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Abstract In this paper we consider the problem of efficient
data gathering in sensor networks for arbitrary sensor node
deployments. The efficiency of the solution is measured by
a number of criteria: total energy consumption, total trans-
port capacity, latency and quality of the transmissions. We
present a number of different constructions with various trade-
offs between aforementioned parameters. We provide the-
oretical performance analysis for our approaches, present
their distributed implementation and discuss the different as-
pects of using each. We show that in many cases our output-
sensitive approximation solution performs better than the
currently known best results for sensor networks. We also
consider our problem under the mobile sensor nodes envi-
ronment, when the sensors have no information about each
other. The only information a single sensor holds is its cur-
rent location and future mobility plan. Our simulation results
validate the theoretical findings.
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1 Introduction

A wireless sensor network (WSN) consists of transceivers
(nodes) that are located in the plane, communicate by ra-
dio and have no fixed communication backbone. The tem-
porary physical topology of the network is determined by
the relative disposition of the sensor nodes and the transmis-
sion range assignment of each of the nodes. The combina-
tion of these two factors produces a directed communication
graph where the nodes correspond to the transceivers and the
edges correspond to the communication links. The transmis-
sion range of each sensor node is determined by the assigned
transmission power.

Our main objective in this paper is to construct effi-
cient communication backbones for multi-hop data collec-
tion with aggregation in WSNs for arbitrary sensor node de-
ployments, while measuring the efficiency based on the next
four metrics.

– Total energy consumptionis probably one of the most
important parameters of a WSN as the sensor nodes are
often deployed in areas where battery replacement is in-
feasible [8]. Wireless communication is a major con-
tributer to the energy budget of a node. In this paper we
focus on minimizing the total energy consumed by all
nodes for communication purposes.

– Thetransport capacitymetric represents the sum of rate-
distance products over all the active links. It is measured
in bit-metersand was first introduced by [19]. The idea
behind this measure is to capture both the notion of the
overall rate and distance that the information travels in a
network.

– Hop-diameteris another important metric which reflects
the depth of the data gathering tree, i.e. the maximum
number of hops from any of the sensor nodes to the base
station.
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– Thestretchof the paths connecting sensor nodes to the
base station. The distance stretch factor has a strong ef-
fect on the quality of geographic routing protocols [17].
These protocols use greedy forwarding decisions based
on the geographic progress towards the destination, thus
having a low distance stretch factor in the underlying
topology graph is essential for efficient and successful
geographic routing.

We will follow two main approaches in our construc-
tions. The first is based on so-calledbalance nodes, where
the main motivation is to build data collection routes based
on centrally located nodes in topologies which are already
efficient in terms of some of the metrics. In our second ap-
proach we examine the addition of shortcut links to the cur-
rently constructed topology in order to allow the required
tradeoff between studied criteria. Finally, we consider the
problem when the nodes are allowed to change their posi-
tions and the topology will change with respect to the nodes
movement. It makes sense then to indicate the time interval
[ts, t f ], for which the induced topology is stable, wherets and
t f are the start and finish times. Note that some other links
might appear and disappear during the time interval, how-
ever the important links, which define the required topology
remain unchanged.

In what follows we describe the model, discuss previous
work, and describe our contribution. In Section 2 we show
our balanced nodes based construction. The shortcut edges
design is described in Section 3. Section 4 outlines a pos-
sible distributed implementation of our algorithms. Section
5 deals with the mobile version of the problem and possible
extensions. We present our simulation results supporting our
theoretical analysis in Section 6. Finally, we discuss some
possible future research and conclude in Section 7.

1.1 System settings

A wireless sensor network (WSN) consists ofn wireless
sensor nodes,S= {s1, . . . ,sn}, distributed in some areaA.
These nodes perform monitoring tasks and periodically re-
port to a base stationr which is located somewhere within
the areaA (we consider different locations throughout the
paper). During the report phase, the sensor nodes propagate
a message to the base station through adata collection tree,
TS= (S∪{r},ES), rooted atr. We considerdata collection
with aggregation, where every nodes∈ S forwards a single
unit sizereport messageto its parent. The message holds
an accumulated information collected from a subtree ofTS

rooted ats. An example of this scenario can be found in
temperature monitoring systems for fire prevention, intru-
sion detection, seismic readings, etc.

We assume the use offrame-basedMAC protocols which
divide the time into frames, containing a fixed number of

slots. The main difference from the classic TDMA is that
instead of having one access point which controls transmis-
sion slot assignments, there is a localized distributed pro-
tocol mimicking the behavior of TDMA. The advantage of
a frame-based (TDMA-like) approach compared to the tra-
ditional IEEE 802.11 (CSMA/CA) protocol for a Wireless
LAN is that collisions do not occur, and that idle listening
and overhearing can be drastically reduced. When schedul-
ing communication links, that is, specifying the sender-receiver
pair per slot, nodes only need to listen to those slots in which
they are the intended receiver – eliminating all overhearing.
When scheduling senders only, nodes must listen in to all
occupied slots, but can still avoid most overhearing by shut-
ting down the radio after the MAC (slot) header has been
received. In both variants (link and sender-based schedul-
ing) idle listening can be reduced to a simple check if the
slot is used or not. Several MAC protocols were developed
to adapt classical TDMA solutions which use access points
to ad-hoc settings that have no infrastructure; these proto-
cols employ a distributed slot-selection mechanism that self-
organizes a multi-hop network into a conflict-free schedule
(see [36, 43]).

Let d(u,v) be the Euclidean distance between two sen-
sor nodesu,v∈ S. It is customary to estimate that the energy
required to transmit fromu to v is proportional tod(u,v)µ ,
whereµ is the path-loss coefficient. In perfect conditions
µ = 2, however in more realistic settings (in presence of ob-
structions or noisy environment) it can have a value between
2 and 4 (see [35]). In this paper we assumeµ = 2 for sim-
plicity. However, it is possible to extend our results for other
values ofµ which are greater than 2.

Let E(TS) be theenergy requirement to execute a sin-
gle report phase. Note that every sensor performs a single
transmission, during which it sends a single message to its
parent inTS. Thus, the energy requirement is proportional
to the sum of squares of lengths of the edgesES. The fo-
cus of this paper is to study the asymptotic performance of
data collection trees, thus we can expressE(TS) as follows,
E(TS) = ∑(u,v)∈ES

d(u,v)2.

Minimizing the energy requirement is one of the pri-
mary optimization objectives when deploying a WSN due
to the very low battery reserves at the sensor nodes and the
high costs that are associated with replacing these batteries
(if at all possible).

The second measure that we are interested in istrans-
port capacity, D(TS), of the data collection treeTS. As men-
tioned earlier, the main idea which stands behind this metric
is to capture the spatial rate of the network, which is repre-
sented by the total rate over some distance. In our scenario,
the rate on all links is fixed as all the nodes transmit an ag-
gregated, unit-size message, to the parent in the collection
tree and the schedule is conflict-free. Thus, to maximize the
transport capacity we need to minimize the total distance
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traveled by information, which is the sum of lengths of all
the links,D(TS) = ∑(u,v)∈ES

d(u,v).

