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Abstract—In this paper we consider the problem of efficient
data gathering in sensor networks for arbitrary sensor node
deployments. The efficiency of the solution is measured by a
number of criteria: total energy consumption, total transport
capacity, latency and quality of the transmissions. We preant a
number of different constructions with various tradeoffs between
aforementioned parameters. We provide theoretical perfomance
analysis for our approaches, present their distributed impemen-
tation and discuss the different aspects of using each. We alv
that in many cases our output-sensitive approximation soltion
performs better than the currently known best results for sensor
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a low distance stretch factor in the underlying topology
graph is essential for efficient and successful geographic
routing.

Total energy consumptiois probably one of the most
important parameters of a WSN as the sensor nodes
are often deployed in areas where battery replacement
is infeasible [5]. Wireless communication is a major
contributer to the energy budget of a node. In this paper
we focus on minimize the total energy consumed by all

networks. Our simulation results validate the theoreticalfindings. nodes for communication purposes.

We will follow two main approaches in our constructions.
The first is based on so-callédlance nodeswhere the main
errréotivation is tq build datf';\ colleption routes base(_j on @Iytr
(Ijocated nodes in topologies which are already efficientrimge

| . .
a(l)rf)some of the metrics. In our second approach we examine the

I. INTRODUCTION

A wireless sensor network (WSN) consists of transceiv
(nodes) that are located in the plane, communicate by ra

aﬂdszlz\lletonzlgxedofcﬁgr:g& %?E?Q dbea'l[g:ra(i):ee(.j Ehet}hteerrgrtg)tir Aldition of shortcut links to the currently constructeddiogy
phy pology y in order to allow the required tradeoff between studiecbdit

disposition of the sensor nodes and the transmission range . . _
. L what follows we describe the model, discuss previous
assignment of each of the nodes. The combination of these two . I .
rk, and describe our contribution. In Section 2 we show
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La(féce)fczrr?ggcg: da}todt'rrwzc,f;ng:er?vrgﬁsn:ﬁ'%neg;gpgsvgzifst\g&r balanced nodes based construction. The shortcut edges
P 9 I%oesign is described in Section 3. Section 4 outlines a plessib

to the communication links. The transmission range of each . : . . :

; . . 2 istributed implementation of our algorithms. We present

sensor node is determined by the assigned transmissiorrpowe = . . . . e

. Co . ; ..~ our simulation results supporting our theoretical analysi
Our main objective in this paper is to construct efficient ; . . X

o . . ..Section 5. Finally, we discuss some possible future rebearc
communication backbones for multi-hop data collectiorhwit ) .

o . nd conclude in Section 6.

aggregation in WSNs for arbitrary sensor node deployments,

while measuring the efficiency based on the next four metrics .
. . A. System settings

« Thetransport capacitymetric represents the sum of rate-
distance products over all the active links. It is measuredA wireless sensor network (WSN) consists ofwireless
in bit-metersand was first introduced by [14]. The ideasensor nodesS = {si,...,s,}, distributed in some area
behind this measure is to capture both the notion of thé These nodes perform monitoring tasks and periodically
overall rate and distance that the information travels inraport to a base stationwhich is located somewhere within
network. the areaA (we consider different locations throughout the
Hop-diameteris another important metric which reflectspaper). During the report phase, the sensor nodes propagate
the depth of the data gathering tree, i.e. the maximuammessage to the base station througiata collection tree
number of hops from any of the sensor nodes to the baBg = (SU{r}, Es), rooted atr. We consideidata collection
station. with aggregation where every node € S forwards a single
The stretch of the paths connecting sensor nodes to theit sizereport messagé¢o its parent. The message holds an
base station. The distance stretch factor has a strong eff@occumulated information collected from a subtre&gfrooted
on the quality of geographic routing protocols [13]. Thesat s. An example of this scenario can be found in temperature
protocols use greedy forwarding decisions based on thmnitoring systems for fire prevention, intrusion detettio
geographic progress towards the destination, thus havisgjsmic readings, etc.



We assume the use ffame-basedVIAC protocols which by the total rate over some distance. In our scenario, tlee rat
divide the time into frames, containing a fixed number adn all links is fixed as all the nodes transmit an aggregated,
slots. The main difference from the classic TDMA is thatinit-size message, to the parent in the collection tree and
instead of having one access point which controls transomssthe schedule is conflict-free. Thus, to maximize the trartspo
slot assignments, there is a localized distributed prdtoamapacity we need to minimize the total distance traveled by
mimicking the behavior of TDMA. The advantage of a frameinformation, which is the sum of lengths of all the links,
based (TDMA-like) approach compared to the traditiondD(Ts) = Z(u,u)eEs d(u,v).

