jammer may not be assigned an arbitrar-
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ily high power) and a minimum power of (1/δF). Roughly,
the minimum power assumption implies that, if eavesdrop-
pers and legitimate receivers have similar capabilities, then
jammers must transmit at a power at least that of legitimate
transmitters. The greater the capabilities of eavesdroppers,
the higher the jammers’ minimum transmission power. We
show, in Section 3, that this assumption implies that it is
sufficient to consider eavesdroppers on F, i.e., if an eaves-
dropper cannot eavesdrop from any location on F, it can-
not eavesdrop from any location in R2 \F. Although this
does not look surprising, if the jammers may be assigned
an arbitrarily low transmission power, it is easy to construct
examples, where an eavesdropper may be able to success-
fully eavesdrop by moving away from S even though it could
not eavesdrop from a closer location. We may remove the
minimum power assumption if we instead assume that once
an eavesdropper gets too far from any point in S, it can-
not eavesdrop (possibly due to ambient noise). In this case,
our algorithms can be easily extended with running times
which have an additional logarithmic dependence on this
maximum distance.

Under the above communication model, assuming that
eavesdroppers may lie only on F, the following equations
formalize the requirements of a set of jammers J where each
jammer j ∈ J has transmission power Pj: (i) at any poten-
tial eavesdropper location, sufficient interference is caused
to prevent reception, and (ii) any legitimate communication
inside the warehouse is not disrupted.

1
∑ j∈J Pj‖ j− s‖−γ

≥ δS, ∀s ∈ S (2)

d(p,S)−γ

∑ j∈J Pj‖ j− p‖−γ
< δF. ∀p ∈ F (3)

The above equations would be modified under the NJ model.
We focus, in this paper, on the Full model and indicate the
changes wherever we refer to the NJ model.

3 Considering the boundaries is sufficient

We show that under our communication model: (i) jamming
the fence F is sufficient to ensure that eavesdroppers lo-
cated outside the fence are also jammed successfully and
(ii) ensuring that the any receiver on the boundary of S is
not jammed is sufficient to ensure that receivers inside S are
not jammed.

Lemma 1 Under any interference model, if SINR(p)< δF

for all points p on F, then for all points p′ outside the region
encapsulated by F, SINR(p′)< δF.

Proof. We prove the lemma under the Full model. The proof
for the NJ model is part of this proof. Let J be a set of jam-
mers such that no eavesdropper on F is successful and let Pj

be the transmission power for any jammer j ∈ J. Let p′ be
a point outside F and let p be a point on F on the segment
connecting p′ to NN(p′,S). Clearly, NN(p′,S) = NN(p,S).
Rearranging the SINR equation, we need to show that, to
show that (d(p,S))−γ < δF ∑ j∈J Pj(‖ j− p‖)−γ implies that
(d(p′,S))−γ < δF ∑ j∈J Pj(‖ j− p′‖)−γ .

We will show the proof by induction on the number of
jammers. For any subset X ⊂ J, let aX be a real number
satisfying a−γ

X = δF ∑ j∈X Pj(‖ j− p‖)−γ . Consider a single-
ton jammer j and the corresponding a j. Clearly, (a j +‖p−
p′‖)−γ < δFPj(‖ j− p‖+‖p− p′‖)−γ since Pj ≥ 1/δF. Thus,
the base case is satisfied. This completes the proof for the
NJ model.

Now, consider some subset X ⊂ J. The inductive hypoth-
esis is that,

(aX +‖p− p′‖)−γ < δF ∑
j∈X

Pj(‖ j− p‖+‖p− p′‖)−γ (4)

Now, consider than a jammer j′ is added to X and let
bX , j′ be a real number satisfying

b−γ

X , j′ = a−γ

X +δFPj′‖ j′− p‖′−γ (5)

Clearly, bX , j′ ≤ ax and bX , j′ ≤ ‖ j′− p‖ since δFPj′ ≥ 1.

(bX , j′ +‖p− p′‖)−γ = b−γ

X , j′(1+(‖p− p′‖/bX , j′))
−γ

=
a−γ

X )+δFPj′‖ j′− p‖−γ

(1+(‖p− p′‖/bX , j′))γ
,

by Equation (5). Since bX , j′ < aX and bX , j′ < ‖ j′− p‖, this
implies that,

(bX , j′ +‖p− p′‖)−γ ≤(aX +‖p− p′‖)−γ

+δFPj′(‖ j′− p‖+‖p− p′‖)−γ .

(6)

Hence, we know, for X = J, Equation (4) is satisfied. Now,
since aX ≤ d(p,S), the lemma is proved.

Lemma 2 Under any interference model, if for all points p
on the boundary of S, SINR(p) ≥ δS, then for all points p′

inside S, SINR(p′)> δS.

Proof. For the NJ model, select an arbitrary point p′ inside S
whose closest jammer is j(p′). Let p be an intersection point
of the segment joining p′ and j(p′) with S. Since j(p′) =
j(p), we clearly have δS ≤ SINR(p)< SINR(p′).