Another critical aspect in the design of a WSN is the
hop-diameterof TS. The data flows from the leafs of the de-
livery tree to the base station, where each intermediate node
waits to receive the report messages from all its children,
before sending its own report message to its parent. There-
fore, the hop-diameter ofTS, denoted asH(TS), determines
the delay of data collection.

Finally, we also aim to decrease thestretch, δ (TS), of
the paths in the data collection treeTS connecting sensors
with the base station (root) ofTS. Let dT(u, r) be the length
of the unique pathpT(u, r) connectingu with the rootr in
TS. Then, the stretch factor of this pathδ (pT(u, r) is the ratio
dT (u,r)
d(u,r) . The stretch factor of the paths inTS is defined as

maxu∈Ts δ (pT(u, r)).
Unfortunately, it is impossible to achieve optimal per-

formance in all four measures at the same time. For exam-
ple, minimizing the hop-diameter results in all nodes trans-
mitting to the base station, which is disastrous in terms of
transport capacity or energy consumption, whereas the best
topology to minimize energy consumption1 results in a rela-
tively high hop-diameter. While we are interested in arbi-
trary deployments of sensor nodes, it was shown by Mi-
lyeykovsky et al. [33] that single-hop construction having
optimal hop-diameter and stretch factor by choosing a cent-
dian as a root node may lead to very bad transport capacity
and energy consumption.

In theory it is impossible to devise a range assignment
that will satisfy the topology requirement for a given period
of time without being aware of the future location changes.
Each node has its ownmobility plan, which is composed of
direction vectors, velocity, acceleration, and so on. Basch
et al. [3, 4] proposed an elegant method to handle topology
updates for mobile nodes. They proposed a framework to
maintain an invariant of a set of moving objects in a discrete
manner, called thekinetic data structure(KDS in short).
They introduce the idea of keeping certificates as triggers for
updates. When an object moves and a certificate fails, the
consistency of the kinetic data structure is invalidated and
an update is mandatory. Each failure of a certificate incurs a
setup of up to a constant number of new certificates. Hence
we are allowed to monitor the dynamics of a set of objects
discretely and efficiently. The kinetic data structure requires
that we know the mobility plan (a specification of the fu-
ture motion) of all nodes, and that the trajectory of each
disk can be described by some low-degree algebraic curve.
These structures are extremely efficient for topology main-
tenance, but do not address the issue of energy efficiency or
the construction of initial topology. The approach taken in

1 The Euclidean minimum spanning tree minimizes the energy con-
sumption, see [39, 44].

this paper resembles the spirit of KDS. Additional results
for topology control in mobile networks may be found in
[18, 22, 23, 28].

1.2 Previous work

To the best of our knowledge, the only work which takes into
account three of the aforementioned performance measures
simultaneously (except of paths stretch) is by Milyeykovsky
et al. [33]. They consider the random uniformly spreaded
sensor nodes in unit size square in the plane and three di-
mensional space and present centroid-based hierarchical con-
struction with hop-diameter ofO(logn) that performs opti-
mally (up to constant factor) in terms of energy and transport
for three dimensional space and providesO(logn) approx-
imation factor for energy consumption and asymptotically
optimal transport capacity for planar case.

Below we discuss some other of the related work on data
collection, energy efficiency, transport capacity, bounded-
hop and bounded paths’ stretch communication.

It has been proved in [39, 44] that using the minimum
spanning tree for data collection (gathering) with aggrega-
tion achieves optimal solution in terms oftotal energy con-
sumption. Elkin et al. [15] proposed the solution for the
broadcast tree construction (which is easily deformable into
the data collection tree) such that the total energy consump-
tion is of factorρ from optimal bound (which is propor-
tional to the weight of minimal spanning tree for the set of
nodes where the weight of edge is defined as the squared Eu-
clidean distance between the nodes) and the hop-diameter is
n/ρ + logρ , for any chosen integer parameterρ ,1≤ ρ ≤ n.
Their solution [15] is based on Hamiltonian cycle construc-
tion of weight proportional to the weight of minimal span-
ning tree for squared distances with a consequent design of
the hierarchical tree using this cycle. For more details re-
garding energy consumption in data gathering problem, we
refer the reader to a recent survey by Ramanan et al. [29],
and a paper by Li et al. [31] which cover a diverse set of
data gathering algorithms in ad-hoc networks.

The notion of transport capacity was introduced by
Gupta and Kumar in [19]. They showed that for any lay-
out of n wireless nodes in an area of sizeA, with each node
being able to transmitW bits per second to a fixed range, the
overall transport capacity is at most(W

√
An) bit-meters per

second under both interference models (protocol and phys-
ical). In [25] the authors derive upper bounds on the trans-
port capacity as a function of the geographic location of the
nodes. It has also been shown that the scaling of transport
capacity depends, among other factors, on channel attenua-
tion and path loss [45, 46, 47].

Some communication backbones withbounded hop dis-
tancesand/orbounded paths stretchbetween participating
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nodes have also been studied. For the linear layout of nodes
and an upper bound on hop-distance, Kirousis et al. [27] de-
veloped an optimal power assignment algorithm for strong
connectivity inO(n4) time. In the Euclidean case, [11] ob-
tains constant ratio algorithms for the bounded-hop vertex
connectivity for well spread instances. Beier et al. [5] pro-
posed an optimal algorithm to find a bounded-hop minimum
energy path between pairs of nodes. In [7] the authors ob-
tain bicriteria approximation algorithms for connectivity and
broadcast while minimizing the hop-diameter and energy
consumption. Funke and Laue [16] provide a PTAS for the
h-broadcast algorithm in time linear inn. Additional results
for bounded range assignments can be found in [10, 12, 40,
30]. Li et al. [32] consider a problem of constructing energy-
efficient broadcast tree with bounded stretch paths. However
the approximation factor shown in [32] for the total energy
consumption can be as worse asΩ(n2∆), where∆ stands for
the degree of the obtained tree. Segal and Shpungin [38, 41]
consider several spanner (opposite to data collection tree)
constructions under the total energy consumption and hop-
diameter, but ignoring the transport capacity measure.

Not too much has been done with respect to the prob-
lem in mobile environment. Yun et al. [48] propose an algo-
rithm for maximizing the lifetime of a wireless sensor net-
work when there is (only) a mobile sink and the underlying
application can tolerate some amount of delay in delivering
the data to the sink.

