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Abstract In this paper we consider the problem of efficient 1 Introduction

data gathering in sensor networks for arbitrary sensor node

deployments. The efficiency of the solution is measured by wireless sensor network (WSN) consists of transceivers
a number of criteria: total energy consumption, total trans(nodes) that are located in the plane, communicate by ra-
port capacity, latency and quality of the transmissions. Welio and have no fixed communication backbone. The tem-
present a number of different constructions with varioadér porary physical topology of the network is determined by
offs between aforementioned parameters. We provide thehe relative disposition of the sensor nodes and the tramsmi
oretical performance analysis for our approaches, presesion range assignment of each of the nodes. The combina-
their distributed implementation and discuss the diffeasn  tion of these two factors produces a directed communication
pects of using each. We show that in many cases our outpuraph where the nodes correspond to the transceivers and the
sensitive approximation solution performs better than thedges correspond to the communication links. The transmis-
currently known best results for sensor networks. We alsgion range of each sensor node is determined by the assigned
consider our problem under the mobile sensor nodes enviransmission power.

ronment, when the sensors have no information about each oyr main objective in this paper is to construct effi-

other. The only information a single sensor holds is its cuUrgjent communication backbones for multi-hop data collec-

rent location and future mobility plan. Our simulation r#su  tion with aggregation in WSNSs for arbitrary sensor node de-

validate the theoretical findings. ployments, while measuring the efficiency based on the next
four metrics.

Keywords wireless sensor networksoptimization

algorithms: approximation guaranteeslata gathering — Total energy consumptiois probably one of the most

important parameters of a WSN as the sensor nodes are
often deployed in areas where battery replacement is in-
feasible [8]. Wireless communication is a major con-
tributer to the energy budget of a node. In this paper we
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— The stretchof the paths connecting sensor nodes to theslots. The main difference from the classic TDMA is that
base station. The distance stretch factor has a strong dfistead of having one access point which controls transmis-
fect on the quality of geographic routing protocols [17]. sion slot assignments, there is a localized distributed pro
These protocols use greedy forwarding decisions basedcol mimicking the behavior of TDMA. The advantage of
on the geographic progress towards the destination, thuissframe-based (TDMA-like) approach compared to the tra-
having a low distance stretch factor in the underlyingditional IEEE 802.11 (CSMA/CA) protocol for a Wireless
topology graph is essential for efficient and successfuLAN is that collisions do not occur, and that idle listening
geographic routing. and overhearing can be drastically reduced. When schedul-

ing communication links, that is, specifying the sendexereer

pair per slot, nodes only need to listen to those slots inwhic
hey are the intended receiver — eliminating all overhearin
hen scheduling senders only, nodes must listen in to all

We will follow two main approaches in our construc-
tions. The first is based on so-callbdlance nodeswvhere
the main motivation is to build data collection routes base

on centrally located nodes in topologies which are alread%ccupied slots, but can still avoid most overhearing by-shut

efficient in terms-of some Of. t.he metrics. In our second aptmg down the radio after the MAC (slot) header has been
proach we examine the addition of shortcut links to the cur-_ ~ . . )
. _~~ received. In both variants (link and sender-based schedul-
rently constructed topology in order to allow the required. . . ) . )
) o . ) ing) idle listening can be reduced to a simple check if the

tradeoff between studied criteria. Finally, we consider th .
. slot is used or not. Several MAC protocols were developed
problem when the nodes are allowed to change their pos, . . . )
: ; : 0 adapt classical TDMA solutions which use access points

tions and the topology will change with respect to the node

L L §? ad-hoc settings that have no infrastructure; these proto
movement. It makes sense then to indicate the time interva o . .

_ ) . cols employ a distributed slot-selection mechanism tH&t se
[ts,t7], for which the induced topology is stable, wheyand

T . organizes a multi-hop network into a conflict-free schedule
ts are the start and finish times. Note that some other Ilnk'fSee [36, 43])
might appear and disappear during the time interval, how* Let d’(u v).be the Euclidean distance between two sen-

ever the important links, which define the required topology d S Iti N i timate that th
remain unchanged. sor nodesl,v e is customary to estimate that the energy

) . . ) u
In what follows we describe the model, discuss previou§equlred to transmit fron to v is proportional tod(u, v)*,

work, and describe our contribution. In Section 2 we showWhere“ Is the path—loss cogfﬁmenﬂp perfect conditions
= 2, however in more realistic settings (in presence of ob-

our balanced nodes based construction. The shortcut edg’és ' : . .
S : . . . . structions or noisy environment) it can have a value between
design is described in Section 3. Section 4 outlines a pos: : .
. . . : : .2 and 4 (see [35]). In this paper we assume: 2 for sim-
sible distributed implementation of our algorithms. Seti - 7 .
: ) . : é)hcny. However, it is possible to extend our results fanext
5 deals with the mobile version of the problem and possibl )
. . : . values ofu which are greater than 2.
extensions. We present our simulation results supporting o

theoretical analysis in Section 6. Finally, we discuss some L€t E(Ts) be theenergy requirementto execute a sin-
possible future research and conclude in Section 7. gle report phase. Note that every sensor performs a single
transmission, during which it sends a single message to its

parent inTs. Thus, the energy requirement is proportional
to the sum of squares of lengths of the edgesThe fo-
cus of this paper is to study the asymptotic performance of

A wireless sensor network (WSN) consists rofvireless ~ data collection trees, thus we can expresss) as follows,

sensor nodesS = {sy,...,S}, distributed in some are&. E(Ts) = Z(u,v)eEsd(uaV)z-

These nodes perform monitoring tasks and periodically re- Minimizing the energy requirement is one of the pri-

port to a base stationwhich is located somewhere within mary optimization objectives when deploying a WSN due

the areaA (we consider different locations throughout the to the very low battery reserves at the sensor nodes and the

paper). During the report phase, the sensor nodes propagdigh costs that are associated with replacing these bedteri

a message to the base station througla collection treg  (if at all possible).

Ts= (SU{r},Es), rooted atr. We considedata collection The second measure that we are interested fraiss-

with aggregationwhere every nodec Sforwards a single port capacity, D(Ts), of the data collection tre®. As men-

unit sizereport messagéo its parent. The message holdstioned earlier, the main idea which stands behind this metri

an accumulated information collected from a subtre@pf s to capture the spatial rate of the network, which is repre-

rooted ats. An example of this scenario can be found in sented by the total rate over some distance. In our scenario,

temperature monitoring systems for fire prevention, intruthe rate on all links is fixed as all the nodes transmit an ag-

sion detection, seismic readings, etc. gregated, unit-size message, to the parent in the colfectio
We assume the use fthme-basedAC protocols which  tree and the schedule is conflict-free. Thus, to maximize the

divide the time into frames, containing a fixed number oftransport capacity we need to minimize the total distance

1.1 System settings
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traveled by information, which is the sum of lengths of allthis paper resembles the spirit of KDS. Additional results

the links,D(Ts) = 3 (uv)ces d(U, V). for topology control in mobile networks may be found in
Another critical aspect in the design of a WSN is the[18, 22, 23, 28].

hop-diameterof Ts. The data flows from the leafs of the de-

livery tree to the base station, where each intermediate nod

waits to receive the report messages from all its childreny 2 previous work

before sending its own report message to its parent. There-

fore, the hop-diameter dfs, denoted as$i(Ts), determines  To the best of our knowledge, the only work which takes into

the delay of data collection. account three of the aforementioned performance measures
Finally, we also aim to decrease theetch, 6(Ts), of  simultaneously (except of paths stretch) is by Milyeykavsk

the paths in the data collection tr@e connecting sensors et al. [33]. They consider the random uniformly spreaded

with the base station (root) dk. Letdy (u,r) be the length  sensor nodes in unit size square in the plane and three di-

of the unique pattpt (u,r) connectingu with the rootr in  mensional space and present centroid-based hierarchital c

