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Abstract 
Many-to-one packet routing and scheduling are fundamental 

operations of sensor networks. It is well known that many sensor network 

applications rely on data collection from the nodes (the sensors) by a 

central processing device. There is a wide range of data gathering 

applications like: target and hazard detection, environmental monitoring, 

battlefield surveillance, etc. Consequently, efficient data collection 

solutions are needed to improve the performance of the network. In this 

paper, we assume a known distribution of sources (each node wants to 

transmit at most one packet) and one common destination (called base 

station). We provide via simple mathematical models, a transmission 

schedule for routing all the messages to the base station, jointly 

minimizing both the completion time and the average packet delivery 

time. We present improved lower bounds for linear, two-branch, and star 

(or multi-branch) network topologies. All our algorithms run in 

polynomial time.  

1 Introduction 

The advancement of Very Large Scale Integration 
(VLSI) and Micro-Electro-Mechanical Systems (MEMS) 
technology combined with low power, low cost, digital signal 
processors (DSPs) and radio frequency (RF) circuits have 
contributed a lot to the development of micro-sensor systems. 
Such systems can combine signal processing, data storage, 
wireless communication capabilities and energy sources on a 
single chip. Possibly distributed over a wide area, networks of 
such devices can autonomously perform various sensing tasks 
such as environmental (seismic, meteorological) monitoring and 
military surveillance [1]. These networks are referred to as 
wireless ad-hoc sensor networks or simply sensor networks. It can 
also be a collection of mobile sensor nodes that dynamically form 
a temporary network without the use of any existing network 
infrastructure or centralized administration.  

An important problem in radio networks is scheduling the 
forwarding of information gathered by sensor nodes. The 
scheduling process is intended to prevent collisions that might 
arise from improper or inefficient use of the network resources by 
random messaging across the network without taking into account 
the network model. In this work, we aim to solve via simple 
mathematical models, the following problem: Given a certain 
topology of a radio network and a network model, initial 
information (messages) located at some nodes and a single 
designated destination, we analyze and find (our target function) 
an optimal scheduling solution such for all the messages to be 
routed to the destination in a minimum completion time as well as 
a minimum average delivery time. We present polynomial time 
solutions for our problem for three network topologies: Linear, 
Two-branch, and Star (or multi-branch) network.  
     Our research can be practically implemented in these 
networks: for example, whenever a node has a packet to transmit, 
it sends a very short message (save battery energy) called a 
“Schedule Request” to a central computer that serves as the only 
destination in the network. This computer is called a Base Station 
(BS). The requests can be sent over an upstream control channel. 

Our problem has been partially addressed over the past few 
decades. A number of works (see [2–18]) discuss radio networks 
under a similar network model, but with a different target 
function that leads to maximizing the number of transmissions in 
one hop without referring to specific sources and destinations 
across the networks. This problem and its variations are known to 
be NP-hard. Other works (see, e.g. [19–27]) considered our 
problem but under other (weaker) network models. For example, 
[19] uses the same target function as we suggest, but it discusses 
several variations of  “hot potato” routing. In this model each 
node can successfully receive and transmit more than one 
message simultaneously.  Sridhran and Krishnamachari [28] deal 
with some problem of converge-casting flows with rate control 
from nodes to the root of the given routing tree of the network. 
Lau and Zhang [29] and Krumme et al. [30] also study the 
gossiping problem in a two-dimensional grid network topology. 
They have suggested that the gossiping problem can be studied 
under four different communication models, which have different 
restrictions on the use of the links, as well as the ability of a node 
in handling its incident links. The four models being considered 
are: (1) the full-duplex, all port model, (2) the full-duplex, one-
port model, (3) the half-duplex, all-port model, and (4) the half-
duplex, one port model, which can be identified by the labels F*, 
F1, H*, and H1 respectively.   

We assume the network model denoted H1 [29,30]  or called 
“The half duplex one port model”, since this model of 
communication makes the weakest assumptions about both 
hardware and software capabilities. Gronkvist [31] assumes a 
stochastic model for the general network topology problem and 
presents a number of results under this model. Finally, Florens 
and McEliece [32] consider exactly our problem under a criterion 
of minimum completion time, ignoring the requirement of 
minimizing average delivery time. In fact, their scheduling 
strategy does not take into account the idle time of the messages 
and produces unnecessary dependences among messages. This, 
consequently, causes unnecessary delays for messages. For 
example, it is unreasonable to not transmit a message toward the 
destination if it can be transmitted without any delay. They [32] 
also do not provide any time-complexity analysis of their 
algorithms. On the other hand, our algorithms' results can serve as 
new lower bounds taking into account the both criteria: 
minimizing the time completion and average delivery time.   

