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ABSTRACT
Wireless communication systems, such as RFIDs and wire-
less sensor networks, are increasingly being used in security-
sensitive applications, e.g. credit card transactions or moni-
toring patient health in hospitals. Wireless jamming by trans-
mitting artificial noise, which is traditionally used as an of-
fensive technique for disrupting communication, has recently
been explored as a means of protecting sensitive communi-
cation from eavesdroppers.

In this paper, we consider location optimization problems
related to the placement and power consumption of such
friendly jammers in order to protect the privacy of wireless
communications constrained within a geographic region. Un-
der our model, we show that the problem of placing a min-
imum number of fixed-power jammers is NP-Hard, and we
provide a PTAS ((1+ε)-approximation scheme) for the same,
where ε is a tunable parameter between 0 and 1.

1. INTRODUCTION
Wireless communication is increasingly being employed

to transfer highly sensitive information. Systems such as
ambient living assistance systems [20], emergency response
systems employing wireless networks [15], contactless smart
cards [9] and military sensor networks [1] all employ wire-
less communication to transmit potentially sensitive infor-
mation, such as patient health information, banking or finan-
cial data or military information. The shared nature of the

wireless medium makes the protection of such information
from eavesdropping an important problem.

In many cases, the use of cryptographic techniques is im-
practical due to the limited capabilities of the communicat-
ing devices (e.g., low-cost sensors or RFID devices in smart
cards) or due to application constraints (e.g., in emergency
situations in which rescue personnel cannot spend time typ-
ing passwords or employing other authentication methods).
Moreover, in many situations, there is a variety of commu-
nicating nodes on different frequencies and the nodes them-
selves may be dynamically changing, with mobile nodes or
the addition/removal of nodes. It is, thus, advantageous for
the security technique to be impervious to such variations in
the system.

Figure 1. An example scenario in which the storage S consists of
two warehouses containing the communicating nodes surrounded
by a fence. Jammers placed within the fence prevent eavesdroppers
outside the fence from listening.

Due to the inapplicability of cryptography in many sce-
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narios, jamming has recently been explored as a defensive
technique to achieve security from eavesdroppers [19,27]. In
contrast to its traditional offensive use, jamming for security
must achieve the twin objectives of (i) reducing the eaves-
dropper’s channel quality to a level that is too low for suc-
cessful reception, and (ii) doing so while maintaining suffi-
cient channel quality for legitimate transmissions. We say
that a set of jammers is successful if these two objectives are
achieved.

Noting that the communication is often geographically
restricted, Sankararaman et al. [23, 24] present an environ-
ment model consisting of communication within a region,
the storage S, surrounded by a fence F, and the storage is to
be protected from eavesdroppers lying outside the fence. In
this context, they show how to configure friendly jammers
placed within the fence that are to operate independently of
the communicating network. This model is depicted in Fig-
ure 1 (from [23]).

The main advantages of this protection scheme are:
• The jammers need to know only minimal information about

the communication taking place, such as the frequency
of communication and bounds on receiver sensitivity and
transmission powers.
• It supports dynamic behavior, such as mobility or addi-

tion/removal of nodes. As long as communication is re-
stricted to the storage, the jammers do not need to know
the exact locations of nodes within the region.
• It is proactive rather than reactive, requiring no overhead

for the communicating nodes and no synchronization amongst
the jammers.
In this paper, we expand upon the results of [23, 24] in a

number of important ways. Given a set of jammers, at any
location, we assume that jammers are sparse enough that
only the nearest jammer contributes interference. In many
scenarios, this assumption is reasonable, due to the rapid de-
crease of a jammer’s interference with distance. We consider
two models. The first model (the Full-interference model)
takes into account the accumulative effect of all jammers
on every point. The second model (the Nearest-Jammers-
interference model, or NJ-interference model) assumes that
all jammers use the same transmission power and that, for
each point p ∈ R2, takes into account only those jammers
that are nearest to p. Further details of these models are dis-
cussed below in Section 2.

Our specific contributions include the following:
1. Given a discrete set of potential eavesdropper locations

and a geographic domain comprised of a discrete set of
storage regions, we show that, in the NJ-model, it is NP-
hard to minimize the number of jammers necessary to
protect the domain.

2. We present, for any fixed ε > 0, a polynomial-time (1 +
ε)-approximation algorithm (i.e., a polynomial-time ap-
proximation scheme (PTAS)) for placing a minimum car-
dinality set of fixed-power jammers in the NJ-interference
model.

3. We present a “pruning” method of reducing the region
where eavesdroppers can be placed so that the solution in
the “reduced” problem closely approximates the solution
to the original problem. This allows us to obtain more ef-
ficient solutions, by decreasing the number of constraints
needed in integer linear programming (ILP) solutions to
optimal jammer placement problems. For example, in the
Full-interference model, it is shown in [23] that the prob-
lem of either (i) finding a subset of equal-power jammers
(taken from a discrete subsets X of possible locations),
or (ii) assigning powers to each jammer for a given set of
jammer locations, can be solved using ILP for the former
problem and LP for the latter one. The contribution of
the pruning method is in showing that the the number of
constraints required in the ILP/LP need not depend on the
perimeter of the fence.
Our approximation algorithms are bi-criteria approxima-

tions, i.e., we allow both some suboptimality (approxima-
tion) in the number/power of jammers and some relaxation
of the channel quality requirement (measured using the signal-
to-interference ratio) at the nodes.

