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Abstract

This paper studies the problem of data gathering in multi-hop wireless ad hoc networks. In this
scenario, a set of wireless devices constantly sample their surroundings and initiate report messages
addressed to the base station. The messages are forwarded in a multi-hop fashion, where the wireless
devices act both as senders and relays. We consider data gathering without aggregation, i.e. the nodes
are required to forward all the messages initiated by other nodes (in addition to their own) to the base
station. This is in contrast to the well studied problem of data gathering with aggregation, which is
significantly simpler.

As some nodes experience a larger load of forward requests, these nodes will have their battery charges
depleted much faster than the other nodes – which can rapidly break the connectivity of the network.
We focus on maximizing the network lifetime through efficient balancing of the consumed transmission
energy. We show that the problem is NP-hard for two network types and develop various approximation
schemes. Our results are validated through extensive simulations.

1 Introduction

Wireless ad hoc networks have found their way into almost every advanced technology in the market; among

those are mobile communication, radio broadcasting, and sensor monitoring. The temporary physical topol-

ogy of the network is determined by three factors: the distribution of the wireless transceivers, their trans-

mission ranges, and obstacles in the deployment area (e.g. buildings). These three factors constitute the

directed communication graph where the nodes correspond to the transceivers and the edges correspond

to the communication links. A communication link from node u to node v is established if the Euclidean

distance between u and v, d(u, v), is less than the transmission range of u and there are no obstacles which

might interfere with the transmission.

In this paper we explore the well-known data gathering network scheme, i.e. each node collects information

from its surrounding area and then propagates it in a multi-hop fashion, using other nodes as relays, to some

base station, also referred to as the root node. Many important applications benefit from this data gathering

scheme, such as habitat monitoring [28], security applications [3], and civil structure monitoring [6]. The

information each node collects is encoded into messages, which are then propagated by using a data gathering
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tree ([12, 38, 37]). The data gathering tree is a subgraph of the directed communication graph, such that

there is a unique directed path from every transceiver to the base station.

The general data gathering problem is to find an efficient data gathering tree, where efficiency is measured

according to the desired optimization objective. One of the most common optimization objectives studied

in the context of data gathering is energy efficiency ([38, 2, 27, 24, 40, 26]). As wireless nodes are usually

equipped with non-replenishable batteries, low energy consumption is one of the most important challenges

faced by a network designer. In this work we focus on network lifetime maximization, which is the time

that the first node runs out of its battery charge, and thus the data gathering tree can no longer be used

([20, 29]).

The problem of data gathering can be divided into two major paradigms. Data gathering with aggregation

([17, 34]) allows each node to accumulate the messages of its descendants and then pass only one fixed-

size message to its ancestor in the data gathering tree. The second paradigm, is data gathering without

aggregation ([5, 24]) which requires that all messages initiated by the wireless devices eventually will reach

the base station.

Surprisingly, data gathering with aggregation is considerably easier to solve under the energy efficiency

objective ([32, 31, 17]) than its unaggregated counterpart ([2, 35, 27, 24]). One of the possible reasons for

the difference may lie in the fact that once data is allowed to be aggregated, the efficiency of the solution is

dictated by the chosen communication links since every node transmits only once. Thus, the problem can

be usually reduced to a simpler problem in graph theory ([32, 31]) and solved by using some of the existing

methods. Once data aggregation is not allowed, one has to take the amount of data into account as well,

since nodes are required to make multiple transmissions over the same communication links.

Practically, in data gathering without aggregation, the load on the nodes that are close to the base station

is relatively high; in addition, the time it takes for all messages to reach the base station can be quite long

(since the packets can collide). One possible solution is to use a multi-code multi-packet transmission schema

(such as the one presented in [41]), which decreases the time until all the messages are received. Another

solution is to use a fast data transmission schema which keep transmission energy relatively low (see [15]).

In addition, the network can be partitioned to several clusters, with one leader chosen per cluster, such that

the data is aggregated to the network leaders and then a separate crawler collects the data from them (such

model has been suggested in [7]). For example, root’s children may serve as the leaders of their clusters

(their respective subtrees).

Our main contribution in this paper is the study of the data gathering problem with an optimization

objective of network lifetime maximization. We consider two network models: homogeneous networks

with obstacles and heterogeneous networks without obstacles. In the former case, all nodes share
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the same transmission range1, and there are obstacles in the deployment area which prevent some nodes to

communicate even if they are within the transmission range of each other (urban area). In the latter case, the

nodes may have different transmission ranges and there are no obstacles (open field). The communication

graph is determined by the distribution of nodes and the transmission range of every node.

The rest of the paper is organized as follows. In Section 2 we define the system settings and present

a formal problem formulation. Then, in Section 3 we discuss some of the previous work and state our

contribution. Sections 4 and 5 address the homogeneous and heterogeneous models, respectively. Section

demonstrates the numerical results obtained from simulations. Finally, we conclude and propose possible

future research directions in Section 7.

2 System settings and problem formulation

In this section, we define our wireless network model and present the data gathering problem under two

network scenarios considered in this paper.

2.1 Wireless network model

The network consists of n wireless devices (nodes), V , positioned in a two-dimensional Euclidean plane. In

addition there is a base station, r, also referred to as the root node. The data gathering process is executed

in discrete rounds. In every round each node u, has q(u) messages to send to the root node r. The messages

are propagated towards the root node in a multi-hop fashion by using a convergecast tree T = (V,ET ) (also

referred to as the data gathering tree), where all the edges point towards the root r, i.e. T is a reversed

arborescence rooted at r. The same tree T is used for all the rounds.

Let V (u) represent the descendants of u in T . We define T (u) to be the subtree rooted at u such that

all the nodes in T (u) pass their messages to u. Eventually, in every round, every u ∈ V forwards cn(T, u),

cn(T, u) =
∑
v∈V (u) q(v), messages to its ancestor, π(u), in T . We refer to cn(T, u) as the congestion of

u. Note that according to this model, the inner nodes forward all the messages which originate in their

respective subtrees.