Ts. Then, the stretch factor of this padipr (u,r) isthe ratio  struction with hop-diameter dd(logn) that performs opti-

d(}((u‘f;?. The stretch factor of the paths Wy is defined as mally (up to constant factor) in terms of energy and transpor

maxuer, 3(pr(u,r)). for three dimensional space and providgogn) approx-
Unfortunately, it is impossible to achieve optimal per_imation factor for energy consumption and asymptotically

formance in all four measures at the same time. For exanfPtimal transport capacity for planar case.
ple, minimizing the hop-diameter results in all nodes trans ~Below we discuss some other of the related work on data
mitting to the base station, which is disastrous in terms ofollection, energy efficiency, transport capacity, boufde
transport capacity or energy consumption, whereas the be3pP @nd bounded paths’ stretch communication.
topology to minimize energy consumptioresults in a rela- It has been proved in [39, 44] that using the minimum
tively high hop-diameter. While we are interested in arbi-SPanning tree for data collection (gathering) with aggrega
trary deployments of sensor nodes, it was shown by Mmition achieves optimal solution in termstoftal energy con-
lyeykovsky et al. [33] that single-hop construction havingSumption. Elkin et al. [15] proposed the solution for the
optimal hop-diameter and stretch factor by choosing a cenhroadcast tree construction (which is easily deformatite in
dian as a root node may lead to very bad transport capacif{€ data collection tree) such that the total energy consump
and energy consumption. tion is of factorp from optimal bound (which is propor-
In theory it is impossible to devise a range assignmenttional to the weight of minimal spanning tree for the set of

that will satisfy the topology requirement for a given pefio nodes where the weight of edge is defined as the squared Eu-

of time without being aware of the future location changesClidean distance between the nodes) and the hop-diameter is

Each node has its ownobility plan which is composed of /P +10gp, for any chosen integer paramefet < p < n.
direction vectors, velocity, acceleration, and so on. Basc ' heir solution [15]is based on Hamiltonian cycle construc-
et al. [3, 4] proposed an elegant method to handle topolog§e" ©f weight proportional to the weight of minimal span-
updates for mobile nodes. They proposed a framework t8in9 tree for squared distances with a consequent design of
maintain an invariant of a set of moving objects in a discretd® hierarchical tree using this cycle. For more details re-
manner, called théinetic data structurgKDS in short). ~9arding energy consumption in data gathering problem, we
They introduce the idea of keeping certificates as triggers f '€fer the reader to a recent survey by Ramanan et al. [29],
updates. When an object moves and a certificate fails, th@"d @ paper by Li et al. [31] which cover a diverse set of
consistency of the kinetic data structure is invalidated an dat@ gathering algorithms in ad-hoc networks.

an update is mandatory. Each failure of a certificate incurs a "€ notion oftransport capacity was introduced by
setup of up to a constant number of new certificates. HencgUPta and Kumar in [19]. They showed that for any lay-
we are allowed to monitor the dynamics of a set of object@ut ofn wireless nodes in an area of siéewith each node
discretely and efficiently. The kinetic data structure ieggi  °€ing able to transmi/ bits per second to a fixed range, the
that we know the mobility plan (a specification of the fu- Overall transport capacity is at mas/An) bit-meters per
ture motion) of all nodes, and that the trajectory of eacr?econd under both mterfere_nce models (protocol and phys-
disk can be described by some low-degree algebraic curvisal)- In [25] the authors derive upper bounds on the trans-
These structures are extremely efficient for topology mainPOrt capacity as a function of the geographic location of the
tenance, but do not address the issue of energy efficiency 8Pdes. It has also been shown that the scaling of transport

the construction of initial topology. The approach taken incaPacity depends, among other factors, on channel attenua-
tion and path loss [45, 46, 47].

! The Euclidean minimum spanning tree minimizes the energy co Some communication backbones wiihunded hop dis-
sumption, see [39, 44]. tancesand/orbounded paths stretchbetween participating
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nodes have also been studied. For the linear layout of nod@sMulti-hop collection for any deployment: transport,

and an upper bound on hop-distance, Kirousis et al. [27] dehop and stretch

veloped an optimal power assignment algorithm for strong

connectivity inO(n*) time. In the Euclidean case, [11] ob- In this section we propose hierarchical structure which has
tains constant ratio algorithms for the bounded-hop verteguaranteed bounds for transport capacity and hop-diameter
connectivity for well spread instances. Beier et al. [5]-pro in the scenario where the nodgare placed anywhere in the
posed an optimal algorithm to find a bounded-hop minimunareaA.

energy path between pairs of nodes. In [7] the authors ob- We start by describing the hierarchical structure obtained
tain bicriteria approximation algorithms for connectpdind by balanced tree partitioningnd then show how it can be
broadcast while minimizing the hop-diameter and energysed to produce an efficient communication backbone.
consumption. Funke and Laue [16] provide a PTAS for the

h-broadcast algorithm in time linear m Additional results

for bounded range assignments can be found in [10, 12, 48,1 Balanced tree partitioning

30]. Li et al. [32] consider a problem of constructing energy o ) .

efficient broadcast tree with bounded stretch paths. Howeve/Ve begin with some notation. Given a trée= {V.E}, de-

the approximation factor shown in [32] for the total energy"Ote the set of nodes in the subtre€TofT’, by V (T') and
consumption can be as worse@@?A), whereA stands for  the set of the edges i, by E(T’). Denote the induced tree
the degree of the obtained tree. Segal and Shpungin [38, 49! the seV’ C V of nodes byTy,. Next we provide the def-

consider several spanner (opposite to data collection) tredition of balanced tree partition followed by a proof thet i
constructions under the total energy consumption and hojsXists for any tred.

diameter, butignoring the transport capacity measure.  pefinition 21 (Balanced Tree Partition)Given a tree T—
Not too much has been done with respect to the probfy g}, a partition into two connected subtrees of(Ty, T2),
lem in mobile environment. Yun et al. [48] propose an algohere T = {V (T1),E (T1)} and b= {V (To) ,E (T2)} is called

rithm for maximizing the lifetime of a wireless sensor net- 5 palanced tree partitioiff the following conditions hold:
work when there is (only) a mobile sink and the underlying

application can tolerate some amount of delay in delivering™ V(Ty) UY (T2) =V (T).
the data to the sink. — There exists ¥ V such that \(T;) NV (T2) = {v}.

— V2| £ M| £ 2Vy|.

We refer to v in the second condition above aslib&nce

1.3 Our results node.

We study the power assignment problem in wireless sensdiheorem 22 (Balanced Tree Partitioning)For any tree T
networks so as to produce data collection tree while optithere always exists a balanced tree partition.

mizing several properties of the construction: energy,cost o
transport capacity, hop-diameter and stretch of the pathg’_roof. We prove the theorem by contradiction. Suppose that

Our constructions work for arbitrary sensors deploymentd©F €very nodev e V, the partition we obtain does not satisfy

Let us denote byDPT, the minimal possible value that can
obtained byE(T) for someT¢ and denote bPT; the min-
imal possible value that can be obtainedyl¢) for some
T<. Let T’ be the minimal spanning tree f&U {r}, w(T’)
be the weight ofT’, w(e*(T')) be the weight of the heav-
iest edge inT’. Then our first construction fofs guaran-

the claim of the theorem, that is for everyg V, and for any
partition of T into Ty andT, such thaV/ (T1) UV (T2) =V (T),
V(T1)NV(T2) = {v}, and|V(T1)| > 2|V(T2)|. LetV be the
node inV such that the rati VEE;} is minimized over all
possible choices of nodes. Uet |V (T;)| andm= |V (T,)|.
Let us consider a sétr, (V) of the neighboring nodes of

tees the following bounds for given hop-diameter parameV' that belong tol;. Since we assumed thdtgives us the

terh, 1< h < n: E(Ts) = O(* () . OPT,), D(Ts) =
O((1+ 527) - “4E T - OPT,), h(Ts) = h, &(Ts) = a, for
o > 1. The second construction fég produces the follow-
ing results:E(Ts) = O(n>~% - h-OPT), D(Ts) = O(n*>~¢ -
h-OPT), h(Ts) = h, 8(Ts) = nf - h?. Note that all the up-

per bounds derived in this article are compared with the
best possible corresponding lower bound for the optimal so- _ T
lution. Thus, the produced results serve as approximatioRecause otherwise the rat (Ti)\

minimal ratio M%;} over all possible choices of nodes, it

means that a different partitiofT], T;) which can be ob-
tained from partition(Ty, T,) by moving some nodev €
Nr, (V') into T, and possibly some other nodes frairwhich
are connected tev as well, should produce a larger ratio.
Since we have tha¥ (T;)| < |[V(T1)| and|V (T;)| > [V (T2)]
the larger ratio can be produced only wh¥iiT,)| > 2|V (T;)],