IEEE 802.11 (CSMA/CA) protocol for a Wireless LAN is that Finally, we also aim to decrease tetetch, §(7Ts), of the
collisions do not occur, and that idle listening and overimga paths in the data collection tréBs connecting sensors with
can be drastically reduced. When scheduling communicatithe base station (root) dfs. Let dr(u,r) be the length of
links, that is, specifying the sender-receiver pair pet,siche unique pathyr(u,r) connectingu with the rootr in Ts.
nodes only need to listen to those slots in which they afiédhen, the stretch factor of this patt{pr(u,r) is the ratio
the intended receiver — eliminating all overhearing. Wheﬁ%, The stretch factor of the paths ifis is defined as

scheduling senders only, nodes must listen in to all ocmpiﬁlégu)en pr(u,r).

slots, but can still avoid most overhearing by shutting dthen  ynfortunately, it is impossible to achieve optimal perfor-
radio after the MAC (slot) header has been received. In baiflance in all four measures at the same time. For example,
variants (link and sender-based scheduling) idle lis@mian minimizing the hop-diameter results in all nodes transmjtt
be reduced to a simple check if the slot is used or not. Seveiglthe base station, which is disastrous in terms of trarispor
MAC protocols were developed to adapt classical TDMAapacity or energy consumption, whereas the best topology
solutions which use access points to ad-hoc settings thvat hgg minimize energy consumptidmesults in a relatively high
no infrastructure; these protocols employ a distributest-sl hop-diameter. While we are interested in arbitrary deplegts
selection mechanism that self-organizes a multi-hop né&twaf sensor nodes, it was shown by Milyeykovsky et al. [23]
into a conflict-free schedule (see [26], [33]). that single-hop construction having optimal hop-diameieat

Let d(u,v) be the Euclidean distance between two sensgfretch factor by choosing a centdian as a root node may lead

nodesu,v € S. It is customary to estimate that the energyp very bad transport Capacity and energy Consumption_
required to transmit fromu to v is proportional tod(u, v)*,

where p is the path-loss coefficientin perfect conditions B. Previous work

pu = 2, however in more realistic settings (in presence of 14 the pest of our knowledge, the only work which takes
obstructions or noisy environment) it can have a value betwejn, account three of the aforementioned performance mea-
2_ an(_jfl (see [25]). _In_th|s paper we assume = 2 for  syres simultaneously (except of paths stretch) is by Mi-
simplicity. However,_ it is possible to extend our results folyeykovsky et al. [23]. They [23] consider the random uni-
other values of. which are great_er thag. . formly spreaded sensor nodes in unit size square in the
Let £(Ts) be theenergy requirement to execute a Sin- y1ane and three dimensional space and present centroidtbas
gle report phase. Note that every sensor performs a singig achical construction with hop-diameter 6flog n) that
transm|§5|on, during which it sends a smgle_message_ to ﬂ)térforms optimally (up to constant factor) in terms of en-
parent inTs. Thus, the energy requirement is proportlonaérgy and transport for three dimensional space and provides
fo the sum of squares of lengths of the edges. The , logn) approximation factor for energy consumption and

focus of this paper is to study the asymptotic performance g, nhiotically optimal transport capacity for planar case
data collection trees, thus we can expréxds) as follows, Below we discuss some other of the related work on data
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E(T.S). . Z(u-,v)eEs d(u, v)°. . . . collection, energy efficiency, transport capacity, bouhtep
Minimizing the energy requirement is one of the primary and bounded paths’ stretch communication
optimization objectives when deploying a WSN due to th_e It has been proved in [29], [34] that using the minimum
very low battery reserves af[ the sensor nodes and _the h nning tree for data collection (gathering) with aggtiega
costs th.at are associated with replacing these battefies (i . ioves optimal solution in terms tiftal energy consump-
allpf)os?:ble).. ical in the desi f 2 WSN i tion. Elkin et al. [11] proposed the solution for the broadcast
: nother critical aspect in the design of a IS tmap tree construction (which is easily deformable into the daia
diameter of Ts. The data flows from the leafs of the dellver)1eCtion tree) such that the total energy consumption is ctbf

tree to the base station, where each intermediate node W%Itﬁom optimal bound (which is proportional to the weight of

to receive the report messages from all its children, befolrrﬁnimal spanning tree for the set of nodes where the weight
sending its own report message to its parent. Therefore, g}e

: ) edge is defined as the squared Euclidean distance between
h?g-dlame”ter off’s, denoted agi(T5s), determines the delay . nodes) and the hop-diameteni& +log p, for any chosen
of data collection.

The third that - ted irtri ‘ integer parametar, 1 < p < n. Their solution [11] is based on
€ third measure that we are Interestec Iransport. s mitonian cycle construction of weight proportional teet
capacity, D(Ts), of the data collection tre€s. As mentioned

earlier, the main_ idea which stands behinq thi$ metric is t01The Euclidean minimum spanning tree minimizes the energguwmption,
capture the spatial rate of the network, which is represkntsee [29], [34].