Let ω(u, v) be the amount of energy (also referred to as the cost) required to transmit a single message

from u to v. We define the cost of a node u ∈ V , C(T, u), as the total energy consumed by u in a single

round as a result of transmitting cn(T, u) messages, i.e. C(T, u) = cn(T, u) · ω(u, π(u)).

Each node u ∈ V has an initial battery charge of b(u), which is reduced by ω(u, π(u) after a transmission

of a single message. Recall that the same tree T is used in all rounds and the lifetime of a node, l(u) is

defined as the number of complete rounds in which it can participate, i.e. l(u) = bb(u)/C(T, u)c [20, 29].

The network lifetime, l(T ) is defined as the first round in which a node cannot complete all its transmissions,

1The homogeneous model is better known as the UDG model [2].
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i.e. l(T ) = minu∈V l(u). We assume that all initial battery charges are equal.

2.2 Problem formulation

The transmission capabilities of a wireless network are derived from the relative disposition of the wireless

nodes and various obstacles in the deployment area. Let G = (V,E) be the transmission capabilities graph

(also referred to as the input graph), i.e. if (u, v) ∈ E then node u is able to transmit a message to node v

(recall that this transmission costs ω(u, v)). The general maximum network lifetime data gathering problem

is formulated as follows:

Problem 1 (Maximum Lifetime Data Gathering Problem). Given a set of wireless nodes V and a base

station r in the Euclidean plane and a transmission capabilities graph G, find a convergecast tree T rooted

at r such that l(T ) is maximized.

Clearly, in order to have a feasible solution for the maximum lifetime data gathering problem (abbreviated

by the data gathering problem), there must be a directed path from u to r in G for every u ∈ V . In what

follows we define the two network scenarios considered in this paper. The scenarios differ by their definition

of the cost function ω and the graph G.

2.2.1 Homogeneous network with obstacles

In this scenario, all nodes share the same transmission range, R and are able to communicate only with

nodes which are within this transmission range. Let G1 = (V,E1) be the transmission capabilities graph,

such that (u, v) ∈ E1 iff d(u, v) ≤ R and there are no obstacles which might obstruct the transmission. We

assume the nodes are non-collinear and thus G1 can have an arbitrary set of edges E1 in the general case.

As all the nodes use a fixed transmission range, the cost of the transmission is fixed. Let for simplicity

ω(u, v) = 1 for any pair of nodes. Then, C(T, v) = cn(T, v) for any two nodes u, v ∈ V and a convergecast

tree T , i.e. the cost of a node is proportional to its congestion.

An example of this scenario is given in Figure 1. The input graph G1 is shown in Figure 1a. The number

in each node v represents q(v). The resulting data gathering tree T is shown in Figure 1b. The number

above each node represents its cost C(T, v). Given that each node has the same initial battery power b, the

lifetime of this network is equal to b
31 .

In addition to arbitrary input graphs, we also consider an interesting case of k-layered graphs. A directed

graph H = (U,EH) is a k-layered graph rooted at r ∈ U , if the nodes of the graph can be partitioned into k

layers U1, U2, . . . , Uk, such that U1 = {r} and EH only contains inter-level edges from level i to level i − 1,

for 2 ≤ i ≤ k, i.e. (u, v) ∈ EH iff there exists i, 2 ≤ i ≤ k such that u ∈ Ui and v ∈ Ui−1. An example

of a 3-layered graph is shown in Figure 1a. Building the communication backbone in such graphs reduces
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(a) Input Graph (b) The solution

Figure 1: The data gathering problem in the homogeneous scenario

system complexity and inefficient random access protocols impact, avoid inefficient mobile ad hoc routing,

and alleviate the congestion bottleneck of the Internet gateway model [16].

We also pay special attention to 3-layered graphs. Such graphs are characterized by small number of

hops, little interference, and are commonly used in wireless network design [22]. In addition, combing such

networks with the OFDM mechanism provides the benefits of diversity and spatial reuse gain [36].

2.2.2 Heterogeneous network without obstacles

In heterogeneous networks, nodes can vary their transmission ranges, which directly affects the cost of the

transmission. We use a common model for signal propagation [30] which states that ω(u, v) = d(u, v)α, where

α is the path-loss exponent parameter, which takes on a value between 2 and 4. We assume that α = 2 for

simplicity, however our results can be easily generalized for any value of α. As there are no obstacles the

input graph G2 for this scenario is the complete graph on the node set V .

3 Related work and our contribution

A number of recent papers has explored several issues and solutions related to energy efficient data gathering

in wireless ad hoc networks under the homogeneous and heterogeneous models. In [2], Buragohain et al.

show that the data gathering problem under the homogeneous model is NP-hard when the initial battery

charge at each node is different and have constant transmission power per message. They also proposed

a 1 + cr approximation algorithm for this problem (cr is the cost of receiving a message), when node can

aggregate incoming messages. Another model is by Wu et al. [38], who also study the data gathering problem

with message aggregation and varying transmission power per message. They prove that this problem is

NP-hard and provide an 1 + ε approximation for it, for any ε > 0. A recent work by Liang et al. [24],

explores the data gathering problem without aggregating messages at each node. They show a data gathering

tree with lifetime that is Ω( logn
log logn ) of the optimal, which means there is an instance of the optimal data

gathering tree with lifetime better by a factor of at least logn
log logn with respect to their tree solution. In [17],

Kalpakis et al. assume that the data at the sensors is highly correlated, and that the data gathering tree

can be changed between transmission rounds. For this model they provide an integer program solution and
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Approximation ratio Model Node layout Remarks
Optimal (this paper) homogeneous k = 3 Each node has the same number of messages

2 homogeneous k = 3 NP-hard for k ≥ 3 (this paper)

log n homogeneous Arbitrary Inapproximation ratio logn
3 (this paper)

Optimal (this paper) heterogeneous Linear NP-hard for general graphs (this paper)
log q (this paper) heterogeneous Grid

O(log2 n log q) (this paper) heterogeneous Grid Nodes are uniformly distributed.

