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Abstract—In this paper we consider the problem of efficient
data gathering in sensor networks for arbitrary sensor node
deployments. The efficiency of the solution is measured by a
number of criteria: total energy consumption, total transport
capacity, latency and quality of the transmissions. We present a
number of different constructions with various tradeoffs between
aforementioned parameters. We provide theoretical performance
analysis for our approaches, present their distributed implemen-
tation and discuss the different aspects of using each. We show
that in many cases our output-sensitive approximation solution
performs better than the currently known best results for sensor
networks. Our simulation results validate the theoreticalfindings.

I. I NTRODUCTION

A wireless sensor network (WSN) consists of transceivers
(nodes) that are located in the plane, communicate by radio
and have no fixed communication backbone. The temporary
physical topology of the network is determined by the relative
disposition of the sensor nodes and the transmission range
assignment of each of the nodes. The combination of these two
factors produces a directed communication graph where the
nodes correspond to the transceivers and the edges correspond
to the communication links. The transmission range of each
sensor node is determined by the assigned transmission power.

Our main objective in this paper is to construct efficient
communication backbones for multi-hop data collection with
aggregation in WSNs for arbitrary sensor node deployments,
while measuring the efficiency based on the next four metrics.

• The transport capacitymetric represents the sum of rate-
distance products over all the active links. It is measured
in bit-metersand was first introduced by [14]. The idea
behind this measure is to capture both the notion of the
overall rate and distance that the information travels in a
network.

• Hop-diameteris another important metric which reflects
the depth of the data gathering tree, i.e. the maximum
number of hops from any of the sensor nodes to the base
station.

• The stretchof the paths connecting sensor nodes to the
base station. The distance stretch factor has a strong effect
on the quality of geographic routing protocols [13]. These
protocols use greedy forwarding decisions based on the
geographic progress towards the destination, thus having

a low distance stretch factor in the underlying topology
graph is essential for efficient and successful geographic
routing.

• Total energy consumptionis probably one of the most
important parameters of a WSN as the sensor nodes
are often deployed in areas where battery replacement
is infeasible [5]. Wireless communication is a major
contributer to the energy budget of a node. In this paper
we focus on minimize the total energy consumed by all
nodes for communication purposes.

We will follow two main approaches in our constructions.
The first is based on so-calledbalance nodes, where the main
motivation is to build data collection routes based on centrally
located nodes in topologies which are already efficient in terms
of some of the metrics. In our second approach we examine the
addition of shortcut links to the currently constructed topology
in order to allow the required tradeoff between studied criteria.
In what follows we describe the model, discuss previous
work, and describe our contribution. In Section 2 we show
our balanced nodes based construction. The shortcut edges
design is described in Section 3. Section 4 outlines a possible
distributed implementation of our algorithms. We present
our simulation results supporting our theoretical analysis in
Section 5. Finally, we discuss some possible future research
and conclude in Section 6.

A. System settings

A wireless sensor network (WSN) consists ofn wireless
sensor nodes,S = {s1, . . . , sn}, distributed in some area
A. These nodes perform monitoring tasks and periodically
report to a base stationr which is located somewhere within
the areaA (we consider different locations throughout the
paper). During the report phase, the sensor nodes propagate
a message to the base station through adata collection tree,
TS = (S ∪ {r}, ES), rooted atr. We considerdata collection
with aggregation, where every nodes ∈ S forwards a single
unit sizereport messageto its parent. The message holds an
accumulated information collected from a subtree ofTS rooted
at s. An example of this scenario can be found in temperature
monitoring systems for fire prevention, intrusion detection,
seismic readings, etc.
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We assume the use offrame-basedMAC protocols which
divide the time into frames, containing a fixed number of
slots. The main difference from the classic TDMA is that
instead of having one access point which controls transmission
slot assignments, there is a localized distributed protocol
mimicking the behavior of TDMA. The advantage of a frame-
based (TDMA-like) approach compared to the traditional
IEEE 802.11 (CSMA/CA) protocol for a Wireless LAN is that
collisions do not occur, and that idle listening and overhearing
can be drastically reduced. When scheduling communication
links, that is, specifying the sender-receiver pair per slot,
nodes only need to listen to those slots in which they are
the intended receiver – eliminating all overhearing. When
scheduling senders only, nodes must listen in to all occupied
slots, but can still avoid most overhearing by shutting downthe
radio after the MAC (slot) header has been received. In both
variants (link and sender-based scheduling) idle listening can
be reduced to a simple check if the slot is used or not. Several
MAC protocols were developed to adapt classical TDMA
solutions which use access points to ad-hoc settings that have
no infrastructure; these protocols employ a distributed slot-
selection mechanism that self-organizes a multi-hop network
into a conflict-free schedule (see [26], [33]).

Let d(u, v) be the Euclidean distance between two sensor
nodesu, v ∈ S. It is customary to estimate that the energy
required to transmit fromu to v is proportional tod(u, v)µ,
where µ is the path-loss coefficient. In perfect conditions
µ = 2, however in more realistic settings (in presence of
obstructions or noisy environment) it can have a value between
2 and 4 (see [25]). In this paper we assumeµ = 2 for
simplicity. However, it is possible to extend our results for
other values ofµ which are greater than2.