weight of minimal spanning tree for squared distances With%‘ﬁ;jgl)) - OPT,), h(Ts) = h, 6(Ts) = «, for a > 1.
consequent design of the hierarchical tree using this cffde The second construction f@is produces the following results:
more details regarding energy consumption in data gatherif(Ts) = O(n*>=2¢-h-OPT,), D(Ts) = O(n*=¢-h-OPT,),
problem, we refer the reader to a recent survey by Ramanamhéfs) = h, §(Ts) = n° - h%. Note that all the upper bounds
al. [21], which covers a diverse set of data gathering allgors derived in this article are compared with the best possible
in ad-hoc networks. (optimal) lower bounds. Thus, the produced results serve as

The notion oftransport capacity was introduced by Gupta approximation guarantees for the considered problems.
and Kumar in [14]. They showed that for any layout iof
wireless nodes in an area of sizg with each node being
able to transmit?” bits per second to a fixed range, the overall
transport capacity is at mogtV’v/An) bit-meters per second In this section we propose hierarchical structure which has
under both interference models (protocol and physicall& guaranteed bounds for transport capacity and hop-diarmeter
the authors derive upper bounds on the transport capacitytlas scenario where the nodésare placed anywhere in the
a function of the geographic location of the nodes. It has alareaA.
been shown that the scaling of transport capacity dependsWe start by describing the hierarchical structure obtalmed
among other factors, on channel attenuation and path 163s [®alanced tree partitionin@and then show how it can be used
[36], [37]. to produce an efficient communication backbone.

Some communication backbones withounded hop-
distancesand/orbounded paths stretchbetween participat-
ing nodes have also been studied. For the linear layout ofWe begin with some notation. Given a trée= {V, E},
nodes and an upper bound on hop-distance, Kirousis et dgnote the set of nodes in the subtreeTofT”, by V (T7)
[20] developed an optimal power assignment algorithm f@nd the set of the edges T, by E (17”). Denote the induced
strong connectivity inD(n*) time. In the Euclidean case, [8]tree on the seV” C V' of nodes byTy. Next we provide the
obtains constant ratio algorithms for the bounded-hopexertdefinition of balanced tree partition followed by a proofttha
connectivity for well spread instances. Beier et al. [2]qosed it exists for any tre€l’.
an optimal algorithm to find a bounded-hop minimum energy Definition 2.1 (Balanced Tree Partition)Given a tre€l’ =
path between paris of nodes. In [4] the authors obtain Edeet {V, E'}, a partition into two connected subtreesIof(7, Tz),
approximation algorithms for connectivity and broadcasiev whereT; = {V (T1),E (Th)} and Ty = {V (T) , E (T%)} is
minimizing the hop-diameter and energy consumption. Funkelled abalanced tree partitioniff the following conditions
and Laue [12] provide a PTAS for thie-broadcast algorithm hold:
in time linear in n. Additional results for bounded range o v (Ty)UV (Ty) = V (T).

assignments can be found in [7], [9], [30]. Li et al. [22] con- , There existsy € VV such thatl (T1) NV (Ty) = {v}.
sidered a problem of constructing energy-efficient broatica , [Va| < V1| < 2|Val.

tree with bounded stretch paths. However the approximatiwrb refer tow in the second condition above as thalance
factor shown in [22] for the total energy consumption ca,qe
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be as worse asl(n°A), whereA Sta”‘?'s for the degree_ of Theorem 2.2 (Balanced Tree Partitioningyor any treel’
the obtained tree. Seggl and Shpungin _[28], [31] co_naderg.%re always exists a balanced tree partition.
several spanner (opposite to data collection tree) cortgins Proof: We prove the theorem by contradiction. Sup-

gnder the total energy con;umption and hop-diameter, %se that for every node € V, the partition we obtain
ignoring the transport capacity measure. does not satisfy the claim of the theorem, that is for every
v € V, and for any partition ofT" into 7y and 7> such
C. Our results that V(T1) U V(Ty) = V(T), V(Ty) N V(Ty) = {v}, and
We study the power assignment problem in wireless sensBi71)| > 2|V'(T3)|. Let v’ be the node inl” such that the
networks so as to produce data collection tree while optirgiz atio % is minimized over all possible choices of nodes.
several properties of the construction: energy cost, frans Let & = [V (T1)| andm = |V (T3)|.
capacity, hop-diameter and stretch of the paths. Our aemstr Let us consider a se¥r, (v) of the neighboring nodes of
tions work for arbitrary sensors deployments. Let us dendte that belong to7:. Since we assumed that gives us the
by OPT, the minimal possible value that can obtained bfninimal ratio Rﬁg;g} over all possible choices of nodes, it
E(TY%) for someT, and denote by) PT, the minimal possible means that a different partitigfi’y, 75) which can be obtained
value that can be obtained Wy(7%) for someT%. Let T’ be from partition (T1,7>) by moving some nodev € Nr, (v')
the minimal spanning tree fo$ U {r}, w(T’) be the weight into 7> and possibly some other nodes frdfa which are
of T, w(e*(T")) be the weight of the heaviest edgeli. connected tav as well, should produce a larger ratio.
Then our first construction fof's guarantees the following Since we have thatV (7y)| < |V(Ty)| and |V (T3)| >
bounds for given hop-diameter parameferl < h < n: |V (T%)| the larger ratio can be produced only wHéHT3)| >