It should be noted that the presented (optimal) data gathering 
algorithms are centralized and require cooperation between nodes 
which is not necessarily compatible with the requirements of 
sensor networks. Therefore for stronger requirements, these 
algorithms may no longer be practical. However, they continue to 
provide a lower bound on data gathering time of any given 
collection schedule. We focused our analysis on systems 
equipped with directional antenna since from comparison results 
(with respect to completion time) between directional antenna 
systems to omni-directional antenna systems obtained by Florens 
and McEliece [32] it follows that former outperforms the later by 
50% on Linear Network. The idea of using directional antenna in 
wireless communication is not new. It has been already 
extensively used in base station of cellular networks for frequency 
reuse, to reduce interference, and to increase the capacity of 
allowable users within a cell [33]. However, the applications of 
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directional antenna to wireless ad-hoc or sensor network to reduce 
the transmit power of each node to achieve power-efficiency in 
routing problem is relatively new.     

This paper is organized as follows: First we explain l the 
network and channel model with a precise definition of our 
problem. Next, we address the Linear Network case. After that, 
we generalize our results to work for two-branch networks. The 
optimal scheduling strategy under both target functions for star 
network is explained in Section 3.3. Finally we conclude the 
paper with directions for further research.  

2 Network and Channel Model 

A sensor or ad-hoc network is modeled as a graph G(V,E) 
with N nodes {

Nvvv .........., 10
}, where each node iv is a sensor 

that can transmit and receive data. There is an edge (vi,vj) iff vj 
can hear vi’s transmissions when vi points its directional 
transmission antenna towards vj . We assume that at time t=t0, 
each node 

iv  has at most one message to transmit to the 
destination. This is referred to as a legal input. The network has a 
special node

0v , referred to as the Base Station (BS), which is the 
destination of all messages. We also assume that every node in 
the network including the BS has the same transmission range r 
and that a node can not transmit and receive message at the same 
time. In principle, any node can keep an arbitrary number of 
messages, however as we will see later in our problems it is 
enough to assume that the capacity of each node's buffer is one 
message. We assume that all the information about the input and 
topology of the network is available at the BS and there are 
separate, collision free, control channels between the BS and the 
other nodes. We also assume the use of directional antennas. The 
signal from node

iv to node jv propagates in a straight line in the 
direction of node 

jv without dispersing to other directions. Based 
on those assumptions, the conditions for a successful transmission 
are: A message from node 

iv  that is transmitted to node jv , i, j ≥ 
0, arrives successfully to node 

jv  if for all simultaneous 
transmissions from 0 ,  , ≥≠ kikvk

 using directional antennas 
pointed in the direction of vj the following relations hold: 

( ) 0 ,1  , >+≥−≤− ββ rvvrvv jkji
, while β  is a parameter 

designed to avoid the interference that can occur just outside of 
the transmission range r,  otherwise transmission that violates this 
condition defined as a collision.    We also assume in our model 
that time is slotted and one hop transmission consumes one time 
slot (TS). A node can either transmit or receive in one TS. A one 
delay time or one idle time is defined as any time unit during 
which a message sits at a note without being transmitted. The 
term schedule is a specific indication when a node should 
transmit. 

3 Problem Statement and Our Performance 

Measure 

Given a network topology with N nodes, M of which have 

messages for BS, the goal is to find an optimal scheduling 

algorithm that schedules and routes all the messages to the BS in 

a minimum time (primary criterion) and also minimizes the 

average message-delivery time. Let 
minendT  the minimum 

completion time for all messages to reach the destination, and 
iT  

the time it takes for message i to reach the destination. The delay 

time or idle time 
i∆ of a message

im is a total sum of delay times 

that im  incurs from t0 until arriving at the destination. Denote by 

S the minimum sum of idle times for all messages. Thus the target 

function is: 







∆=








= ∑

=∀

M

i

i
m

iend STT
i 1

min)2(,maxmin)1(
min

. 