(T V()|
IV (T2)]

will be less than

guarantees for the considered problems. We also show thatich contradicts our assumption. Moreover|\ff(T,)| >
our bounds are held for mobile setting up to constant facto2|V(T;)| we can always bound the number of nodes added
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to T, (denoted bya) to be at mos{V (T1)/2|. This is because spanning tree for our set of nodes, when the edge weight is
INT, (V)| is at least 2 - in this case we can always add tadefined as the Euclidean distance between two nodes. We
T, the smaller subtree @ rooted at some node df, (V).  point out that such a partition can be obtaine®imlogn)

The reason for the fact thity, (V)| > 1 comes from our as- time since we will spen@®(n) for each level of the hierar-

sumption that the rati Vglg} is minimized over all possible chy. For distributed version, we observe that the total run-
2

. V(TaUN, (V)] time will be bounded byO(n) since the balance nodes in
choices of nodes. INr, (V)| = 1 we have thaHV(Tl)\NTll(\/))\ each level of the hierarchy can be computed in parallel and

will be less tha xg%g} _ the time needed for computations in each level of the hierar-

To conclude, we have> 2m (or in other wordgV (T;)| >  ChY is decreasing proportionally to fractignof n (the size
2)V(T2)|) and Zk—a) < m+a,1< a< k/2. These inequal- ©f the largest component).

ities have no solution and thus we have reached a contradic- e can provide some tradeoff mechanism between the
tion. g hop-diameter of the hierarchy and the total distance of the

obtained edges. Using the above-mentioned partitioniog pr

cedure we can build am-ary tree hierarchy (for any integer
2.2 Obtaining a tree partition parametem, 1 < m < n). Instead of performing a (binary)

partition of the tred and connecting every parent node with
Below we describe the algorithm that chooses the balancego recursively computed children, we can partition the tre
tree partition of minimum spanning trdewith n nodes in  into m components by using a balanced partition, choosing
O(n) time. We also emphasize that the algorithm uses onlyhe largest component from all components in current level
local information and, therefore can be easily implementednd continue partitioning until we hamecomponents. Next
in a distributed way. First, for each edge- (u,v) € T, we  we connect the parent node with tmehildren which are re-
compute how many nodes are located in the subfieef  cursively computed in the same manner. The obtained hier-
T that includesu but notv and in the subtredy of tree  archyH’ has hop-diameter of lagn; however the total trans-
T that includesv but notu. Notice thatT,N Ty =0 and  port capacityD(H’) deteriorates t@(mlog,,n- w(MST)).
TuUTyU{e} =T. This can be done by a simple scanning ofwe may note here that Hassin and Peleg [21] suggested an-
the treeT, starting from the leafs, and converging towardsother construction based on separators of the tree; however
the internal nodes of the tree while counting the number ofhe obtained degree of the resulted tree (and, therefae, th
nodes on the way. For the distributed version, we first eStakhop-diameter) can not be chosen (opposite to our strategy)

lish the connectivity and run the algorithm of Awerbuch [2] and can be twice as large as the degree of the initial tree.
that builds a minimum spanning tree. In order to find the

above-mentioned values for each edge, we use the converge- _

cast process. Next, we use a well-known fact that the max¢-4 Augmenting shortest paths
imal degree of any node i is at most 5 [34]. It means
that the number of partitions that can be possibly made (p

each node) is constant. Using the information computed iO ST). | Clearly. th ioht of minimal :
the previous step, we can find each such partitio®{f) (WMST)logn). Clearly, the weight of minimal spanning

time. Thus, we can find the best partition for each particuIaJree is equal to the optimal transport capaOy T that can

node inO(1) time (and inO(n) time for all the nodes) and ever exist (each node, except of the root, needs to connect
to its parent; thus the total transport capacity equalsudhe s

of the edges’ weights in the tree). Thus, our collection data
tree has transport capacity of weigd{OPT; - logn). It may
2.3 Data collection through tree partitioning happen that the given root nodédoes not coincide with the
current root ofTs. In that case we simply redirect the corre-
Using the above, we can define our hierarchical construcsponding edges towards This procedure does not change
tion in the following recursive fashion. We find the balanceasymptotically any bound derived fag.
nodev (which we assume is the location of the base sta- Next we proceed following the construction suggested
tion as well) of the minimum spanning tr@eand split the by Khuller et al. [26]. A LAST is a combination of a min-
tree into two subtree$; and T, sharing the same node  imum spanning tree and a shortest path tree. Given a graph
Next we connect with recursively computed balance nodesG, edges’ weight functiomv and a source node Khuller
of Ty andT,, respectively, and continue in the same way.et al. [26] presented a linear time algorithm, which com-
Clearly, the hop-diameter of the obtained hierarthyin  putes a spanning tree df, so that its weight is at most
fact, it is a binary tree) will beD(logn) and the total sum [ times the weight of a minimum spanning tree@fand
of edges, or in other words, transport capaBifyd ) will be  for every nodev, pr(v,r) < a-d(v,r) , wherea > 1 and
O(logn-w(MST)), wherew(MST) is the weight of minimal 3 > 1+ a%l A spanning tree that complies with the bounds

t this stage we have a collection data tieghaving hop-
iameter oO(logn) and having transport capacity of weight

the best balanced tree partition@{n) time.
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is called an(a, B)-LAST. Basically, the algorithm for com- 3 Multi-hop collection for any deployment: altogether
puting(a, B)-LAST works as follows. First, we compute the with energy

minimal spanning tre& of initial graphG. In the following

step, a preorder scan is performed over the vertic8sasfd  In this section we are going to build a structure that can per-
the comparison is made between the weight of the existinprm well under all of the proposed criteria: energy con-
pathpr(v,r) of currently scanned nodeand the weight of sumption, transport capacity, hop-diameter and stretch of
the shortest path existing @ between multiplied byr. In  the paths to root node. As we already mentioned, Elkin et
case that the weight of currently existing path is larger, weal. [15] proposed the solution for the data collection tree
add the edges of the shortest pathGrto T. Finally, the  problem such that the total energy consumption is of fac-
unnecessary edges are removed fibioy running shortest tor p from optimal boundOPTe and the hop-diameter is
path tree algorithm ot fromr. n/p+logp, for any chosen integer parameeld < p < n.

We are going to incorporate our currently construdied In some sense, this is almost best (up to logarithmic factor)
into the Khuller et al. [26] algorithm above. In particular, ~ We can do in a view of lower bound example above. Never-
stead of computing minimum spanning tree, we sufplgs theless, below we present a novel construction that in many
the first step of the algorithm and the rest remains the sameéases outperforms the construction of Elkin et al. [15].