For the Full model, the statement is equivalent to show-
ing that the SINR attains it’s minimum at the boundary of S.
This is the same as showing that the interference of the jam-
mers attains its maximum on the boundary of S. We do this
by showing that the interference, as a function of position,
is a sub-harmonic function and thus satisfies the Maximum
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principle known from complex analysis [1]. This is shown
by differentiation:

∆sIs = (∂s1 +∂s2)∑
j∈J

Pj|s− j|−γ = ∑
j∈J

γ
2|s− j|−γ−2.

Clearly, the Laplacian is positive. Hence, the function is sub-
harmonic and the result follows.

4 Power Assignment

In this section, we provide algorithms to assign powers to
a set of fixed jammers J such that Equation (2) and Equa-
tion (3) are satisfied and the total power assigned is mini-
mized. We may express the problem by means of the opti-
mization program below, termed as JAMMING-LP.

JAMMING-LP: Minimize ∑
j∈J

Pj

s.t. ∀s ∈ S : ∑
j∈J

Pj‖s− j‖−γ ≤ 1
δS

, (I)

∀p ∈ F : ∑
i∈J

Pj‖i− p‖−γ >
1

δFd(p,S)γ
, (II)

∀ j ∈ J : (1/δF)≤ Pj ≤ Pmax. (III)

Constraints (I) and (II) are the equivalent of Equations (2)
and (3). The number of constraints (I) and (II) is uncount-
ably infinite if S and F are continuous regions in R2.

First note that when S and F are discrete sets of points,
JAMMING-LP becomes a linear program which may be solved
in polynomial time since the number of constraints depends
on the cardinalities of S and F.

The continuous case is a more difficult since, as men-
tioned before, the number of constraints is uncountably in-
finite. For this setting, we provide an ε-approximation algo-
rithm based on discretizations of S and F. Given a parameter
ε in the range (0,1), the algorithm proceeds according to the
following steps:
(1) Compute a discrete set S′ ⊂ S such that if Equation (2)
is satisfied for S′, then Equation (2) is satisfied for S with
threshold (1− ε).
(2) Compute a discrete set F′⊂F such that if Equation (3) is
satisfied for F′ for some power assignment, then, by increas-
ing the powers of the jammers by a factor (1+ ε), Equa-
tion (3) is satisfied for F.
(3) Solve the linear program JAMMING-LP with constraints
corresponding to S′ and F′.

Theorem 1 Assume we are given storage region(s) S, fence
F, a set of jammer locations J and an interference model.

Let ε > 0 be a parameter specified by the user. Then by solv-
ing a linear program with O((n2/ε)(log(n/ε)+ logL)) con-
straints, we can compute a power assignment for J such that
∑ j∈J Pj ≤ (1+ε)∑ j∈J P∗j where P∗j is the optimal power as-
signment for j and (i) for each location p∈F, SINR(p)< δ ,
(ii) for each location s ∈ S, SINR(s)≥ (1−2ε).

S′ is constructed so that the interference at the point in
S at which interference is maximum is approximated within
factor (1−ε). Similarly, for the fence F, the point p on F at
which SINR is maximum for a transmission from NN(p,S),
does not receive more than factor (1+ ε) more SINR than
the corresponding point in F′. Now, if each jammer is ac-
tually assigned (1+ ε) of the power assignment returned by
JAMMING-LP, we can jam every point on F and no point on
S will reduce its SINR by more than a factor of 1/(1+ε)2 >

(1− 2ε). Thus, Theorem 1 is proved. For the remainder of
this section, we assume the Full interference model. How-
ever, all results may be applied to the NJ model with mini-
mal modification. The schemes, in particular the discretiza-
tion of S, use some of the ideas of Vigneron [28].

First, we briefly outline a couple of preliminary concepts
which are essential for the rest of this section.

Voronoi Diagrams. The Voronoi Diagram (see [2] and
[3, Chapter 7]) for a set of points Q, denoted by VD(Q) is a
decomposition of the plane into cells such that all points in a
cell are closest to the same point q ∈Q. A cell is denoted by
Vor(q) and edges of the Voronoi Diagram are straight-line
segments (parts of bisectors between pairs of points of Q).
The generalized Voronoi Diagram [14, 16] of a polygon P,
is the generalization of the Voronoi Diagram to the vertices
and edges of P. This is a decomposition of the plane into
cells such that, in each cell, all points have the same closest
vertex/edge. Both may be constructed in O(|P| log |P|) time
where |P| is the number of vertices/edges of P.

We are interested in the Voronoi Diagrams of the jammer
set VD(J) and the generalized Voronoi diagram VD(S) of S.
Similar to our notation above, we denote by Vor((u,v)) and
Vor(u), the Voronoi cells of an edge (u,v) and vertex u of S
respectively.

Superlevel Sets and Arrangements. For a set of objects
Γ and a polygon or collection of polygons P, the arrange-
ment AP(Γ ) of Γ is the planar subdivision induced by Γ on
the boundaries of polygons in P. Namely, its vertices are the
intersection points of the boundaries of the disks and poly-
gons in P together with original vertices of polygons in P
and edges are the maximal connected portions of the bound-
aries of P not crossing a vertex; see Figure 2b. If the number
of vertices in P is M, the objects in Γ are segments, rays
or lines and the number of objects in Γ is N, the complex-
ity, i.e., the number of vertices and intervals in AP(Γ ) is
O(MN).
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Fig. 2 (a) The disks corresponding to the superlevel sets for a jammer when Yj = {y1,y2,y3}. (b) The arrangement of the disks with respect to S.
Vertices are marked as ×.