Related Work. In the field of information theory, several
papers [13, 19, 27, 31] consider the wiretap channel [33], in
which a single eavesdropper tries to listen to legitimate com-
munication between a pair of nodes, and it is shown that
perfect secrecy is possible when the eavesdropper’s chan-
nel is worse than the legitimate channel. These works con-
sider the use of jammers to degrade the eavesdroppers’ chan-
nel and analyze the channel capacity under various scenar-
ios, such as cooperating or independent jammers, multiple
eavesdroppers, etc. Under the same model of eavesdroppers,
there have also been game-theoretic approaches for optimiz-
ing power consumption of jammers [8, 17] and designating
regions where eavesdroppers cannot be located [8]. How-
ever, most of these works do not explore the geometry of the
problem sufficiently and are primarily of theoretical impor-
tance due to the simple scenarios under consideration.

Recent works [4,17] focus on the Multiple-Input-Multiple-
Output (MIMO) wiretap channel where the transmitter, re-
ceiver, and eavesdropper, may possess multiple antennas.
The authors of [4] obtain a closed-form relationship for the
structure of the jammer’s artificial noise covariance matrix
that guarantees no decrease in the mutual information be-
tween the transmitter and the receiver. Under the model
considered in [17], the eavesdropper can act either as a pas-
sive eavesdropper or as an active jammer, under half-duplex
constraint. Consequently, the authors of [17] use a game-
theoretic approach and examine conditions for the existence
of Nash equilibria. In [2], the authors develop and imple-
ment a demodulator for a MIMO receiver. Via experiments,
good performance is demonstrated in an environment con-
taining two jammers.

Since RFID devices have extremely low power require-
ments, often making the use of cryptography difficult, jam-
ming has been considered as a possible security measure [10,
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11, 21], but most works address the security of only a single
RFID tag. Another system with low capability devices is the
wireless sensor network. Although, in many cases, cryptog-
raphy is possible here [22], the focus is on symmetric key
cryptography due to the more resource-intensive nature of
asymmetric key cryptography. Here, the primary problem
occurs during the key distribution phase [26], where eaves-
dropping is still possible. The authors of [25] propose to use
an intelligent jammer that utilizes cryptography in order to
avoid interfering with legitimate receivers. However, for the
above mentioned reasons, such techniques are inappropriate
for RFID and wireless sensor networks. It is, thus, viable to
consider physical layer techniques in the context of sensor
networks.

Gollakota et al. [6] have also used such a well-coordinated
communication between source and jammers. These meth-
ods have significant advantages, but require reactive jam-
mers (i.e., jammers synchronized with other jammers) and
a flexible physical layer. None of these assumptions are re-
quired for our work.
*** Alon says: Still to add: Mention [29, 30,

32] and [6] Also add mention of Tekin and Yener [28]****
To the best of our knowledge, the only work that considers

geographically restricted communication is [23], the results
of which are extended in a number of ways in our paper.

2. PRELIMINARIES: THE MODEL

Model of the Environment. We consider a Storage/Fence
environment model in which legitimate communication takes
place within an enclosure specified by one or more polygo-
nal regions, S ⊂ R2, called the storage. We let LS denote
the total perimeter of S. We do not assume any knowledge of
the locations of nodes in S, but we do assume some proper-
ties of legitimate communication (described below). In par-
ticular, legitimate receivers and transmitters can be located
at any point ps ∈ S. Further, there exists a controlled re-
gion, C ⊆ R2, that contains S; no eavesdropper is able to
be within the interior of C. The boundary ∂C is referred to
as the fence F. We assume that C has no holes, but is not
necessarily connected; it is a union of simply connected re-
gions. Let LF denote the perimeter of S. We are also given a
region P where jammers can be placed at points of A ⊆ P .
We refer to A as the allowable region. The allowable region
allows us to model potential restrictions on locations of jam-
mers, e.g., that they be within a minimum distance of S, or
that they be constrained to a specific subset of locations, e.g.
near power outlets or in locations that are easily reached for
maintenance purposes.

Communication Model. Our communication model is sim-
ilar to that of [23]. We assume that the transmission power
P̃ is the same for all legitimate transmitters and that com-
munication in S does not suffer significant path loss, i.e.,
for any transmission in S, the received power is P̃ . On the
other hand, the signal at eavesdroppers does suffer path loss;

Storage S

Controlled region C

Uncontrolled region U

Fence F

eavesdropper

A jammer

w1 w2 w3

w4

Figure 2. A “floorplan” of an example scenario, with storage S and
the fence F enclosing the controlled region C. Jammers marked as
antenna towers are placed between the fence and the storage.

formally, for an eavesdropper pe listening to a transmitter
ps ∈ S, the received power is P̃‖ps − pe‖−γ , where γ is the
path-loss exponent, typically in the range [2, 6], and ‖p− q‖
is the Euclidean distance between p and q.