3.1 Analysis – Linear (Line) Networks 

Each sensor plays a role of node in the graph G(V,E). The 

network is static and the base station (BS) is always at the end of 

the network. The distance between each two nodes will be 

denoted by d. Each node has a directional antenna with a 

range drd 2<≤ . In fact, node only hears its left-hand neighbor in 

this topology. A node 
iv  is said to be at i hops from the BS. We 

assume a realistic situation where a node cannot transmit and 

receive simultaneously and the transmission can be done only in 

one direction (from left to right). 

Following our problem definition we would like to prove that, 

there exists an optimal scheduling algorithm that can handle any 

type of a legal input x  from the collection of all the possible 
legal inputsΧ.  We denote by ( )

ji vvd ,  the distance, measured in 

number of hops, between node iv and node jv . We define a 

group of messages as a finite set of messages, with the smallest 

group having only one message.  

For our analysis we would like to give some helpful 

definitions. Let iv̂  be a node having a message i to transmit. 

Input optimal state denoted by  Χ∈optX is a situation when the 

distance between any two adjacent nodes with messages to be 

send is at least 2 (i.e. 2)ˆ,ˆ( 1 ≥+ii vvd ). Optimal minimal state 

input XX mopt ∈  is a situation when the distance between any two 

adjacent nodes with messages to be sent is exactly 2. Non-

optimal input x  is every input that violates optX definition. Lets 

we define the maximum transmission rate (and also propagation 

of messages) of messages denoted by R as the maximal rate that 

the messages successfully flows toward the BS. We assume that 

the capacity of each node's buffer is one message (in our model, 

two simultaneously transmission of those messages defined as a 

collision). Message im  is said to be dependent on message jm  

in optimal solution satisfying (1) and (2) applied to Χ∈x , if im  

is not transmitted in the current time slot because we need to 

transmit jm . We will denote by 
iu  the group of maximal length 

that is transmitted at the maximum rate
iR . We define that two 

groups 
iu  and 

ju  of maximal length are independent if the 

messages belonging to some group can be transmitted in at 

maximum rate without being delayed by the messages of other 

group. We say that groups 
kuuu ,...,, 21
 of maximal length are 

independent if messages belonging to 
iu  are not delayed by 

messages of groups kiuuu i ≤≤− 2,,...,, 121
. We denote this fact 

by { }k
iiu 1=
. 
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Lemma 1 Given Xx∈  and{ }k
iiu 1=
, if the maximal transmission 

rate of iu is
2

1
=iR
, then either ( ) 2ˆ,ˆ  ,ˆ,ˆ 11 =∈∀ ++ llill vvduvv  

or a group iu has a structure of non-optimal input.                                                                  

Theorem 2: 

Given that, Xx∈ , any algorithm applied on the input that starts 

immediate transmission of messages from the maximal lengths 

group and produces the output:  ( ) ( ) ( ){ }
xii RuRuRu ,,...,,,, 2211
 

always leads to optimal solution satisfying eq. (1). 

Theorem 3: 

Given Xx ∈  with M as the total number of messages, any 

algorithm that achieves the conditions of Theorem 3, also 

minimizes 







∆= ∑

=

M

i

mi
S

1

min . 

Proof: 

Since the input x can be decomposed into { } xu
k

ii ∈=1
 (will be 

shown later), it is sufficient to show the theorem for a single iu  

that contain 
iM  messages, MM i ≤≤1 . 

The algorithm is applied in parallel on all 
iu  and each message is 

transmitted immediately at the maximal possible rate. Let 
imT be 

the time it takes for a message 
ii um ∈  to reach the destination. 

We will prove that any algorithm achieving 











∈∀ ii

i

um

mTmaxmin
 and 

satisfying condition of Theorem 2 also produces








∆∑

=

i

i

M

i

m

1

min . We 

distinguish between two cases.  

Case A:  When a configuration of iu  is optimal then 0
1

=∆∑
=

i

i

M

i

m
, 

and the proof follows immediately.  