Figure 2: Summary of our results

a heuristic solution with no approximation ratios.

Liang et al. [27] show that the data gathering problem under the heterogeneous model it is NP-hard.

They provide several heuristic algorithms for this problem, and evaluated the performance of them through

simulation. We note that their solution and hardness proof do not consider nodes’ Euclidean position. For

grid sensor networks, which we also investigate in this paper, Lin et al. [25] proposed a novel data gathering

schema based on a chain-oriented grid architecture. They do not provide any analytical result for this model.

Another interesting model for data gathering on grid sensor networks was studied by Bermond et al. [1].

They explore the data gathering problem with aggregation and node interference, where the optimization

criteria is the number of hops until all messages are collected. For this model, they show a 1+ε approximation

algorithm, for any ε > 0. For heterogeneous efficient data gathering in linear network, some work was done

by Zhang et al. [40] and Liu et al. [26].

This paper is principally concerned with the theoretical and experimental study of the data gathering

problem without aggregation under the homogeneous and heterogeneous models. Our main contributions

are:

• Show that the problem is NP-hard under both models. To the best of our knowledge, this is the first

proof that considers the Euclidean positions of the nodes.

• Provide optimal solutions for the problem under special topologies such as 3-layered graphs and linear

networks.

• Provide approximation algorithm for general graphs under both models.

• Verify by simulation that our results and models are correct.

Our results for each model are summarized in Figure 2.

4 Homogeneous networks with obstacles

In this section, we address the efficient data gathering problem on different topologies under the homogeneous

model. This section is divided to k-layered graphs and general graphs. For 3-layered graphs, we start with
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Figure 3: Optimal solution for the single message instance

a simple optimal solution when each node has only one message to transmit and provide a 2-approximation

algorithm for the general case. We also show that this problem is NP-hard when k > 3. For general graphs,

we show that even if each node has only one message to transmit, it is polynomially hard to approximate the

problem. Finally, we present an almost optimal approximation algorithm for general graphs with varying

message size per node.

4.1 Layered Graphs

In the following, we show some results for the data gathering problem under the homogeneous model for

layered graphs.

4.1.1 Single Message

Given an instance of the data gathering problem on a 3-layered graph, we create an auxiliary flow network

by adding a new source node s, connecting it to all bottom nodes, setting the capacity of all edges to 1,

and setting r to be the sink. We change the capacity of edges that connect intermediate nodes to the root

from 1 to cp (1 ≤ cp ≤ n). Parameter cp represents the maximum congestion of the network. We search

for a minimum cp, such that the maximum integer flow in the network is equal to n. This ensures that we

can relay all n messages to the root, and that the maximum congestion is minimized. Thus this algorithm

produce the optimal solution. Using binary search to find cp and Ford-Fulkerson algorithm [8] to find the

maximum integer flow yields a running time of O(nm log n). The construction is illustrated in Figure 3.

The input graph is shown on the left and the generated flow network on the right. Note that all arcs have

capacity 1, except from arcs to the root with capacity cp. For this instance, setting cp=3 yields an optimal

solution.
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Figure 4: Reduction from the data gathering problem to SoUPM

4.1.2 Multiple Messages

We show a reduction from the restricted assignment case of Scheduling on Unrelated Parallel Machines

[21] (SoUPM) to the data gathering problem on 3-layered graphs with varying message size per node. In

the restricted assignment case of SoUPM, n jobs must be assigned on m machines. The cost of assigning

job j on specific machine is either pj , the cost of the job, or ∞, which means job j cannot be assigned

on that machine. The goal is to minimize the total cost of the most congested machine (also known as

the makespan). Given an instance of SoUPM, we map the jobs to bottom nodes with weight pj and the

machines to intermediate nodes with weight 0. Since both problems have the same optimization criteria,

the reduction shows that the data gathering problem is NP-hard. A previous attempt to prove that the

problem is NP-hard can be found at [2]. However, the proposed reduction assumes varying battery size

for each node. To transform an instance of the data gathering problem to SoUPM, we create a job per

bottom node (with weight equal to the number of messages that node needs to transmit), and a machine

per intermediate node. For intermediate nodes, we also add a dedicated job with weight equal to the node’s

messages. A sample reduction is depicted in Figure 4, the input graph is illustrated in the left side and the

resulting instance of the SoUPM instance is illustrated on the right.

To approximate the data gathering problem, we transform the input graph to SoUPM, and use Lenstra

et al. 2-approximation algorithm for SoUPM [21]. This leads us to the following lemma.

Lemma 4.1. There is a 2-approximation algorithm for the data gathering problem on 3-layered graphs

To show that the problem is NP-hard for any k > 3, we reduce a 3-layered graph instance to a k-layered

graph instance by:

1. Multiply the number of messages at each node in the 3-layered graph instance by k − 2. The cost of

the solutions to the data gathering problems on a 3-layered graph is only multiplied by a constant (i.e.,

C(Tk−layer, v) = (k − 2)C(T3−layer, v)).
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(a) Auxiliary graph G for the case when n = 4 (b) Underlying Tree structure T

Figure 5: The auxiliary graph G̃

2. Transform all bottom nodes (nodes in layer-3) to a directed path with length k − 2, and split the

messages of the bottom nodes equally between them.

Clearly, we can use the k-layered graph algorithm to solve the 3-layered graph instance. Thus, the following

lemma holds:

Lemma 4.2. The data gathering problem is NP-hard on k-layered graphs for any k > 3.