The Signal-to-Interference Ratio (SIR) is the ratio of the
transmitted signal power to the total interference contributed
by the jammers. Formally, for a legitimate receiver ps in S,

SIR(J, ps) =
P̃∑

j∈J Pj‖j − ps‖−γ
,

where Pj is the transmission power of jammer j. For an
eavesdropper pe, since transmissions from the storage suffer
path loss, we make the observation that the maximal signal
power is received from a transmitter at the nearest location
to pe on S (denoted by s(pe)) and define

SIR(J, pe) =
P̃‖s(pe)− pe‖−γ∑
j∈J Pj‖j − pe‖−γ

.

As in [23], we note that the total interference at a location p
is dominated by the interference from the nearest jammer to
p if J is sufficiently spread due to the exponential decrease
in received power with distance.

This translates to constraints δs and δe on the SIR. For-
mally, any set of jammers J needs to satisfy the following
constraints:

SIR(J, ps) > δs,∀ps ∈ S, and (1)
SIR(J, pe) < δe,∀pe /∈ C (2)

This model is the same as the widely accepted Physical
Model described in [7].

Finally, as in [23], we assume that the transmission power
of every jammer is at least (1/δe)P̃ . This is a reasonable
assumption, as long as eavesdroppers are not extremely sen-
sitive, and guarantees that jamming F implies that all points
in R2 \ C are also jammed, and that signal from the stor-
age does not “hoops over” the fence to a more remote lo-
cations. On the contrary, removing this assumption also
implies that, with no assumptions on background noise, no
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placement of jammers can jam all possible eavesdropper lo-
cations. See [23] for details.

Remarks. (i) Throughout the paper, for reasons of simplic-
ity of exposition, we ignore the effects of background noise.
However, this may be taken into account easily in the model,
and all of our schemes carry over with no change to the guar-
antees provided. (ii) We can remove the assumption that
legitimate communication is of fixed power if we have addi-
tional knowledge of node locations and transmitted distance,
i.e., we know the topology of the communicating network.

Note that in Eq. (1) and (2), the effect of all jammers
(weighted by distance−γ is taken into effect. Thus, we refer
to this model as the Full-interference model. We are now
ready to formalize the problems discussed in this paper, un-
der this model.

PROBLEM 1 (OPT-PLACEMENT). Given
1. A set, S, of storage region(s), each given as a polygonal

region.
2. The controlled region, C, such that S ⊆ C.
3. An allowable region,A, where jammers can be placed.
4. The transmission power, P̃ , of legitimate transmitters

(e.g. RFID tags).
5. The path loss exponent, γ.
6. A bound, δs, on the SIR for legitimate receivers within

S.
7. A bound, δe, on the SIR for preventing eavesdropper

outside C.
8. The transmission power, P̂ , of each jammer.

The problem is to place a minimum number of fixed-power
jammers in A to satisfy (1) and (2).

Our simulations in [23] hint that when all jammers have
the same transmission power, the cumulative effect of the
second, third etc. nearest jammers to each point are negli-
gible compared to the effect of the nearest jammer. This is
explained by the attenuation model, in which the received
power decreases dramatically with distance. Hence, we pro-
pose here the following model, called the Nearest-Jammers-
interference model, or NJ-interference model.

PROBLEM 2. Same as Problem 1, except that for point
q ∈ S

⋃
(R2 \ C) only the effect of the nearest jammer to q

needs to be taken into account in Eq. (1) and (2).

3. HARDNESS OF OPTIMAL JAMMER
PLACEMENT

In this section, we show hardness results for Problem 2
in the case that S ⊂ R2 is a discrete set of regions/points,
eavesdropper can be placed only at points of a discrete set
P ⊂ R2 of points distinct from S, and jammers can be
placed anywhere in the plane (i.e., the allowable regionA =
R∈). Our reduction uses ideas from the NP-completeness
proof of the problem HITTING-SET-FOR-PLANAR-UNIT-
DISKS [16]: Given a set D of disks of equal radii in the plane
and an integer k, compute whether there is a set P ⊆ R2

such thatD∩P 6= φ for allD ∈ D and |P | ≤ k. The reduc-
tion employed in the NP-completeness proof of HITTING-
SET-FOR-PLANAR-UNIT-DISKS is from PLANAR-3-SAT
problem [5].

THEOREM 1. Given a discrete set of storage regions S

and a discrete set of potential eavesdropper locations E,
disjoint from the regions S, and when the allowable region
where jammers may be placed isA = R∈, OPT-PLACEMENT is
NP-hard.

PROOF. For a given instance of PLANAR-3-SAT, the con-
struction used in the proof of NP-completeness of HITTING-
SET-FOR-PLANAR-UNIT-DISKS considers a specific set D =
{D1, . . . , Dm} of unit disks in the plane, and these disks
have the following property: Each disk appears as an arc of
positive length on the boundary of the union, U , of the disks
in D. To compute a hitting set for D, we can select one rep-
resentative point per face of the arrangement of the m disks;
therefore, it suffices for a hitting set to be selected as a subset
of points on the faces of this arrangement.