Case B:  When the configuration iu  is non-optimal, we proceed 

in the following way. First we make some useful notations. Let 

iu
T
~
 be the time it takes for all messages in a group iu  to reach 

the destination (the completion time of iu ), and 
imt

~
 be the time it 

takes for a message 
ii um ∈  to reach the destination without any 

delays. Then, the following 

holds:

ii

ii

um

mu TT
∈∀

= max
~ ,

ijmmm umtT
jjj

∈∀≥−=∆ ,0
~ . Since 

iu  is 

non-optimal input it follows from Lemma1that messages from 

iu will be transmitted at rate ½ and also will be arrived at 

destination with rate ½. Therefore, if the last message 
iMm from 

iu  arrives to destination at time
iiM um TT
~

=  then, the one before 

last message arrives to destination at time 2
~

−
iu

T , and so on. 

Thus, we have
iMiiM mum tT

~~
−=∆ , 2

~~
11
−−=∆

−− iMiiM mum tT , 

4
~~

22
−−=∆

−− iMiiM mum tT +… .If we sum up delays for all messages in 

iu  we get the following: ( )








+−−=∆ ∑∑
==

i

ii

i

i

M

i

m

i

iui

M

i

m t
M

MTM
11

~
2

2
1

~ . We 

notice that ∑
=

i

i

M

i

mt
1

~ is a constant term as well as ( ) 2
2

1 i

i

M
M − . 

Therefore, by minimizing the term 
iu

T
~
we minimize the total sum 

of delays produced by any algorithm that achieves 
minendT and 

satisfies conditions of Theorem 2 It remains to show that no other 

algorithm can lead to smaller sum of delays. We notice that, 

( ) 2
2

1 i

i

M
M − =0+2+4+6+…2( iM -1). These are the differences 

between arrival times of messages at BS. As we pointed out 

above, the maximum reception rate of BS is at most 1/2, thus it is 

not possible to get better (in terms of sum) sequence of 

differences between arrival times of messages at BS. So we 

improved the lower bound for the linear network and call any 

such algorithm that achieves (1) and (2) as an optimal scheduling 

algorithm.                                                ■                                                                                                                    

                                                                                                               

Algorithm Linear Network: For Vvi ∈∀ ˆ , transmit immediately 

if its neighbor to the right 
1−iv  has no message to transmit. 

Again, since the input x can be decomposed into { } xu
k

ii ∈=1
 (will 

be shown later), it is sufficient to show the correctness of the 

algorithm for a single iu . We will show below by induction that 

our algorithm achieves











∈∀ ii

i

um

mTmaxmin .  Let 
iM  be the number of 

messages in a group iu .  If 1=iM , the only message is 

transmitted in each time slot until it reaches the destination. 

Assume that 











∈∀ ii

i

um

mTmaxmin  holds for 
iM = L messages and 

let










=

∈∀ ii

i

um

m

L

end TT maxmin
min

. We will prove that 











∈∀ ii

i

um

mTmaxmin  

holds for 
iM = 1+L  messages. If 1+Lm  is dependent on Lm  then 

1+Lm  will arrive at the destination at time ( ) 2
min

+L

endT . If 1+Lm  is 

independent on the rest of messages in iu  then the minimal 

optimal time to reach the destination is ( )
1

1 ˆ,
min +

+ = L

L

end vBSdT
i

 

which is achieved by our algorithm. Thus, the algorithm 

reaches











∈∀ ii

i

um

mTmaxmin . 

The running time of the above algorithm (i.e. the number of tests 

whether a right neighbor contains a message to transmit) for all 

messages to reach the destination is )( 2NO , where N is a number 

of nodes in the network. 

The strategy to determine{ }k
iiu 1=
 is omitted due to lack of space. 

Finally, we observe that in our algorithm no message can bypass 

another message that is closer to the destination. 
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3.2 Analysis – Two Branch Networks 

Similar to the Linear Network case, we have the following 

topology: 

1

1v
2

1v 2

2

Nv0v
2

2v
1

1

Nv
1

2v  

Figure 1:Two branch network 

The difference from the previous case is in the location of BS: 

now it can be located everywhere on the line. 