We also note that the weight of the shortest path between any Let us denote b’ the minimal spanning tree for the set
nodevin G andr is simplyd(v,r), i.e. we might need to add of nodes where the weight of edge is defined as the squared
only one directed edge betweerandv to Ts in case that Euclidean distance between the nodes,a(ill) is the to-

the length of current path violates the given requirementtal weight of the edges in this tree. As can be easily seen,
We also note that this procedure can only decrease the cur{(T’) is the lower bound for the energy consumption for
rent hop-diameter ofs. The same proof for the obtained data collection tree (each node, except the root, trangmits
weight of spanning tree holds to our case as well, i.e. at thigs parent in the tree). The main weakness in the approach
end of the algorithm we obtain a tréghaving hop-diameter of Elkin et al. [15] is that they completely ignore the cur-
O(logn), transport capacity dd(OPT;- (1+ a%l)logn) and rent hop-diameter of’. Given a desired bounll for hop-
stretch factod(Ts) = O(a), fora > 1. diameter and(T’) > h, they immediately transforf’ into
corresponding Hamiltonian cycle with a consequent hierar-
chy construction. However, in cases whgi’) not exceeds

by much ath (as we show, it can be as much@g?)), we

can do better. Below we present and analyze our construc-
tion.

One may wonder whether there is hope for designing bounded First we findT’. We can do this ird(nlogn) time using

hop hierarchy for arbitrary points positions that simuéian Delaunay triangulation. Next, we check, whether the result

ously provides good bounds for ansport capacity and th%g treeT’ satisfies the requirement of hop-diameter at most

sum of squared distances, l.e. the energy requi_rement. Uﬂf If yes, we are done. Otherwise, we are going to shorten
fortunately, the following example shows that it is not POSthe tree in the following fashion. We choose the given ver-

S'/ble, (see F'gj 1). Consider the unwelghtedgth: any €€ texr to serve as the root and tag every other node using its
T’ with hop-diameteg, contains an gdge \,N'th an interval distances from the root. It can be done using the standard
length 20f %t leas(n—1)/4, and so |ts weight is a_t least BFS algorithm. Every edge also receives tag being the min-
(n—1)%/A%. Observe that for the m/|n|mum spanm/ng ®€imum value between its both endpoints. Next, we mhke
T, E(T) =n— 1. However, for tre€l’, we haveE(T') > stages. At stagg, 0 < j < h—1, we remove from the tree

2/p2 imati i
n—2+ (E -1 /hA'I ‘ It. meanfs ﬂ:ﬁt tEe azpromraﬁt:)c:n rz;mo T’ rooted atv all the edges being taggédh + j, for every
We can have while aiming for In€ hop-ciameterculs a i,0<i< —‘V‘h’J, and connect the nodes tagded + j + 1

least™=t. For example, it follows that fafA = logn we can : .
Az P 9 directly to the rootr. We call the resulting tred;j. After

nncztlbwld any h|er§rchy having energy requirement less thag” h stages we choose betwekbrireesT; the tree having
times the optimal one.

log?n minimal weight. We call this tre&”. We bound the perfor-
mance of this solution as follows. Sin@é has the minimal
weight between alh trees, it follows that weightv(T"”) <
11 1 [ (n-1)/A | (1/h)ZP;(:)I'W(Tj). Next, notice that when considering the en-
o o o o o e e e tiecollection{T, }'j‘;(l) of trees, every edge df has been re-

% = % % placed no more than once. Every such replacement (we have

Fig. 1 Demonstrating a lower bound for sum of squares of distances.at mostn such replacements) produced a new edge of weight
of at mostn?-w(e*(T’)), wheree* (T') is the largest edge in
T’. This is because a weak triangle inequality is satisfied

2.5 Lower bound for sum of squares with bounded hop
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(i.e., foru,v,w e V, (d(u,w))? < 2((d(u,v))2 + (d(v,w))?) It means that for this and similar cases, the approximation
and following Cauchy-Schwartz inequality we have that forfactor stands atlogn. If we chooseh = O(logn), then our
anyxy, X, ..., % € R, (5K 1x)2 < k- I} % approximation factor i©(log? n) while the solution in [15]
produces approximation @f Moreover, even i% =
n—¢,0 < € < 1, our approximation ian*~¢ and for the poly-
logarithmic values oh our algorithm gives better approxi-
mation than in [15]. Speaking of transport capacity, the-sim
lar analysis shows that the approximation factoHsﬂl—

SHORTCUT MST

1 Compute minimum spanning trdé of complete graph defined
on nodesSU {r}.

2 if hop-diameter of Tis at most hthen a0

3 | outputT’ By :

4 Tag nodes irT according to their distance from roat Where.d(e, (7)) deflo.tes the Euclidean length of the Iongest

5 Every edgev,w) receives tag that is minimum between tags of edge 'r.‘T andd.(T ) is the tqtal I_ength_Of the_ edges TH _
vandw. For uniformly distributed points in 2-dimensional uniteiz

[«2]

for j=0—h—-1do

7 Remove from the tre&’ rooted atr all the edges being
tagged - h+ j, for everyi,0<i < ‘V‘T—’

8 Connect the nodes taggech+ j + 1 directly to the root
obtaining treeT;.

9 LetT” be the tree of minimal weight froriT; }E‘;é.

squared(e*(T’)) = O(y/logn/n) andd(T") is at leasiQ (,/n),
see [42]. Thus, we obtain sublinear approximation for this
and similar cases following similar argument as above.

10 OutputT”. IMPROVED SHORTCUT MST
1 Compute minimum spanning trdé of complete graph defined
on nodesSU {r}.
if hop-diameter of Tis at most then
Thus, 2] Jw(T;) < h-w(T’) +n3-w(e*(T’)). Combin- | outputT’

ina thinas toaether we obtain(T Tag nodes i according to their distance from roat

9 gstog (T 3 wie (T Every edgegv, w) receives tag that is minimum between tags of
In other words, the weight of” provides 1+ %T(,))) vandw.
approximation for optimal solution. The SHORTCUT MST 6 for j=0—h-1do

, :
algorithm shows the formal description of aforementioned ! Remove from the treg” rooted ar all the edges being

g b~ wN

") <W(T')+n®-w(e(T")/h

scheme.
But, in fact, we can do much better. The idea is that ev- 4
ery edge cut and its replacement will lead to an additional

tagged -h+ j — Z:):()p, for everyi,0 < i when such edge
exists.

Connect the nodes taggech+ j +1— Zi _ob directly to
the node taggedd —1)-h+j+1— Z Op lying on the

O(h? - w(e*(T")) increase of energy, instead of current in- same path i’ or to the rootr Whenl 0 obtaining tree
crease ofn?-w(e*(T’)) per edge. The crux is to cut the Tj.

edges not in intervals of sizebut rather take intervals of 9 LetT” be the tree of minimal weight frorfiT; }"3.
sizeh,h—1,h—2,...,1 and connect the node (that be- 10 OutputT”.

came disconnected as the result of cut) in the interval of

sizet,1 <t < hto the node (that became disconnected) in

the interval of sizet + 1 that lies on the same path I  Remark. The IMPROVED SHORTCUT MST scheme can
asu. The node in interval of sizé is connected directly be applied in a bootstrapping fashion for the case when

to the root. We perform the same shifting strategy as bes(,/h(T")). In particular, we can tak&’ and cut the edges
fore. This scheme is presented in IMPROVED SHORTCUTin intervals ofh(T’),h(T’) — 1,h(T’) —2,...,1 by adding
MST algorithm figure and guarantees that every new addeshortcut edges. In such a way, we will obtain a new fge
edge may need to bypass at mbsbriginal edges off”  having hop-diameter(T’). If h € o(,/h(T])), we apply the
and, therefore, will lead t®(h? - w(e*(T’)) increase in total  same procedure f{ cutting it in intervals oh(T;),h(T{) —
energy consumption. To conclude, we have a construction h(T]) — 2,...,1 with addition of shortcut edges. We re-
that prowdesO(rmW(i)T) approximation for total energy peat this process until we obtain a tree of desired diame-
consumption with hop-diameter bfassuming that the hop- ter. Clearly, the number of bootstrapping steps is at most
diameter of minimum spanning tree is at mbét This re-  O(loglogh(T’)) since we shrink the hop-diameter recursively
sult compares well with the best solution to date by Elkinby square root factor.