Let E(TS) be theenergy requirement to execute a sin-
gle report phase. Note that every sensor performs a single
transmission, during which it sends a single message to its
parent inTS. Thus, the energy requirement is proportional
to the sum of squares of lengths of the edgesES . The
focus of this paper is to study the asymptotic performance of
data collection trees, thus we can expressE(TS) as follows,
E(TS) =

∑

(u,v)∈ES
d(u, v)2.

Minimizing the energy requirement is one of the primary
optimization objectives when deploying a WSN due to the
very low battery reserves at the sensor nodes and the high
costs that are associated with replacing these batteries (if at
all possible).

Another critical aspect in the design of a WSN is thehop-
diameter of TS. The data flows from the leafs of the delivery
tree to the base station, where each intermediate node waits
to receive the report messages from all its children, before
sending its own report message to its parent. Therefore, the
hop-diameter ofTS, denoted asH(TS), determines the delay
of data collection.

The third measure that we are interested in istransport
capacity, D(TS), of the data collection treeTS . As mentioned
earlier, the main idea which stands behind this metric is to
capture the spatial rate of the network, which is represented

by the total rate over some distance. In our scenario, the rate
on all links is fixed as all the nodes transmit an aggregated,
unit-size message, to the parent in the collection tree and
the schedule is conflict-free. Thus, to maximize the transport
capacity we need to minimize the total distance traveled by
information, which is the sum of lengths of all the links,
D(TS) =

∑

(u,v)∈ES
d(u, v).

Finally, we also aim to decrease thestretch, δ(TS), of the
paths in the data collection treeTS connecting sensors with
the base station (root) ofTS. Let dT (u, r) be the length of
the unique pathpT (u, r) connectingu with the rootr in TS.
Then, the stretch factor of this pathδ(pT (u, r) is the ratio
dT (u,r)
d(u,r) . The stretch factor of the paths inTS is defined as
maxu∈Ts

pT (u, r).
Unfortunately, it is impossible to achieve optimal perfor-

mance in all four measures at the same time. For example,
minimizing the hop-diameter results in all nodes transmitting
to the base station, which is disastrous in terms of transport
capacity or energy consumption, whereas the best topology
to minimize energy consumption1 results in a relatively high
hop-diameter. While we are interested in arbitrary deployments
of sensor nodes, it was shown by Milyeykovsky et al. [23]
that single-hop construction having optimal hop-diameterand
stretch factor by choosing a centdian as a root node may lead
to very bad transport capacity and energy consumption.

B. Previous work

To the best of our knowledge, the only work which takes
into account three of the aforementioned performance mea-
sures simultaneously (except of paths stretch) is by Mi-
lyeykovsky et al. [23]. They [23] consider the random uni-
formly spreaded sensor nodes in unit size square in the
plane and three dimensional space and present centroid-based
hierarchical construction with hop-diameter ofO(log n) that
performs optimally (up to constant factor) in terms of en-
ergy and transport for three dimensional space and provides
O(log n) approximation factor for energy consumption and
asymptotically optimal transport capacity for planar case.

Below we discuss some other of the related work on data
collection, energy efficiency, transport capacity, bounded-hop
and bounded paths’ stretch communication.

It has been proved in [29], [34] that using the minimum
spanning tree for data collection (gathering) with aggregation
achieves optimal solution in terms oftotal energy consump-
tion. Elkin et al. [11] proposed the solution for the broadcast
tree construction (which is easily deformable into the datacol-
lection tree) such that the total energy consumption is of factor
ρ from optimal bound (which is proportional to the weight of
minimal spanning tree for the set of nodes where the weight
of edge is defined as the squared Euclidean distance between
the nodes) and the hop-diameter isn/ρ+log ρ, for any chosen
integer parameterρ, 1 ≤ ρ ≤ n. Their solution [11] is based on
Hamiltonian cycle construction of weight proportional to the

1The Euclidean minimum spanning tree minimizes the energy consumption,
see [29], [34].
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weight of minimal spanning tree for squared distances with a
consequent design of the hierarchical tree using this cycle. For
more details regarding energy consumption in data gathering
problem, we refer the reader to a recent survey by Ramanan et
al. [21], which covers a diverse set of data gathering algorithms
in ad-hoc networks.

The notion oftransport capacity was introduced by Gupta
and Kumar in [14]. They showed that for any layout ofn
wireless nodes in an area of sizeA, with each node being
able to transmitW bits per second to a fixed range, the overall
transport capacity is at most(W

√
An) bit-meters per second

under both interference models (protocol and physical). In[18]
the authors derive upper bounds on the transport capacity as
a function of the geographic location of the nodes. It has also
been shown that the scaling of transport capacity depends,
among other factors, on channel attenuation and path loss [35],
[36], [37].