For a jammer j, let D[ j; t] denote the disk of radius t cen-
tered at j. Note that at all points in D[ j; t], the interference
due to j is at least Pjt−γ . In mathematics, D[ j; t] is known as
a superlevel set of the function f j(x) = Pj‖ j− x‖−γ .

Given three parameters ρ > 0,α > 0 and l ∈ Z+, we
define

Y (ρ,α, l) = {yi = ρ/(1+α)i | 0≤ i≤ l}.

Given a set of jammers J and Y (ρ,α, l) for a jammer j,
let D j = {D[ j;yi] | 0 ≤ i ≤ l}; see Figure 2a for an exam-
ple. Consider the arrangement AP(D j) for some polygon or
collection of polygons P. The intervals are all located be-
tween successive concentric disks centered at j. Clearly, the
following lemma holds for AP(D j).

Lemma 3 Let a,b be two points lying in the same interval
of AP(D j). If a,b lie outside all disks of D j, then Pj‖ j−
a‖−γ ≤ ρ/(1+α)s and Pj‖ j− b‖−γ ≤ ρ/(1+α)s. Other-
wise, Pj‖ j−a‖−γ ≥ (1/(1+α))Pj‖ j−b‖−γ .

Discretization of S. We generate a discrete set S′ ⊂ S

as follows. First, we set ρ = Pjd( j,S)−γ , α = ε/9 and l =
d(1/ε) log(n/ε)e. Next, setting Yj =Y (ρ,α, l), we compute
the set of disks DS = ∪ j∈JD j,Y j . Finally, we compute the
arrangement AS = AS(DS) and select an arbitrary point in
each interval of AS to add to the set S′.

We choose ρ = Pjd( j,S)−γ because it is an upper bound
on Pj‖ j− s‖−γ for any point s ∈ S, implying that there is
no point of s in the smallest disk of D j,Y j for all jammers j.
It is important to note that we do not know the values Pj to
determine the value of ρ . However, we do not actually need
it to compute the radii of the disks in D j,Y j .

Correctness follows from the following two lemmas.

Lemma 4 Let s be the point selected by our algorithm in
some interval of AS and let s′ be another point in the same

interval. For any jammer j ∈ J, we have

‖ j−s‖−γ ≥

{
1

1+α
‖ j− s′‖−γ , if s /∈ D[ j; d( j,S)

(1+α)l ],

‖ j− s′‖−γ − α

n d( j,S)−γ , otherwise.

Proof. If s /∈D[ j;d( j,S)/(1+α)l ], i.e., if it lies outside the
outermost disk centered at j, then by the choice of l, the
lemma follows. Otherwise, there exist two consecutive con-
centric disks centered at j such that interval containing s and
s′ lies in the region between these disks. By Lemma 3, the
proof follows.

Lemma 5 Given a power assignment for the jammers, let
s∗ be the point maximizing ∑ j∈J Pj‖ j− s‖−γ over all s ∈ S

and let ŝ be the point selected by our algorithm in the same
interval in AS as s∗. Then,

∑
j∈J

Pj‖ j− s∗‖−γ ≤ (1+ ε/3)∑
j∈J

Pj‖ j− ŝ‖−γ .

Proof. Let Jout be the set of jammers such that s∗ and ŝ lie
outside D[ j;d( j,S)/(1+α)l ] for all j ∈ Jout and let Jin be
the remaining jammers. Lemma 4 implies that

∑
j∈J

Pj‖ j− ŝ‖−γ ≥ ∑
j∈Jin

Pj

1+α
‖ j− s∗‖−γ

+ ∑
j∈Jout

Pj

(
‖ j− s∗‖−γ − α

n
d( j,S)−γ

)

≥ 1
1+α

∑
j∈J

Pj‖ j− s∗‖−γ

−α ∑
j∈J

Pj‖ j− s∗‖−γ ,

since s∗ is the point maximizing ∑ j∈J Pj‖ j− s‖−γ over all
s ∈ S. Since α = ε/9, the lemma follows.

Lemma 5 implies that if the point ŝ does not receive too
much interference from the jammers, no other point in S

would have too much interference. Since we do not actually
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S

F

Fig. 3 The generalized Voronoi diagram VD(S) (edges bounding cells
indicated in blue). The endpoints of the intervals Γ are indicated as ×.

know which point is ŝ, we take care to ensure that the entire
set S′ is not jammed. If each jammer’s power is Pj(1+ ε),
then the approximation factor would become (1+2ε).

There are O((n/ε) log(n/ε)) level sets in our arrange-
ment. Thus, the cardinality of S′ which is the number of ver-
tices of AS is O((n2/ε) log(n/ε)) since each of the level sets
can intersect each edge of S at most twice. This yields an
equal number of constraints (I) in JAMMING-LP. The time
required to generate them is O((n2/ε) log(n/ε)).