et al. [15] from the following reason. Of course, the value  Now we suggest how to incorporate the stretch of paths
of w(e*(T’)) can be as large ag(T’) but in many cases, characteristics into our solution. We will show that while
the weight of the heaviest edge of minimum spanning tre¢he stretch of the paths drops to the facton&fT”) -nf,0 <
behaves similarly as the length of the average edge in ming < 1, the total energy consumption in new tree increases by
mum spanning tree or similar to this. For example, for unifactor of at mosh~2 from the energy consumption i’.
formly distributed points in 2-dimensional unit size sqgiar We start scanning all of the nodes in our constructedTffee
w(e*(T")) = O(logn/n) andw(T’) is at leastQ(1), see [37].  In general, the technique will work for any data collection
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tree. If the distance(v,r) between currently scanned node o(% -OPTe), D(Ts) = O((1+ %) ) n-dc(i?:—(/';")) .

v to rootr is less thand(e*(T’))/n,0 < € < 1, then we OPT), h(Ts) = h and3(Ts) = a, fora > 1.
remove the edge fromto its parent node iT” and put a

direct edge betweenandr. Notice, that the hop-diameter,
h(T"), can only decrease as the result of our procedure. 4 Distributed implementation
Let us compute what happens with total energy con-
sumption. In the worst scenario, we replaced all the edge-ghe distributed implementation of our construction heav-
in the tree and, therefore, the total energy consumption iy depends on the construction on minimal spanning tree

bounded byn-W(e*E(T’)) and the approximation factor from (With the consequent manipulations) which is quite straigh
. forward once we established connectivity between the nodes

the optimal solution i@(%) € O(n?~%.h). -

_ W2(T7) and chose the leader (the root of the tree). For this we can
For appropriate values @ and, for example, for polylog-  fo|iow two different approaches as described in [33]. The
arithmic values oh or even higher, we obtain a sublinear firs; gescribed in Dolev et al. [13] forms a temporary under-
approximation factor. We leave to any interested reader tﬂ/ing topology inO(n) time usingO(n3) message. The sec-
obtain the exact range of values when the approximatiog,q (better) approach is given by Halldorsson and Mitra [20
factor for tptal energy consumption &n) (notice that in {4t shows how to do this @(poly(logy,logn)), whereyis
our analysis we assumed thatte’ (T')) = w(T') where for  {he ratio between the longest and shortest distances among
many cases as shown aboves’ (T)) is much smallerthan odes. After the topology is established, we can use leader-
w(T’), and, better approximation factor can be derived; thgection algorithm by Awerbuch [2] that shows how to find
same holds for transport capacity as well). a leader and minimum spanning tree in a distributed fash-

In order to evaluate the stretch factor of the obtainedgyn, in a network withn nodes inO(n) time usingO(nlogn)

paths we notice the following. First,di(v,r) <d(e*(T"))/n,  messages. In our former construction, the leader initites
then a shortcut has been added and the stretch of the path kﬂ)‘?(‘)cess of finding the balance nodes with following hier-
tweenvandr in new tree is 1. Second,d(v,r) > d(e"(T"))/n", archy construction antr, B)-LAST computation in a dis-
then the length of the path betweeandr inanew treeisat  jhted fashion as described in [6]. In the latter desibe, t
mosth(T") -d(e*(T")) < h?(T")-d(e*(T")) < nlg W*(T")- |eader initiates the process of shortcuting edges with the
d(v,r). It means that the stretch of the path is at most  ;onsequent convergecast process towards the leader. Each
2 (T"). node (in parallel), computes the edge required to be added
to the data collection tree and chooses the largest outgoing
edge. The total time and message complexities for dach
calculation are dominated by the initial minimum spanning

IMPROVING THE STRETCH OF PATHS

1 computeT”. ;

2 foreachv cV do tree COI’]StI‘UCtIOI’] Step
3 if d(u,r) <d(e*(T"))/n® then

4 remove edge from to its parent iril”.

5 add(v,r) to T". 5 Mobile sensors

6 OutputT”.

As the distance between any two nodes € S may vary
in time, we defined, y(t) to be the Euclidean distance be-
To summarize we have the following theorem. tweenu andv at timet € [ts,ts]. The transmission possibil-

Theorem 1 Given an integer value,i < h < n ande,0 < ities resulting from a power assignment vary in time. Let
£ < 1, and assuming that minimal spanning tree of the set oftp(t) = (S Ep(t)), with Ep(t) = {(u,v) : ry > dyy(t)}, be
nodes has diameter(@?), we can find a data collection tree the induced directed communication tree at tinve[ts,t].
Ts such that the total energy consumptiofilg) = O(n2-2¢.  Let Gs = (S,Es) be an undirected complete graph. For any
h-OPT), D(Ts) = O(n?¢-h-OPT), h(Ts) =h andd(Ts) = ! € [tstt], letw(u,v) = (dyy(t))?, for every (u,v) € Es,
né . h2. a weight function over the edge sE¢. Note thatw (u,v)

. . matches the amount of energy required to transmit from
We also may use the LAST construction as descrlbeg0 v, at timet. For any weight functiow, defined on a

in prgviogs section in.or(.jer to obtgin differentltradeoff ap weight setEs, the weight of a grap = (SEy), En C
proximation for our criteria. In_ particular, applying Kheit Es, is W(H) = ¥ (uyct, W(U, V). Consequently, denote the

et al. [26] produces the following results. weightofa graptd (t) = (SEn(t)) asw(H(t)) = ¥ wv)eg, @) W (U, V)
Theorem 2 Given an integer value,d <h <nande,0< intimet € [ts,t¢]. The maximum weight o (t) through the

€ < 1, and assuming that minimal spanning tree of the sesessiorits, tt] is denoted byvmax(H (t)) = max tcft, 1, W(H (t))-

of nodes has diameter (@), we can find a data collec- Finally, the "critical weight” ofH (t) is wer (H () =

tion tree & such that the total energy consumptiofiTE) = ¥ (v)eep t) MK tefts tr] (duy(t))?).
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For any two nodesi,v € S, in order that an edggeu,v)  that the weight functiow’ that is defined asw/(u,v) =
would exist in evenyHp(t), t € [ts,t;], the power assigned max{w(u,v),w;, (u,v)} satisfies the weak triangle inequal-
to u should be at least the square of the maximum distancigy, i.e. W' (u,v) < 2(W(u,z) +w(zV)), for anyu,v,ze V.
betweenu andv during [ts,ts].We define a weight function We can, in fact, claim that our approximation factor is
w which reflects this amount of energy for any pair of nodesoutput-sensitive. To see this, let us enumerate the edges of
W (U,V) = MaXcp, ) (duy(t))?, foreveryu,ve S in non-decreasing order of their lengt;,...e,_1. Then,
there aren, edges that contribute twice to power assign-
mentp (from both ends), there arg edges that contribute
only once top (only from one end), and there are some
edges that do not contribute at all. In the worst case, the
largest length edges is counted twice, and thus their total
contribution top is at most -1 n, W(&). The contribu-

tion of the rest of the edges J§" 12, w(e)). Notice that
By definition, (dyy (t))2 >0,YuveSWte [ts,tf], and zlnce ng —an;Zlnz, theTchontnbuuon 01I‘I the rgst Qf egges
since the nodes move in straight linégy  (t))? is also con- ecomesy;_, ~W(&). Thus, to overall contribution t

vex and ngaﬁdu’v(t))z is observed in = ts ort = ty. does not exceed 2L, w(e) + 3 r:]zz fw(e) =w(T) -
312y W)+ 3, w(e) =w(T) — 372 'w(e) +w(T) -

Theorem 3 3 uy)chy(t) (duy(t))? is maximum in t=ts or " 2lw(g) < 2w(T) — (n—2)w(ey). On the other hand

5.1 Basic solution

Consider the problem of finding a power assignmgnthich
induces a static communication netwdl,(t) = {S Ep(t)},
vt € [ts,tf], with connectivity topology property, minimiz-
ing the total power of the transceiver).