From D, we construct an instance of the problem OPT-
PLACEMENT as follows. First, we let E be the set of m cen-
terpoints of the disks D. Let U ′ denote the union of disks
of radius 1 + δ, with δ > 0 chosen small enough that U ′

has exactly the same combinatorial structure as U (the exact
same arcs on each component of the boundary of the union).
Within each face of U ′ (i.e., within each connected compo-
nent of the set R2 \ U ′) we construct a simple polygon, P,
which is one of the storage regions of the set S, that touches
each of the circular arcs bounding the face. (It is easy to
see that such a polygon can be constructed having its num-
ber of vertices linear in the complexity of the face.) These
polygons P have the property that if each is grown by δ (via
Minkowski sum with a disk of radius δ), then we choose the
parameters such that jammers need to lie in the unit disksDi

centered at the points E to satisfy (2) at these points. In par-
ticular, each unit disk is in contact with the (up to 5) regions
grown from polygons P corresponding to the faces to which
the corresponding unit disk contributes an arc to the bound-
ary of U . A minimum-cardinality set of jammers, then, cor-
responds precisely to an optimal hitting set for the disks D.
Thus, there exists a jamming set of size k if and only if there
exists a hitting set for D of size k.

4. THE PROPOSED SOLUTION
In this section, we present results for OPT-PLACEMENT un-

der both interference models. In all cases, we are given a set
of storage region(s) S and a polygonal fence F enclosing
S; All jammers have fixed transmission power P̂ . We con-
sider two possible cases for the allowable region: A. (i) the
continuous case where A = C \ S, and the NJ-interference
model is used, (Section 4.2) and (ii) the discrete case where
A ⊂ C \ S is a discrete set of candidate locations, and the
Full-interference model is used under the (Section 4.3). In
both cases, we provide (1 + ε)-approximation schemes.
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Under the above settings, we first describe how to prune
significant portions of E. This will aid in bounding the run-
ning times of our algorithms. Following this, we describe
our approximation schemes.

4.1 Pruning the Fence
In this section, we show how to discard portions of E so

that, at any point in the discarded portions, the SIR (under
any interference model) is approximated by the SIR at some
remaining location. Thus, if eavesdroppers located in the re-
maining portions are successfully jammed, any eavesdrop-
per in E is also approximately successfully jammed.

We first give a few definitions. Let ∂S be the boundary
of S; for two points ps, qs ∈ ∂S which belong to the same
polygon in S, let psqs denote the portion of ∂S obtained by
walking counterclockwise from ps to qs and similarly define
peqe for two points pe, qe ∈ E. The generalized Voronoi
region, denoted by Vor(ps,ips,i+1) for an edge ps,ips,i+1 is
the set {p ∈ R2 | s(p) ∈ ps,ips,i+1} where s(p) is the near-
est point to p on S. Similarly define the Voronoi region of
each vertex ps,i. The generalized Voronoi diagram VD(S)
is the subdivision of R2 induced by the Voronoi regions of
edges and vertices of S. The restricted Voronoi Diagram
RVD(S,F) of S on F is the subdivision of E into segments
induced by VD(S) together with the vertices of F; see Fig-
ure 3 for an illustration.

s1

s2

Vor(s1)

Vor(s1s2) S

F

Figure 3. Generalized and Restricted Voronoi Diagrams.

The generalized Voronoi diagram is a well-studied struc-
ture in computational geometry [12, 14] and can be com-
puted inO(n log n) time. Consequently, the restricted Voronoi
diagram RVD(S,F) may be computed in time O(n2).

Before describing the pruning process, let us emphasize
the intuition behind its importance. Figure 4 illustrates two
extreme yet realistic scenarios, of either a fence that is sig-
nificantly larger than the storage (top of Figure 4), or a fence
containing a sharp and long “spike” (bottom of Figure 4).
Theorem 2 and the following lemmas imply that in both
cases we consider, we can solve the optimization problem
while considering a much smaller fence, whose perimeter is
proportional only to the perimeter of the storage, and does
not contain such sharp angles.

In the remainder of this subsection we describe the prun-
ing process whose output is a set of segments Ξ. For simplic-
ity we assume that the closest pair of points p ∈ S, q ∈ F

is 1. Several lemmas are proven at different stages of the

S

S

Figure 4. Two extreme cases: The yellow region represents the
fence, while the grey area is the storage S. The length LS is arbi-
trarily smaller than the length of the fence. Theorem 2 states that
it suffices to jam a portion of a length that does not depend on the
latter. Jamming the blue portions of F implies jamming all of F.

pruning process to form the proof for the following theorem,
which is the core result of this subsection.

THEOREM 2. Given storage region(s) S, a fence F en-
closing S such that eavesdroppers may lie on F, we may
generate a set of segments Ξ such that if, at all locations
pe such that pe ∈ ξ for some ξ ∈ Ξ, (2) is satisfied by a
set of jammers J (not necessarily transmitting with the same
power), then at all locations in E, (2) is satisfied by J and

(i) Every segment ξ ∈ Ξ is a subset of E.
(ii) Any pair of segments in Ξ are disjoint.

(iii)
∑
ξ∈Ξ |ξ| = O((LS + n)/ε), where |ξ| is the length of

ξ and n is the total complexity of S and E.

The pruning process employs the following steps. Ini-
tially, we compute RVD(S,F). Now, for any segment peqe
in RVD(S,F), let s(peqe) be the set {ps ∈ S | ∃p′e ∈
peqe, s(p

′
e) = ps}. Let Ξv be the segments peqe ∈ RVD(S,F)

such that s(peqe) is a single vertex of S and let Ξs be the re-
maining segments. For each segment peqe ∈ Ξv such that
p′e is the closest point to s(peqe) on the line through pe and
qe, if p′e ∈ peqe, we replace peqe with pep′e and p′eqe in Ξv .