Discretization of F. We generate a discrete set F′ ⊂ F

as follows. Recall that L denotes the distance between the
two farthest points in F. First, we set ρ = 1, α = ε/3 and
let l be the largest integer such that 1/(1+α)l ≤ L−γ . Next,
setting Yj = Y (ρ,α, l), we compute the set of disks DF =

∪ j∈JD j,Y j . We next compute the generalized Voronoi Dia-
gram VD(S) of S (see Figure 3). Now, the intersection of
VD(S) with F subdivides F into continuous “intervals” be-
tween the intersection points of the edges of VD(S) and F.
In each such interval, the closest point on S to every point is
either a vertex of S or lies on the same edge of S. We further
split each interval into sub-intervals based on the vertices of
F in it (if any). Let Γ denote the collection of intervals ob-
tained from this subdivision of F. Finally, we compute the
arrangement AF =AF(DF∪Γ ) and add the vertices of AF

to F′.
We note that on each interval φ of AF, d(p,S) for all

points p ∈ φ is a linear function since there is a correspond-
ing segment or point on S on which lie all the points closest
to points in φ . Thus, the maximum and minimum distances
are at the vertices of φ . Contrary to the discretization of S
where we approximate the maximum interference received
by points in S, we approximate the maximum SINR. The
choice of l based on the diameter L is to ensure that no point
on F lies outside the disks for any j. Also, since Pj ≥ 1/δF

for all j ∈ J, eavesdroppers within distance 1 from any j are
always jammed, i.e., their SINR is always too low. Note that
we do not need to know the powers to compute the disks.

Correctness follows from the following two lemmas.

Lemma 6 Let p be a point selected by our algorithm for
any interval in AF and let p′ be a point in the same interval.
For any jammer j ∈ J, ‖ j− p‖−γ ≤ (1+α)‖ j− p′‖−γ .

Proof. The distance from pφ to j is between 1 and L. Thus,
there exists two consecutive concentric disks in D j,Y j such
that both p and p′ lie between these disks. The proof follows
from Lemma 3.

Lemma 7 Given a power assignment for the jammers, let
p∗ be the point on F at which SINR(p) is maximum over all
p ∈ F and let p̂ be the vertex in F′ in the interval of p∗ such
that d(p̂,S)≤ d(p∗,S). Then,

SINR(p∗)< (1+ ε)SINR(p̂).

Proof. Let ∑ j∈J Pj‖ j− p∗‖−γ ≤∑ j∈J Pj‖ j− p̂‖−γ since oth-
erwise, there is nothing to prove. By Lemma 6,

∑
j∈J

Pj‖ j− p̂‖−γ ≤ (1+α)∑
j∈J

Pj‖ j− p∗‖−γ .

Since d(p∗,S)−γ ≥ d(p̂,S)−γ and by our choice of α = ε/3,
the lemma follows.

Lemma 7 implies that the SINR(p) < (1+ ε)δ for any
p ∈ F. Thus, by assigning a power (1+ ε)Pj for all jam-
mers j ∈ J, we can ensure that SINR(p) < δ for all p ∈
F. The number of level sets corresponding to jammers is
O((n/ε) logL). Each of these can intersect each of the edges
of F at most twice and hence, the number of vertices in their
arrangement on F is O((n2/ε) logL) leading to as many con-
straints (II) in JAMMING-LP. The time required to generate
them is also O((n2/ε) logL).

Remarks. We note that if all the jammers’ powers are re-
quired to be the same, and we need to find the minimum
power assignment, we may remove the dependency on the
diameter L of F. Briefly, this is due to the fact that, for
the discretization of F, we may develop an upper and lower
bound on the power received at the eavesdropper with max-
imum SINR whose ratio is independent of L.

5 Placement of Jammers

In this section, we consider the problem of placing a mini-
mum number of jammers all of which have the same trans-
mission power P̂.

S

F

ϕ(S)

p
Vis(p)

v

S

Fig. 4 Forbidden region ϕ(S) of S and visibility region Vis(p) for a
point p ∈ F.
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F

ϕ(S)

(a)

S

F

ϕ(S)

(b)

Fig. 5 Two simple and similar examples where solutions differ significantly. The optimal placement of jammers is marked as ×.

We first give some basic definitions. Note that for every
point s∈ S, according to Equation 2, if a jammer j lies in the
disk D[s; P̂1/γ ], it will prevent reception at s. We define the
forbidden region ϕ(S) = ∪s∈SD[s; P̂1/γ ]. This is essentially
the Minkowski sum [3] of a disk with radius P̂1/γ and S; see
Figure 4. Next, for a point p ∈ F, according to Equation 3,
a jammer must lie in the disk D[p;(δ P̂)1/γ/d(p,S))]. We
call this the critical disk and denote it by D(p) and define
the visibility region Vis(p) as (PF ∩D(p)) \ϕ(S). This is
the region in which a jammer must lie in the jammer space
to successfully jam p; see Figure 4. We call two visibility
regions Vis(p1) and Vis(p2) adjacent if their intersection is
exactly one point.

