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Abstract

Wireless sensor networks have recently posed many new system-building challenges. One of the
main problems is energy conservation since most of the sensors are devices with limited battery life
and it is infeasible to replenish energy via replacing batteries. An effective approach for energy conser-
vation is scheduling sleep intervals for some sensors, while the remaining sensors stay active providing
continuous service, i.e., maintain sensing coverage and network connectivity. In this paper we consider
the problem of selecting a set of active sensors of minimum cardinality satisfying the above require-
ments. We develop constant-factor approximation algorithms for fixed and variable sensor locations.
Our algorithms are based on different techniques, which allows to find the desired trade-off between
the complexity and the quality of approximation. We also present an improved6-approximation al-
gorithm for the minimum connected dominating set problem inunit disk graphs. Finally, we propose
algorithms for connecting a covering set.

1 Introduction

Recent technological advances have led to the emergence of small, low-power devices that integrate sen-
sors with limited on-board processing and wireless communication capabilities [4, 15]. Pervasive networks
of such sensors open new perspectives for many potential applications, such as surveillance, environment
monitoring and biological detection [1, 27]. A sensor network consists of multiple sensor nodes and each
sensor can sense certain physical phenomena like light, temperature or vibrations around its location. The
purpose of a sensor network is to process some high-level sensing tasks and report the data to the applica-
tion.

Minimizing energy consumption to prolong the system lifetime is a major design objective for sensor
networks since sensors need to operate for a long time on battery power. If all the sensor nodes simulta-
neously operate in active mode, an excessive amount of energy is wasted and the data collected is highly
correlated and redundant. In addition, multiple packet collisions may occur when all the sensors in a cer-
tain area try to transmit as a result of a triggering event. Prolonging the network lifetime can be achieved
by scheduling some nodes to sleep (a power saving mode) whilethe remaining active nodes provide con-
tinuous service. Note that as long as coverage and connectivity are maintained, a sensor network still
functions properly even if some sensors die much earlier than others.

Many existing solutions have treated the problems of sensing coverage and network connectivity sepa-
rately. The problem of sensing coverage has been studied extensively. A protocol that uses a local geomet-
ric calculation to preserve the sensing coverage is presented in [31]. In this protocol if the sensing area of
a node is completely covered by its neighbors, it enters sleep mode. A distributed probing-based density
control algorithm for robust sensing coverage PEAS has beendesigned in [35]. In PEAS a sleeping node
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wakes up occasionally to check if there exist working nodes in its vicinity. If so, it sleeps again, otherwise
it enters active mode. Several algorithms that use linear programming techniques to select a minimal set
of active nodes for maintaining coverage have been proposed[8, 29]. However, these protocols do not
guarantee network connectivity.

On the other hand, many protocols have been designed to maintain network connectivity. Although
a wireless ad-hoc network has nophysicalbackbone infrastructure, avirtual backbone can be formed by
nodes in a connected dominating set of the corresponding unit-disk graph. The most important benefit of
virtual backbone-based routing is significant reduction inthe protocol overhead, which greatly improves
the network throughput. GAF [34] conserves energy by dividing a region using a rectangular grid and
electing a leader in each cell while putting all the other nodes into sleep. In SPAN [9] a node decides
whether it should be active or sleeping based on the connectivity among its neighbors. A different approach
is used in ASCENT [7], where to make the decision each node estimates the number of active neighbors
and the per-link data loss rate.

In general, aconnected dominating set(CDS) of a graphG = (V,E) is a subsetV ′ ⊆ V such that
each node inV \ V ′ is adjacent to some node inV ′, which induces a connected subgraph. A dominating
set isweakly connectedif the graph induced by the stars of vertices of dominating set is connected. We
notice that the problem of finding and maintaining of minimumsize CDS in the corresponding unit-disk
graph is equivalent to the (minimum energy) broadcast problem with the restriction that source is defined
in advance. In this case we aim to minimize the number of transmitting nodes. Similarly, one can define a
“partial” CDS of a given graph that corresponds to a multicast tree. It has been show that the problem of
finding CDS (or weakly CDS) is NP-hard even for unit-disk graphs [12]. Guha and Khuller [20] gave an
algorithm that works for general graphs and finds CDS that is afactor ofO(H(∆)) far from the optimum
CDS, where∆ is the maximal degree of the given graph andH is the harmonic function. Chen and Liest-
man [10] used the result in [20] in order to getln ∆-approximation factor algorithm. Dubhashi et al. [14]
obtained alog ∆ approximation algorithm for general graphs that finds weakly connected dominating set.
Papers [2, 6, 32] all give a constant factor approximation for CDS in unit-disk graphs with the differences
in algorithms complexity and approximation ratio. Cardei et al. [6] give an algorithm with factor8 and
message complexityn ∗ ∆, where∆ is the maximum degree of unit disk graph. Thus, in worst case
they [6] have a quadratic message complexity. Wan et al. [32]present factor8 algorithm withO(n log n)