Denote by  { }11

2

1

1

1

1
...,, NvvvV =  be a set of nodes to the left of BS 

(denoted by 0v ) and { }22

2

2

1

2

2
...,, NvvvV =  be a set of nodes to the 

right of BS. The transmission can be done only in one direction: 

the nodes belonging to 1V  can transmit messages only from left 

to right, while the nodes belonging to 2V  can transmit messages 

from right to left.  The branch containing 1V  nodes is called a left 

branch (in short, 1-branch), while the branch with 2V nodes is 

called a right branch (in short, Two-branch). Each j-branch, j=1,2 

has a legal input 
jx .The goal is to transmit M messages to BS, 

21 NNM +≤ , when each node wants to transmit at most one 

message. In other words, 1-branch nodes transmit 

11 NM ≤ messages to BS and 2-branch nodes transmit 

22 NM ≤ messages to BS. The rest of the model as well as target 

functions are the same as in Linear Network case. Let us denote 

by j

iT to be an arrival time of message 
j

im from j-branch at 

destination BS. The delay time or idle time 
j

i∆ of a message 
j

im  

is a total sum of delays that 
j

im  underwent until arriving to the 

destination BS. We are interested in optimal scheduling algorithm 

to minimize the following criteria: j

i
jbranchjm

end TT
j
i 2,1,

max
min =−∈∀

=  and   

∑ ∑
= =

∆=
2

1 1j

M

i

j

i

j

S . 

Suppose that we apply Linear Network Algorithm from previous 

section to 1-branch and 2-branch independently.  

Case 1: Arrival times 
1

1 ,...1, MiTi = are pair-wise different from 

arrival times
2

2 ,...1, MkTk = . 

Case 2: There exist i' and k' such that 2

'

1

' ki TT = . 

The case 1 is very simple, since all the messages in 1-branch are 

independent from the messages in 2-branch, because, the BS has 

only one message to serve from its adjacent node belonging to the 

left or the right branch.    

Therefore, ( )21

minminmin
,max endendend TTT = , where 2,1,

min
=jT j

end
 are 

the minimum time to reach the BS independently for 1-branch 

and 2-branch messages, respectively. Clearly, 

21

1

2

1 11

21

SSS
M

i

j

i

j

M

i

j

i

M

i

j

i

j

+=∆+∆=∆= ∑∑ ∑∑
== ==

, where 1S and 2S are 

the minimum sum of idle times to reach the BS independently for 

1-branch and 2-branch messages, respectively. It remains to show 

how to deal with the case 2. The problem is what should be the 

optimal policy for choosing the appropriate message to transmit? 

Should the message 
1

'im scheduled before or after the 

message
2

'km ? From the previous section analysis it follows that 

all the messages from 1-branch as well as a messages from 2-

branch have been partitioned into independent groups of maximal 

length { }s
iiu 1

1

= and{ }t
iiu 1

2

= , respectively.  

Lemma 4 

Assume that i' and k' are minimal that satisfy 2

'

1

' ki TT = . Assume, 

w.l.o.g., that algorithm decides to schedule ,11
' ri um ∈  

sr ≤≤1 before thum hk ≤≤∈ 1,22

'
. The new idle time 2

lm∆  of 

22

hl um ∈  such that ),ˆ(),ˆ( 2
'

2 BSvdBSvd
kl mm

≥ is 122 +∆=∆
ll mm

. 

However, as a result of delaying messages from
2

hu , a number of 

independent groups of maximal length from { }t
iiu 1

2

= may become 

dependent and form (several) another independent group(s). In 

order to check this we observe that it may happen for any two 

adjacent groups 
2

fu and 
2

1+fu  if 0=iδ  when 
1−im  is the last 

message in 
2

fu  and
im is the first message in

2

1+fu . In this case, 

Lemma 4  holds also for messages from
2

1+fu . We call the new 

groups as independent groups of maximal length of first order and 

denote them as { }z
iiw
1

2

= (similarly, { }x
iiw
1

1

= ). Then, each one of 

these groups can be transmitted at maximal rate of 1/2 (assuming 

that groups from other branch do not disturb). (Similarly, we can 

define independent groups of second, third order and so on). 

Algorithm Two Branch Network: For both branches compute 

independent groups of first order { }x
iiw
1

1

= and{ }z
iiw
1

2

= . Apply 

Algorithm Linear Network Algorithm from previous section to 1-

branch and 2-branch independently, starting to transmit 

messages from both branches one by one. In the case of collision, 

i.e. when some messages from both branches arrive 

simultaneously at BS, we choose to schedule the message from the 

group that have the largest number of remaining messages to 

transmit. In the case that the both groups have the same number 

of remaining messages then, we choose arbitrary. 