1.3 Our results

We study the power assignment problem in wireless sensor
networks so as to produce data collection tree while opti-
mizing several properties of the construction: energy cost,
transport capacity, hop-diameter and stretch of the paths.
Our constructions work for arbitrary sensors deployments.
Let us denote byOPTe the minimal possible value that can
obtained byE(T ′

S) for someT ′
S and denote byOPTc the min-

imal possible value that can be obtained byD(T ′′
S ) for some

T ′′
S . Let T ′ be the minimal spanning tree forS∪{r}, w(T ′)

be the weight ofT ′, w(e∗(T ′)) be the weight of the heav-
iest edge inT ′. Then our first construction forTS guaran-
tees the following bounds for given hop-diameter parame-

ter h,1≤ h≤ n: E(TS) = O(n2h2·w2(e∗(T′))
w2(T ′) ·OPTe), D(TS) =

O((1+ 2
α−1) ·

n·d(e∗(T′))
d(T′) ·OPTc), h(TS) = h, δ (TS) = α, for

α > 1. The second construction forTS produces the follow-
ing results:E(TS) = O(n2−2ε · h ·OPTe), D(TS) = O(n2−ε ·
h ·OPTc), h(TS) = h, δ (TS) = nε · h2. Note that all the up-
per bounds derived in this article are compared with the
best possible corresponding lower bound for the optimal so-
lution. Thus, the produced results serve as approximation
guarantees for the considered problems. We also show that
our bounds are held for mobile setting up to constant factor.

2 Multi-hop collection for any deployment: transport,
hop and stretch

In this section we propose hierarchical structure which has
guaranteed bounds for transport capacity and hop-diameter
in the scenario where the nodesSare placed anywhere in the
areaA.

We start by describing the hierarchical structure obtained
by balanced tree partitioningand then show how it can be
used to produce an efficient communication backbone.

2.1 Balanced tree partitioning

We begin with some notation. Given a treeT = {V,E}, de-
note the set of nodes in the subtree ofT, T ′, by V (T ′) and
the set of the edges inT ′, byE (T ′). Denote the induced tree
on the setV ′ ⊆V of nodes byTV′ . Next we provide the def-
inition of balanced tree partition followed by a proof that it
exists for any treeT.

Definition 21 (Balanced Tree Partition). Given a tree T=
{V,E}, a partition into two connected subtrees of T ,(T1,T2),
where T1 = {V (T1) ,E (T1)} and T2= {V (T2) ,E (T2)} is called
a balanced tree partitioniff the following conditions hold:

– V (T1)∪V (T2) =V (T).
– There exists v∈V such that V(T1)∩V (T2) = {v}.
– |V2| ≤ |V1| ≤ 2|V2|.

We refer to v in the second condition above as thebalance
node.

Theorem 22(Balanced Tree Partitioning). For any tree T
there always exists a balanced tree partition.

Proof. We prove the theorem by contradiction. Suppose that
for every nodev∈V, the partition we obtain does not satisfy
the claim of the theorem, that is for everyv∈V, and for any
partition ofT intoT1 andT2 such thatV(T1)∪V(T2) =V(T),
V(T1)∩V(T2) = {v}, and|V(T1)| > 2|V(T2)|. Let v′ be the

node inV such that the ratio|V(T1)|
|V(T2)| is minimized over all

possible choices of nodes. Letk= |V(T1)| andm= |V(T2)|.
Let us consider a setNT1(v

′) of the neighboring nodes of
v′ that belong toT1. Since we assumed thatv′ gives us the
minimal ratio |V(T1)|

|V(T2)| over all possible choices of nodes, it

means that a different partition(T ′
1,T

′
2) which can be ob-

tained from partition(T1,T2) by moving some nodew ∈
NT1(v

′) intoT2 and possibly some other nodes fromT1 which
are connected tow as well, should produce a larger ratio.

Since we have that|V(T ′
1)|< |V(T1)| and|V(T ′

2)|> |V(T2)|
the larger ratio can be produced only when|V(T ′

2)|> 2|V(T ′
1)|,

because otherwise the ratio
|V(T ′

1)|
|V(T ′

2)|
will be less than|V(T1)|

|V(T2)|
which contradicts our assumption. Moreover, if|V(T ′

2)| >
2|V(T ′

1)| we can always bound the number of nodes added
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to T2 (denoted bya) to be at most|V(T1)/2|. This is because
|NT1(v

′)| is at least 2 - in this case we can always add to
T2 the smaller subtree ofT1 rooted at some node ofNT1(v

′).
The reason for the fact that|NT1(v

′)|> 1 comes from our as-

sumption that the ratio|V(T1)|
|V(T2)| is minimized over all possible

choices of nodes. If|NT1(v
′)|= 1 we have that

|V(T2∪NT1
(v′))|

|V(T1)\NT1(v
′))|

will be less than|V(T1)|
|V(T2)| .

To conclude, we havek> 2m(or in other words|V(T1)|>
2|V(T2)|) and 2(k−a)< m+a,1≤ a≤ k/2. These inequal-
ities have no solution and thus we have reached a contradic-
tion.

2.2 Obtaining a tree partition

Below we describe the algorithm that chooses the balanced
tree partition of minimum spanning treeT with n nodes in
O(n) time. We also emphasize that the algorithm uses only
local information and, therefore can be easily implemented
in a distributed way. First, for each edgee= (u,v) ∈ T, we
compute how many nodes are located in the subtreeTu of
T that includesu but not v and in the subtreeTv of tree
T that includesv but not u. Notice thatTu ∩ Tv = /0 and
Tu∪Tv∪{e}= T. This can be done by a simple scanning of
the treeT, starting from the leafs, and converging towards
the internal nodes of the tree while counting the number of
nodes on the way. For the distributed version, we first estab-
lish the connectivity and run the algorithm of Awerbuch [2]
that builds a minimum spanning tree. In order to find the
above-mentioned values for each edge, we use the converge-
cast process. Next, we use a well-known fact that the max-
imal degree of any node inT is at most 5 [34]. It means
that the number of partitions that can be possibly made (per
each node) is constant. Using the information computed in
the previous step, we can find each such partition inO(1)
time. Thus, we can find the best partition for each particular
node inO(1) time (and inO(n) time for all the nodes) and
the best balanced tree partition inO(n) time.

2.3 Data collection through tree partitioning

Using the above, we can define our hierarchical construc-
tion in the following recursive fashion. We find the balance
nodev (which we assume is the location of the base sta-
tion as well) of the minimum spanning treeT and split the
tree into two subtreesT1 andT2 sharing the same nodev.
Next we connectv with recursively computed balance nodes
of T1 and T2, respectively, and continue in the same way.
Clearly, the hop-diameter of the obtained hierarchyH (in
fact, it is a binary tree) will beO(logn) and the total sum
of edges, or in other words, transport capacityD(H) will be
O(logn·w(MST)), wherew(MST) is the weight of minimal

spanning tree for our set of nodes, when the edge weight is
defined as the Euclidean distance between two nodes. We
point out that such a partition can be obtained inO(nlogn)
time since we will spendO(n) for each level of the hierar-
chy. For distributed version, we observe that the total run-
time will be bounded byO(n) since the balance nodes in
each level of the hierarchy can be computed in parallel and
the time needed for computations in each level of the hierar-
chy is decreasing proportionally to fraction2

3 of n (the size
of the largest component).