message complexity. However, they [32] used the broadcast model of transmission that counts only the
broadcasted messages without received messages. In fact, the total amount of received messages can be
as large asO(n2). An algorithm given by Alzoubi et al. [2] has linear time and message complexity, but
the obtained approximation factor deteriorates to 192. Cheng et al. [11] gave a PTAS for finding CDS in
unit disk graphs. Their algorithm has an approximation ratio of (1 + 1/s) with running timenO((s log s)2).
The hidden constant in the running time here is huge and thus the algorithm is impractical. We note that
all these protocols do not ensure complete coverage.

Unfortunately, satisfying only coverage or connectivity alone is not sufficient since nodes may not
be able to coordinate effectively or monitor the environment with sufficient accuracy. Thus, the problem
of reducing energy consumption by keeping a minimal number of sensor nodes in active mode while
maintaining sensing coverage and connectivity has received a great deal of attention in recent time. Gupta
et al. [22] design centralized and distributed approximation algorithms for the connected sensor cover
problem that achieve aO(log n) approximation with respect to the size of an optimal sensor cover, where
n is the network size. Zhang and Hou [36] prove that if the radiorange is at least twice the sensing range, a
complete coverage of a convex area implies connectivity among the nodes and derive optimality conditions
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under which a subset of working sensor nodes can be chosen forfull coverage. Wang et al. [33] design a
Coverage Configuration Protocol (CCP) that can provide different degrees of connected coverage and also
present a geometric analysis of the relationship between coverage and connectivity.

Since a sensor network is usually deployed to perform surveillance and monitoring tasks, another
definition of coverage is calculating a path with specific properties through a sensor network. The maximal
support problem is to find a path that minimizes the maximal distance of a point on the path to the closest
sensor and the maximal breach problem is to find a path which maximizes the minimal distance of a point
on the path to the closest sensor. In [28] they derive centralized algorithms for finding a maximal breach
path and a maximal support path in a sensor network using Voronoi diagram and Delaunay triangulation
techniques. Distributed algorithms for both problems are given in [25]. In [17] they present constant-
approximation algorithms for dynamic maintenance of the best-case and the worst-case coverage distances.
They also improve the running time of the shortest maximal support path algorithms due to [28, 25].

When a sensor network already functions, the locations of the sensors are fixed. However, intelligent
sensor placement algorithms can be applied prior to the deployment of the sensor network in order to
optimize the underlying architecture. In [13] they presentalgorithms for finding efficient placement of
sensors that guarantee probabilistic coverage of the grid points. Sensor placement for surveillance and
target location is considered in [8]. They consider the problems of achieving the desired coverage while
minimizing the cost (sensors may have different ranges and costs) and covering every grid point by a
unique subset of the sensors.

Our results. We study the problem of providing coverage and connectivityin a unified framework.
First we consider fixed sensor locations. We present the sector cover algorithm, which provides complete
coverage and has an approximation factor ofΘ(log m), wherem is the maximal number of neighbors of
a single sensor in the corresponding unit disk graph. Then wederive the grid placement and the domi-
nating cover algorithms, which achieve approximation factors of6π and32, respectively. However, these
algorithms provide only partial coverage. We present an algorithm with sub-quadratic running time for
the minimum connected dominating set problem in unit disk graphs that achieves an approximation fac-
tor better than6. This improves upon the previous best known approximation factor of8 due to [6, 32].
Thereafter we consider variable sensor locations. We develop the discrete grid algorithm that has a con-
stant approximation guarantee and finds partial coverage. The accuracy of the coverage is a parameter,
i.e., the higher the running time the better the accuracy. Wealso consider a model in which sensors must
be placed only at the grid points. Finally, we propose algorithms for connecting a covering set.