Before we proceed with the algorithms, let us try and
understand why this problem is challenging. Consider the
simple examples in Figure 5. In both cases, we consider the
NJ model. In Figure 5a, we have two disks which are con-
centric representing S and F, while in Figure 5b, the disks
are not concentric. Critical disks are also shown for various
points on the fence. In both cases, an almost-optimal solu-
tion is to place the set of jammers at the points where two
disks touch. In Figure 5a, since all critical disk are congru-
ent, it is easy to characterize the optimal placement but in
Figure 5b, it is not simple to characterize algebraically since
the function of the distance between S and F is now more
complicated. If, even in this simple example, the characteri-
zation of the problem is difficult, if we take into account all
parameters such as jammer power, eavesdropper capability
and possibly complicated shapes of S and F, characterizing
the solution seems to be particularly difficult.

With that in mind, we consider two basic settings: (i)
when the jammer space J is a discrete set of points and (ii)
when J is the entire region PF \S, where PF is the polygon

enclosed by F. In the former, we give an ε-approximation
algorithm and in the latter, we provide an optimal algorithm
under a restricted setting.

5.1 ε-approximation given a discrete set of candidate
locations

Given a discrete set of candidate locations J not in ϕ(S),
we discretize F and S using the scheme of Section 4. This
gives us discrete sets F′ ⊂ F and S′ ⊂ S. We can now design
the following integer linear program JAMMING-ILP which
is adapted from JAMMING-LP with binary variables ci for
each location i ∈ J indicating whether i is chosen or not.

JAMMING-ILP: Minimize ∑
i∈J

ci

s.t. ∀s ∈ S′ : ∑
i∈J

ciP̂‖s− i‖−γ ≤ 1
δS

, (I)

∀p ∈ F′ : ∑
i∈J

ciP̂‖i− p‖−γ >
d(p,S)−γ

δF
. (II)

Although JAMMING-ILPis formulated for the Full inter-
ference model, it may easily be modified for the NJ model.
This gives us the following theorem:

Theorem 2 Given storage region(s) S, a fence F, an inter-
ference model, a discrete set of candidate locations J for the
jammers and a fixed power P̂, we can find a minimum num-
ber of jammer locations from J such that Equation (3) is sat-
isfied and for every point s ∈ S, SINR(s)> (1−2ε) by solv-
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ing an Integer Linear Program with O((n|J|/ε)(log(|J|/ε)+

logL)) constraints.

The number of constraints in Theorem 2 is due to the
fact that during the discretization of S and F to S′ and F′ re-
spectively following the scheme in Section 4, we compute
O((|J|/ε)(log(|J|/ε) + logL)) level sets in total. Each of
these can intersect each edge of S or F at most twice leading
to O((n|J|/ε)(log(|J|/ε)+ logL)) constraints.

5.2 Near-optimal algorithm for a restricted setting

We consider the problem under the following restricted set-
ting: (i) NJ interference model, (ii) F is convex and S is a
connected region (of any shape), and (iii) each jammer is
assigned a power 1/δF. Note that the assumption that each
jammer has a power exactly 1/δF implies that the critical
disk D(p) for any p ∈ F will have radius exactly d(p,S).

Given the assumptions, we first make the following sim-
ple observation:

Observation 1. For any point p ∈ F, the interior of D(p)
does not intersect S.

Recall that PF denotes the polygon enclosed by F. For
any two points p1 and p2, let PF,1(p1, p2) and PF,2(p1, p2)

denote the two polygons obtained by subdividing F using
the diagonal p1 p2.

Lemma 8 For any two points p1, p2 ∈ F such that D(p1)

and D(p2) intersect in some non-empty region,

(i) S does not intersect p1, p2.
(ii) If S∈PF,1(p1, p2) (resp. PF,2(p1, p2)), then for any point

p ∈ F∪PF,2(p1, p2) (resp. p ∈ F∪PF,1(p1, p2)), if j ∈
D(p1) and j ∈ D(p2) for some j ∈ J, then j ∈ D(p).

Proof. The proof of part (i) follows from Observation 1. To
prove part (ii), refer to the illustration in Figure 6. First note
that the region PF \ {D(p1)∪D(p2)} consists of two dis-
connected portions, only one of which contains S (since S

is connected). Consider the portion of F between p1 and p2
which intersects the other portion of PF and let this be P1 =

PF,1(p1, p2) without loss of generality. Now, for any point
p ∈ P1. Consider the segment connecting p and NN(p,S).
Let q be the intersection point of this segment and the bound-
ary of the region D(p1)∪D(p2) which lies in the portion of
PF containing S. Without loss of generality, let q lie on the
boundary of D(p2). Now, consider the angles φ = ∠p, p2,q
and θ = ∠p, p2, j at p2. θ > φ since q lies on the portion of
D(p2) which does not lie inside D(p1). Hence, ‖p− j‖ ≤
‖p−q‖ ≤ ‖p−NN(p,S)‖. Hence j ∈ D(p) completing the
proof of part (ii).