We can provide some tradeoff mechanism between the
hop-diameter of the hierarchy and the total distance of the
obtained edges. Using the above-mentionedpartitioning pro-
cedure we can build anm-ary tree hierarchy (for any integer
parameterm, 1< m≤ n). Instead of performing a (binary)
partition of the treeT and connecting every parent node with
two recursively computed children, we can partition the tree
into m components by using a balanced partition, choosing
the largest component from all components in current level
and continue partitioning until we havemcomponents. Next
we connect the parent node with themchildren which are re-
cursively computed in the same manner. The obtained hier-
archyH ′ has hop-diameter of logmn; however the total trans-
port capacityD(H ′) deteriorates toO(mlogmn ·w(MST)).
We may note here that Hassin and Peleg [21] suggested an-
other construction based on separators of the tree; however
the obtained degree of the resulted tree (and, therefore, the
hop-diameter) can not be chosen (opposite to our strategy)
and can be twice as large as the degree of the initial tree.

2.4 Augmenting shortest paths

At this stage we have a collection data treeTS having hop-
diameter ofO(logn) and having transport capacity of weight
O(w(MST) · logn). Clearly, the weight of minimal spanning
tree is equal to the optimal transport capacityOPTc that can
ever exist (each node, except of the root, needs to connect
to its parent; thus the total transport capacity equals the sum
of the edges’ weights in the tree). Thus, our collection data
tree has transport capacity of weightO(OPTc · logn). It may
happen that the given root noder does not coincide with the
current root ofTS. In that case we simply redirect the corre-
sponding edges towardsr. This procedure does not change
asymptotically any bound derived forTS.

Next we proceed following the construction suggested
by Khuller et al. [26]. A LAST is a combination of a min-
imum spanning tree and a shortest path tree. Given a graph
G, edges’ weight functionw and a source noder, Khuller
et al. [26] presented a linear time algorithm, which com-
putes a spanning tree ofT, so that its weight is at most
β times the weight of a minimum spanning tree ofG, and
for every nodev, pT(v, r) ≤ α · d(v, r) , whereα > 1 and
β ≥ 1+ 2

α−1. A spanning tree that complies with the bounds
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is called an(α,β )-LAST. Basically, the algorithm for com-
puting(α,β )-LAST works as follows. First, we compute the
minimal spanning treeT of initial graphG. In the following
step, a preorder scan is performed over the vertices ofT and
the comparison is made between the weight of the existing
pathpT(v, r) of currently scanned nodev and the weight of
the shortest path existing inG between multiplied byα. In
case that the weight of currently existing path is larger, we
add the edges of the shortest path inG to T. Finally, the
unnecessary edges are removed fromT by running shortest
path tree algorithm onT from r.

We are going to incorporate our currently constructedTS

into the Khuller et al. [26] algorithm above. In particular,in-
stead of computing minimum spanning tree, we supplyTS as
the first step of the algorithm and the rest remains the same.
We also note that the weight of the shortest path between any
nodev in G andr is simplyd(v, r), i.e. we might need to add
only one directed edge betweenr andv to TS in case that
the length of current path violates the given requirement.
We also note that this procedure can only decrease the cur-
rent hop-diameter ofTS. The same proof for the obtained
weight of spanning tree holds to our case as well, i.e. at the
end of the algorithm we obtain a treeTS having hop-diameter
O(logn), transport capacity ofO(OPTc ·(1+ 2

α−1) logn) and
stretch factorδ (TS) = O(α), for α > 1.

2.5 Lower bound for sum of squares with bounded hop

One may wonder whether there is hope for designing bounded
hop hierarchy for arbitrary points positions that simultane-
ously provides good bounds for transport capacity and the
sum of squared distances, i.e. the energy requirement. Un-
fortunately, the following example shows that it is not pos-
sible (see Fig. 1). Consider the unweightedn-path: any tree
T ′ with hop-diameter∆ , contains an edge with an interval
length of at least(n− 1)/∆ , and so its weight is at least
(n− 1)2/∆2. Observe that for the minimum spanning tree
T, E(T) = n− 1. However, for treeT ′, we haveE(T ′) ≥
n− 2+(n− 1)2/∆2. It means that the approximation ratio
we can have while aiming for the hop-diameter of∆ is at
leastn−1

∆ 2 . For example, it follows that for∆ = logn we can
not build any hierarchy having energy requirement less than
n−1

log2 n
times the optimal one.

Fig. 1 Demonstrating a lower bound for sum of squares of distances.

3 Multi-hop collection for any deployment: altogether
with energy

In this section we are going to build a structure that can per-
form well under all of the proposed criteria: energy con-
sumption, transport capacity, hop-diameter and stretch of
the paths to root node. As we already mentioned, Elkin et
al. [15] proposed the solution for the data collection tree
problem such that the total energy consumption is of fac-
tor ρ from optimal boundOPTe and the hop-diameter is
n/ρ + logρ , for any chosen integer parameterρ ,1≤ ρ ≤ n.
In some sense, this is almost best (up to logarithmic factor)
we can do in a view of lower bound example above. Never-
theless, below we present a novel construction that in many
cases outperforms the construction of Elkin et al. [15].

Let us denote byT ′ the minimal spanning tree for the set
of nodes where the weight of edge is defined as the squared
Euclidean distance between the nodes, andw(T ′) is the to-
tal weight of the edges in this tree. As can be easily seen,
w(T ′) is the lower bound for the energy consumption for
data collection tree (each node, except the root, transmitsto
its parent in the tree). The main weakness in the approach
of Elkin et al. [15] is that they completely ignore the cur-
rent hop-diameter ofT ′. Given a desired boundh for hop-
diameter andh(T ′)> h, they immediately transformT ′ into
corresponding Hamiltonian cycle with a consequent hierar-
chy construction. However, in cases whenh(T ′) not exceeds
by much ath (as we show, it can be as much asO(h2)), we
can do better. Below we present and analyze our construc-
tion.

First we findT ′. We can do this inO(nlogn) time using
Delaunay triangulation. Next, we check, whether the result-
ing treeT ′ satisfies the requirement of hop-diameter at most
h. If yes, we are done. Otherwise, we are going to shorten
the tree in the following fashion. We choose the given ver-
tex r to serve as the root and tag every other node using its
distances from the root. It can be done using the standard
BFS algorithm. Every edge also receives tag being the min-
imum value between its both endpoints. Next, we makeh
stages. At stagej,0 ≤ j ≤ h− 1, we remove from the tree
T ′ rooted atv all the edges being taggedi ·h+ j, for every
i,0 ≤ i ≤ |V|− j

h , and connect the nodes taggedi · h+ j + 1
directly to the rootr. We call the resulting treeTj . After
all h stages we choose betweenh treesTj the tree having
minimal weight. We call this treeT ′′. We bound the perfor-
mance of this solution as follows. SinceT ′ has the minimal
weight between allh trees, it follows that weightw(T ′′) ≤
(1/h)Σh−1

j=0w(Tj ). Next, notice that when considering the en-

tire collection{Tj}h−1
j=0 of trees, every edge ofT has been re-

placed no more than once. Every such replacement (we have
at mostn such replacements) produced a new edge of weight
of at mostn2 ·w(e∗(T ′)), wheree∗(T ′) is the largest edge in
T ′. This is because a weak triangle inequality is satisfied
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(i.e., for u,v,w∈ V, (d(u,w))2 ≤ 2((d(u,v))2 +(d(v,w))2)

and following Cauchy-Schwartz inequality we have that for
anyx1,x2, . . . ,xk ∈ R, (Σk

l=1xl )
2 ≤ k ·Σk

l=1x2
l .