Some communication backbones withbounded hop-
distancesand/orbounded paths stretchbetween participat-
ing nodes have also been studied. For the linear layout of
nodes and an upper bound on hop-distance, Kirousis et al.
[20] developed an optimal power assignment algorithm for
strong connectivity inO(n4) time. In the Euclidean case, [8]
obtains constant ratio algorithms for the bounded-hop vertex
connectivity for well spread instances. Beier et al. [2] proposed
an optimal algorithm to find a bounded-hop minimum energy
path between paris of nodes. In [4] the authors obtain bicreteria
approximation algorithms for connectivity and broadcast while
minimizing the hop-diameter and energy consumption. Funke
and Laue [12] provide a PTAS for theh-broadcast algorithm
in time linear in n. Additional results for bounded range
assignments can be found in [7], [9], [30]. Li et al. [22] con-
sidered a problem of constructing energy-efficient broadcast
tree with bounded stretch paths. However the approximation
factor shown in [22] for the total energy consumption can
be as worse asΩ(n2∆), where∆ stands for the degree of
the obtained tree. Segal and Shpungin [28], [31] considered
several spanner (opposite to data collection tree) constructions
under the total energy consumption and hop-diameter, but
ignoring the transport capacity measure.

C. Our results

We study the power assignment problem in wireless sensor
networks so as to produce data collection tree while optimizing
several properties of the construction: energy cost, transport
capacity, hop-diameter and stretch of the paths. Our construc-
tions work for arbitrary sensors deployments. Let us denote
by OPTe the minimal possible value that can obtained by
E(T ′

S) for someT ′
S and denote byOPTc the minimal possible

value that can be obtained byD(T ′′
S ) for someT ′′

S . Let T ′ be
the minimal spanning tree forS ∪ {r}, w(T ′) be the weight
of T ′, w(e∗(T ′)) be the weight of the heaviest edge inT ′.
Then our first construction forTS guarantees the following
bounds for given hop-diameter parameterh, 1 ≤ h ≤ n:
E(TS) = O(n

2h2·w2(e∗(T ′))
w2(T ′) ·OPTe), D(TS) = O((1+ 2

α−1 ) ·

n·d(e∗(T ′))
d(T ′) · OPTc), h(TS) = h, δ(TS) = α, for α > 1.

The second construction forTS produces the following results:
E(TS) = O(n2−2ε ·h ·OPTe), D(TS) = O(n2−ε ·h ·OPTc),
h(TS) = h, δ(TS) = nε · h2. Note that all the upper bounds
derived in this article are compared with the best possible
(optimal) lower bounds. Thus, the produced results serve as
approximation guarantees for the considered problems.

II. M ULTI -HOP COLLECTION FOR ANY DEPLOYMENT:
TRANSPORT, HOP AND STRETCH

In this section we propose hierarchical structure which has
guaranteed bounds for transport capacity and hop-diameterin
the scenario where the nodesS are placed anywhere in the
areaA.

We start by describing the hierarchical structure obtainedby
balanced tree partitioningand then show how it can be used
to produce an efficient communication backbone.

A. Balanced tree partitioning

We begin with some notation. Given a treeT = {V,E},
denote the set of nodes in the subtree ofT , T ′, by V (T ′)
and the set of the edges inT ′, by E (T ′). Denote the induced
tree on the setV ′ ⊆ V of nodes byTV ′ . Next we provide the
definition of balanced tree partition followed by a proof that
it exists for any treeT .

Definition 2.1 (Balanced Tree Partition):Given a treeT =
{V,E}, a partition into two connected subtrees ofT , (T1, T2),
whereT1 = {V (T1) , E (T1)} andT2 = {V (T2) , E (T2)} is
called abalanced tree partitioniff the following conditions
hold:

• V (T1) ∪ V (T2) = V (T ).
• There existsv ∈ V such thatV (T1) ∩ V (T2) = {v}.
• |V2| ≤ |V1| ≤ 2|V2|.

We refer tov in the second condition above as thebalance
node.

Theorem 2.2 (Balanced Tree Partitioning):For any treeT
there always exists a balanced tree partition.

Proof: We prove the theorem by contradiction. Sup-
pose that for every nodev ∈ V , the partition we obtain
does not satisfy the claim of the theorem, that is for every
v ∈ V , and for any partition ofT into T1 and T2 such
that V (T1) ∪ V (T2) = V (T ), V (T1) ∩ V (T2) = {v}, and
|V (T1)| > 2|V (T2)|. Let v′ be the node inV such that the
ratio |V (T1)|

|V (T2)|
is minimized over all possible choices of nodes.

Let k = |V (T1)| andm = |V (T2)|.
Let us consider a setNT1

(v′) of the neighboring nodes of
v′ that belong toT1. Since we assumed thatv′ gives us the
minimal ratio |V (T1)|

|V (T2)|
over all possible choices of nodes, it

means that a different partition(T ′
1, T

′
2) which can be obtained

from partition (T1, T2) by moving some nodew ∈ NT1
(v′)

into T2 and possibly some other nodes fromT1 which are
connected tow as well, should produce a larger ratio.