The rest of the paper is organized as follows. Our model is described in Section 2. In Section 3 and
Section 4 we consider fixed and variable sensor locations, respectively. Section 5 studies how to connect a
covering set. We conclude with Section 6.

2 Model Description

Given a set ofn sensorsS = {s1, . . . , sn} distributed on the plane. Each sensorsi has a location(xi, yi).
The locations of the sensors may or may not be given in advance. The sensorsi can monitor objects that
are within a distanceRi

s from si. This area is called thesensing regionof si and is denoted byAi. We
define asectorto be a maximal region that is formed by intersection of a number of sensing regions such
that all points within the sector are covered by the same set of sensors.

The communication graphG of the network is the undirected graph in which nodes are sensors and
there is an edge between two nodes if they can communicate with each other. For a subset of nodesS′, the
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communication subgraphis the subgraph induced by the nodes inS′.
Let P be a region of interest on the plane. Aconnected coverof P is a subsetS′ = {sj1, . . . , sjm

} of
sensors such thatP = Aj1 ∪ . . . ∪ Ajm

and the communication subgraph induced byS′ is connected. An
example of a connected cover is presented in Figure 1.

P

Figure 1:A connected cover example.

Definition 2.1 Given a region of interestP , theconnected coverage problemis to find a connected cover
of P that uses a minimum number of sensors. We denote byOPT an optimal connected cover.

Definition 2.2 We say that an algorithmA has the approximation factor ofc, if the size of the solution
produced byA is at mostc · |OPT | for any instance of the problem.

We say thatA finds apartial coverageif the set of the selected sensors does not coverP completely.
We make a few simplifying assumptions.

1. We assume that all sensors have the same sensing radiusRs.

2. We assume that two sensors can communicate with each otherif the distance between them is at
mostRc andRc ≥ 2Rs.

3. We assume thatP is convex.

Theorem 2.1 ([33, 36])Under the above assumptions, complete coverage implies connectivity.

In Section 5 we show how to replace assumption (3) by a more realistic assumption thatRc = Rs.

3 Fixed Sensor Locations

In this section we study the case in which the locations of thesensors are fixed. We derive the sector cover
approximation algorithm, which provides complete coverage and has the approximation factor ofln n in
the worst case. Then we present the grid placement and the dominating cover algorithms, which achieve
constant approximation factors but provide only partial coverage. We also describe a new6-approximation
algorithm for the minimum connected dominating set problemin unit disk graphs.
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3.1 Sector Cover Algorithm

In this section we develop the sector cover algorithm. We consider the sectors produced by the sensors as
elements to be covered while each sensor represents a set. Weapply the greedy set cover algorithm due to
Johnson [18]. At each step, the algorithm selects the sensorthat covers the maximal number of uncovered
sectors.

In [3] they present an algorithm that determines in timeO(n1+ǫ) whether a polygon is completely
covered by a set of unit disks. We apply this algorithm to check whether a feasible solution exists, i.e.,
whether the region of interestP is completely covered by the available sensors.

Observation 1 The number of sectors created by intersection ofn disks on the plane is at mostn(n −
1) + 1.

Our algorithm is presented in Figure 3. The running time of the algorithm isO(n2 log n): Step1 takes
O(n1+ǫ) time and Step2 can be implemented inO(n2 log n) time.

1. Apply the algorithm of [3] to check whether the sensors cover the region of interestP . If not,
report failure.

2. Apply the greedy set cover algorithm to the sectors that intersectP . That is, until all sectors are
covered, at each iteration select a sensor that covers the maximal number of uncovered sectors.

Figure 2: The sector cover algorithm.

The next theorem shows that the sector cover algorithm finds afull connected coverage.

Theorem 3.1 The covering set found by the sector cover algorithm is connected andP is completely
covered.

Proof: Step1 of the algorithm ensures that the union of the sensing regions coversP and in Step2 all
sensing regions that intersectP are covered. Thus,P is completely covered. According to Theorem 2.1,
this set is connected.