Lemma 8 implies that the portion of F jammed by any
jammer is connected, since if a jammer jams two points on

S

p1

p2

Vis(p2)

Vis(p1)

j

θφ

p

q

Fϕ(S)

Fig. 6 Illustration of the proof of Lemma 8

F, it jams all points in one of the portions of F between p1
and p2 (either clockwise or counter-clockwise) as well. This
gives rise to the following greedy algorithm:

1. Choose an arbitrary point p0 ∈ F and let i = 0.
2. Walk clockwise along F until the last point p such that

Vis(p)∩Vis(pi) 6= /0. Let i = i+1 and let pi = p. Place
a jammer ji in the region Vis(pi)∩Vis(pi−1).

3. Repeat step 2 until Vis(pi)∩Vis(p0) 6= /0.

The key step is in computing pi+1 given pi. To do this,
similar to the step performed in the discretization of F in
Section 4, first compute the generalized Voronoi Diagram
VD(S) of S. Recall that the intersection of VD(S) with F

subdivides F into continuous “intervals” between the inter-
section points of the edges of VD(S) and F. If any interval
contains one or more vertices of F, we further split the in-
terval into sub-intervals at these vertices. Let Γ denote the
collection of intervals obtained from this subdivision of F.
See Figure 3 for an illustration.

Now, given pi, we scan the endpoints of the intervals in
Γ in a clockwise order from pi until we reach the first end-
point p such that Vis(p)∩Vis(pi) = /0. Let the previous end-
point be q (if p is the first endpoint, q= pi). Clearly, q and pi
can be jammed by a single jammer and hence, by Lemma 8,
the entire portion between pi and q can also be jammed by
a single jammer. The segment qp can be split into two seg-
ments qp′ and p′p where the portion of the fence between pi
and p′ can be jammed by a single jammer which cannot jam
any point in p′p. By Lemma 8, there must exist a unique p′.
p′ can be found easily by solving a simple constrained opti-
mization problem where the constraints correspond to (i) the
fact that Vispi and Visp′ must intersect, and (ii) that the for-
bidden region cannot contain their intersection. Each of the
above can be written as a quadratic constraint in a parameter
t which is the parameterization of the segment qp. We omit
the details for brevity. Finally, we set pi+1 = p′.

We are now ready to bound the number of jammers in J.

Lemma 9 Let OPT be the size of the optimal set of jammers.
Then, |J| ≤ OPT+1.

Proof. By Lemma 8, for the two adjacent intervals [p0, p1]

and [p1, p2] along the fence, no jammer can jam both p0 and
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p2. Hence, we require two jammers j1 and j2 jamming the
intervals [p0, p1] and [p1, p2] respectively. Assume that for
some k, jammers ji for i < k each jam the interval [pi−1, pi].
Clearly, no jammer ji for i< k can jam the interval [pk, pk+1]

while maintaining its already jammed interval if Vis(pk+1)∩
Vis(p0) = /0. This completes the proof.

Putting it all together, we get the following theorem.

Theorem 3 Given convex F, connected S and when all jam-
mers have power P̂ = 1/δF, we can find a set of jammer
locations J in the jammer space such that Equation (2) and
Equation (3) are satisfied under NJ model of interference
and |J| ≤ |OPT |+ 1. The running time of the algorithm is
polynomial in max{OPT,n} where OPT is the size of the
optimal solution.

Remarks. The solution guarantee does not hold when am-
bient noise is present. Further, the algorithm and its correct-
ness proof outline the conditions under which guaranteed
solutions may be obtained and serve to demonstrate the dif-
ficulty of the problem in general. Therefore, it is of primarily
theoretical importance.

5.3 A constant-factor approximation under NJ interference
model

When the jammer candidate locations consist of the region
inside the fence F, we present a constant-factor algorithm
provided we remove the constraints on the storage, i.e., we
are not worried about interfering with the storage (Eq. (2) is
not required to be satisfied).

The algorithm is based on the following observation.

Observation 2. Let p be the point on fence F such that the
value ‖p−NN(p,S)‖ is minimized for all possible choices
of p. Then, the optimal solution has to locate a jammer in-
side the critical disk D(p).

S

F

p

Fig. 7 Dominant disks covering area for possible jammer placement.

Let the radius of the critical disk be r. If we put at most
7 jammers: one at p and 6 equally spaced on the boundary
of the disk of radius 2r centered at p and inside the area

covered by fence as shown in the figure in order to cover all
possible points that are jammed by a jammer in the optimal
set. Notice, that for this we may want to locate jammers in-
side of storage S and thus, we may interfere with the storage
communication. The algorithm proceeds greedily. At each
step, we pick the point p on the fence which is not jammed
such that ‖p−NN(p,S)‖ is minimized over all p. The algo-
rithm terminates when there is no such point available. The
suggested scheme will work even if the minimum power as-
sumption on the jammers is violated since the radii of addi-
tional disks that must be placed in order to cover the area of
disk with radius 2r can only increase since ‖p−NN(p,S)‖
is minimized over all points on the fence. Let OPT denote
the minimum number of jammers required.

Theorem 4 Given storage S and fence F, we can find, in
polynomial time, a set of jammer locations J such that Equa-
tion (3) is satisfied for all points p ∈ F under the NJ model
of interference and J≤ 7 ·OPT .