Since we have that|V (T ′
1)| < |V (T1)| and |V (T ′

2)| >
|V (T2)| the larger ratio can be produced only when|V (T ′

2)| >
2|V (T ′

1)|, because otherwise the ratio|V (T ′

1
)|

|V (T ′

2
)| will be less
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than |V (T1)|
|V (T2)|

which contradicts our assumption. Moreover, if
|V (T ′

2)| > 2|V (T ′
1)| we can always bound the number of

nodes added toT2 (denoted bya) to be at most|V (T1)/2|.
This is because|NT1

(v′)| is at least2 - in this case we can
always add toT2 the smaller subtree ofT1 rooted at some
node ofNT1

(v′). The reason for the fact that|NT1
(v′)| > 1

comes from our assumption that the ratio|V (T1)|
|V (T2)|

is minimized
over all possible choices of nodes. If|NT1

(v′)| = 1 we have
that |V (T2∪NT1

(v′))|

|V (T1)\NT1
(v′))| will be less than|V (T1)|

|V (T2)|
.

To conclude, we havek > 2m (or in other words|V (T1)| >
2|V (T2)|) and 2(k − a) < m + a, 1 ≤ a ≤ k/2. These
inequalities have no solution and thus we have reached a
contradiction.

B. Obtaining a tree partition

Below we describe the algorithm that chooses the balanced
tree partition of minimum spanning treeT with n nodes in
O(n) time. We also emphasize that the algorithm uses only
local information and, therefore can be easily implemented
in a distributed way. First, for each edgee = (u, v) ∈ T ,
we compute how many nodes are located in the subtreeTu

of T that includesu but not v and in the subtreeTv of tree
T that includesv but not u. Notice thatTu ∩ Tv = ∅ and
Tu∪Tv ∪{e} = T . This can be done by a simple scanning of
the treeT , starting from the leafs, and converging towards the
internal nodes of the tree while counting the number of nodes
on the way. For the distributed version, we first establish the
connectivity and run the algorithm of Awerbuch [1] that builds
a minimum spanning tree. In order to find the above-mentioned
values for each edge, we use the convergecast process. Next,
we use a well-known fact that the maximal degree of any node
in T is at most 5 [24]. It means that the number of partitions
that can be possibly made (per each node) is constant. Using
the information computed in the previous step, we can find
each such partition inO(1) time. Thus, we can find the best
partition for each particular node inO(1) time (and inO(n)
time for all the nodes) and the best balanced tree partition in
O(n) time.

C. Data collection through tree partitioning

Using the above, we can define our hierarchical construction
in the following recursive fashion. We find the balance node
v (which we assume is the location of the base station as
well) of the minimum spanning treeT and split the tree into
two subtreesT1 and T2 sharing the same nodev. Next we
connectv with recursively computed balance nodes ofT1 and
T2, respectively, and continue in the same way. Clearly, the
hop-diameter of the obtained hierarchyH (in fact, it is a binary
tree) will beO(log n) and the total sum of edges, or in other
words, transport capacityD(H) will be O(log n ·w(MST )),
wherew(MST ) is the weight of minimal spanning tree for
our set of nodes, when the edge weight is defined as the
Euclidean distance between two nodes. We point out that such
a partition can be obtained inO(n logn) time since we will
spendO(n) for each level of the hierarchy. For distributed
version, we observe that the total runtime will be bounded by

O(n) since the balance nodes in each level of the hierarchy can
be computed in parallel and the time needed for computations
in each level of the hierarchy is decreasing proportionallyto
fraction 2

3 of n (the size of the largest component).
We can provide some tradeoff mechanism between the hop-

diameter of the hierarchy and the total distance of the obtained
edges. Using the above-mentioned partitioning procedure we
can build anm-ary tree hierarchy (for any integer parameter
m, 1 < m ≤ n). Instead of performing a (binary) partition
of the treeT and connecting every parent node with two
recursively computed children, we can partition the tree intom
components by using a balanced partition, choosing the largest
component from all components in current level and continue
partitioning until we havem components. Next we connect
the parent node with them children which are recursively
computed in the same manner. The obtained hierarchyH ′ has
hop-diameter oflogm n; however the total transport capacity
D(H ′) deteriorates toO(m logm n ·w(MST )). We may note
here that Hassin and Peleg [16] suggested another construction
based on separators of the tree; however the obtained degree
of the resulted tree (and, therefore, the hop-diameter) cannot
be chosen (opposite to our strategy) and can be twice as large
as the degree of the initial tree.

D. Augmenting shortest paths

At this stage we have a collection data treeTS having
hop-diameter ofO(log n) and having transport capacity of
weight O(w(MST ) · logn). Clearly, the weight of minimal
spanning tree is equal to the optimal transport capacityOPTc

that can ever exist (each node, except of the root, needs to
connect to its parent; thus the total transport capacity equals
the sum of the edges’ weights in the tree). Thus, our collection
data tree has transport capacity of weightO(OPTc · logn).
It may happen that the given root noder does not coincide
with the current root ofTS . In that case we simply redirect
the corresponding edges towardsr. This procedure does not
change asymptotically any bound derived forTS.