With the set of segments Ξv and Ξs, we further shorten or
remove segments according to the following lemmas. The
proofs hold under both interference models.

LEMMA 4.1. For any segment peqe ∈ Ξs, (i) s(peqe) is
either a segment sese′ along the boundary of some region in
S, and (ii) for some p′e ∈ E, if the segment connecting p′e to
s(p′e) intersects E at some point p′′e , then, for any J ⊂ J,

SIR(J, p′′e ) < δe ⇒ SIR(J, p′e) < δe.

PROOF. Clearly, (i) is true. The proof of (ii) follows from
[23, cf. Lemma 3.1].

Lemma 4.1 implies that we can shorten all segments in
RVD(S,F) to portions such that for any point pe in the re-
maining portions, the segment connecting pe and s(pe) does
not intersect E. Let Ξs and Ξv be replaced with the segments
obtained through this shortening.
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pe

qe

ps = s(pe)

θ

qs = s(qe)

pe

qe

ps = s(peqe)θ

p

(a) s(peqe) = psqs (b) s(peqe) = ps

Figure 5. Critical angle θ = θc(peqe) for a segment peqe.

Definition 1. The critical angle θc(peqe) (see Figure 5)
for a segment peqe ∈ Ξ is defined as follows (assuming
without loss of generality ‖qe − s(qe)‖ ≥ ‖pe − s(pe)‖):

(i) If s(peqe) is a segment psqs, then θ(peqe) is the angle
between the lines containing peqe and psqs

(ii) If s(peqe) is a vertex ps ∈ S, then θ(peqe) is the angle
∠qepsp where p is the closest point to ps on the line
containing peqe.

θ

‖s(pe)− pe‖

‖p′e − pe‖ sin θ

≤ α‖s(pe)− pe‖ + ‖p′e − pe‖

pe

s(p′e)s(pe)

j

D(pe)

qe

p′e

Figure 6. Illustration of proof of Lemma 4.2

LEMMA 4.2. For a segment peqe ∈ Ξs, if the critical an-
gle θc(peqe) > sin−1((1/(1 + ε)1/γ), then,

(i) ‖pe − qe‖ = O( 1
ε )‖s(pe)− s(qe)‖.

(ii) For any J ⊂ J, if SIR(J, pe) < δe, then, for any p′e ∈
peqe, SIR(J, p′e) ≤ (1 + ε)δe.

PROOF. Let θ = θc(peqe). The proof of part (i) follows
from the fact that ‖pe − qe‖ = ‖s(pe) − s(qe)‖/ cos θ. We
prove part (ii) under the NJ-interference model as follows.
The proof under the Full-interference models follows from
combining this with [23, cf. Lemma 3.1]. Since SIR(j, pe) ≤
δe, j ∈ D(pe). For any p′e ∈ peqe, we have

SIR(j, p′e) ≤
P̃‖s(p′e)− p′e‖−γ
P̂‖j − p′e‖−γ

≤ P̃

P̂

( ‖p′e − pe‖+ ‖j − pe‖
‖p′e − pe‖ sin θ + ‖s(pe)− pe‖

)γ
,

since ‖s(p′e)− p′e‖ = ‖p′e− pe‖ sin θ+ ‖s(pe)− pe‖ and by
triangle inequality, ‖j − p′e‖ ≤ ‖p′e − pe‖ + ‖j − pe‖. See
Figure 6 for an illustration. Further,

SIR(j, p′e) ≤
P̃

P̂

(
‖p′e − pe‖+ α‖s(pe)− pe‖

‖p′e − pe‖( 1
1+ε )1/γ + ‖s(pe)− pe‖

)γ

≤ (1 + ε)αγ
P̃

P̂
≤ (1 + ε)δe,

since ‖j− pe‖ ≤ α‖s(pe)− pe‖, α ≥ 1 and (1 + ε)1/γ ≥ 1.
Thus, the lemma is proved.

Based on Lemma 4.2, we then prune all segments of peqe
of Ξs such that θc(peqe) > sin−1((1/(1 + ε)1/γ). We re-
move all such segments from Ξs and keep only their lower
endpoint (as a degenerate segment).

LEMMA 4.3. For a segment peqe ∈ Ξv , whose critical
angle θ(peqe) > sin−1((1/(1+ε)1/γ), let ps = s(peqe) and
p′′e be the point on peqe such that ∠p′′epsp

′
e = sin−1(1/(1 +

ε)1/γ where p′e is the closest point to ps on the line contain-
ing peqe. We now have,

(i) ‖pe − p′′e‖ = O( 1
ε )‖ps − pe‖.

(ii) For any set of jammers J ⊂ J, if SIR(J, p′′e ) < δe,
then, for any p′′′e ∈ p′′eqe, SIR(J, p′′′e ) < (1 + ε)δe.

PROOF. We have tan∠p′′epsp
′
e = ‖p′′e−p′e‖/‖p′e−ps‖ =

O(1/ε). Since ‖p′′e − p′e‖ ≥ ‖p′′e − pe‖ and ‖p′e − ps‖ ≤
‖pe − ps‖, part (i) is proved. Part (ii) can be proved in a
manner similar to the proof of part (ii) of Lemma 4.2.