4.2 General graphs

We show that the data gathering problem is NP-hard under the homogeneous model for general graphs and

that it cannot be polynomially approximated with a ratio better than logn
3 . We also show how to achieve a

O(log n) approximation algorithm for it.

4.2.1 Inapproximation

We prove that the data gathering problem cannot be polynomially approximated by a ratio better than logn
3 ,

unless P = NP, even if each node has only one message to transmit.

We use a) Gadget by Guruswami et al. [13] for the edge-disjoint path problem and b) the underlying tree

structure connecting gadgets by Chen et al. [4]. We also use the NP-hard 2-vertex disjoint path problem

[9], where we are given a directed graph G, and four special nodes s1, s2, t1, t2, and we need to decide if G

contains 2-vertex-disjoint directed paths from s1 to t1 and from s2 to t2. Given an instance 〈G, s1, s2, t1, t2〉

of the 2-vertex disjoint directed paths problem, we create a complete binary tree T with log n levels (n is the

number of nodes in G). Notice that each level in T contains twice as much nodes as the previous one. We

use T to create an auxiliary graph G̃ by transforming every node in T to a copy of G (the original graph).

We denote Gi and Giv as the ith copies of G, and a copy of the node v in Gi, respectively. We connect
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the nodes from level l (l ≥ 1) of form Git2 (2l−1 ≤ i < 2l) to nodes in level l + 1 of form G2i
s1 and G2i+1

s1 ,

respectively. We attach a directed path with n log n nodes to each node with the form Git2 , Gis2 . Finally,

we create a sink node r and connect each node that has the form Git1 , Git2 and located in level log n to it

(2logn−1 ≤ i < 2logn-1).

An example of the construction is shown in Figures 5(a) and 5(b). In Figure 5(a) we have n = 4 with 3

copies (x denotes a directed path having n log n nodes). The connections between the levels are G1
t1 → G3

s1

and G1
t2 → G2

s1 . G2
t1 , G

2
t2 , G

3
t1 , G

3
t2 are connected to the sink.

Denote the cost of the optimal solution for the data gathering problem on a graph G̃ as OPT . We state

the following:

Lemma 4.3. If G contains 2 vertex disjoint directed paths, then OPT < 3n log n.

Proof. First note that any path to the sink that starts from nodes with form Gis1 will have at most n log n

nodes (adding at most n nodes to every Git1 in each level). Also note that we can create a directed path

from every node Gis2 to the sink with at most 3n log n nodes (the path from Gis2 to Git2 will have at most

2n log n+ n nodes, and at another (log n− 1)n node in the path to r). Thus, if G contains 2 vertex disjoint

directed paths the maximum cost of a node maxC(T, v) is less than 3n log n. Hence, OPT < 3n log n.

A sample path G1
s2  G1

t2 → G3
s1  G3

t1 → r is shown by bold dashed lines in Figure 5a.

Lemma 4.4. If G does not contains 2 vertex disjoint directed paths, then OPT > n log2 n.

Proof. First, we prove that if the maximum cost of a node in level i is c · n log n (for any constant c) and

G does not contain 2 -vertex disjoint directed paths, then there is a node in level i + 1 with cost at least

(c + 1) · n log n. We prove this using induction on the number of levels. The base case is obvious (in level

1 to cost of G1
s2 is n log n). For the induction step, suppose that there exists a node Glv in level i with cost

c · n log n. This means that one of the nodes Gjs1 in level i + 1 will cost at least c · n log n. Then, since we

do not have disjoint paths, we face one of the cases depicted in Figure 6. In each case, either Gjt1 or Gjt2

will cost at least (c+ 1) · n log n. This implies that the induction hypothesis holds, and since we have log n

levels, the maximum cost of a node is at least n log2 n.

Theorem 4.5. The data gathering problem cannot be polynomially approximated within a factor better than

logn
3 , unless P = NP.

Proof. Lemma 4.3 implies that if G contains 2-vertex disjoint directed paths then OPT < 3n log n. Lemma

4.4 implies that if G does not contain 2 vertex disjoint directed paths, then OPT > n log2 n. We note

that the gap between the instances is n log2 n
3n logn = logn

3 . Now, suppose there exists a polynomial algorithm A

that approximate data gathering problem with approximation ratio better than logn
3 . If G contains 2-vertex

disjoint paths, A will produce a solution with cost at most logn
3 ·3n log n = n log2 n . Otherwise, the solution
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(a) case (i) (b) case (ii) (c) case (iii)

Figure 6: No 2-disjoint paths

A produce has cost at least n log2 n (OPT > n log2 n). Consequently, using A, we can decide if G contains

2-vertex disjoint sets or not. Thus, unless P = NP the data gathering problem cannot be polynomially

approximated by a ratio better than logn
3 .

4.2.2 A O(log n) Approximation Algorithm

First, we define the notion of a confluent flow. Given a general network flow problem, in a confluent flow, all

the out flow per node must leave along a single edge, i.e., the resulting flow network is a tree. To solve the

data gathering problem, we use Chen et al. Conflt algorithm [4], which achieves a O(log n) approximation

algorithm for the single commodity confluent flow problem.

The input for the Conflt algorithm is a graph G, set of sinks s, set of demands d, and a splittable

flow f . The output of the algorithm is a confluent flow f̃ with tree topology. We refer to the maximum

outgoing flow per node as congestion (recall that in the data gathering problem, congestion is the number

of messages each node delivers, which maps to the total amount of out flow per node in this case). The

Conflt algorithm guarantees that: a) the flow conservation constraints hold in f̃ , b) the outgoing flow from

each node will leave along a single edge, and c) if the maximum congestion of f is 1, then the maximum

congestion of f̃ is 1 + log n.