SHORTCUT MST
1 Compute minimum spanning treeT ′ of complete graph defined

on nodesS∪{r}.
2 if hop-diameter of T′ is at most hthen
3 outputT ′

4 Tag nodes inT according to their distance from rootr.
5 Every edge(v,w) receives tag that is minimum between tags of

v andw.
6 for j = 0→ h−1 do
7 Remove from the treeT ′ rooted atr all the edges being

taggedi ·h+ j , for everyi,0≤ i ≤ |V|− j
h

8 Connect the nodes taggedi ·h+ j +1 directly to the rootr
obtaining treeTj .

9 Let T ′′ be the tree of minimal weight from{Tj}h−1
j=0.

10 OutputT ′′.

Thus,Σh−1
j=0 w(Tj) ≤ h ·w(T ′)+n3 ·w(e∗(T ′)). Combin-

ing things together we obtain:w(T ′′)≤w(T ′)+n3·w(e∗(T ′))/h

In other words, the weight ofT ′′ provides 1+ n3·w(e∗(T′))
h·w(T ′)

approximation for optimal solution. The SHORTCUT MST
algorithm shows the formal description of aforementioned
scheme.

But, in fact, we can do much better. The idea is that ev-
ery edge cut and its replacement will lead to an additional
O(h2 ·w(e∗(T ′)) increase of energy, instead of current in-
crease ofn2 · w(e∗(T ′)) per edge. The crux is to cut the
edges not in intervals of sizeh but rather take intervals of
size h,h− 1,h− 2, . . . ,1 and connect the nodeu (that be-
came disconnected as the result of cut) in the interval of
sizet,1 ≤ t ≤ h to the node (that became disconnected) in
the interval of sizet + 1 that lies on the same path inT ′

as u. The node in interval of sizeh is connected directly
to the root. We perform the same shifting strategy as be-
fore. This scheme is presented in IMPROVED SHORTCUT
MST algorithm figure and guarantees that every new added
edge may need to bypass at mosth original edges ofT ′

and, therefore, will lead toO(h2 ·w(e∗(T ′)) increase in total
energy consumption. To conclude, we have a construction

that providesO(nh·w(e∗(T′))
w(T ′) ) approximation for total energy

consumption with hop-diameter ofh assuming that the hop-
diameter of minimum spanning tree is at mosth2. This re-
sult compares well with the best solution to date by Elkin
et al. [15] from the following reason. Of course, the value
of w(e∗(T ′)) can be as large asw(T ′) but in many cases,
the weight of the heaviest edge of minimum spanning tree
behaves similarly as the length of the average edge in mini-
mum spanning tree or similar to this. For example, for uni-
formly distributed points in 2-dimensional unit size square,
w(e∗(T ′)) =O(logn/n) andw(T ′) is at leastΩ(1), see [37].

It means that for this and similar cases, the approximation
factor stands athlogn. If we chooseh= O(logn), then our
approximation factor isO(log2n) while the solution in [15]

produces approximation ofn. Moreover, even ifw(e
∗(T ′))

w(T′) =

n−ε ,0< ε < 1, our approximation ishn1−ε and for the poly-
logarithmic values ofh our algorithm gives better approxi-
mation than in [15]. Speaking of transport capacity, the simi-

lar analysis shows that the approximation factor is 1+ n·d(e∗(T ′))
d(T ′) ,

whered(e∗(T ′)) denotes the Euclidean length of the longest
edge inT ′ andd(T ′) is the total length of the edges inT ′.
For uniformly distributed points in 2-dimensional unit size
square,d(e∗(T ′))=O(

√

logn/n) andd(T ′) is at leastΩ(
√

n),
see [42]. Thus, we obtain sublinear approximation for this
and similar cases following similar argument as above.

IMPROVED SHORTCUT MST
1 Compute minimum spanning treeT ′ of complete graph defined

on nodesS∪{r}.
2 if hop-diameter of T′ is at most hthen
3 outputT ′

4 Tag nodes inT according to their distance from rootr.
5 Every edge(v,w) receives tag that is minimum between tags of

v andw.
6 for j = 0→ h−1 do
7 Remove from the treeT ′ rooted atr all the edges being

taggedi ·h+ j −Σ i
p=0p, for everyi,0≤ i when such edge

exists.
8 Connect the nodes taggedi ·h+ j +1−Σ i

p=0p directly to

the node tagged(i −1) ·h+ j +1−Σ i−1
p=0p lying on the

same path inT ′ or to the rootr wheni = 0 obtaining tree
Tj .

9 Let T ′′ be the tree of minimal weight from{Tj}h−1
j=0.

10 OutputT ′′.

Remark. The IMPROVED SHORTCUT MST scheme can
be applied in a bootstrapping fashion for the case whenh∈
o(
√

h(T ′)). In particular, we can takeT ′ and cut the edges
in intervals ofh(T ′),h(T ′)− 1,h(T ′)− 2, . . . ,1 by adding
shortcut edges. In such a way, we will obtain a new treeT ′

1
having hop-diameterh(T ′). If h∈ o(

√

h(T ′
1)), we apply the

same procedure toT ′
1 cutting it in intervals ofh(T ′

1),h(T
′
1)−

1,h(T ′
1)− 2, . . . ,1 with addition of shortcut edges. We re-

peat this process until we obtain a tree of desired diame-
ter. Clearly, the number of bootstrapping steps is at most
O(loglogh(T ′)) since we shrink the hop-diameter recursively
by square root factor.

Now we suggest how to incorporate the stretch of paths
characteristics into our solution. We will show that while
the stretch of the paths drops to the factor ofh2(T ′′) ·nε ,0<

ε < 1, the total energy consumption in new tree increases by
factor of at mostn1−2ε from the energy consumption inT ′′.
We start scanning all of the nodes in our constructed treeT ′′.
In general, the technique will work for any data collection
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tree. If the distanced(v, r) between currently scanned node
v to root r is less thand(e∗(T ′))/nε ,0 < ε < 1, then we
remove the edge fromv to its parent node inT ′′ and put a
direct edge betweenv andr. Notice, that the hop-diameter,
h(T ′′), can only decrease as the result of our procedure.

Let us compute what happens with total energy con-
sumption. In the worst scenario, we replaced all the edges
in the tree and, therefore, the total energy consumption is

bounded byn·w(e∗(T ′))
n2ε and the approximation factor from

the optimal solution isO(n2−2ε ·h·w2(e∗(T ′))
w2(T ′) ) ∈ O(n2−2ε · h).

For appropriate values ofε and, for example, for polylog-
arithmic values ofh or even higher, we obtain a sublinear
approximation factor. We leave to any interested reader to
obtain the exact range of values when the approximation
factor for total energy consumption iso(n) (notice that in
our analysis we assumed thatw(e∗(T ′)) = w(T ′) where for
many cases as shown abovew(e∗(T ′)) is much smaller than
w(T ′), and, better approximation factor can be derived; the
same holds for transport capacity as well).