E(Ts) :O(%-OPTE), D(Ts) = O((1+=2%5)- 2|V(T7)|, because otherwise the rat'} %gi will be less

II. MULTI-HOP COLLECTION FOR ANY DEPLOYMENT
TRANSPORT HOP AND STRETCH

A. Balanced tree partitioning




than I“fggg{ which contradicts our assumption. Moreover, iD(n) since the balance nodes in each level of the hierarchy can

|V(T2))| > 2|V(T})| we can always bound the number obe computed in parallel and the time needed for computations
nodes added t@» (denoted bya) to be at mostV(71)/2|. in each level of the hierarchy is decreasing proportiontly
This is becauséNy, (v')| is at least2 - in this case we can fraction 2 of n (the size of the largest component).
always add tol» the smaller subtree df; rooted at some We can provide some tradeoff mechanism between the hop-
node of N, (v'). The reason for the fact th?NT1 (v")] > 1 diameter of the hierarchy and the total distance of the nbthi
comes from our assumption that the r %;‘ is minimized edges. Using the above-mentioned partitioning proced@e w
over all possible choices of nodes. |If, (v/)| = 1 we have can build anm-ary tree hierarchy (for any integer parameter
that |‘\‘//((;Ff)u\]1\\]/?1((z))))l| will be less tha“i%l%i- Tr; t:] < m < n). Instead o_f performing a (binary) pa_lrtlt|0n
To conclude, we havk > 2m (or in other wordgV (T3)| > of the treeT and connecting every parent node W'th. two
2V(Ty))) and 2(k — a) < m +a,1 < a < k/2. These recursively comput_ed children, we can _partmon th_e treée in
inequalities have no solution and thus we have reache(]c%\mponemS by using a balanced _partltlon, choosing thedm_rg
contradiction. component from all components in current level and continue
partitioning until we haven components. Next we connect
B. Obtaining a tree partition the parent node with then children which are recursively

Below we describe the algorithm that chooses the balanc&@mputed in the same manner. The obtained hierafthlyas
tree partiton of minimum spanning treE with » nodes in hop-diameter ofog,,, n; however the total transport capacity
O(n) time. We also emphasize that the algorithm uses onl(H’) deteriorates t@(mlog,, n-w(MST)). We may note
local information and, therefore can be easily implementéigre that Hassin and Peleg [16] suggested another cornstruct
in a distributed way. First, for each edge= (u,v) € T, based on separators of the tree; however the obtained degree
we compute how many nodes are located in the sulifiee Of the resulted tree (and, therefore, the hop-diameteryncan
of T that includesu but notv and in the subtred, of tree D€ chosen (opposite to our strategy) and can be twice as large
T that includesy but notu. Notice thatT, N7, = () and as the degree of the initial tree.
T,UT,U{e} = T. This can be done by a simple scanning OE)
the tre€eT, starting from the leafs, and converging towards the’
internal nodes of the tree while counting the number of nodesAt this stage we have a collection data trég having
on the way. For the distributed version, we first establigh tfop-diameter ofO(logn) and having transport capacity of
connectivity and run the algorithm of Awerbuch [1] that ksl Weight O(w(MST) - logn). Clearly, the weight of minimal
a minimum spanning tree. In order to find the above-mention8@anning tree is equal to the optimal transport capaei/.
values for each edge, we use the convergecast process. NB@t can ever exist (each node, except of the root, needs to
we use a well-known fact that the maximal degree of any no§@nnect to its parent; thus the total transport capacityalsqu
in T is at most 5 [24]. It means that the number of partitiond€ sum of the edges’ weights in the tree). Thus, our cotiecti
that can be possibly made (per each node) is constant. Usii#ja tree has transport capacity of weightOPT, - logn).
the information computed in the previous step, we can fidimay happen that the given root nodedoes not coincide
each such partition ilO(1) time. Thus, we can find the bestWith the current root off’s. In that case we simply redirect
partition for each particular node if(1) time (and inO(n) the correspondmg edges towandsTh|§ procedure does not
time for all the nodes) and the best balanced tree partitionGhange asymptotically any bound derived 10y

Augmenting shortest paths

O(n) time. Next we proceed foIIowing the Con.stru.ction suggefsted by
) o Khuller et al. [19]. A LAST is a combination of a minimum
C. Data collection through tree partitioning spanning tree and a shortest path tree. Given a gigiges’