Our algorithm steps are as follows: given a data gathering instance G and a root r, we:

1. Create a flow network on the underlying graph G, and define the demand per node as the amount of

messages this node needs to transmit.

2. search for a splittable flow with minimal congestion that serves all demands (i.e., all messages are

delivered).

3. Scale the resulting splittable flow to 1 and run Conflt on it.

The running time of combing Conflt and the maximum flow algorithm by King et al. [18] is

O(mn(log n log m
n log n

n+ m
n + log n2

m )).
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(a) Original graph (b) ECRT solution (c) Conflt solution

Figure 7: Graph instance where ECRT approximation ratio is Ω(n) while Conflt is optimal

4.2.3 Comparison to other data gathering algorithm

To emphasize the efficiency of Conflt this subsection includes a theoretical comparison to other existing

techniques of lifetime maximization in data gathering without aggregation. To solve the data gathering

problem, other schemes usually use heuristics, which are based on a greedy approach of constructing the

data gathering tree. For example, ECRT [2] greedily grows the tree by appending nodes which minimize the

local lifetime, and MITT [24] constructs a minimum spanning tree and then greedily replaces the edges to

increase the network lifetime.

It turns out that there are some graph instances where the approximation ratio of such algorithms is

Ω(n), while the approximation ratio of Conflt is O(log n) or better. For example, in Figure 7(a), we have a

graph where the root is connected to 3 children, each connected to a chain of nodes, with one child that has

a chain that ends with a very large cluster of nodes (the size of the cluster is in the order of n). The cluster

is only connected to 3 nodes in the rightmost chain, and each of those nodes is connected to a a different

child of the root.

The result of running ECRT is depicted in Figure 7(b). Since the algorithm is greedy, the nodes in the

large cluster are relayed only by the rightmost child of the root. Therefore, the maximum node’s cost C(T, v)

is approximately n, the size of the large cluster. Conflt result is depicted in Figure 7(c). In this algorithm,

the load is distributed between all three children of the root (i.e., the maximum cost is approximately 1
3n).

Extending this graph structure to include m children will yield the desired approximation ratios, i.e., ECRT

cost will be Ω(n) while Conflt cost will be n
m .

5 Heterogeneous networks without obstacles

In this section, we investigate the algorithmic complexity of the data gathering problem under the hetero-

geneous model. In this model, the nodes are deployed in the Euclidean plane, and the cost of sending a
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Figure 8: Reduction from 3-partition

message is d(u, v)α (where d(u, v) is the Euclidean distance between nodes u and v, and α represents the

path-loss exponent). To simplify the analysis, the results in this sections are shown for α = 2, but can be

extended for any α > 2. . First, we prove that the data gathering problem is NP-hard. Next, we show how

to solve the data gathering problem for three special instances, linear networks, where the nodes are placed

on a bi-directional line, static grids topologies, and random grids, where the nodes are uniformly distributed

on the surface of an
√
n×
√
n square. We explore the results for the static and random grids using simulation

in Section 6.

5.1 NP-hardness of the data gathering problem

We prove that the data gathering problem is NP-hard in the strong sense using a reduction from the

extended version of the 3-partition problem. In this problem, we are given a multi-set S of 3m elements

S = {a1, a2, .., a3m}, ai ∈ Z+, where each element has a weight strictly between B
4 and B

2 , and all the

elements have a total weight of mB. The goal is to decide whether there is a partition of S into m sets each

of weight B, such that the union of those sets covers S (each set contains exactly 3 elements) [11]. For the

reduction, we use the decision version of the data gathering problem, where we are given an instance graph

GE (a complete undirected Euclidean graph), and an integer P . The goal is to decide whether there is a

data gathering tree T , where the maximum node cost C(T, v) is less than or equal to P .

Let I = 〈S〉 be an instance of the extended 3-partition problem. First, we create a mapping between

S to GE , the input graph for the data gathering problem. For each element ai, in the partition instance,

we create a node vi with ai messages to transmit, and position those nodes between coordinates (0, 22) to

(1, 22) (with equal distance between each node).

Next, we create m intermediate nodes s1, s2, ..sm, each with one message to transmit, and position them

between coordinates (0, 10) to (1, 10). Those nodes correspond to the m bins of the partition instance.

Finally, the root is placed at coordinates (0.5, 0). The reduction is depicted in Figure 8. Note that the
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proof still holds even if the Euclidean positions of the nodes scale (for example, by multiplying all x and y

coordinates by a factor of 10).

Using the construction, we claim the following:

Lemma 1. If a solution to the data gathering problem with a cost less than or equal to (B + 1)(102 + 0.52)

exists, than each intermediate node will carry exactly 3 nodes from the lower layer with total message cost

B.

Proof. Suppose such solution exists, we make the following observation:

1. Sending a message from a node vi (node that corresponds to a partition element) to the root will cost

at least:

(22)2B

4
= 121B

We infer that in the tree solution such nodes will not deliver their messages directly to the root (i.e.,

they will use intermediate nodes).

2. Relaying the messages from one of the bottom nodes to one of the intermediate nodes costs at most:

(122 + 12) · B
2

= 72.5B

We infer that in the tree solution the node with the maximum cost maxC(T, v) is an intermediate

node.

3. The total number of messages at the bottom nodes is mB, and they are divided between m intermediate

nodes (which relay the messages to the root). From the pigeonhole principle, each intermediate node

will relay messages from 3 nodes that have a total of B messages.

By combing the above arguments, we get that in a solution with cost less than or equal to (B+ 1)(102 +

0.52), each intermediate node relay B+1 messages (including its own message), and only intermediate nodes

communicate with the root. Note that since the maximum distance,
√

102 + 0.52, is between the leftmost

and rightmost nodes to the root, the total cost of the solution is exactly (B + 1)(102 + 0.52).