In order to evaluate the stretch factor of the obtained
paths we notice the following. First, ifd(v, r)< d(e∗(T ′))/nε ,
then a shortcut has been added and the stretch of the path be-
tweenvandr in new tree is 1. Second, ifd(v, r)≥ d(e∗(T ′))/nε ,
then the length of the path betweenv andr in a new tree is at
mosth(T ′′) ·d(e∗(T ′′)) ≤ h2(T ′′) ·d(e∗(T ′)) ≤ nε ·h2(T ′′) ·
d(v, r). It means that the stretch of the path is at mostnε ·
h2(T ′′).

IMPROVING THE STRETCH OF PATHS

1 computeT ′′.
2 foreach v∈V do
3 if d(u, r)< d(e∗(T ′))/nε then
4 remove edge fromv to its parent inT ′′.
5 add(v, r) to T ′′.
6 OutputT ′′.

To summarize we have the following theorem.

Theorem 1 Given an integer value h,1≤ h≤ n andε,0<
ε < 1, and assuming that minimal spanning tree of the set of
nodes has diameter O(h2), we can find a data collection tree
TS such that the total energy consumption E(TS) =O(n2−2ε ·
h·OPTe), D(TS) =O(n2−ε ·h·OPTc), h(TS)= h andδ (TS)=
nε ·h2.

We also may use the LAST construction as described
in previous section in order to obtain different tradeoff ap-
proximation for our criteria. In particular, applying Khuller
et al. [26] produces the following results.

Theorem 2 Given an integer value h,1≤ h≤ n andε,0<
ε < 1, and assuming that minimal spanning tree of the set
of nodes has diameter O(h2), we can find a data collec-
tion tree TS such that the total energy consumption E(TS) =

O(n2h2·w2(e∗(T ′))
w2(T ′) ·OPTe), D(TS) = O((1+ 2

α−1) ·
n·d(e∗(T ′))

d(T ′) ·
OPTc), h(TS) = h andδ (TS) = α, for α > 1.

4 Distributed implementation

The distributed implementation of our construction heav-
ily depends on the construction on minimal spanning tree
(with the consequent manipulations) which is quite straight-
forward once we established connectivity between the nodes
and chose the leader (the root of the tree). For this we can
follow two different approaches as described in [33]. The
first, described in Dolev et al. [13] forms a temporary under-
lying topology inO(n) time usingO(n3) message. The sec-
ond (better) approach is given by Halldórsson and Mitra [20]
that shows how to do this inO(poly(logγ, logn)), whereγ is
the ratio between the longest and shortest distances among
nodes. After the topology is established, we can use leader-
election algorithm by Awerbuch [2] that shows how to find
a leader and minimum spanning tree in a distributed fash-
ion in a network withn nodes inO(n) time usingO(nlogn)
messages. In our former construction, the leader initiatesthe
process of finding the balance nodes with following hier-
archy construction and(α,β )-LAST computation in a dis-
tributed fashion as described in [6]. In the latter design, the
leader initiates the process of shortcuting edges with the
consequent convergecast process towards the leader. Each
node (in parallel), computes the edge required to be added
to the data collection tree and chooses the largest outgoing
edge. The total time and message complexities for eachTi

calculation are dominated by the initial minimum spanning
tree construction step.

5 Mobile sensors

As the distance between any two nodesu,v ∈ S may vary
in time, we definedu,v(t) to be the Euclidean distance be-
tweenu andv at timet ∈ [ts, t f ]. The transmission possibil-
ities resulting from a power assignment vary in time. Let
Hp(t) = (S,Ep(t)), with Ep(t) = {(u,v) : ru ≥ du,v(t)}, be
the induced directed communication tree at timet ∈ [ts, t f ].
Let GS = (S,ES) be an undirected complete graph. For any
t ∈ [ts, t f ], let wt(u,v) = (du,v(t))2, for every (u,v) ∈ ES,
a weight function over the edge setES. Note thatwt (u,v)
matches the amount of energy required to transmit fromu
to v, at time t. For any weight functionw, defined on a
weight setES, the weight of a graphH = (S,EH), EH ⊆
ES, is w(H) = ∑(u,v)∈EH

w(u,v). Consequently, denote the
weight of a graphH(t)= (S,EH(t)) asw(H(t))=∑(u,v)∈EH(t)wt (u,v)
in time t ∈ [ts, t f ]. The maximum weight ofH(t) through the
session[ts, t f ] is denoted bywmax(H(t))=maxt,t∈[ts,t f ] w(H(t)).
Finally, the ”critical weight” ofH(t) is wcr(H(t)) =
∑(u,v)∈EH(t)maxt,t∈[ts,t f ](du,v(t))2).
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For any two nodesu,v ∈ S, in order that an edge(u,v)
would exist in everyHp(t), t ∈ [ts, t f ], the power assigned
to u should be at least the square of the maximum distance
betweenu andv during [ts, t f ].We define a weight function
w′ which reflects this amount of energy for any pair of nodes,
w′(u,v) = maxt∈[ts,t f ](du,v(t))2, for everyu,v∈ S.

5.1 Basic solution

Consider the problem of finding a power assignmentp, which
induces a static communication network,Hp(t)= {S,Ep(t)},
∀t ∈

[

ts, t f
]

, with connectivity topology property, minimiz-
ing the total power of the transceiversc(p).

By definition,(du,v(t))2 ≥ 0, ∀u,v∈ S, ∀t ∈
[

ts, t f
]

, and
since the nodes move in straight lines,(du,v(t))2 is also con-
vex and max

t
(du,v(t))2 is observed int = ts or t = t f .

Theorem 3 ∑(u,v)∈Hp(t)(du,v(t))2 is maximum in t= ts or
t = t f .

Proof. For any pair of nodesu,v∈ S, denote byy2
u,v(t) the

linear function,y2
u,v (t) = a2

u,vt + b2
u,v, such thaty2

u,v(ts) =
d2

u,v(ts) andy2
u,v

(

t f
)

= d2
u,v

(

t f
)

. For any edge(u,v) ∈ Hp(t),
∑(u,v)∈Hp(t) y2

u,v(t)= t ·∑(u,v)∈Hp(t) a2
u,v+∑(u,v)∈Hp(t) b2

u,v. Clearly,

∑(u,v)∈Hp(t) y2
u,v(t) is maximum int = ts or t = t f . Sinced2

u,v(t)

is convex for∀u,v∈S,∀t ∈
[

ts, t f
]

, then∑(u,v)∈Hp(t)(du,v(t))2 ≤
∑(u,v)∈Hp(t) y2

u,v(t), ∀t ∈
[

ts, t f
]

. The theorem follows imme-
diately.

Consider a connected subgraphH⋆(t) of GS whose max-
imum weightwmax(H⋆(t)) is minimized over all possible
choices of connected subgraphs ofGS. Obviously,H⋆(t) is
a tree. Letp⋆ be the optimal power assignment. Clearly,
c(p⋆)≥ wmax(H⋆(t)).