t=ts. c(p) < nw(ey_1). Itfollows thatc(p) < 2w(T) — (n—2)w(ey)) <
_1)+(n-2

Proof. For any pair of nodes,v € S, denote byyﬁy (t) the  Nw(en_1). Consequentlyw(T) < M 1) R 2MA), Thus,

linear function Y2, (t) = a,t +b2,, such thaty?, (t;) =  we have that approximation fact§ffy < 2— =2z <

d3, (ts) andyuv(tf) dz, (tr). Forany edgéu,v) € Hp(t), o 2n-2we))  _ 2w(en_1)n

2 = .Whennis large
2 (uV)eHp(t ()yu W(t )—t'i(u,v)er au,v"‘i (uV)EHp(t )bu,v Clearly,th %Meﬂfl(;f(nilz)w(el)t ;\vlégﬂ,fl))r1+w(e-ll_)én7-2)t fina thi J ,
3 (uv)eHp( va( ) is maximum it =tsort =t;. Sinced&v( ) he our; IS¢ olse owm?flg?W(;;) lh ) emn elres :g mlgl IS
that we know value ofv(e;) (which is equal to the smallest
sconve forv ,VeE SVt € |ts,t5 |, then d < N .
is convexfoiv, v € S vt € [t ty], theny uy)cry( (duv(t))* < weight in the graplGs) and can provide an upper bound for

2 .
g'(uiV)IEHp(t) Yuu(t): Vt € [ts,t¢]. The theorem fOHOWS mge w(en) (as the largest weight in the gra@k) even before the
Iately. execution of our algorithm.

Consider a connected subgraph(t) of Gs whose max- It appears computing the solution tr&g at the start of
imum weightwmax(H*(t)) is minimized over all possible sessionts and T, at end of sessioty and finally assign-
choices of connected subgraphs@j Obviously,H*(t)is  ing to each node a maximal power it has from both trees
a tree. Letp* be the optimal power assignment. Clearly, is not enough. It may even not guarantee the connectivity of
c(p*) > Wmax(H*(t)). a given set of sensors as shown in Figure 2. We have 4 or-

Denote byH’(t) a connected subgraph Gis such that ~dered nodesy, b, c,d located on the line, with the distances
the weight maxw(H’(ts)),w(H’(tf))} is minimized overall between them as shown in the Figure. The nodes move with
possible choices of connected subgraph&efFollowing  the same speed. The nodenoves toward® , b moves to-
Theorem 1, we can conclude thaha(H*(t)) > wardsa, c moves towardd, andd moves towards, see Fig-
max{w(H’(ts)),w(H’(t¢))}. ure 2(a). The final position of points is demonstrated at Fig-

Since the weights of the edgest#ft), that are not max- ure 2(b). The pointa andb switched their positions, so the
imal int = ts are maximal irt =t;, and vice versa, then we pointscandd. As it shown in Figure 2(c), it is not enough to
have thatve (H'(t)) < w(H'(ts)) +w(H'(t;)) < give each point power that enough to cover a distance®f 1
2max{w(H’(ts)),Ww(H’'(t:))} < 2wmax(H*(t)) < 2¢(p*). although it will guarantee connectivity &tandts. The dis-

Therefore, we can use the following algorithm that com-tance betweea andc is 2/3 in Figure 2(c) and the network
putes the power assignment. Consider a complete undirectégidisconnected.
graph of the nodes i8, Gs. Assign to each edg@u,v} € Eg We can observe that our scheme works well for other
the weight maxw(u,v),w;, (u,v)} and find the minimum topology criteria, e.g. lifetime (the number of rounds) or
spanning tred of the resulting graph. The power assign-transport capacity (which is the sum of lengths of all the
mentp assigns to each nodehe power equal to the squared links, ¥ (,v)eg duy) Of the induced tree. In general, when the
length of the longest edge in the minimum spanning tree atatteries’ charges of the nodes are the same and the traffic
tached to node. The approximation factor follows from is uniform, the lifetime of the tree is dictated by the length
the fact thatc(p) < 2w(T) < 2w (H'(t)) < 4c(p*). Itis  of the longest edge in the tree. Thus, our goal is to find a
worth to mention here that Dolev et al. [14] have provedpower assignmery such that the length of the longest edge
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a Beginning of session ande’. They [1] also show that(h) <w(T)- (312 + 11),
wherer is the weak triangle inequality parameter that equals
I—> 20 o A s— 2 in our case. Moreover, it can be shown that the weight of

the longest edge ihis at mostO(1) times the weight of the
longest edge i . The following theorem applies the above
on minimum spanning trek.

d(a.b)=1/3 o d(b.c)=1/3 N d(c.d)=1/3

b. End of session

Theorem 4 ([1]) Let h= (ug,us,...,un = Up), Where y e

z d é V for 0 <i < n-1, be the Hamiltonian circuit as a result

of applying the construction in [1] on T. Definé(@) and

g €*(h) to be the longest edges in T and h, respectively. Then

w(h) = O(w(T)) and w(e* (h)) = O(w(e"(T)))-

Using the aforementioned theorem we can add the fault-
tolerance property to the data collection tree we aim to main

dla.b)=1/3 db.c)=1/3 . dled)=1/3

c. Middle of session

h— — i —a tain. After computing the required tree, we find the Hamil-
23 tonian circuit as described above, and define the power level
) of each node as the maximum value between the power level
Fig. 2 Counterexample. in the tree and the power level the node has in the Hamilto-

nian circuit. Notice that it does not change asymptotically
the cost of power assignment but guarantees the existence
in Hp(t) is minimized. Following the description above let of two vertex disjoint paths between the re@nd any other
H(t) be a tree ofss whose longest edge weightax(H (1)) node. It follows that even if some node will fail, the treelwil

is minimized over all possible choices of trees@{. Let ;|| function (although its hop-diameter may increase ttue
Ip be the length of the longest edge obtained by the powghe node failure).

assignmenp.’Clearly,l 5 > Imax(H (t)).
Denote byH”(t) a connected subgraph 6% such that
the longest edge weight mébmaxH" (ts)), Imax(H” (1))} iS5 3 |nterference awareness
minimized over all possible choices of connected subgraphs
of Gs. Following the claim similar to Theorem 1, we can aAs nodes communicate through radio signals, wireless in-
conclude thakmax(H (t)) > max{Imax(H" (ts)), Imax(H" (tr))}.  terference becomes inevitable. Every node receiving simul
Since the weights of the edges Hf'(t), that are not  taneous signals may incorrectly interpret them. High evel
maximal int = ts are maximal it =t¢, and vise versa, then of interference decrease the number of transmissions that

we have thale; (H”(t)) < Imax(H"(ts)) + Imax(H" (t1)) < can happen simultaneously, which has a direct affect on the
2max{lmax(H" (ts)), Imax(H" (7))} < required number of time slots for the message to propagate
2lmax(H (1)) < 21(p), whereler (H(t)) = max et 1, (duv(t))?). from the source to all the other nodes in the network or op-
Thus, the same algorithm will produce t@ﬂ% posite. We point out here that minimizing the hop-diameter
approximation for the lifetime criteria of the tree. does not necessarily leads to the minimal number of slots for

propagating broadcast or convergecast messages. In order t

deal with the problem we give separate solutions for con-
5.2 Fault-tolerance vergecast and broadcast scheme. To perform convergecast

that starts from the leaves, every node keeps two numbers:
Andrea and Bandelt [1] give a linear time algorithm for thethe total number of its siblings and its consecutive number
construction of the Hamiltonian circuiitin T3, given tree  (starting from 0) between siblings order. These numbers can
T and a weight function that satisfies a weak triangle in-be redistributed to every node by its parent in the tree. Then
equality. The algorithm is applied to a trdeand an edge the node is allowed to send a message to its parentin the tree
e= (u,v) of T. Removing the edge divides the tree into only if the time slot number equals its consecutive number
two subtreesI’ and T”. In each subtree the algorithm se- modulo the total number of its siblings. This prevents from
lects an arbitrary edg€ = (u,w) (for T’) and€’ = (x,v)  more than one child to send a message simultaneously to its
(for T”), and recursively computes a Hamiltonian cycle ofparent. Every node sends a message to its parent only when
T’ andT” that includes the edg ande’, respectively. The it received the messages from all of its children.
circuit consists of the cycles i andT” without two edges For propagating the broadcast message, we can use the
€ andé€’. The two resulting paths are glued together usingprevious construction of Hamiltonian circuit in order tcegu
e and the edge connecting other endpoints of two e@fjes antee the required number of slots for propagating broadcas
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Fig. 3 Random uniform network.
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; —e— Our algorithm 0o [
e —=— Elkin et al.{15] 10709
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(a) Comparison with the best to date algf) Ratio between maximum edge weig{t) Average number of nodes in different
rithm [15]. to MST weight. levels of MST (of diameted).