The following theorem establishes the approximation factor of the sector cover algorithm.

Theorem 3.2 The approximation factor of the sector cover algorithm is atmostlog m, wherem is the
maximal number of sectors covered by a single sensor.

We also present a matching lower bound. The proof of the following theorem is omitted due to the
lack of space.

Theorem 3.3 The approximation factor of the sector cover algorithm is atleastΩ(log m).

Since in most real sensor networksm is typically a constant, in fact the sector cover algorithm achieves
a constant factor approximation in the average case. Observe that this algorithm can be easily extended to
the case of non-uniform sensing radii and the case of obstacles without affecting the approximation factor.

3.2 Grid Placement Algorithm

In this section we present the grid placement algorithm. A grid is defined as a packed tiling of regular
rectangles called cells. We assume that the sides for each ofthe cells are parallel to thex andy axes of the
plane. In a nutshell, we place a grid with cell size ofRs/

√
2 × Rs/

√
2 over the region of interestP . A
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specific instance of grid is defined by its position. Then we choose exactly one sensor in each cell to be in
the cover. Finally, we add extra sensors to make the coveringset connected.

Observation 2 The selection of the cell size implies that each sensor covers its cell completely and sensors
in neighboring cells are able communicate with each other.

Observe that depending on the position of the grid, some cells may be empty. To obtain better coverage,
we aim to minimize the number of such cells. In [5] they give analgorithm for solving the grid placement
problem that minimizes the number of grid cells not containing any point with running time ofO(n log n)

for a set ofn points. We use the algorithm of [5] to optimize the grid placement.
Our algorithm is presented in Figure 3. The running time of the algorithm isO(n3): Step2 takes

O(n log n) time, Step4(a) takesO(n3) time and Step4(b) takesO(n2) time.

1. Define a grid with cell size ofRs/
√

2 × Rs/
√

2 coveringP .

2. Apply the algorithm of [5] to find the grid placement that minimizes the number of empty cells.

3. Select the sensor closest to the center in each non-empty cell and add it to the covering set (the
basiccover).

4. Add extra sensors to the covering set to make it connected:

(a) Create a weighted graphGC in which nodes are the connected components in the commu-
nication subgraph induced by the nodes from the basic cover.There is an edge between two
super-nodesu andv in GC if there exists a path between them that does not contain any
node directly reachable from another super-nodew but not directly reachable from eitheru

or v. The weight of the edge equals to the number of regular nodes that are not included in
the basic cover on a shortest path satisfying the above condition.

(b) Apply Prim’s minimum spanning tree (MST) algorithm on the graphGC.

(c) Add to the covering set the nodes that lie on the shortest paths corresponding to the edges
of the MST (theextendedcover).

Figure 3: The grid placement algorithm.

The following theorem states that the grid placement algorithm is correct.

Theorem 3.4 The covering set found by the grid placement algorithm is connected. The uncovered area
of P is bounded by the union of the empty cells.

Proof: We argue that if there exists a path between two super-nodesu andv in G, then there also exists
a path between them inGC. If GC contains edge(u, v), we are done. Otherwise, by our construction,u

can reachv in GC through another super-nodew. Therefore, the algorithm returns a connected covering
set.

By Observation 2, all non-empty cells are covered. Hence, the uncovered area ofP is bounded by the
union of the empty cells.

We note that the grid placement algorithm will find almost complete coverage for dense instances of
the problem. Next we derive the approximation factor of the grid placement algorithm.
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Definition 3.1 We say that a super-node ofGC coversa cell if it includes a node from the basic cover that
is located in this cell.

Theorem 3.5 The approximation factor of the grid placement algorithm isat most6π.

Proof: Let k and l be the number of nodes in the basic and the extended cover, respectively. The area
covered by a single sensor from the basic cover isR2

s/2. On the other hand, any sensor inOPT can cover
the area of at mostπR2

s . Therefore,
k ≤ 2π|OPT |,

sinceP is covered by the grid.
We will show that the number of sensors in the extended cover is at most2(k−1). Clearly, the number

of nodes inGC is at mostk and thus the number of edges in the MST is bounded byk − 1. We claim
that the weight of any edge inGC is at most two. Suppose towards a contradiction that the weight of an
edge between super-nodesu andv is greater than two. We have that at least one intermediate node on
the shortest path fromu to v must lie in a cellC not covered by the super-nodesu andv. Let w be the
super-node coveringC. We obtain that the node fromC on the path betweenu andv is directly reachable
from w and not directly reachable fromu or v, which contradicts to our construction.1 Therefore,

l ≤ 2(k − 1),

which establishes the theorem.