Denote byH ′(t) a connected subgraph ofGS such that
the weight max{w(H ′(ts)),w(H ′(t f ))} is minimized over all
possible choices of connected subgraphs ofGS. Following
Theorem 1, we can conclude thatwmax(H⋆(t))≥
max{w(H ′(ts)),w(H ′(t f ))}.

Since the weights of the edges ofH ′(t), that are not max-
imal in t = ts are maximal int = t f , and vice versa, then we
have thatwcr(H ′(t))≤ w(H ′(ts))+w(H ′(t f ))≤
2max{w(H ′(ts)),w(H ′(t f ))} ≤ 2wmax(H⋆(t))≤ 2c(p⋆).

Therefore, we can use the following algorithm that com-
putes the power assignment. Consider a complete undirected
graph of the nodes inS, GS. Assign to each edge{u,v} ∈ ES

the weight max{wts(u,v),wt f (u,v)} and find the minimum
spanning treeT of the resulting graph. The power assign-
mentp assigns to each nodev the power equal to the squared
length of the longest edge in the minimum spanning tree at-
tached to nodev. The approximation factor follows from
the fact thatc(p) ≤ 2w(T) ≤ 2wcr(H ′(t)) ≤ 4c(p⋆). It is
worth to mention here that Dolev et al. [14] have proved

that the weight functionw′ that is defined as:w′(u,v) =
max{wts(u,v),wt f (u,v)} satisfies the weak triangle inequal-
ity, i.e. w′(u,v)≤ 2(w′(u,z)+w′(z,v)), for anyu,v,z∈V.

We can, in fact, claim that our approximation factor is
output-sensitive. To see this, let us enumerate the edges ofT
in non-decreasing order of their length:e1, . . .en−1. Then,
there aren2 edges that contribute twice to power assign-
mentp (from both ends), there aren1 edges that contribute
only once top (only from one end), and there are some
edges that do not contribute at all. In the worst case, the
largest length edges is counted twice, and thus their total
contribution top is at most 2∑n−1

i=n−n2
w(ei). The contribu-

tion of the rest of the edges is∑n−n2−1
i=n−n2−n1

w(ei). Notice that
since n1 = n− 2n2, the contribution of the rest of edges
becomes∑n−n2−1

i=n2
w(ei). Thus, to overall contribution toT

does not exceed 2∑n−1
i=n−n2

w(ei)+∑n−n2−1
i=n2

w(ei) = w(T)−
∑n2−1

i=1 w(ei)+∑n−1
i=n−n2

w(ei)=w(T)−∑n2−1
i=1 w(ei)+w(T)−

∑n−n21
i=1 w(ei) ≤ 2w(T)− (n− 2)w(e1). On the other hand

c(p)≤ nw(en−1). It follows thatc(p)≤ 2w(T)−(n−2)w(e1))≤
nw(en−1). Consequently,w(T) ≤ nw(en−1)+(n−2)w(e1)

2 . Thus,

we have that approximation factorc(p)
w(T ≤ 2− (n−2)w(e1))

w(T) ≤
2− 2(n−2)w(e1))

nw(en−1)+(n−2)w(e1)
=

2w(en−1)n
w(en−1)n+w(e1)(n−2) . Whenn is large

the bound is close to 2w(en−1)
w(en−1)+w(e1)

. The interesting thing is

that we know value ofw(e1) (which is equal to the smallest
weight in the graphGS) and can provide an upper bound for
w(en) (as the largest weight in the graphGS) even before the
execution of our algorithm.

It appears computing the solution treeTts at the start of
sessionts and Tt f at end of sessiont f and finally assign-
ing to each node a maximal power it has from both trees
is not enough. It may even not guarantee the connectivity of
a given set of sensors as shown in Figure 2. We have 4 or-
dered nodes,a,b,c,d located on the line, with the distances
between them as shown in the Figure. The nodes move with
the same speed. The nodea moves towardsb , b moves to-
wardsa, c moves towardsd, andd moves towardsc, see Fig-
ure 2(a). The final position of points is demonstrated at Fig-
ure 2(b). The pointsa andb switched their positions, so the
pointsc andd. As it shown in Figure 2(c), it is not enough to
give each point power that enough to cover a distance of 1/3
although it will guarantee connectivity atts andt f . The dis-
tance betweena andc is 2/3 in Figure 2(c) and the network
is disconnected.

We can observe that our scheme works well for other
topology criteria, e.g. lifetime (the number of rounds) or
transport capacity (which is the sum of lengths of all the
links,∑(u,v)∈ES

du,v) of the induced tree. In general, when the
batteries’ charges of the nodes are the same and the traffic
is uniform, the lifetime of the tree is dictated by the length
of the longest edge in the tree. Thus, our goal is to find a
power assignment ˆp such that the length of the longest edge
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Fig. 2 Counterexample.

in Hp̂(t) is minimized. Following the description above, let
H̃(t) be a tree ofGS whose longest edge weightlmax(H̃(t))
is minimized over all possible choices of trees ofGS. Let
l p̂ be the length of the longest edge obtained by the power
assignment ˆp. Clearly,l p̂ ≥ lmax(H̃(t)).

Denote byH ′′(t) a connected subgraph ofGS such that
the longest edge weight max{lmax(H ′′(ts)), lmax(H ′′(t f ))} is
minimized over all possible choices of connected subgraphs
of GS. Following the claim similar to Theorem 1, we can
conclude thatlmax(H̃(t))≥max{lmax(H ′′(ts)), lmax(H ′′(t f ))}.

Since the weights of the edges ofH ′′(t), that are not
maximal int = ts are maximal int = t f , and vise versa, then
we have thatlcr(H ′′(t))≤ lmax(H ′′(ts))+ lmax(H ′′(t f ))≤
2max{lmax(H ′′(ts)), lmax(H ′′(t f ))} ≤
2lmax(H̃(t))≤ 2l(p̂), wherelcr(H(t))=maxt,t∈[ts,t f ](du,v(t))2).

Thus, the same algorithm will produce the4w(en−1)
w(en−1)+w(e1)

approximation for the lifetime criteria of the tree.

5.2 Fault-tolerance

Andrea and Bandelt [1] give a linear time algorithm for the
construction of the Hamiltonian circuith in T3, given tree
T and a weight function that satisfies a weak triangle in-
equality. The algorithm is applied to a treeT and an edge
e= (u,v) of T. Removing the edgee divides the tree into
two subtreesT ′ andT ′′. In each subtree the algorithm se-
lects an arbitrary edgee′ = (u,w) (for T ′) ande′′ = (x,v)
(for T ′′), and recursively computes a Hamiltonian cycle of
T ′ andT ′′ that includes the edgee′ ande′′, respectively. The
circuit consists of the cycles inT ′ andT ′′ without two edges
e′ ande′′. The two resulting paths are glued together using
e and the edge connecting other endpoints of two edgese′

ande′′. They [1] also show thatw(h) ≤ w(T) · (3
2τ2 + 1

2τ),
whereτ is the weak triangle inequality parameter that equals
2 in our case. Moreover, it can be shown that the weight of
the longest edge inh is at mostO(1) times the weight of the
longest edge inT. The following theorem applies the above
on minimum spanning treeT.