Fig. 4 2D Poisson point process with normalized unit density.

message be equal to some prescribed input paraineiér  value that has been taken for required hop-diantetethe

ter we find the Hamilton circuit (call the order of the nodessquare root of the obtained minimum spanning tree diameter
starting from the source nodass, vy, Vs,...,Vi,...,Vn_1,S,  d. Thisis since for larger values bfour algorithm performs

we assign the required powerddo be enough to reach the even better as there is no need in doing shortcuts for many
nextn/k nodes in the path, i.e. to reaal;a, and follow the nodes. We can, in fact, observe from the Fig. 3(c) that the
same scheme to assign powersvg)fv_zgn Van, The sug- amount of nodes that need to be shortcut when the valae of

gested scheme assures us that there will be pfitrans- ~ close to the diameter of minimum spanning tree is small. As
mitting nodes (in different time slots) and the total brosstc it can be concluded from Fig. 3(a), for the valuesistarted

time will be k. This scheme increases the total energy confrom 240 our solution always outperforms the one given
sumption by factor oh/k. in [15]. Moreover, Fig. 3(b) also confirms the fact that the

ratio between the weight of the heaviest edge in minimum

spanning tree and the weight of minimum spanning tree de-
6 Simulation Results teriorates a® grows up. As our algorithm depends linearly

on such ratio, we deduce that it works really well for real,
In this section we show some simulation results with respedgrge-scale deployments. Our second experiment modeled a
to the construction in Section 3, where we are mainly interwireless sensor network by 2D Poisson point process of nor-
ested in comparison of total consumption energy criteria obmalized unit density in an 25 25 region for various values
tained by ours and Elkin et al. [15], which is considered toof n, see Fig. 4(a,b,c). This is a standard technique for mod-
be the best algorithm in terms of energy consumption witteling random wireless network with omni-directional trans
predefined hop-diameter. As we show, the simulation resultission as in [9]. We evaluate the same criteria as in the first
fully support our theoretical analysis. In our first expegimh ~ €xperiment. We observe the same tendency for all Fig. 4(a),
we have randomly and uniformly distributedsensor nodes Fig. 4(b) and Fig. 4(c) as for uniformly placed sensors al-
in a square of size 10 10, with the network siza ranging though the rates are slightly different. We also learn that t
from 200 to 600 in steps of 20, see Fig. 3(a,b,c). We havéatio in Fig. 4(b) indeed decreases but more slowly than for
computed the energy consumption (Fig. 3(a)), the ratio becandom uniform network.
tween the weight of the heaviest edge in minimum spanning Next, for both uniform sensor nodes (Figure 5) and 2D
tree and the weight of minimum spanning tree (Fig. 3(b))Poisson point process with normalized unit density (Figure
and the number of nodes that located in different levels 06) we evaluated the total energy consumption, total trans-
minimum spanning tree (Fig. 3(c)). The results are an averport and stretch factor for different values of hop-diamete
age of 10 tries for every network singwhere the predefined obtained by Improved Shortcut MST algorithm and com-
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pared them with the corresponding values obtained by stan-
dard MST solution. We can learn that in terms of energy

and transport, our algorithm performs slightly better foe t

2D Poisson point process although for both cases the ap-
proximation ratio does not exceed the value of 4. For small

values of hop-diameter our algorithm produces a tree with

better stretch factor than MST. We reproduced the simula-
tion tests under the same criteria, but now (Figure 7 and
Figure 8) we compared our parameters when keeping the
ratio between our produced tree hop diameter and MST hop-

diameter equal to 0.5 (Figure 7) and equal to 0.75 (Figi:ig

Approximation ratio
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ure 8). Our goal was to check whether the increase in thg,ortcuUTMST to MST for D random uniform network.

number of nodes has any influence on the produced results.
We can conclude from both simulations that in both uni-
form and Poisson point processes for different ratio of hop-
diameters the obtained results for all criteria (energnsr
port, stretch factor) remained almost the same with small
deviations. Thus, our algorithm works well for small values
of the nodes as well as for the large number.

io

Approximation rati

7 Conclusions

In this paper we have presented two constructions for data

collection tree with provable performance bounds on totaFig.

2l

.ﬁ
)
T
Approximation ratio

|
10
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(a) 100 nodes (b) 200 nodes
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energy Consumption, total transport Capacity, hop diameteSHORTCUTMST to MST for 2D Poisson point process with normal-

and stretch of the obtained paths from the nodes toward
the root of the tree. We have shown that for various sen-
sor nodes deployments our solutions outperforms the pre-
viously known schemes. We also considered the problem
in mobile setting scenario where the sensors are allowed to
move. It would be interesting to investigate how well our ¢
structures perform in terms of average hop-diameter (i.e$
hop-diameter taken over all paths connecting nodes to thgf
root) which can serve as another potential criteria to opti-

mize for scenarios where sensors send the information to-
wards the root in different time frames and periods of time.

It looks like our schemes can be extended to a more gen-
eral, SINR model, where a transmission is successful if thg.

ig.

ged unit density.

Approximation ratio
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signal is strong enough compared to the interference (as arg,orrcutMST to MST for 2D random uniform network when di-
sult of simultaneous transmissions). This is because we cameter ratio is constant.

adopt some of the known techniques for dividing the nodes
into interference/transmission regions based on thermidns
powers [24].

Acknowledgement.The authors thank to Engineering and
Physical Sciences Research Council (EPSRC), United King—2-
dom for providing support to the work on this paper and to
the reviewers for their helpful comments.

3.

References
4,
1. T. Andreae and H.-J. Bandelt. Performance guar-
antees for approximation algorithms depending on

parametrized triangle inequalitiesSIAM J. Discrete
Math,, 8(1):1-16, 1995.

B. Awerbuch. Optimal distributed algorithms for min-
imum weight spanning tree, counting, leader election,
and related problems. BCM STOC 198, pages 230—
240, 1987.

J. Basch. Kinetic data structures.RhD Dissertation,
Stanford University1999.

J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. II'BODA'97 pages 747-756,
1997.



Improved Structures for Data Collection in Static and MeMireless Sensor Networks

Approximation ratio

141 /\ 1
12—t -

- - —-
\
- ~
e - 08l —e— .\ S
T —*—9o o *
| | |

I I
100 120

Approximation ratio

| I I | ! L !
140 160 180 200 100 120 140 160 180 200
n n

H(T; H(T:
(® sy = 3 R

_3
=1

Fig. 8 Comparison between approximation factor ofiPROVED
SHORTCUTMST to MST for 2D Poisson point process with normal-

ized unit density when diameter ratio is constant.

5.

10.

11.

12.

13.

14.

15.

. A. Chandrakasan, R. Amirtharajah, S. Cho, J. Good—23

R. Beier, P. Sanders, and N. Sivadasan. Energy optimglp'

routing in radio networks using geometric data struc-
tures. INICALP’02, pages 366-376, 2002.