If a solution with cost (B + 1)(102 + 0.52) exists, we can find a solution to the extended 3-partition

problem by joining each triplet ai, aj , ak with total messages weight B that uses intermediate node sl as a

carrier.

Hence, unless P = NP we get the following theorem:

Theorem 5.1. The data gathering problem is NP-hard under the Heterogeneous model.

Additional attempt to prove that the problem is NP-hard can be found at [27], note that the proposed

reduction does not consider the Euclidean positions of the nodes.
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Figure 9: Sample solution for the 4× 4 grid

5.2 Line topology

We show the optimal solution for the data gathering problem on a line topology with n equally placed nodes

is a directed line (chain) from the fringe nodes to the root. Since the problem is symmetric, w.l.o.g we locate

the root in the left most corner of the graph. We order the nodes from node vn at location n to the root at

location 0. We state the following theorem:

Theorem 5.2. If the data gathering tree is not a directed line, some messages will not be delivered.

Proof. Let vj be the rightmost neighbor of v1 that delivers a direct message to r, it must be that j ≤
√
n

(otherwise the cost of this node will be at least j2 > n). This implies that the maximum number of messages

that node vj can pass is
⌊
n
j2

⌋
. Observe that if node vj passes a message directly to the root, then node v1

can only deliver
∑n
i=2

⌊
n
i2

⌋
+ j − 1 messages to r (

∑n
i=2

⌊
n
i2

⌋
corresponds to the total number of messages

that bypass node vj and j − 1 corresponds to the left neighbors of vj). The total number of messages that

can be delivered to r this way are:
√
n∑

i=2

⌊ n
i2

⌋
+ j − 1 +

⌊
n

j2

⌋
≤
∞∑
i=2

n

i2
+ j +

n

j2
≤ n(

π2

6
− 1) +

n

32
+
√
n.

The inequalities derive from the fact that
∑∞
i=2

n
i2 = n(π

2

6 − 1) and that 3 ≤ j ≤
√
n. For n ≥ 20, we get

that this is less or equal to n(0.65 + 0.12 + 0.225), which is less than n, the amount of messages that must

be delivered to the root. Therefore, any data gathering solution with cost less than n is not a valid solution

since not all messages arrive to the root.

In contrast, the cost of a directed line is exactly n and all n messages are delivered. Hence, it is the

optimal solution.

5.3 Grid topologies

The input for the problem is a complete graph with n nodes located on the
√
n×
√
n grid, where the root r

is located in the lower left corner of the grid at coordinates (0, 0). We denote q as the total messages from all
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nodes. We show that on this topology the cost of any data gathering tree rooted at r is at least q
5 logn . Then

we present a deterministic construction of tree T having cost q
2 , implying a log n approximation solution for

this problem.

Lemma 5.3. The cost of any data gathering rooted at r is at least q
3 logn .

Proof. Denote by di,j the Euclidean distance from the node located at coordinate (i, j) of the grid to r, and

by d2
i,j the cost of sending a direct message to r. Assume we have an optimal tree solution for the problem

with cost p∗, where p∗ ≤ q. Thus, every node located at (i, j) can relay only p∗

d2i,j
messages to the root. The

total number of messages that can be delivered to r, keeping the cost below p∗, is:

∑
i,j:
√
i2+j2≤

√
p∗

p∗

d2
i,j

≤
∑

i,j:
√
i2+j2≤

√
p∗

p∗

d2
i,1

≤ p∗
√
p∗∑

i=1

(2i+ 1)
1

i2

The first inequality derives from the fact that 1
d2i,j
≤ 1

d2i,1
for any j ∈ N. The second inequality derives from

the fact that di,1 = i and that for each i, there are exactly 2i+1 nodes with either x = i or y = i coordinates

(e.g., for i = 1, we have the nodes located at (0, 1), (1, 0) and (1, 1)). Replacing the summation using the

generalized harmonic number (Hn,m =
∑n
k=1

1
km ) we get:

p∗(2H√p∗,1 +H√p∗,2) ≤ p∗3 log p∗ ≤ p∗3 log q

Since Hn,1 ∼ log n + 1
2n + γ (γ ∼ 0.577 is the Euler-Mascheroni constant), we can replace H√p∗,1 by

2 log
√
p∗ and H√p∗,2 by log

√
p∗. In addition, according to the assumption p∗ ≤ q.

Since q messages are delivered to r, q ≤ p∗3 log q. Hence, p∗ is at least q
3 log q .

Theorem 5.4. There is a solution with cost at most
√

2q.

Proof. Passing a directed line through the diagonal nodes directly to the root while moving all the other

nodes through the side nodes yields a solution with maximum cost of
√

2q (see Figure 9 for an example on

the 4×4 grid). Thus, this algorithm is a log q approximation for the data gathering problem on the
√
n×
√
n

grid.

Note that the minimum spanning tree (MST) on any
√
n×
√
n grid has maximum unit edge cost. Since

the maximum cost of a node maxC(T, v) in the MST will be equal to 12(q−1), MST also presents a O(log n)

approximation algorithm.

5.4 Uniformly distributed nodes

We show how to achieve a O(log2 n log q) approximation algorithm for the data gathering problem when

nodes are uniformly distributed in the
√
n×
√
n square U .

We state the following:

16



Lemma 5.5. For n nodes uniformly distributed in a
√
n×
√
n square U , if we divide U into a

√
n

logn×
√

n
logn

grid with equal size cells, then w.h.p. (with high probability) each cell will contain at least 1 node[33].

Lemma 5.6. For n nodes uniformly distributed in a
√
n×
√
n square U , if we divide U into a

√
n

logn×
√

n
logn

grid with equal size cells, then w.h.p. each cell will contain at most e3 log n nodes.

Proof. The proof is straightforward from the result of Balls and Bins [19].

Theorem 5.7. For n nodes uniformly distributed in a unit square U , w.h.p. there is an O(log2 n log q)

approximation algorithm for the data gathering problem.