Lemma 4.3 implies that we can shorten all segments that
lie in the Voronoi region of a vertex of S and have a high
critical angle such that, once shortened, the critical angle is
exactly sin−1((1/(1+ε)1/γ). The final set Ξ is the resulting
set of segments Ξv ∪ Ξs.

Figure 7 shows the effects of this pruning process through
an example. In each case, the dashed edges are the por-
tions of the fence that are pruned. Figure 7(a) shows the
scenario where we have two storage regions in S inside a
fence F. Figure 7(b) shows the effects of pruning based
on Lemma 4.1 while Figure 7(c) shows the pruned portions
based on Lemmas 4.2 and 4.3. As can be seen, a significant
portion of the fence need not be considered.

Combining Lemmas 4.1, 4.2 and 4.3, Theorem 2 is proved.

4.2 Continuous Allowable Region
In this section, we present a (1 + ε)-approximation bi-

criteria approximation scheme under the NJ-interference model
when A = F \ S.

We first present a few necessary definitions. Let P̂ be the
transmission power of a jammer. Let D[p; r] denote a disk
of radius r centered at a point p. Also, let α = (δeP̂ /P̃ )1/γ

and β = (δsP̂ )1/γ be two parameters used for the purpose
of clarity of exposition.

Definition 2. (i) The forbidden region ϕ(S) is the re-
gion ∪ps∈SD[ps;β]. This is essentially the Minkowski
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S
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F

S

S

F

S

S

F

Figure 7. The solid lines represent the portion of the fence that needs to be considered, while the dashed lines represent portions that can be
pruned and the thin dotted lines are the edges of the Voronoi diagram of S based on which the pruning is performed. (left) Original scenario,
(middle) After pruning based on Lemma 4.1, (right) After pruning based on Lemmas 4.2 and 4.3.

S

F

pe

ϕ(S)

Vis(pe)

D(pe)

Figure 8. The Forbidden region (marked in green) and Visiblity
regions for the case α = 1

sum [3] of a disk with radius β and S. Essentially, no
jammer can lie in ϕ(S) since it would cause too much
interference to possible legitimate transmissions in S.

(ii) The allowable region isA = C \ϕ(S). The algorithm
can actually accommodate various other assumptions
on the allowable and forbidden regions. We defer the
discussion of these cases.

(iii) For a point pe ∈ E, the critical disk is the disk D(pe) =
D[pe;α‖s(pe)−pe‖]. Under the NJ-interference model,
this disk must contain a jammer in order to prevent an
eavesdropper at pe to tap to any transmitter placed in
S, and in particular a transmitter placed in s(pe).

(iv) For a point in pe ∈ F, the visibility region Vis(pe) is
the region D(pe)

⋃A. The vertices of Vis(pe) are the
non-differentiable points of Vis(pe). Refer to Fig. 8

As is easily observed from the above discussion, success-
ful jamming can be obtained by a set J of jammers if and
only if for every point pe ∈ F, there is a jammer of J in
Vis(pe). Note that a successful jamming might not exist un-
der the above constraints; for example, if β is too large (e.g.
if δs is too small) the forbidden region might contain essen-
tial portions of F.

ξ

S

F

Figure 9. Arrangement of visibility regions

Arrangements. Given a discrete set of points E′ outside C,
let the arrangement A(E′, S,F) denote the subdivision of
R2 induced by the set of regions Vis(E′) = {Vis(pe) | pe ∈
E′}. The vertices of A(E′, S,F) are the set of intersection
points of the visibility regions of points in E′ together with
the vertices of the visibility regions. An edge of A(E′, S,F)
is a the portion of a visibility region between two vertices
and a face is a connected component of R2 \ Vis(E′). The
complexity of an arrangement is the total number of vertices,
edges and faces; see Figure 9.

We first present an optimal algorithm for a restricted case
which is useful in the analysis of the (1 + ε)-approximation
scheme for the general case.

4.2.1 An Optimal Algorithm for a Special Case
When S is a (straight-line) segment and E is another (straight-

line) segment disjoint from S, we can find an optimal set of
jammers, i.e., one of minimum cardinality such that (1) and
(2) are satisfied. Our algorithm is very similar to the algo-
rithm presented in [23,24] for the case of convex S and con-
vex F enclosing S and α = 1.

Apart from being an interesting case where optimal re-
sults may be achieved, this algorithm is used in the analy-
sis of our approximation algorithm for the general case (see
Section 4.2.2) to bound the running time.

Let E = peqe and S = psqs. The steps of the algorithm
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are as follows:
1. Set initial point p = pe from E,
2. For the current point p, compute the next point to p′′ ∈

E to the right of p, such that D(p) and D(p′) are tan-
gential,

3. If p′ ∈ E, place a jammer at D(p)
⋂
D(p′), set p to p′

and repeat steps 2 and 3.
4. If p′ /∈ E, stop.
See Figure 10 for an illustration of one step of the algo-

rithm. Essentially, we compute a sequence of disks where
any two consecutive disks are tangential to cover E and the
number of disks is at most OPT + 1.

pe

p′e

s(pe) s(p′e)

E

S

D(pe)

D(p′e)

j

Figure 10. One step of the algorithm for disjoint segments. The
outer disks centered at pe and p′e are the critical disks of pe and p′e,
and their radii are α‖s(pe)− pe‖ and α‖s(p′e)− p′e‖, respectively.
The algorithm places a jammer j at the intersection point of these
disks.