Theorem 4 ([1]) Let h= (u0,u1, . . . ,un = u0), where ui ∈
V for 0 ≤ i ≤ n− 1, be the Hamiltonian circuit as a result
of applying the construction in [1] on T . Define e∗(T) and
e∗(h) to be the longest edges in T and h, respectively. Then
w(h) = O(w(T)) and w(e∗(h)) = O(w(e∗(T))).

Using the aforementioned theorem we can add the fault-
tolerance property to the data collection tree we aim to main-
tain. After computing the required tree, we find the Hamil-
tonian circuit as described above, and define the power level
of each node as the maximum value between the power level
in the tree and the power level the node has in the Hamilto-
nian circuit. Notice that it does not change asymptotically
the cost of power assignment but guarantees the existence
of two vertex disjoint paths between the rootsand any other
node. It follows that even if some node will fail, the tree will
still function (although its hop-diameter may increase dueto
the node failure).

5.3 Interference awareness

As nodes communicate through radio signals, wireless in-
terference becomes inevitable. Every node receiving simul-
taneous signals may incorrectly interpret them. High levels
of interference decrease the number of transmissions that
can happen simultaneously, which has a direct affect on the
required number of time slots for the message to propagate
from the source to all the other nodes in the network or op-
posite. We point out here that minimizing the hop-diameter
does not necessarily leads to the minimal number of slots for
propagating broadcast or convergecast messages. In order to
deal with the problem we give separate solutions for con-
vergecast and broadcast scheme. To perform convergecast
that starts from the leaves, every node keeps two numbers:
the total number of its siblings and its consecutive number
(starting from 0) between siblings order. These numbers can
be redistributed to every node by its parent in the tree. Then,
the node is allowed to send a message to its parent in the tree
only if the time slot number equals its consecutive number
modulo the total number of its siblings. This prevents from
more than one child to send a message simultaneously to its
parent. Every node sends a message to its parent only when
it received the messages from all of its children.

For propagating the broadcast message, we can use the
previous construction of Hamiltonian circuit in order to guar-
antee the required number of slots for propagating broadcast
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Fig. 4 2D Poisson point process with normalized unit density.

message be equal to some prescribed input parameterk. Af-
ter we find the Hamilton circuit (call the order of the nodes
starting from the source nodesass,v1,v2, . . . ,vi , . . . ,vn−1,s,
we assign the required power tos to be enough to reach the
nextn/k nodes in the path, i.e. to reachvn

k
, and follow the

same scheme to assign powers ofvn
k
,v2n

k
,v3n

k
, . . .. The sug-

gested scheme assures us that there will be onlyn/k trans-
mitting nodes (in different time slots) and the total broadcast
time will be k. This scheme increases the total energy con-
sumption by factor ofn/k.

6 Simulation Results

In this section we show some simulation results with respect
to the construction in Section 3, where we are mainly inter-
ested in comparison of total consumption energy criteria ob-
tained by ours and Elkin et al. [15], which is considered to
be the best algorithm in terms of energy consumption with
predefined hop-diameter. As we show, the simulation results
fully support our theoretical analysis. In our first experiment
we have randomly and uniformly distributedn sensor nodes
in a square of size 10×10, with the network sizen ranging
from 200 to 600 in steps of 20, see Fig. 3(a,b,c). We have
computed the energy consumption (Fig. 3(a)), the ratio be-
tween the weight of the heaviest edge in minimum spanning
tree and the weight of minimum spanning tree (Fig. 3(b))
and the number of nodes that located in different levels of
minimum spanning tree (Fig. 3(c)). The results are an aver-
age of 10 tries for every network sizen, where the predefined

value that has been taken for required hop-diameterh is the
square root of the obtained minimum spanning tree diameter
d. This is since for larger values ofh our algorithm performs
even better as there is no need in doing shortcuts for many
nodes. We can, in fact, observe from the Fig. 3(c) that the
amount of nodes that need to be shortcut when the value ofh
close to the diameter of minimum spanning tree is small. As
it can be concluded from Fig. 3(a), for the values ofn started
from 240 our solution always outperforms the one given
in [15]. Moreover, Fig. 3(b) also confirms the fact that the
ratio between the weight of the heaviest edge in minimum
spanning tree and the weight of minimum spanning tree de-
teriorates asn grows up. As our algorithm depends linearly
on such ratio, we deduce that it works really well for real,
large-scale deployments. Our second experiment modeled a
wireless sensor network by 2D Poisson point process of nor-
malized unit density in an 25×25 region for various values
of n, see Fig. 4(a,b,c). This is a standard technique for mod-
eling random wireless network with omni-directional trans-
mission as in [9]. We evaluate the same criteria as in the first
experiment. We observe the same tendency for all Fig. 4(a),
Fig. 4(b) and Fig. 4(c) as for uniformly placed sensors al-
though the rates are slightly different. We also learn that the
ratio in Fig. 4(b) indeed decreases but more slowly than for
random uniform network.

Next, for both uniform sensor nodes (Figure 5) and 2D
Poisson point process with normalized unit density (Figure
6) we evaluated the total energy consumption, total trans-
port and stretch factor for different values of hop-diameter
obtained by Improved Shortcut MST algorithm and com-
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pared them with the corresponding values obtained by stan-
dard MST solution. We can learn that in terms of energy
and transport, our algorithm performs slightly better for the
2D Poisson point process although for both cases the ap-
proximation ratio does not exceed the value of 4. For small
values of hop-diameter our algorithm produces a tree with
better stretch factor than MST. We reproduced the simula-
tion tests under the same criteria, but now (Figure 7 and
Figure 8) we compared our parameters when keeping the
ratio between our produced tree hop diameter and MST hop-
diameter equal to 0.5 (Figure 7) and equal to 0.75 (Fig-
ure 8). Our goal was to check whether the increase in the
number of nodes has any influence on the produced results.
We can conclude from both simulations that in both uni-
form and Poisson point processes for different ratio of hop-
diameters the obtained results for all criteria (energy, trans-
port, stretch factor) remained almost the same with small
deviations. Thus, our algorithm works well for small values
of the nodes as well as for the large number.

7 Conclusions

In this paper we have presented two constructions for data
collection tree with provable performance bounds on total
energy consumption, total transport capacity, hop diameter
and stretch of the obtained paths from the nodes towards
the root of the tree. We have shown that for various sen-
sor nodes deployments our solutions outperforms the pre-
viously known schemes. We also considered the problem
in mobile setting scenario where the sensors are allowed to
move. It would be interesting to investigate how well our
structures perform in terms of average hop-diameter (i.e.
hop-diameter taken over all paths connecting nodes to the
root) which can serve as another potential criteria to opti-
mize for scenarios where sensors send the information to-
wards the root in different time frames and periods of time.
It looks like our schemes can be extended to a more gen-
eral, SINR model, where a transmission is successful if the
signal is strong enough compared to the interference (as a re-
sult of simultaneous transmissions). This is because we can
adopt some of the known techniques for dividing the nodes
into interference/transmission regions based on the transmit
powers [24].
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