Using the above, we can define our hierarchical constructiamight functionw and a source node, Khuller et al. [19]
in the following recursive fashion. We find the balance nodaresented a linear time algorithm, which computes a spgnnin
v (which we assume is the location of the base station @iee of7’, so that its weight is at mogt times the weight of a
well) of the minimum spanning tre€ and split the tree into minimum spanning tree @, and for every node, pr (v, r) <
two subtreesl; and T sharing the same node Next we «-d(v,r), wherea > 1andg > 1+%. A spanning tree that
connectv with recursively computed balance nodesiofand complies with the bounds is called &n, 3)-LAST. Basically,
T5, respectively, and continue in the same way. Clearly, thiee algorithm for computindca, 5)-LAST works as follows.
hop-diameter of the obtained hierarcHy(in fact, it is a binary First, we compute the minimal spanning tfEef initial graph
tree) will be O(log n) and the total sum of edges, or in other. In the following step, a preorder scan is performed over
words, transport capacitip(H) will be O(logn - w(MST)), the vertices ofT" and the comparison is made between the
wherew(M ST) is the weight of minimal spanning tree forweight of the existing pathr (v, r) of currently scanned node
our set of nodes, when the edge weight is defined as thend the weight of the shortest path existingGnbetween
Euclidean distance between two nodes. We point out that sunhltiplied by «. In case that the weight of currently existing
a partition can be obtained i@(nlogn) time since we will path is larger, we add the edges of the shortest pathto 7.
spendO(n) for each level of the hierarchy. For distributed=inally, the unnecessary edges are removed ffoly running
version, we observe that the total runtime will be bounded tshortest path tree algorithm ah from r.



We are going to incorporate our currently construcfed squared Euclidean distance between the nodesudfd) is
into the Khuller et al. [19] algorithm above. In particularthe total weight of the edges in this tree. As can be easily
instead of computing minimum spanning tree, we sugly seen,w(7”) is the lower bound for the energy consumption
as the first step of the algorithm and the rest remains the.saffiog data collection tree (each node, except the root, triesm
We also note that the weight of the shortest path between dayits parent in the tree). The main weakness in Elkin et
nodev in G andr is simply d(v,r), i.e. we might need to al. [11] approach is that they completely ignore the current
add only one directed edge betweerand v to Ts in case hop-diameter of”’. Assuming we are given a desired bound
that the length of current path violates the given requiremefor hop-diameter an@(7”) > h, they immediately transform
We also note that this procedure can only decrease the turféhinto corresponding Hamiltonian cycle with a consequent
hop-diameter ofl's. The same proof for the obtained weighhierarchy construction. However, in cases whefT’) not
of spanning tree holds to our case as well, i.e. at the endeof txceeds by much at (as we show, it can be as much as
algorithm we obtain a tres having hop-diamete®(logn), O(h?)), we can do better. Below we present and analyze our
transport capacity oO(OPT, - (1 + %) logn) and stretch construction.
factor 6(Ts) = O(«), for a > 1. First we findT”. We can do this inD(nlogn) time using
Delaunay triangulation. Next, we check, whether the rasmilt
tree T’ satisfies the requirement of hop-diameter at niast

One may wonder whether there is hope for designingyes, we are done. Otherwise, we are going to shorten the
bounded hop hierarchy for arbitrary points positions thatee in the following fashion. We choose the given vertex
simultaneously provides good bounds for transport capacit to serve as the root and tag every other node using its
and the sum of squared distances, i.e. the energy requitemeistances from the root. It can be done using the standard BFS
Unfortunately, the following example shows that it is nospo algorithm. Every edge also receives tag being the minimum
sible (see Fig. 1). Consider the unweightegath: any tred”  value between its both endpoints. Next, we makstages. At
with hop-diameter\, contains an edge with an interval lengthstagej, 0 < j < h—1, we remove from the tre€’ rooted atw
of atleast(n—1)/A, and so its weight is at leagt—1)?/A%.  all the edges being taggeeh + j, for everyi, 0 < i < MT‘7
Observe that for the minimum spanning tfEeE(T) = n—1. and connect the nodes taggedh + j + 1 directly to the
However, for treel”, we haveE(T") > n—2+(n—1)>/A%. 1t root . We call the resulting tred;. After all i stages we
means that the approximation ratio we can have while aimiggoose betweeh treesT} the tree having minimal weight. We
for the hop-diameter of\ is at leastt. For example, it call this tree7”. We bound the performance of this solution
follows that for A = logn we can not build any hierarchy as follows. Sincel” has the minimal weight between 4l
having energy requirement less th%rggl—n times the optimal trees, it follows that weighi(T") < (1/h)2?;(}w(Tj). Next,

E. Lower bound for sum of squares with bounded hop

one. notice that when considering the entire collecti¢i; ;‘;&
of trees, every edge df' has been replaced no more than
(n-1)/A | once. Every such replacement (we have at messuch
LN : . replacements) produced a new edge of weight of at most
X, X, wx, x n? o w(e*(T')), where e*(T') is the largest edge ifl”.

. . This is since a weak triangle inequality is satisfied (i.er, f
Fig. 1. Demonstrating a lower bound for sum of squares o w e v (d(u,w))? < 2((d(u,v))? + (d(v,w))?) and
distances. following Cauchy-Schwartz inequality we have that for any

T1,T2,...,Tk € R, (Zlexl)Q <k- Elexf.