The correctness and approximation factor of the algo-
rithm follow from 2 and the fact that the algorithm only
terminates when there are no fence points which are not
jammed. The algorithm may be implemented in polynomial
time as follows. Using V D(S) of S, Section 3, we can deter-
mine the closest point on the fence in near linear time (in the
complexity n of S and F). Next, given a jammer and two seg-
ments of the storage and fence respectively, we can find the
subsets of the portion on the fence jammed. Implementing
this over all pairs of segments corresponding to generalized
Voronoi cells of V D(S), it follows that the total running time
is polynomial in size of storage, fence and optimal solution.

6 Extensions

We extend the algorithms of Sections 4 and 5 in three ways:
(i) we show how to provide a solution to the combined prob-
lem of power assignment and placement of jammers while
optimizing a linear combination of the total power and num-
ber of jammers, (ii) if eavesdroppers are equipped with di-
rectional antennas, we show how to extend the linear pro-
grams JAMMING-LP and JAMMING-ILP to incorporate this
fact while still maintaining a tractable number of constraints,
and (iii) if jammers are equipped with directional antennas,
we show how we can extend the linear programs JAMMING-
LP and JAMMING-ILP when we are given a fixed set of
jammers with fixed-orientation antennas with a tractable set
of constraints.

6.1 Combined Solution

We may develop a combined solution when given a discrete
set of candidate locations J as follows. We set a weight-
ing parameter µ , and define the cost functions ∑ j∈J c j +
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µ ∑ j∈J Pj, where c j ∈ {0,1} and Pj is the power assigned
to jammer j. If no jammer is located at j, this is simply in-
dicated by a value of Pj = 0. Here, the weighting parameter
µ specifies how we prefer one criteria versus the other. We
substitute this in JAMMING-ILP to get the desired program.

6.2 Directional Eavesdroppers

Let eavesdroppers be equipped with directional antennas
which may be orientable. Such antennas enable eavesdrop-
pers to receive more powerful signals in one direction while
other directions would have reduced power. If jammers are
sparse enough, eavesdroppers could avoid interference from
them. We model the beam of a directional antenna as a cone
of opening angle 0 ≤ θ ≤ π , centered at the eavesdropper.
Under this (simplified) model, the eavesdropper receives a
signal, from a transmitter only if it lies in this cone.

S

F
j

p

θ

Fig. 8 Jammer j needs to lie in the range of the directional antenna of
eavesdropper p to affect p.

Given a discrete set of candidate locations J, We need to
find jammer locations and/or power assignment such that no
such direction exists, so that every cone orientation and loca-
tion contains a jammer preventing reception from the cone;
see Figure 8. We note that this is particularly applicable to
RFID communication because, due to the low frequencies
of RFID tags (13.56 Mhz), θ would be relatively large.

Theorem 5 Given 0 ≤ θ ≤ π , the opening angle of a di-
rectional antenna used by eavesdroppers, it is possible to
find ε-approximations to both power allocation and jammer
placement problems by solving a linear program with poly-
nomial number of constraints.

Proof. First, we note that, for a point on F, if there exists an
orientation of the directional antenna where no jammer in J

exists in the cone at this orientation, then it is not possible
to jam this point. Thus, we assume that there does not exist
any location on the fence with an orientation that contains
no points in J.

First, we obtain the set F′ as in Section 4. However, to
the set F′, we add further points to obtain a new set F′′. Con-
sider a point p∈ F. If we perform a circular sweep of a cone

Ψ with p as apex, we have many “events” corresponding to
some point j ∈ J or some vertex v of S added/deleted from
Ψ . The number of such events is O(n+ |J|). The set F′′ is
constructed in such a manner that for each interval (u,v) on
the fence obtained from consecutive points u,v ∈ F′′, two
points in (u,v) have the same order of the sweep events.

For a location p′′ ∈ F′′, we add a constraint for each
“event” of the circular sweep. In between the events, the
closest point in the storage is farther than at one of the events
and the set of jammer candidates is the same. Since the num-
ber of events is O(n+ |J|), we have only a polynomial num-
ber of constraints in total.

6.3 Directional Jammers

As in Section 6.2, we model the beam of the antennas as a
cone of angle opening angle 0 ≤ θ ≤ π . Now, given a set
of jammer locations J where each jammer j ∈ J has a cone
ψ( j) of opening angle 0 ≤ θ ≤ π which may be oriented
in a discrete number of ways, we show how to extend the
algorithms of Sections 4 and 5.1. Each cone is considered
as an open set; it does not transmit to points lying on its
boundary.

The algorithm consists of creating discrete sets S′′ and
F′′ of points and solving an LP based on these, similar to
JAMMING-LP and JAMMING-ILP in Sections 4 and 5.1. We
first compute the discretization of S and F into S′ and F′ in
the same manner as in Section 4. Next, we add to F′ the set
of all intersection points between F, and any of the bound-
aries of all the cones ψ( j), for all j ∈ J. Let F′′ denote the
resulting set. We construct S′′ in a similar manner. For each
point in F′′ and S′′ we have a constraint in an LP similar
to constraints (II) and (I) in JAMMING-LP(see Section 4).
Of course, the summation in each constraint now consists
of only the interference from those jammers whose cones
contain the corresponding point.