Proof. We start by emulating a
√

n
logn ×

√
n

logn grid on the plane. From the previous results (Lemma 5.5

and Lemma 5.6) w.h.p the number of nodes in each cell is between one to α log n (where α is a constant). We

define |Vi,j | as the number of nodes in the cell with coordinate (i, j). Counting the total number of messages

we can deliver to r, when maxC(T, v) ≤ p∗, using the same reasoning as in Lemma 5.3 we get:

∑
i,j:
√
i2+j2<

√
p∗

p∗

d2
i,j

· |Vi,j | <

√
p∗∑

i=1

(2i+ 1)
p∗

d2
1,i

· α log n ≤ p∗α log n

√
p∗∑

i=1

(2
1

i
+

1

i2
) ≤ p∗3α log n log p∗

Since p∗ ≤ q log n and n ≤ q, the expression is less than or equal to:

p∗3α log n log (q log n) ≤ p∗3α log n log q2 ≤ 6α log n log q

Finally, since q message are delivered to the root, the total invested energy p∗ is at least q
6α logn log q .

To solve the data gathering problem, we create a minimum spanning tree MST. If all the nodes in the

network transmit with power log n, then w.h.p the network will became connected [14]. This implies that

the transmission cost of the MST is at most log n. Thus, the maximum cost at each node C(T, v) is at

most q log n, which yields a O(log2 n log q) approximation for the data gathering problem. For a distributed

implementation of this algorithm, see [10].

6 Simulation study

In this section, we provide performance evaluation results for the data gathering problem under the homo-

geneous and heterogeneous models (which were studied in Sections 4 and 5, respectively). In all simulations,

each node has an initial battery capacity of 10000. We compare the results of running algorithms presented

in this paper, to the theoretical optimum, and the ECRT heuristic from [2]. In the ECRT heuristic, which

provides good simulation results for the data gathering problem under the homogeneous and the hetero-

geneous models, the algorithm greedily increases the size of the data gathering tree by adding edges that

have minimum impact on the lifetime of the network. We refer to the algorithm for static grid from Section
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(a) Maximum cost of a node - C(T, v) (b) Lifetime - L(T )

Figure 10: Static grid - network size varies

(a) Maximum cost of a node - C(T, v) (b) Lifetime - L(T )

Figure 11: Static grid - number of messages per node varies

5.3 and for random grid from Section 5.4 as FORK, since the resulting tree has a fork-like structure. All

algorithms were implemented in .NET environment and run on a common desktop PC (Dell Optiplex 990).

In our simulations, the network size varies from 100 nodes to 1000 nodes while the number of messages is in

the interval 1 to 100. Each point the plots is an average of 10 trials. We have considered different scenarios

for homogenous and heterogeneous networks with fixed and various number of messages.

6.1 Heterogeneous model - static grid

For each simulation, we position n nodes inside a
√
n×
√
n square; every node has one message to transmit.

The communication infrastructure is a complete graph and the cost of sending a message is equal to d(u, v)2.

We compared the performance of the minimum spanning tree (MST), our algorithm from Section 5.3 (FORK)

and the ECRT heuristic.

The cost of the maximum node, maxC(T, v), for MST, FORK and ECRT is plotted in Figure 10(a). The

results reinforce the theoretical findings. For MST, C(T, v) is approximately n (since the root has only one

child), and for FORK and ECRT, C(T, v) is approximately 1
2n. From the graphs, we can see that FORK

provides better results than ECRT. The lifetime graph is plotted in Figure 10(b). Given that CPU and

power optimization are a major criteria when designing ad-hoc networks, FORK performance is better than

ECRT on static grids.

The total cost and lifetime graphs for 200 nodes network with varying message size are plotted in Figures

11(a) and 11(b), respectively. From the graphs, we learn that the total cost increases linearly with the
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(a) Maximum cost of a node - C(T, v) (b) Lifetime - L(T )

Figure 12: Random grid - network size varies

average number of messages per node q̄, note that in FORK, C(T, v) is approximately q̄
2 . Again, FORK

slightly outperforms both MST and ECRT.

6.2 Heterogeneous graphs - random grid

For every simulation, the nodes were randomly, independently and uniformly distributed in a
√
n ×
√
n

square, each with one message to transmit. The evaluation of the maximum node energy cost C(T, v) of

MST, FORK and ECRT is plotted in Figure 12(a). The cost is compared to the theoretical optimum, n
log2 n

,

which we proved in Section 5.4. As expected, the cost of MST has a polylogarithmic dependency in the

number of nodes (i.e., C(T, v) = OPT · O(log2 n)). Note that both FORK and ECRT maximum cost is

about n
2 (which may imply their approximation ratio is much better than O(log2 n).

The lifetime of the network is depicted in Figure 12(b). Overall, both FORK and ECRT yield good results

both in lifetime and in maximum cost, with a slight advantage to FORK. However, ECRT is not practical

on random networks since it requires the centralized processing (all nodes must have complete network

information) and its processing time to construct the tree is O(n4) for complete graphs. This makes ECRT

extremely costly and unpractical in both CPU usage and power consumption. In contrast, FORK scheme

is completely distributed, and its processing time to construct the data gathering tree is O(log n). Given

that most ad-hoc networks suffer from CPU and network bandwidth constraints, the fast and distributed

implementation of FORK is preferable.

6.3 Homogeneous graphs

For all simulations, we randomly scattered the nodes over a 1000 × 1000 square meters area, and formed a

unit disk graph (UDG) by assigning each node a transmission radius of 100 meters.