IIl. M ULTI-HOP COLLECTION FOR ANY DEPLOYMENT

ALTOGETHER WITH ENERGY SHORTCUT MST
. . . . 1 Compute minimum spanning tré€’ of complete graph defined on
In this section we are going to build a structure that can nodess u {r}.

perform well under all of the proposed criteria: energy core if hop-?iaT;}er ofl” is at mosth then
sumption, transport capacity, hop-dlamgter and s_tretcﬂne)f 431 T|ag ?1?)5(33 irl" according to their distance from roet
paths to root node. As we already mentloned, Elkin et al. [1:L] Every edge(v, w) receives tag that is minimum between tagsvadnd
proposed the solution for the data collection tree problemw.
Suc_h that the total energy consumption i§ of fagtofrom 3 o JR_erT%;;};ro_ml t(fj:z: tred” rooted atr all the edges being tagged
optimal boundO PT, and the hop-diameter is/p+log p, for i ht . for everyi,0 < i < V1=
any chosen integer parameterl < p < n. In some sense, s Connect the nodes tagged h + j + 1 directly to the rootr
this is almost best (up to logarithmic factor) we can do in a | obtaining treeT}.
view of lower bound example above. Nevertheless, below wieLet 7" be the tree of minimal weight fronfT; }~g .
present a novel construction that in many cases outperforlrcrlwg utput 7.
the construction of Elkin et al. [11].
Let us denote by’ the minimal spanning tree for the Thus,E?;(}w(Tj) < h-w(T")+n3-w(e*(T")). Combining
set of nodes where the weight of edge is defined as ttiengs together we obtaim(T") > w(T")+n?-w(e*(T"))/h




In other words, the weight of” provides1 + M IMPROVED SHORTCUT MST

S ) . “w(T7
approximation for optimal solution. The SHORTCUT> MST:1 Compute minimum spanning tré€’ of complete graph defined on
algorithm shows the formal description of aforementioned nodess U {r}.

h 2 if hop-diameter ofl” is at mosth then
scheme. s | outputT’

But. in fact. we can do much better. The idea is that 129 nodes ifl" according to their distance from roet
' ' . o ... 5 Every edge(v, w) receives tag that is minimum between tagsvadnd

every edge cut and its replacement will lead to an additional,,
O(h?-w(e*(T")) increase of energy, instead of currentincrease for j =0 — h— 1 do
of n2 . w(e*(T")) per edge. The crux is to cut the edges Remove from the tre@" rooted atr all the edges being tagged

tin int s of sizeh b .t ther take int s of si i-h+j—3%i_op, for everyi,0 < i when such edge exists.
not in intervals ot sizeh but rather take intervais ot size Connect the nodes taggeéd h + j + 1 — X% _p directly to the
h_, h—1,h—2,...,1 and connect the_ node (.that became_ node taggedi — 1) - &+ j + 1 — S} p lying on the same path
disconnected as the result of cut) in the interval of size in T’ or to the rootr wheni = 0 obtaining treeT.
t,1 <t < h to the node (that became disconnected) in the Let 7" be the tree of minimal weight fronf7; }1— .
interval of sizet + 1 that lies on the same path A" as 10 OutputT”.
u. The node in interval of sizé is connected directly to
the root. We perform the same shifting strategy as before.
This scheme is presented in IMPROVED SHORTCUT MS®H (1og log h(T")) since we shrink the hop-diameter recursively
algorithm figure and guarantees that every new added eq:ﬂﬁsquare root factor.

may need to bypass at rgost orLgin:':\I edges of7” and,  “Now we suggest how to incorporate the stretch of paths
therefore, will lead t0O(h* - w(e*(1")) increase in total cparacteristics into our solution. We will show that whitet
energy consumption. To conclude, we have a constructigfatch of the paths drops to the factor JBK(T") - n<,0 <

. h' * T/ . . )
that provulllesO(.i" Z((e:r/() .))) approximation for total energy . < 1, the total energy consumption in new tree increases by
consumption with hop-diameter éf assuming that the hop-factor of at most!—2¢ from the energy consumption ifi".
diameter of minimum spanning tree is at mst This result e start scanning all of the nodes in our constructed Trée
compares well with the best solution to date by Elkin et al][1 |, general, the technique will work for any data collection

. * ! .

from the following reason. Of course, the valuewfe™ (")) tree. If the distancel(v,r) between currently scanned node
can be as large as(7") but in many cases, the weight of the, ig rgot r is less thand(e*(T"))/n°,0 < ¢ < 1, then we
heaviest edge of minimum spanning tree behaves similarly @snove the edge from to its parent node i and put a
the length of the average edge in minimum spanning tree @fect edge between andr. Notice, that the hop-diameter,
similar to this. For example, for uniformly distributed pts h(T"), can only decrease as the result of our procedure.
in 2-d|mlezn§|onal unit size squarey(e”(T")) = O(logn/n) et us compute what happens with total energy consump-
andw(T") is at least((1), see [27]. It means that for thiStion. In the worst scenario, we replaced all the edges in the
and similar cases, the approximation factor standslat». ree and, therefore, the total energy consumption is balinde

If we chooseh = O(logn), then our approximation factor is by n-w(e;(T’)) and the approximation factor from the optimal