Next we proceed following the construction suggested by
Khuller et al. [19]. A LAST is a combination of a minimum
spanning tree and a shortest path tree. Given a graphG, edges’
weight functionw and a source noder, Khuller et al. [19]
presented a linear time algorithm, which computes a spanning
tree ofT , so that its weight is at mostβ times the weight of a
minimum spanning tree ofG, and for every nodev, pT (v, r) ≤
α·d(v, r) , whereα > 1 andβ ≥ 1+ 2

α−1 . A spanning tree that
complies with the bounds is called an(α, β)-LAST. Basically,
the algorithm for computing(α, β)-LAST works as follows.
First, we compute the minimal spanning treeT of initial graph
G. In the following step, a preorder scan is performed over
the vertices ofT and the comparison is made between the
weight of the existing pathpT (v, r) of currently scanned node
v and the weight of the shortest path existing inG between
multiplied byα. In case that the weight of currently existing
path is larger, we add the edges of the shortest path inG to T .
Finally, the unnecessary edges are removed fromT by running
shortest path tree algorithm onT from r.
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We are going to incorporate our currently constructedTS

into the Khuller et al. [19] algorithm above. In particular,
instead of computing minimum spanning tree, we supplyTS

as the first step of the algorithm and the rest remains the same.
We also note that the weight of the shortest path between any
nodev in G and r is simply d(v, r), i.e. we might need to
add only one directed edge betweenr and v to TS in case
that the length of current path violates the given requirement.
We also note that this procedure can only decrease the current
hop-diameter ofTS. The same proof for the obtained weight
of spanning tree holds to our case as well, i.e. at the end of the
algorithm we obtain a treeTS having hop-diameterO(log n),
transport capacity ofO(OPTc · (1 + 2

α−1 ) logn) and stretch
factor δ(TS) = O(α), for α > 1.

E. Lower bound for sum of squares with bounded hop

One may wonder whether there is hope for designing
bounded hop hierarchy for arbitrary points positions that
simultaneously provides good bounds for transport capacity
and the sum of squared distances, i.e. the energy requirement.
Unfortunately, the following example shows that it is not pos-
sible (see Fig. 1). Consider the unweightedn-path: any treeT ′

with hop-diameter∆, contains an edge with an interval length
of at least(n−1)/∆, and so its weight is at least(n−1)2/∆2.
Observe that for the minimum spanning treeT , E(T ) = n−1.
However, for treeT ′, we haveE(T ′) ≥ n−2+(n−1)2/∆2. It
means that the approximation ratio we can have while aiming
for the hop-diameter of∆ is at leastn−1

∆2 . For example, it
follows that for ∆ = logn we can not build any hierarchy
having energy requirement less thann−1

log2 n
times the optimal

one.

Fig. 1: Demonstrating a lower bound for sum of squares of
distances.

III. M ULTI -HOP COLLECTION FOR ANY DEPLOYMENT:
ALTOGETHER WITH ENERGY

In this section we are going to build a structure that can
perform well under all of the proposed criteria: energy con-
sumption, transport capacity, hop-diameter and stretch ofthe
paths to root node. As we already mentioned, Elkin et al. [11]
proposed the solution for the data collection tree problem
such that the total energy consumption is of factorρ from
optimal boundOPTe and the hop-diameter isn/ρ+log ρ, for
any chosen integer parameterρ, 1 ≤ ρ ≤ n. In some sense,
this is almost best (up to logarithmic factor) we can do in a
view of lower bound example above. Nevertheless, below we
present a novel construction that in many cases outperforms
the construction of Elkin et al. [11].

Let us denote byT ′ the minimal spanning tree for the
set of nodes where the weight of edge is defined as the

squared Euclidean distance between the nodes, andw(T ′) is
the total weight of the edges in this tree. As can be easily
seen,w(T ′) is the lower bound for the energy consumption
for data collection tree (each node, except the root, transmits
to its parent in the tree). The main weakness in Elkin et
al. [11] approach is that they completely ignore the current
hop-diameter ofT ′. Assuming we are given a desired boundh
for hop-diameter andh(T ′) > h, they immediately transform
T ′ into corresponding Hamiltonian cycle with a consequent
hierarchy construction. However, in cases whenh(T ′) not
exceeds by much ath (as we show, it can be as much as
O(h2)), we can do better. Below we present and analyze our
construction.

First we findT ′. We can do this inO(n log n) time using
Delaunay triangulation. Next, we check, whether the resulting
tree T ′ satisfies the requirement of hop-diameter at mosth.
If yes, we are done. Otherwise, we are going to shorten the
tree in the following fashion. We choose the given vertex
r to serve as the root and tag every other node using its
distances from the root. It can be done using the standard BFS
algorithm. Every edge also receives tag being the minimum
value between its both endpoints. Next, we makeh stages. At
stagej, 0 ≤ j ≤ h−1, we remove from the treeT ′ rooted atv
all the edges being taggedi ·h+ j, for everyi, 0 ≤ i ≤ |V |−j

h
,

and connect the nodes taggedi · h + j + 1 directly to the
root r. We call the resulting treeTj . After all h stages we
choose betweenh treesTj the tree having minimal weight. We
call this treeT ′′. We bound the performance of this solution
as follows. SinceT ′ has the minimal weight between allh
trees, it follows that weightw(T ′′) ≤ (1/h)Σh−1

j=0w(Tj). Next,
notice that when considering the entire collection{Tj}h−1

j=0

of trees, every edge ofT has been replaced no more than
once. Every such replacement (we have at mostn such
replacements) produced a new edge of weight of at most
n2 · w(e∗(T ′)), where e∗(T ′) is the largest edge inT ′.
This is since a weak triangle inequality is satisfied (i.e., for
u, v, w ∈ V , (d(u,w))2 ≤ 2((d(u, v))2 + (d(v, w))2) and
following Cauchy-Schwartz inequality we have that for any
x1, x2, . . . , xk ∈ R, (Σk

l=1xl)
2 ≤ k · Σk

l=1x
2
l .