. Y. Ben-Shimol, A. Dvir, and M. Segal. Splast: A novel

approach for multicasting in mobile wireless ad hoc net-
works. InIEEE PIMRC’'04 pages 1011-1015, 2004.

power assignment in ad hoc wireless netwoEkiscrete
Applied Mathematigsl54(9):1358-1371, 2006.

man, G. Konduri, J. Kulik, W. Rabiner, and A. Wang.
Design considerations for distributed microsensor sys-
tems. InCICC’99, pages 279-286, 1999.

. C.-K. Chau, R. J. Gibbens, and D. Towsley. Impact ot24'

directional transmission in large-scale multi-hop wire-
less ad hoc networks. IINFOCOM, pages 522-530,
2012.

and R. Silvestri. The minimum range assignment prob-
lem on linear radio networks. IBSA’0Q pages 143-
154, 2000.

A. E. F. Clementi, P. Penna, and R. Silvestri. On26'

the power assignment problem in radio networks.
Electronic Colloquium on Computational Complexity 7
7(054), 2000.

A. E. F. Clementi, P. Penna, and R. Silvestri. The
power range assignment problem in radio networks OI%S
the plane. IlSTACS’0Qpages 651-660, 2000.

S. Dolev, M. Segal, and H. Shpungin. Bounded-hop
energy-efficient liveness of flocking swarmslEEE
Transactions on Mobile Computindl2(3):516-528,
2013.

S. Dolev, M. Segal, and H. Shpungin. Bounded-hop30
energy-efficient liveness of flocking swarmslEEE
Trans. Mob. Comput12(3):516-528, 2013.

M. Elkin, Y. Lando, Z. Nutov, M. Segal, and H. Sh-
pungin. Novel algorithms for the network lifetime
problem in wireless settingsACM Wireless Networks

16.

17.

18.

21.

A. E. F. Clementi, A. Ferreira, P. Penna, S. Perenne32,5' A. Jovicic, P. Viswanath, and S. R. Kulkami.

29.

13

17(2):397-410, 2011.

S. Funke and S. Soren Laue. Bounded-hop energy-
efficient broadcast in low-dimensional metrics via core-
sets. INSTACS’07volume 4393, pages 272—-283, 2007.
J. Gao, L. Guibas, J. Hersheberger, L. Zhang, and
A. Zhu. Geometric spanner for routing in mobile net-
works. INACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHocQhages
45-55,2001.

J. Gao, L. J. Guibas, and A. Nguyen. Deformable span-
ners and applicationsComputational Geometry: The-
ory and Applications35(1):2-19, 2006.

19. P. Gupta and P. R. Kumar. The capacity of wireless

networks. IEEE Transactions on Information Thegry
46(2):388-404, 2000.

M. M. Halldoérsson and P. Mitra. Distributed connec-
tivity of wireless networks. IiPODC, pages 205214,
2012.

Y. Hassin and D. Peleg. Sparse communication net-
works and efficient routing in the planeDistributed
Computing 14(4):205-215, 2001.

. G. Calinescu, S. Kapoor, and M. Sarwat. Bounded-hop%z' H. Huang, A. W. Richa, and M. Segal. Approximation

algorithms for the mobile piercing set problem with ap-
plications to clustering in ad-hoc network81ONET,
9(2):151-161, 2004.

H. Huang, A. W. Richa, and M. Segal. Dynamic cov-
erage in ad-hoc sensor networkgobile Networks and
Applications 10(1-2):9-17, 2005.

S.Ji, R. A. Beyah, and Y. Li. Continuous data collection
capacity of wireless sensor networks under physical in-
terference model. IHEEE MASS’1]1pages 222-231,
2011.

Up-
per bounds to transport capacity of wireless net-
works. IEEE Transactions on Information Thegry
50(11):2555-2565, 2004.

S. Khuller, B. Raghavachari, and N. Young. Balanc-
ing minimum spanning and shortest path trees. In
SODA'93 pages 243-250, 1993.

. L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc.

Power consumption in packet radio network&eoret-
ical Computer Scien¢43(1-2):289-305, 2000.

. K. Kothapalli, C. Scheideler, M. Onus, and A. W.

Richa. Constant density spanners for wireless ad-hoc
networks. INSPAA'05 pages 116-125, 2005.
K.Ramanan and E.Baburaj. Data gathering algorithms
for wireless sensor networks: A survéyASUGC 1, De-
cember 2010.

. X. Li, S. Yan, C. Xu, A. Nayak, and I. Stojmenovic. Lo-

calized delay-bounded and energy-efficient data aggre-
gation in wireless sensor and actor networkdreless
Communications and Mobile Computirigl(12):1603—
1617, 2011.



14

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

X.-Y. Li, Y. Wang, and Y. Wang. Complexity of data 46.
collection, aggregation, and selection for wireless sen-
sor networks.|EEE Trans. Computer$0(3):386—399,
2011.

Y. Li, M. T. Thai, F. Wang, and D.-Z. Du. On the 47.
construction of a strongly connected broadcast arbores-
cence with bounded transmission deld{£EE Trans.
Mob. Comput.5(10):1460-1470, 2006.

V. Milyeykovsky, M. Segal, and H. Shpungin. Location, 48.
location, location: Using central nodes for efficient data
collection in wsns. INEEE WIOPT 2013.

C. L. Monmaand S. Suri. Transitions in geometric min-
imum spanning tree®iscrete & Computational Geom-
etry, 8:265-293, 1992.

K. Pahlavan and A. H. Levesqué/ireless information
networks Wiley-Interscience, 1995.

V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-
Aceves. Energy-efficient collision-free medium access
control for wireless sensor networks. 8enSys’03
pages 181-192, 2003.

C. Redmond and J. Yukich. Asymptotics for euclidean
functionals with power-weighted edge&xtochastic Pro-
cesses and their Application®81(2):289 — 304, 1996.

M. Segal and H. Shpungin. Improved multi-criteria
spanners for ad-hoc networks under energy and distance
metrics. INIEEE INFOCOM'1Q pages 6-10. Also in
ACM Transactions on Sensor Networks 2013, to appear.
M. Segal and H. Shpungin. On construction of min-
imum energyk-fault resistant topology.Ad Hoc Net-
works 7(2):363-373, 2009.

H. Shpungin and M. Segal. Low-energy fault-
tolerant bounded-hop broadcast in wireless networks.
IEEE/ACM Trans. Netw17(2):582-590, 2009.

H. Shpungin and M. Segal. Near optimal multicrite-
ria spanner constructions in wireless ad-hoc networks.
IEEE/ACM Transactions on Networkin8(6):1963—
1976, 2010.

J. M. Steele. Probability and problems in euclidean
combinatorial optimizationStatistical Science3(1):48
—56, 1993.

L. van Hoesel and P. Havinga. A lightweight
medium access protocol (Imac) for wireless sensor net-
works:reducing preamble transmissions and transceiver
state switches. IINSS’'04 pages 205—-208, 2004.

P.-J. Wan, G. Calinescu, X. Li, and O. Frieder.
Minimum-energy broadcast routing in static ad hoc
wireless networks. INNFOCOM’'01, pages 1162—
1171, 2001.

L.-L. Xie and P. R. Kumar. A network information the-
ory for wireless communication: scaling laws and opti-
mal operationlEEE Transactions on Information The-
ory, 50(5):748-767,2004.

Jon Crowcroft et al.

L.-L. Xie and P. R. Kumar. On the path-loss attenuation
regime for positive cost and linear scaling of transport
capacity in wireless networkslEEE Transactions on
Information Theory52(6):2313—-2328, 2006.

F. Xue, L.-L. Xie, and P. R. Kumar. The transport ca-
pacity of wireless networks over fading channéEEE
Transactions on Information Theqr$1(3):834—0847,
2005.

Y. Yun, Y. Xia, B. Behdani, and J. C. Smith. Distributed
algorithm for lifetime maximization in a delay-tolerant
wireless sensor network with a mobile sinklEEE
Transactions on Mobile Computing2(10):1920-1930,
2013.