9 ; s T
O(log” n) while the SOIUFI?RELQT%Hfmdices apprOX|mat|onSOIutiOn isO(”HE'hngEe*(T'”) € O(n>~2 - ). For appro-
of n. Moreover, even if=r7m" = n7°,0 < ¢ < 1, : w(T") .
N - ' priate values of and, for example, for polylogarithmic values
our approximation 'S_h" _and for the poly!oga_rlthm|c of h or even higher, we obtain a sublinear approximation
values of . our algorithm gives better approximation than, o \we leave to any interested reader to obtain the exact
in [11]. Speaking of transport capacity, J,BZ*?'TW)')lar analyS;ange of values when the approximation factor for total gper
shows that the approximation factorlist- ==77—=, where  consumption iso(n) (notice that in our analysis we assumed
d(e*(T")) denotes the Euclidean length of the longest edggat w(e*(T")) = w(T') where for many cases as shown
in 7" and d(1") is the total length of the edges I". For apove w(e*(7”)) is much smaller thans(T’), and, better
uniformly distributed points in 2-dimensional unit sizeusge, approximation factor can be derived; the same holds for
d(e*(T")) = O(y/logn/n) and d(T") is at least{l(y/n), transport capacity as well).
see [32]. Thus, we obtain sublinear approximation for thid @ | order to evaluate the stretch factor of the obtained paths
similar cases following similar argument as above. we notice the following. First, ifi(v, r) < d(e*(T"))/n¢, then
Remark. The IMPROVED SHORTCUT MST scheme carna shortcut has been added and the stretch of the path between
be applied in a bootstrapping fashion for the case whamdr in new tree isl. Second, ifd(v,r) > d(e*(1”))/n®, then
h € o(/h(T")). In particular, we can takd” and cut the the length of the path betweerandr in a new tree is at most
edges in intervals ob(T"),h(T') — 1,h(T") — 2,...,1 by h(T")-d(e*(T")) < h*(T")-d(e*(T")) < n®-h*(T")-d(v,r).
adding shortcut edges. In such a way, we will obtain a ndivmeans that the stretch of the path is at mast h2(T").
tree T having hop-diameteh(7”). If h € o(\/h(TY)), we To summarize we have the following theorem.
apply the same procedure t6 cutting it in intervals of  Theorem 3.1:Given an integer valué,1 < h < n and
h(T)), h(T]) — 1,h(T]) — 2,...,1 with addition of shortcut £,0 < ¢ < 1, and assuming that minimal spanning tree of
edges. We repeat this process until we obtain a tree of desitee set of nodes has diametéxh?), we can find a data
diameter. Clearly, the number of bootstrapping steps isaat mcollection treeTs such that the total energy consumption




IMPROVING THE STRETCH OF PATHS have randomly and uniformly distributed sensor nodes in a

1 computeT”’. square of sizd 0 x 10, with the network size: ranging from

2 fore"’i‘fr(‘i?ui;/j‘zl(e*(T,))/ns e 200 to 600 in steps of 20, see Fig. 2(a,b,c). We have computed
. remove edge from to its parent inT". the energy consumption (Fig. 2(a)), the ratio between the

5 add (v, r) to T". weight of the heaviest edge in minimum spanning tree and the
s OutputT”. weight of minimum spanning tree (Fig. 2(b)) and the number

of nodes that located in different levels of minimum spagnin
tree (Fig. 2(c)). The results are an average of 10 tries fernyev
E(Ts) = O(n*=%¢.h-OPT,), D(Ts) = O(n?>~¢-h-OPT,), network sizen, where the predefined value that has been taken
h(Ts) = h and§(Ts) = n® - h2. for required hop-diameter is the square root of the obtained
We also may use the LAST construction as described minimum spanning tree diametér This is since for larger
previous section in order to obtain different tradeoff ap@r values ofh our algorithm performs even better as there is
mation for our criteria. In particular, applying Khuller&t[19] no need in doing shortcuts for many nodes. We can, in fact,
produces the following results. observe from the Fig. 2(c) that the amount of nodes that need
Theorem 3.2:Given an integer valué,,1 < h < n and to be shortcut when the value @&f close to the diameter of
£,0 < € < 1, and assuming that minimal spanning tree ahinimum spanning tree is small. As it can be concluded from
the set of nodes has diametéx(h?), we can find a data Fig. 2(a), for the values of. started from240 our solution
collection treg];s zsu*ch, that the total energy consumptio@liways outperforms the one given in [11]. Moreover, Fig.
E(Ts) = O(M;TW'OPTE)’ D(Ts) = O((1+ %). 2(b) also confirms the fact that the ratio between the weight
n-d(e*(T")) .OPT.), h(Ts) = h and§(Ts) = a, for a > 1. of thg heaviest edge in minimum_ spanning tree and the weight
d(T") o ' of minimum spanning tree deterioratesragrows up. As our
IV. DISTRIBUTED IMPLEMENTATION algorithm depends linearly on such ratio, we deduce that it

The distributed implementation of our construction haavilworks really well for real, large-scale deployments.