THEOREM 3. Given disjoint segments S = psqs and E =
peqe, we can place a set of at most OPT jammers J in time
O(OPT) such that (i) ∀p ∈ E, SIR(J, p) < δe and (ii) ∀p ∈
S, SIR(J, p) > δs.

PROOF. The proof follows from the arguments in [23, cf.
Section 5].

We use the property that there are at most OPT + 1 disks
constructed during the course of the algorithm in the analysis
of the approximation scheme in Section 4.2.2.

4.2.2 (1 + ε)-Approximation Algorithm
In this section, we present a bi-criteria polynomial-time

approximation scheme where we allow some leeway in both
the number of jammers as well as the SIR at each point on
E. The precise description of our result is given by the fol-
lowing theorem.

THEOREM 4. Given storage region(s) S, fence F, thresh-
olds δs, δe and jammer power P̂ , under the NJ interference
model, we can compute a set of locations J ⊂ A \ S in time
O((T/εO(1))O(1/ε2)) where T = min{L2

F,L
2
S, n

2OPT2}
such that |J | ≤ (1 + ε)OPT and if jammers of power P̂ are
placed at J ,

(i) For any point pe ∈ F, SIR(J, pe) < (1 + ε)δe.

(ii) For any point ps ∈ S, SIR(J, ps) > δs.

The overall idea of the algorithm is to compute a discrete
set of witness points E′ ⊂ P such that the SIR at any point in
E\E′ is approximated by the SIR at some point in E′. Thus,
if we ensure that any point in E′ is successfully jammed, we
ensure that any point in E is “almost” successfully jammed,
i.e., we are off the threshold by only a factor (1 + ε).

Algorithm Description. The algorithm consists of the fol-
lowing stages.
Stage (i). Generate witness points. The set E′ of witness

points is constructed in two steps. First, we obtain a set
of segments Ξ from F = ∂C according to Theorem 2
and add their endpoints to E′. For each segment peqe in
Ξ, we then place witness points as described below by
PLACE-WITNESSES. Let E′ be the set of these points.

Stage (ii). Generate Candidate Jammers Locations: We
now compute a discrete set of candidate jammer loca-
tions J′ as follows: compute Vis(pe) for each pe ∈ E′

and compute the arrangement A(E′, S,F). For each
face of the arrangement we pick an arbitrary point and
add it to J′.

Stage (iii). Finding almost-optimal set of jammers: Given
discrete sets E′ and J′, the problem now transforms
into the following discrete hitting set problem: Given a
discrete set of critical disks centered at points of E′ and
a discrete set of points J′, compute a minimum cardi-
nality subset J ⊂ J′ such that every critical disk con-
tains at least one point in J . Although the minimum
hitting set problem for disks is NP-Hard, we can ob-
tain a (1 + ε)-approximate solution using the method
of Mustafa and Ray [18] in time O(|E′||J ′|O(1/ε2)). If
there is no feasible solution to the hitting set problem,
there is no feasible placement of jammers.

pe

qe

p′e
p′′e

r(p′e)

s(pe) s(qe)

εr(p′e)

D(p′e)

Figure 11. One step of procedure PLACE-WITNESSES

Procedure PLACE-WITNESSES(Ξ). Let peqe be a segment
in Ξ and without loss of generality, let ‖pe− s(pe)‖ < ‖qe−
s(qe)‖. We place witness points from along peqe starting at
pe until we reach qe. At an intermediate step, assume we are
located at an already placed witness point p′e ∈ peqe. Let
r(p′e) be the radius of the critical disk D(p′e). We place a
witness point p′′e on the portion p′eqe such that ‖p′e − p′′e‖ =
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ε′r(p′e) where ε′ is chosen such that (1 + ε′)γ ≤ (1 + ε)
and move to p′′e (see Figure 11). If ‖qe − p′e‖ < ε′r(p′e), we
terminate the procedure. Let the set of witness points placed
for a segment peqe be denoted by E′peqe .

LEMMA 4.4. For any segment peqe and any point p′e ∈
peqe, there exists a point p′′e ∈ E′peqe such that, for any jam-
mer j ∈ J,

SIR(j, p′′e ) ≤ δe ⇒ SIR(j, p′e) ≤ (1 + ε)δe.

PROOF. Assuming without loss of generality that ‖pe −
s(pe)‖ ≤ ‖qe − s(qe)‖, let p′′e be the point closest to p′e on
pep′e implying that ‖p′′e − p′e‖ ≤ ε′α‖p′′e − s(p′′e )‖. If, for a
jammer j, SIR(j, p′′e ) ≤ δe, then j ∈ D[p′′e ;α‖p′′e − s(p′′e )‖].
Therefore,

‖p′e − j‖ ≤ ‖p′e − p′′e‖+ α‖p′′e − s(p′′e )‖
≤ (1 + ε′)α‖p′e − s(p′e)‖,

since ‖p′e− s(p′e)‖ ≤ ‖p′′e − s(p′′e )‖. Now, since (1 + ε′)γ ≤
(1 + ε) by the choice of ε′, the lemma is proved.