SHORTCUT MST
1 Compute minimum spanning treeT ′ of complete graph defined on

nodesS ∪ {r}.
2 if hop-diameter ofT ′ is at mosth then
3 outputT ′

4 Tag nodes inT according to their distance from rootr.
5 Every edge(v, w) receives tag that is minimum between tags ofv and
w.

6 for j = 0 → h− 1 do
7 Remove from the treeT ′ rooted atr all the edges being tagged

i · h+ j, for every i, 0 ≤ i ≤ |V |−j

h
8 Connect the nodes taggedi · h+ j + 1 directly to the rootr

obtaining treeTj .
9 Let T ′′ be the tree of minimal weight from{Tj}

h−1

j=0
.

10 OutputT ′′.

Thus,Σh−1
j=0w(Tj) ≤ h ·w(T ′)+n3 ·w(e∗(T ′)). Combining

things together we obtain:w(T ′′) ≥ w(T ′)+n3 ·w(e∗(T ′))/h
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In other words, the weight ofT ′′ provides1 + n3·w(e∗(T ′))
h·w(T ′)

approximation for optimal solution. The SHORTCUT MST
algorithm shows the formal description of aforementioned
scheme.

But, in fact, we can do much better. The idea is that
every edge cut and its replacement will lead to an additional
O(h2 ·w(e∗(T ′)) increase of energy, instead of current increase
of n2 · w(e∗(T ′)) per edge. The crux is to cut the edges
not in intervals of sizeh but rather take intervals of size
h, h − 1, h − 2, . . . , 1 and connect the nodeu (that became
disconnected as the result of cut) in the interval of size
t, 1 ≤ t ≤ h to the node (that became disconnected) in the
interval of size t + 1 that lies on the same path inT ′ as
u. The node in interval of sizeh is connected directly to
the root. We perform the same shifting strategy as before.
This scheme is presented in IMPROVED SHORTCUT MST
algorithm figure and guarantees that every new added edge
may need to bypass at mosth original edges ofT ′ and,
therefore, will lead toO(h2 · w(e∗(T ′)) increase in total
energy consumption. To conclude, we have a construction
that providesO(nh·w(e∗(T ′))

w(T ′) ) approximation for total energy
consumption with hop-diameter ofh assuming that the hop-
diameter of minimum spanning tree is at mosth2. This result
compares well with the best solution to date by Elkin et al. [11]
from the following reason. Of course, the value ofw(e∗(T ′))
can be as large asw(T ′) but in many cases, the weight of the
heaviest edge of minimum spanning tree behaves similarly as
the length of the average edge in minimum spanning tree or
similar to this. For example, for uniformly distributed points
in 2-dimensional unit size square,w(e∗(T ′)) = O(log n/n)
and w(T ′) is at leastΩ(1), see [27]. It means that for this
and similar cases, the approximation factor stands ath logn.
If we chooseh = O(log n), then our approximation factor is
O(log2 n) while the solution in [11] produces approximation
of n. Moreover, even if w(e∗(T ′))

w(T ′) = n−ε, 0 < ε < 1,
our approximation ishn1−ε and for the polylogarithmic
values of h our algorithm gives better approximation than
in [11]. Speaking of transport capacity, the similar analysis
shows that the approximation factor is1 + n·d(e∗(T ′))

d(T ′) , where
d(e∗(T ′)) denotes the Euclidean length of the longest edge
in T ′ and d(T ′) is the total length of the edges inT ′. For
uniformly distributed points in 2-dimensional unit size square,
d(e∗(T ′)) = O(

√

logn/n) and d(T ′) is at leastΩ(
√
n),

see [32]. Thus, we obtain sublinear approximation for this and
similar cases following similar argument as above.

Remark. The IMPROVED SHORTCUT MST scheme can
be applied in a bootstrapping fashion for the case when
h ∈ o(

√

h(T ′)). In particular, we can takeT ′ and cut the
edges in intervals ofh(T ′), h(T ′) − 1, h(T ′) − 2, . . . , 1 by
adding shortcut edges. In such a way, we will obtain a new
tree T ′

1 having hop-diameterh(T ′). If h ∈ o(
√

h(T ′
1)), we

apply the same procedure toT ′
1 cutting it in intervals of

h(T ′
1), h(T

′
1) − 1, h(T ′

1) − 2, . . . , 1 with addition of shortcut
edges. We repeat this process until we obtain a tree of desired
diameter. Clearly, the number of bootstrapping steps is at most

IMPROVED SHORTCUT MST
1 Compute minimum spanning treeT ′ of complete graph defined on

nodesS ∪ {r}.
2 if hop-diameter ofT ′ is at mosth then
3 outputT ′

4 Tag nodes inT according to their distance from rootr.
5 Every edge(v, w) receives tag that is minimum between tags ofv and
w.