depends on the construction on minimal spanning tree (withour second experiment modeled a wireless sensor network
the consequent manipulations) which is quite straightfedy Py 2D Poisson point process of normalized unit density in an
once we established connectivity between the nodes ane chds x 25 region for various values of, see Fig. 3(a,b,c). This
the leader (the root of the tree). For this we can follow twi$ & standard technique for modeling random wireless nétwor
different approaches as described in [23]. The first, deedri With omni-directional transmission as in [6]. We evaluate
in Dolev et al. [10] forms a temporary underlying topology idhe same criteria as in the first experiment. We observe the
O(n) time usingO(n?) message. The second (better) approad@me tendency for all Fig. 3(a), Fig. 3(b) and Fig. 3(c) as
is given by Halldorsson and Mitra [15] that show how to dér uniformly placed sensors although the rates are syghtl
this in O(poly(log~,logn)), where~ is the ratio between different. We also learn that the ratio in Fig. 3(b) indeed
the longest and shortest distances among nodes. After @gsreases but more slowly than for random uniform network.
topology is established, we can use leader-election ahgori

by Awerbuch [1] that shows how to find a leader and minimum ) )
spanning tree in a distributed fashion in a network with In this paper we have presented two constructions for data

n nodes inO(n) time using O(nlogn) messages. In our collection tree with provable performance bounds on total

former construction, the leader initiates the process afifig €N€rgy consumption, total transport capacity, hop diamete
the balance nodes with following hierarchy constructiod arfnd stretch of the obtained paths from the nodes towards
(a, B)-LAST computation in a distributed fashion as describdfe root of the tree. We have shown that for various sensor
in [3]. In the latter design, the leader initiates the preces hodes deployments our solutions outperforms the prewousl

shortcuting edges with the consequent convergecast psrod@%own schemes. It would be interesting to investigate how
towards the leader. Each node (in parallel), computes tiell our structures perform in terms of average hop-diamete

edge required to be added to the data collection tree ah§- hop-diameter taken over all paths connecting nodes to
chooses the largest outgoing edge. The total time and mess§ root) which can serve as another potential criteria to
complexities for eachl; calculation are dominated by theoptimize for scenarios where sensors send the information

VI. CONCLUSIONS

initial minimum spanning tree construction step. towards the root in different time frames and periods of
time. It looks like our schemes can be extended to a more
V. SIMULATION RESULTS general, SINR model, where a transmission is successful if

In this section we show some simulation results with respdbe signal is strong enough compared to the interferenca (as
to the construction in Section 3, where we mainly interestedsult of simultaneous transmissions). This is becauseane c
in comparison of total consumption energy criteria obtdineadopt some of the known techniques for dividing the nodes
by our and Elkin et al. [11], which is considered to be thinto interference/transmission regions based on the rrdns
best algorithm in terms of energy consumption with predefin@owers [17].
hop-diameter. As we show, the simulation results fully sarpp  In order to adjust the solutions to mobile settings we can
our theoretical analysis. In our first experiment experitwem follow the approach in [10]: as nodes are allowed to change
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their positions according to their mobility plans, the tagy

these verifications we can find it for the whole time interval

will change with respect to the node movement. It makés, ¢,] in dynamic mode mobile setting.

sense then to indicate the time intery@l, ¢/, for which the Acknowledgement. The authors thank to Engineering and
induced topology, where¢, and¢; are the start and finish Physical Sciences Research Council (EPSRC), United King-
times. The two possible modes for topology construction calom for providing support to the work on this paper.

be considered: the static mode, preserves all the relevant

communication links (those that are used for inducing th([al]

required topology) for the whole time intervél,,¢,]. Note

that some other links might appear and disappear during the
time interval, however the important links, which define thd2]

required topology remain unchanged. In other words, the-com

munication graph, which is variant in time, always includegs)

a subgraph which is unchanged for the whole time interval.

The dynamic mode is different in that there is no consta

subgraph which holds the topology property. However, as

] G. Calinescu, S. Kapoor, and M. Sarwat.

communication links are added and removed, depending on _ . _
] A. Chandrakasan, R. Amirtharajah, S. Cho, J. GoodmanK@duri,

the movement of the nodes, the topology property requiréme
(e.g. connected dominating set) is satisfied during thereenti

period [ts,tf]. It can be shown that if we define a weight[6]

function w’ which reflects amount of energy for any pair

of nodes, i.e.w’ = maxyy, ,)(duo(t))?, it satisfies a [7]

weak triangle inequality and therefore we can use algosthm

minimizing energy consumptions for static environments t 5
solve the static mode mobile scenarios. Also, it can be shown

that if during the time intervalt,, ¢ ;] every node moves in a
single direction along a straight line with constant spdesht
there existst’ € [t,,ts] for any pair of nodes,,v € V so

El

that the distance functiodg, ., () is monotone non-increasing[10]

in [ts,t'] and monotone non-decreasing|if ¢ ;]. Following

this we can conclude that there is a finite set of critical time;

points for verifying structure properties, and then basad o
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