We add to E′ all points in E′peqe for all peqe ∈ Ξ.

Analysis. It remains to bound the number of points in E′.
Clearly, since the minimum distance between S and F is 1,
for each segment peqe, procedure PLACE-WITNESSES places
O(‖pe − qe‖/εO(1)) witness points in E′. Thus, a simple
bound is O(LF/ε

O(1)).
However, from Lemma 4.3, we have that for any seg-

ment peqe ∈ Ξ such that s(peqe) is a vertex of S, PLACE-
WITNESSES places O(1/εO(1)) witness points in E′. Com-
bined with Theorem 2, we clearly have O(LS/ε

O(1)) wit-
ness points placed by PLACE-WITNESSES.

We can also obtain a different bound independent of perime-
ters of S or F by a more complicated analysis.

LEMMA 4.5. For any segment peqe ∈ Ξ such that s(peqe)
is a segment on S, PLACE-WITNESSES placesO(OPT/εO(1))
witness points in peqe.

PROOF. Let θ = θc(peqe) be the critical angle (see Sec-
tion 4.1) of peqe. Consider any two points p′e, p

′′
e on peqe

such that D(p′e) and D(p′′e ) are tangential to each other and
‖p′e − s(p′e)‖ ≤ ‖p′′e − s(p′′e )‖. Then,

α‖p′′e − s(p′′e )‖ = α‖p′e − s(p′e)‖(1 + sin θ)/(1− sin θ).

Now, consider the set of points {pe,0, pe,1, . . . , pe,k} such
that pe,0 = p′e and

α‖pe,i − s(pe,i)‖ = α‖pe,i−1 − s(pe,i−1)‖(1 + sin θ),

and k is the largest integer such that pe,k lies in between p′e
and p′′e on peqe.

Clearly, pe,i lies at the point of intersection of D(pe,i−1)
and peqe. We can now see that k = O(1/ε) from the fact
that α‖p′′e − s(p′′e )‖ = α‖p′e − s(p′e)‖(1 + sin θ)/(1− sin θ)
and that sin θ < 1/(1 + ε)1/γ for all segments in Ξ.

We now use the algorithm from Section 4.2.1, which com-
putes a sequence of disks such that any two consecutive disks
are tangential. From Theorem 3, it is clear that we can com-
pute such a sequence of at mostO(OPT) disks to cover peqe.

For any disk in this set, PLACE-WITNESSES clearly places
O(1/εO(1)) witness points. Thus, for a segment in Ξ, the to-
tal number of witness points in E′ is O(OPT/εO(1)).

Putting it all together, we have |E′| = O(
√
T/εO(1)) and

|J′| = O(T/εO(1)), where T = min{L2
F,L

2
S, n

2OPT2}
thus completing the proof of Theorem 4.

4.3 Discrete Candidate Jammers
In this subsection we study the usefulness of the pruning

technique for jammer location under the Full-interference
model as well. Given storage region(s) S, a polygonal
fence F enclosing S such that eavesdroppers may lie on F

F, in [23], the authors showed how, given a discerte set J of
candidate locations of jammers, a minimum cardinality set
J ⊆ J could be found, such that Eq (1) and (2) are satisfied,
up to a factor of at most (1 + ε).

Given J, the algorithm first identify two a sets S′ ⊂ S and
E′ ⊂ R2 \ S of witness points. From these sets, an Integer
Linear Program (ILP) where each witness points yield one
constrain, yielding O(|E′| + |S′|) constraints. The solution
provided a bi-criteria approximation similar to our results
above that hold for any point in S or outside C. However,
it is of importance in reducing the number of constraints es-
pecially for the ILP whose computation cost is very high;
in this case, through a reduction in the number of witness
points. It is to this problem that we can apply our pruning
techniques from Section 4.1. Thus, we get the following the-
orem:

THEOREM 5. Given storage region(s) S, fence F, dis-
crete candidate jammer locations J, thresholds δs, δe and
jammer power P̂ , under the Full interference model, we can
compute a set of locations J ⊂ P by solving an integer lin-
ear program with O(k(n2/εO(1))(log2(n/εO(1)) + log T ))
constraints where T = min{LF,LF} such that |J | ≤ (1 +
ε)OPT and if jammers of power P̂ are placed at J ,

(i) For any point pe ∈ E, SIR(J, pe) < (1 + ε)δe.
(ii) For any point ps ∈ S, SIR(J, ps) > (1− ε)δs.

The paper [23] discusses a similar algorithm for assigning
power to the jammers, while having their locations fixed. A
result analogous to Theorem 5 holds for this case as well.

5. CONCLUSION
In this paper, we have considered optimization problems

in placement and power consumption of jammers designed
to protect wireless communication within a specified region
from eavesdroppers outside physically isolated from this re-
gion. While we have shown that the general optimization
problem is NP-Hard, we have also provided efficient (1 +
ε)-approximation schemes for the placement of a minimum
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number of jammers and for optimizing the power consump-
tion of a fixed set of jammers in the case that communication
takes place on multiple frequencies. In the latter case, we
show that partial-duration jammers can successfully protect
all communication frequencies. Our schemes are proactive
and require minimal knowledge of the communication sys-
tem being protected.
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