  

Theorem 5: The scheduling produced by Two Branch Network 
Algorithm achieves the minimum completion time

minendT . 
We provide a lower bound for S. Suppose that the total number of 
collisions at the BS when we apply Linear Network Algorithm to 
1-branch and 2-branch independently ism . 
Lemma 6: mSSS ++≥ 21

. 
Theorem 7: The scheduling produced by Two Branch Network 
Algorithm achieves minimum S     
 
The runtime of Two Branch Network Algorithm is dominated by 
Linear Network Algorithm which is )( 2NO . 

3.3 Analysis – Star Networks 

This is most interesting case when we have k branches with joint 
BS. We denote by 

{ } { } { }k
N

kkk
NN k

vvvVvvvVvvvV ...,,,...,...,,,...,, 21
22

2
2
1

211
2

1
1

1

21
===  
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to be the sets of nodes on every branch, respectively and by 0v  

we denote the BS. The transmission is done only in one direction: 

towards the BS. The branch containing 
iV  nodes is called i-

branch. We will work under the assumption that no interference 

happens between nodes of adjacent branches, though in practice 

the interference might be inevitable.  

However, we strongly believe that our model can serve as a good 

lower bound for stronger models. The goal is again to transmit M 

messages to destination BS, ∑
=

≤
k

i

iNM
1

, when each node wants to 

transmit at most one message. In other words, i-branch nodes 

transmit 
ii NM ≤ messages to BS. Let us denote by 

j

iT to be an 

arrival time of message 
j

im from j-branch at destination BS. The 

delay time or idle time 
j

i∆ of a message 
j

im  is a total sum of 

delays that 
j

im  underwent until arriving to the destination BS. 

Thus, we are interested in optimal scheduling algorithm that 

brings to minimum the following criteria: 
j

i
kjbranchjm

end TT
j
i ,...,2,1,

max
=−∈∀

=  and ∑∑
= =

∆=
k

j

M

i

j

i

j

S
1 1

. Here we 

propose a polynomial time efficient algorithm that finds an 

optimal scheduling algorithm. 

We start by distinguishing two cases, similar to analysis for 2-
branch network. Suppose that we apply Linear Network 
Algorithm to any i-branch independently. If arrival times 

k

k

iii MiTMiTMiT ,...1,,...,,...1,,,...1, 2

2

1

1 ===  are pair-wise 
different (as the trivial case considering Two Branch Network 
Algorithm) then, all the messages in i-branch are independent 
from the messages in j-branch ( ji ≠ ). Thus, the algorithm is 
optimal in terms of the two criteria. 
When a collision occurs at the BS, we assume that 3≥k (the 
network consist of at least Three branches). Let us consider the 
following situation which is called a static state: suppose that we 
have a number ktt ≤, of branches tiii ,...,, 21 such that (i) the 
closest message to BS in each such branch is at distance 1 to BS, 
(ii) all messages from each such branch are guaranteed to be 
transmitted at rate 1/2, independently, and (iii) the rest of 
branches do not have any message to transmit. Notice, that 
condition (ii) implies that each one of t branches contains one 
independent group of (at least) first order. 

Let tjres j ≤≤1,  be a number of messages in ji -branch. If 

2=t  Two Branch Network Algorithm transmits all the messages 

optimally to destination BS. For 2>t  we have the following 

algorithm that solves optimally static state. 

Algorithm Star Network: If there exist tqresq ≤≤1, such that, 

1
1

+≥ ∑
≠
=

t

qi
i

iq resres
, then BS first serve the q-branch and any of the 

rest t branches, alternately. Otherwise, let ∑
=

=
t

i

iressum
1

. Split all 

the messages in two groups: A with  2/sum messages and B with 

 2/sum messages as following: A will contain all the messages 

from 
1i -branch, 

2i -branch,…, fi -branch, such that 

 2/
1

sumres
f

j

j ≤∑
=

,but 
 2/

1

1

sumres
f

j

j >∑
+

=

. In addition, A will 

contain (if needed) a prefix messages from 1+fi -branch that are 

closest to BS such that the total number of messages in A is 

exactly  2/sum . Group B will contain the rest of messages. BS 

serves any of available messages at distance 1 from BS 

alternately from A and B, starting from A, with the priority given 

to messages of 1+fi -branch, if  2/
1

sumres
f

j

j <∑
=

. Otherwise, 

there is no priority in serving messages. 

  

Theorem 8: The scheduling produced by Star Network Algorithm 
achieves minimum

minendT starting at static state. 
Theorem 9: The scheduling produced by Star Network Algorithm 
achieves minimum S starting at static state. 
 