Theorem 6 Given a discrete set J of candidate jammer lo-
cations J where jammers are equipped with directional an-
tennas of opening angle 0≤ θ ≤ π whose orientation is one
of a discrete set of possible orientations, it is possible to
find ε-approximations to both power allocation and jammer
placement problems by solving linear programs with poly-
nomial number of constraints.

Proof. We claim that if the constraints are satisfied at every
point of F′′

⋃
S′′, then they are also satisfied for any point of

F
⋃
S, up to the same approximation factors as before. Re-

call that F′′ and S′′ subdivide F and S into intervals. For any
point p ∈ F, let p′ be an endpoint of the interval containing
p. If the cone ψ( j) of a jammer j contains both p′ and p,
then proof of the approximation factor of its signal at p can
be shown using Lemma 3.
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We now claim that any jammer whose cone contains p′

must also contain p. If this is not the case, then when walk-
ing from p′ to p along F, we will cross the boundary of some
cone ψ . At the crossing, there must have been a point of F′′

since we have added the intersections of the boundaries of
all cones with F to F′′. Hence, p′ cannot be the endpoint of
the interval containing p. We may prove in a similar manner
that the corresponding constraints for S′′ are also sufficient.

The number of constraints remains polynomial since, for
each cone, there are at most two extra points in F′′ and S′′

each over F′ and S′ respectively.

7 Simulations

We conducted preliminary experiments to compare the two
interference models: NJ and Full. The setting we have cho-
sen is the storage/fence shown in Figure 9. The fence is of
dimensions 50x33 units and we placed a grid of 1x1 cells
in the entire region. We simulated both JAMMING-LP and
JAMMING-ILPin this setting. For the power assignment ob-
tained from JAMMING-LP, we investigated the difference
in power and for JAMMING-ILP, we investigated the differ-
ence in number of jammers. Finally, we observed the varia-
tion in total power assigned with ε and δF and the number
of jammers placed with ε,δF and P̂. We chose the following
values: (i) ε = {0.1,0.2,0.3,0.4, 0.5}, (ii) δF = {0.5,0.6, . . . ,
1}, (iii) P̂= {(1/δF),(2/δF), . . . , (5/δF)}. In both Full and
NJ, we removed all grid points which were in the forbidden
region.

For JAMMING-LP, we picked 10 random points from
this set of grid points, repeated the simulation 50 times and
calculated the mean and variance. Figure 10(a) shows the
variation in total relative power with δF, which indicates
how much more capable the eavesdropper is than legitimate
receivers. As the eavesdropper gets more capable than stor-
age receivers, the drop in the total relative power under NJ in-
terference model is sharper than under Full model. The gap
between them seems to be no more than constant-factor (ap-
proximately 2-3 times) but is definitely not negligible. How-
ever, the variance in NJ is also extremely high (ranging from

Fig. 9 Storage/fence with candidate locations (small dots) and solution
of JAMMING-ILP(Large dots).

around 60 to 100 vs 5 to 20 for the Full model). Possibly,
the random selection of jammer locations leads to the large
variance over different choices. The variance is likely to be
much more in NJ model because each jammer contributes
all the interference at a large number of nodes instead of
only being a part of the entire jammer set. This emphasizes
the importance of carefully locating the jammers. We con-
clude that, in practical scenarios, it would be of benefit to
consider the combined problem of location and power as-
signment rather than computing an optimal power assign-
ment for a naive placement of jammers. Further, the graph
indicates that as the eavesdropper gets more and more capa-
ble, the effectiveness of the NJ model diminishes.

For JAMMING-ILP, the candidate jammer locations were
all the points on the grid. In total, there are 1121 points. Fig-
ure 10(b) and Figure 10(c) show the variation of the num-
ber of jammers located with the power assigned and with
δF, respectively. In this case, we note that NJ model and
Full model are not far apart thus demonstrating the benefits
of NJ model in this example setting. We noted that there was
no significant variation in total relative power or number of
jammers with ε indicating that even choosing large values
of ε would yield results better than theoretical guarantees.

8 Conclusion

We considered the problem of friendly jamming under the
storage/fence environment model when jammers are both
cooperative and non-cooperative. We presented ε-approximation
algorithms for the problem of assigning transmission powers
to a set of fixed jammers as well as for selecting a minimum
number of jammers from a discrete candidate set. We also
presented algorithms to place approximately optimal num-
ber of jammers when the jammers may be located anywhere
between the storage and fence under certain restricted set-
tings. The former algorithms were extended to provide a
combined solution where we are interested in achieving a
trade-off between number of jammers and power consump-
tion. In addition, they were also extended to the setting where
eavesdroppers or jammers may be equipped with directional
antennas. Our preliminary simulations validated the theoret-
ical results and show that the simpler non-cooperative model
may not be significantly different than the cooperative model.
Further, for the power assignment problem, the simulations
also show that careful location of the jammers is paramount
and further emphasizes the importance of the jammer place-
ment problem.
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