6 for j = 0 → h− 1 do
7 Remove from the treeT ′ rooted atr all the edges being tagged

i · h+ j −Σi
p=0

p, for every i, 0 ≤ i when such edge exists.
8 Connect the nodes taggedi · h+ j + 1−Σi

p=0
p directly to the

node tagged(i− 1) · h+ j + 1− Σi−1

p=0
p lying on the same path

in T ′ or to the rootr when i = 0 obtaining treeTj .
9 Let T ′′ be the tree of minimal weight from{Tj}

h−1

j=0
.

10 OutputT ′′.

O(log log h(T ′)) since we shrink the hop-diameter recursively
by square root factor.

Now we suggest how to incorporate the stretch of paths
characteristics into our solution. We will show that while the
stretch of the paths drops to the factor ofh2(T ′′) · nε, 0 <
ε < 1, the total energy consumption in new tree increases by
factor of at mostn1−2ε from the energy consumption inT ′′.
We start scanning all of the nodes in our constructed treeT ′′.
In general, the technique will work for any data collection
tree. If the distanced(v, r) between currently scanned node
v to root r is less thand(e∗(T ′))/nε, 0 < ε < 1, then we
remove the edge fromv to its parent node inT ′′ and put a
direct edge betweenv and r. Notice, that the hop-diameter,
h(T ′′), can only decrease as the result of our procedure.

Let us compute what happens with total energy consump-
tion. In the worst scenario, we replaced all the edges in the
tree and, therefore, the total energy consumption is bounded
by n·w(e∗(T ′))

n2ε and the approximation factor from the optimal

solution isO(n
2−2ε ·h·w2(e∗(T ′))

w2(T ′) ) ∈ O(n2−2ε · h). For appro-
priate values ofε and, for example, for polylogarithmic values
of h or even higher, we obtain a sublinear approximation
factor. We leave to any interested reader to obtain the exact
range of values when the approximation factor for total energy
consumption iso(n) (notice that in our analysis we assumed
that w(e∗(T ′)) = w(T ′) where for many cases as shown
abovew(e∗(T ′)) is much smaller thanw(T ′), and, better
approximation factor can be derived; the same holds for
transport capacity as well).

In order to evaluate the stretch factor of the obtained paths
we notice the following. First, ifd(v, r) < d(e∗(T ′))/nε, then
a shortcut has been added and the stretch of the path betweenv
andr in new tree is1. Second, ifd(v, r) ≥ d(e∗(T ′))/nε, then
the length of the path betweenv andr in a new tree is at most
h(T ′′)·d(e∗(T ′′)) ≤ h2(T ′′)·d(e∗(T ′)) ≤ nε ·h2(T ′′)·d(v, r).
It means that the stretch of the path is at mostnε · h2(T ′′).

To summarize we have the following theorem.
Theorem 3.1:Given an integer valueh, 1 ≤ h ≤ n and

ε, 0 < ε < 1, and assuming that minimal spanning tree of
the set of nodes has diameterO(h2), we can find a data
collection treeTS such that the total energy consumption
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IMPROVING THE STRETCH OF PATHS

1 computeT ′′.
2 foreach v ∈ V do
3 if d(u, r) < d(e∗(T ′))/nε then
4 remove edge fromv to its parent inT ′′.
5 add (v, r) to T ′′.
6 OutputT ′′.

E(TS) = O(n2−2ε ·h ·OPTe), D(TS) = O(n2−ε ·h ·OPTc),
h(TS) = h andδ(TS) = nε · h2.

We also may use the LAST construction as described in
previous section in order to obtain different tradeoff approxi-
mation for our criteria. In particular, applying Khuller etal [19]
produces the following results.

Theorem 3.2:Given an integer valueh, 1 ≤ h ≤ n and
ε, 0 < ε < 1, and assuming that minimal spanning tree of
the set of nodes has diameterO(h2), we can find a data
collection treeTS such that the total energy consumption
E(TS) = O(n

2h2·w2(e∗(T ′))
w2(T ′) ·OPTe), D(TS) = O((1+ 2

α−1 ) ·
n·d(e∗(T ′))

d(T ′) · OPTc), h(TS) = h andδ(TS) = α, for α > 1.

IV. D ISTRIBUTED IMPLEMENTATION

The distributed implementation of our construction heavily
depends on the construction on minimal spanning tree (with
the consequent manipulations) which is quite straightforward
once we established connectivity between the nodes and chose
the leader (the root of the tree). For this we can follow two
different approaches as described in [23]. The first, described
in Dolev et al. [10] forms a temporary underlying topology in
O(n) time usingO(n3) message. The second (better) approach
is given by Halldórsson and Mitra [15] that show how to do
this in O(poly(log γ, logn)), where γ is the ratio between
the longest and shortest distances among nodes. After the
topology is established, we can use leader-election algorithm
by Awerbuch [1] that shows how to find a leader and minimum
spanning tree in a distributed fashion in a network with
n nodes inO(n) time usingO(n logn) messages. In our
former construction, the leader initiates the process of finding
the balance nodes with following hierarchy construction and
(α, β)-LAST computation in a distributed fashion as described
in [3]. In the latter design, the leader initiates the process of
shortcuting edges with the consequent convergecast process
towards the leader. Each node (in parallel), computes the
edge required to be added to the data collection tree and
chooses the largest outgoing edge. The total time and message
complexities for eachTi calculation are dominated by the
initial minimum spanning tree construction step.