Next, we will show that some adaptation of Star Network 

Algorithm provides optimal solution for minimal endT and 

minimal S.  Assume there is an optimal scheduling algorithm (that 

satisfies two given criteria) for our problem. We say that a 

message j

im  is dependent on message 
'

'

j

i
m if in the optimal 

scheduling strategy, 
j

im  is forced to be delayed as a result of 
'

'

j

i
m  transmission. In order to define a phase we determine the 

dependence between pairs of messages in our input. Let us put a 

logical edge between each pair of messages ( j

im ,
'

'

j

i
m ) such that 

j

im  is dependent on message '

'

j

i
m . A phase is a set of messages in 

the largest connected component of obtained graph with logical 

edges that contains the closest message to BS. We say that phase 

is started, when the first message belonging to phase is received 

by BS. We say that phase is completed, when the last message 

belonging to phase is received by BS. During the execution of our 

algorithm we may have a number of phases. Let us denote them: 

1-phase, 2-phase, …, k'-phase, correspondingly. We show an 

optimal scheduling after applying Linear Network Algorithm to 

any i-branch independently. 

Let us consider independent groups of (at least) first order 

{ } { } { } kx

i

k

i

x

ii

x

ii www
11

2

1

1 ,,,
21

=== K , similarly to the Two Branch Network 

Algorithm case (i.e. the messages of each group can be 

transmitted at rate 1/2). Each group 
j

iw contains 
j

in messages. 

Assume that we apply Linear Network algorithm to any i-branch 

independently and a collision at the BS occurs at time 1+t .  

Suppose, as before, that we have kff ≤, of branches 

fiii ,...,, 21
such that the nearest message to BS at time t in each 

such branch is at distance 1, that belong to
f

f

i

j

i

j

i

j www ,,, 2

2

1

1
K , 

correspondingly. Denote by fswRES s

s

i

j

t ≤≤1),(  be a set of 

messages in si -branch in group 
s

s

i

j
w  in time t  and by 

fswRES s

s

i

j

t ≤≤1|,)(| be a number of messages in si -branch in 
group s

s

i

j
w in time t. Let )()( 1

s

s

i

j

tf

s wREStR =∪= . 

We apply the Star Network Algorithm for )(tR  in order to 
obtain optimal scheduling algorithm. Notice as time t grows up at 
each step, the set )(tR  undergoes changes and at each step we 
apply Star Network Algorithm to an updated set )(tR .  
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Observation 1 

If optimal scheduling algorithm completes transmitting the last 

message of i-phase with x messages in time t, then our algorithm 

also completes transmitting the last message of i-phase in time t. 

 

Suppose that the first message of i-phase has been transmitted by 

the optimal scheduling algorithm in time t'. In order to see the 

correctness of the above observation we distinguish between 2 

cases: (a) t>x+t'-1, and (b) t=x+t'-1. For case (a) it means that 

either (i) there is a branch with a number of messages that is 

larger than or equal to x/2+1 at time t' or (ii) starting from some 

critical time t'' ( )tt ′>′′  , there is a branch with a number of 

messages that is larger than the total number of messages in other 

branches, i.e. larger than 2/|)''(| tR  and its happens after some 

critical time t''. The inequality for case (a.i) holds during all the 

steps of i-phase. Therefore, we have to complete with the last 

message of i-phase in this branch. Since Star Network Algorithm 

leads to maximizing a number of messages transmitted at rate 1, 

the claim follows. Regarding case (a.ii) we point out that even if 

the critical time for Star Network Algorithm is smaller than t'', 

still the last message of this phase is transmitted from the same 

branch and at the same time. This is due to the fact that at each 

step, Star Network Algorithm maximizes the number of messages 

transmitted at rate 1. For case (b), it means that all messages in 

optimal scheduling algorithm were sent at rate 1. Since the main 

property of Star Network Algorithm is to maximize a number of 

transmitted messages at rate 1, we obtain the desired result. 

Theorem 10: The scheduling algorithm explained above achieves 

minimum
endT  and minimum S. 

We notice that we can maintain on the fly the set )(tR and know 

the exact number of messages in fswRES s

s

i

j

t ≤≤1),( . Thus, the 

overall running time is )( 2kNO , where k is the number of 

branches and N is the number of nodes in the network. 
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