We compared the results of algorithm Conflt from Section 4.2.2, ECRT heuristic, and the theoretical

lower bound on OPT, which is defined as n divided by the number of root’s children. The maximum node cost

C(T, v) is plotted in Figure 13(a). We observe an interesting phenomenon that the cost for both algorithms

stabilizes as n increases. This can be explained by the fact that although there are more nodes, the ratio

between the number of root’s children and total number of nodes in the network does not change much, and

19



(a) Maximum cost of a node - C(T, v) (b) Lifetime - L(T )

Figure 13: Homogeneous graphs - number of nodes varies

(a) Maximum cost of a node - C(T, v) (b) Lifetime - L(T )

Figure 14: Homogeneous graphs - number of messages per node varies

therefore the relative load of every node remains almost the same. From the results, we can learn that the

approximation ratio is constant for both algorithms (i.e., O(1) from OPT). The lifetime of the network is

plotted in Figure 13(b).

For the case, when the number of messages per node varies, the maximum node’s cost and lifetime graphs,

are depicted in Figures 14(a) and 14(b), respectively. Similarly to the results for static grid (Figure 11), the

total cost increases linearly with the average number of messages per node q̄. To conclude, for all simulations,

the lifetime and maximum load achieved by Conflt is better.

7 Conclusions and future work

In this paper, we have studied the problem of constructing energy efficient non-aggregated data gathering

tree under the homogeneous and heterogeneous network models. We have shown the problem is NP-hard

under both models, and provided several approximation algorithms for it. We also provided simulations that

support the theoretical results for the heterogeneous model. The implementation of some of the algorithms

depends on a centralized base station that perform the calculation and power assignment. In future work,

we plan to investigate a distributed scalable solution for the problem under the lifetime optimization metric.

Another future research direction is data gathering in complex evolving environment, when nodes’ location,

number of messages, or battery power changes over time.
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[21] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel

machines. Math. Program., 46(3):259–271, 1990.

[22] J. Lessmann and A. Krishnamurthy. Parameterized hierarchical layer topology construction for wireless

networks. In ICSNC ’07: Proceedings of the Second International Conference on Systems and Networks

Communications, page 15. IEEE Computer Society, 2007.

[23] L. Levin, M. Segal, and H. Shpungin. Optimizing Performance of Ad-hoc Networks Under Energy and

Scheduling Constraints. In WiOpt’10: Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks, pages 110–119, 2010.

[24] J. Liang, J. Wang, J. Cao, J. Chen, and M. Lu. An efficient algorithm for constructing maximum

lifetime tree for data gathering without aggregation in wireless sensor networks. In Proceedings of the

29th conference on Information communications, INFOCOM’10, pages 506–510. IEEE Press, 2010.

[25] C.-S. Lin, C.-N. Huang, and R.-J. Fang. A power-efficient data gathering scheme on grid sensor networks.

In Proceedings of the 8th WSEAS International Conference on Multimedia systems and signal processing,

pages 142–147. World Scientific and Engineering Academy and Society (WSEAS), 2008.

[26] A.-F. Liu, X.-Y. Wu, Z.-G. Chen, and W.-H. Gui. An energy-balanced data gathering algorithm for

linear wireless sensor networks. International Journal of Wireless Information Networks, 17:42–53, 2010.

22



[27] Y. Liu. Online data gathering for maximizing network lifetime in sensor networks. IEEE Transactions

on Mobile Computing, 6(1):2–11, 2007.

[28] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for

habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM international workshop on Wireless

sensor networks and applications, pages 88–97, 2002.

[29] V. Mhatre and C. Rosenberg. Homogeneous vs. heterogeneous clustered sensor networks: A comparative

study. In In Proceedings of 2004 IEEE International Conference on Communications (ICC 2004, pages

3646–3651, 2004.

[30] K. Pahlavan and A. H. Levesque. Wireless information networks. 1995.

[31] M. Segal. Fast algorithm for multicast and data gathering in wireless networks. Inf. Process. Lett.,

107(1):29–33, 2008.

[32] M. Segal and H. Shpungin. On construction of minimum energy k-fault resistant topologies. Ad Hoc

Networks, 7(2):363–373, 2009.

[33] H. Shpungin and M. Segal. Near optimal multicriteria spanner constructions in wireless ad-hoc networks.

IEEE/ACM transaction on Networking, 2009.

[34] J. Stanford and S. Tongngam. Approximation algorithm for maximum lifetime in wireless sensor net-

works with data aggregation. In FOCS 1998, pages 300–309, 1998.

[35] V. Stoumpos, A. Deligiannakis, Y. Kotidis, and A. Delis. Processing event-monitoring queries in sensor

networks. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pages

1436–1438. IEEE Computer Society, 2008.

[36] K. Sundaresan and S. Rangarajan. On exploiting diversity and spatial reuse in relay-enabled wireless

networks. pages 13–22, 2008.

[37] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable multihop routing in

sensor networks. In SenSys ’03: Proceedings of the 1st international conference on Embedded networked

sensor systems, pages 14–27, New York, NY, USA, 2003. ACM.

[38] Y. Wu, S. Fahmy, and N. B. Shroff. On the construction of a maximum-lifetime data gathering tree in

sensor networks: Np-completeness and approximation algorithm. In INFOCOM, pages 356–360, 2008.

[39] H. Zhang, H. Shen, and H. Tian. Reliable and real-time data gathering in multi-hop linear wireless sensor

networks. In X. Cheng, W. Li, and T. Znati, editors, Wireless Algorithms, Systems, and Applications,

volume 4138 of Lecture Notes in Computer Science, pages 151–162. Springer Berlin, 2006.

23



[40] L. Zhang and B.-H. Soong. Interference Distribution in the Nakagami Fading Wireless CDMA Ad Hoc

Networks with Multi-Code Multi-Packet Transmission (MCMPT). In 30th Annual IEEE Conference

on Local Computer Networks (LCN 2005), 15-17 November 2005, Sydney, Australia, Proceedings. IEEE

Computer Society, 2005.

24