V. SIMULATION RESULTS

In this section we show some simulation results with respect
to the construction in Section 3, where we mainly interested
in comparison of total consumption energy criteria obtained
by our and Elkin et al. [11], which is considered to be the
best algorithm in terms of energy consumption with predefined
hop-diameter. As we show, the simulation results fully support
our theoretical analysis. In our first experiment experiment we

have randomly and uniformly distributedn sensor nodes in a
square of size10× 10, with the network sizen ranging from
200 to 600 in steps of 20, see Fig. 2(a,b,c). We have computed
the energy consumption (Fig. 2(a)), the ratio between the
weight of the heaviest edge in minimum spanning tree and the
weight of minimum spanning tree (Fig. 2(b)) and the number
of nodes that located in different levels of minimum spanning
tree (Fig. 2(c)). The results are an average of 10 tries for every
network sizen, where the predefined value that has been taken
for required hop-diameterh is the square root of the obtained
minimum spanning tree diameterd. This is since for larger
values ofh our algorithm performs even better as there is
no need in doing shortcuts for many nodes. We can, in fact,
observe from the Fig. 2(c) that the amount of nodes that need
to be shortcut when the value ofh close to the diameter of
minimum spanning tree is small. As it can be concluded from
Fig. 2(a), for the values ofn started from240 our solution
always outperforms the one given in [11]. Moreover, Fig.
2(b) also confirms the fact that the ratio between the weight
of the heaviest edge in minimum spanning tree and the weight
of minimum spanning tree deteriorates asn grows up. As our
algorithm depends linearly on such ratio, we deduce that it
works really well for real, large-scale deployments.

Our second experiment modeled a wireless sensor network
by 2D Poisson point process of normalized unit density in an
25× 25 region for various values ofn, see Fig. 3(a,b,c). This
is a standard technique for modeling random wireless network
with omni-directional transmission as in [6]. We evaluate
the same criteria as in the first experiment. We observe the
same tendency for all Fig. 3(a), Fig. 3(b) and Fig. 3(c) as
for uniformly placed sensors although the rates are slightly
different. We also learn that the ratio in Fig. 3(b) indeed
decreases but more slowly than for random uniform network.

VI. CONCLUSIONS

In this paper we have presented two constructions for data
collection tree with provable performance bounds on total
energy consumption, total transport capacity, hop diameter
and stretch of the obtained paths from the nodes towards
the root of the tree. We have shown that for various sensor
nodes deployments our solutions outperforms the previously
known schemes. It would be interesting to investigate how
well our structures perform in terms of average hop-diameter
(i.e. hop-diameter taken over all paths connecting nodes to
the root) which can serve as another potential criteria to
optimize for scenarios where sensors send the information
towards the root in different time frames and periods of
time. It looks like our schemes can be extended to a more
general, SINR model, where a transmission is successful if
the signal is strong enough compared to the interference (asa
result of simultaneous transmissions). This is because we can
adopt some of the known techniques for dividing the nodes
into interference/transmission regions based on the transmit
powers [17].

In order to adjust the solutions to mobile settings we can
follow the approach in [10]: as nodes are allowed to change
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Fig. 2: Random uniform network.
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Fig. 3: 2D Poisson point process with normalized unit density.

their positions according to their mobility plans, the topology
will change with respect to the node movement. It makes
sense then to indicate the time interval[ts, tf ], for which the
induced topology, wherets and tf are the start and finish
times. The two possible modes for topology construction can
be considered: the static mode, preserves all the relevant
communication links (those that are used for inducing the
required topology) for the whole time interval[ts, tf ]. Note
that some other links might appear and disappear during the
time interval, however the important links, which define the
required topology remain unchanged. In other words, the com-
munication graph, which is variant in time, always includes
a subgraph which is unchanged for the whole time interval.
The dynamic mode is different in that there is no constant
subgraph which holds the topology property. However, as
communication links are added and removed, depending on
the movement of the nodes, the topology property requirement
(e.g. connected dominating set) is satisfied during the entire
period [ts, tf ]. It can be shown that if we define a weight
function w′ which reflects amount of energy for any pair
of nodes, i.e.w′ = maxt∈[ts,tf ](du,v(t))

2, it satisfies a
weak triangle inequality and therefore we can use algorithms
minimizing energy consumptions for static environments to
solve the static mode mobile scenarios. Also, it can be shown
that if during the time interval[ts, tf ] every node moves in a
single direction along a straight line with constant speed then
there existst′ ∈ [ts, tf ] for any pair of nodesu, v ∈ V so
that the distance functiondu,v(t) is monotone non-increasing
in [ts, t

′] and monotone non-decreasing in[t′, tf ]. Following
this we can conclude that there is a finite set of critical time
points for verifying structure properties, and then based on

these verifications we can find it for the whole time interval
[ts, tf ] in dynamic mode mobile setting.
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