3.3 Connected Dominating Set

In this section we describe the dominating cover algorithm.The algorithm uses the connected dominating
set (CDS) algorithm as a subroutine. First we present a new algorithm for the CDS problem that achieves
an approximation factor of6. Let GD be a disk graph in which each sensor corresponds to a disk with
radiusRs/4. We will compute a connected dominating set inGD. The following observation will be
useful to demonstrate the coverage property.

Observation 3 If a disk d in GD intersects another diskd′, then the sensor located in the center ofd

completely coversd′.

Our idea of building CDS is formed from two steps. At the first step, we construct a minimal size
independent set of the unit disk (communication) graph and at the second step, we connect the chosen
nodes by inserting additional disks. In order to accomplishthe first step, we always select a nodeD that
has a maximal number (at most5) of the independent neighbors and remove allD’s neighbors by taking
D into the current independent set. Then we convert our independent set to a connected dominating set by
increasing its size by at most a factor of two. The formal description of the algorithm is given in Figure 4.

Theorem 3.6 The CDS algorithm finds a connected dominating set in a set ofn unit radius disks that
is of factor6 from an optimal size usingO(n7/4 + k log k) time, wherek is the number of edges in the
underlying graph.

Proof: Steps1 − 5 find a maximal independent setIS. Let OPTC be an optimal CDS solution. We
claim that|IS| < 3|OPTC|. In order to see this, we classify the nodes of the given unit disk graph into
two types:completeandincomplete. Complete node is a node that has been chosen during Steps1 − 5 to
be inIS and at the time it was selected no one of its neighbors has beenremoved yet. All other nodes from

1Note that in the construction ofGC we can restrict our attention to paths of length at most two.
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1. LetIS = ∅.

2. Choose a diskD with a largest number of independent neighbors.

3. IS = IS ∪ {D}.

4. Remove all the neighbors ofD.

5. Repeat steps2 − 4 until S = ∅.

6. Mark each disk inIS as black; all other disks as grey. Each black node representsa different
component.

7. Choose a grey nodeU (if exists) with at least two black neighbor nodes in different components.

8. RecolorU to black and unionU and all its black neighbor nodes into one component.

9. Repeat steps7 − 8 until either there is no such grey node or we have only one black component.
If we left with one black component we are done. Otherwise, continue with step10.

10. Build a connectivity graphG′, such that the nodes ofG′ correspond to the remaining black
components and each such node is connected (if possible) to each other node by a path with only
two grey nodes. In order to define such path we check for each grey nodev (that is connected
to black nodew) all of its grey neighbor nodes that are connected to other thanw black nodes.
If such nodes exist, sayv1, v2, . . . , vk (v1 connects to blackw1, v2 connects to blackw2 and
so on) we put additional nodes toG′ that correspond tov, v1, v2, . . . , vk and undirected edges
(w, v), (v, v1), (v, v2), . . . (v, vk), (v1, w1), (v2, w2), . . . (vk, wk).

11. Connect all the black components nodes ofG′ using a BFS traversal.

Figure 4: The CDS algorithm.

IS are incomplete. The question we ask is: how many complete andincomplete nodes correspond (are
adjacent) to the nodes in the optimal solution? The trivial case is when complete nodev matches some
node from the optimal solution. Thus, we assume thatv doesn’t match any node fromOPTC. Therefore,
some nodeo from OPTC should be a neighbor ofv. Clearly, to each complete node corresponds at
least one node fromOPTC and there is no node fromOPTC that corresponds to two (or more) complete
nodes. The problem is that the same node fromOPTC can correspond to some complete node and several
incomplete nodes.

Definition 3.2 We define thedegreeof a node to be the maximal number of its independent neighbors.

We consider different cases when the degree of a complete node is2, 3, 4, 5. If the degree is2, then
the node fromOPTC corresponds to one complete and one incomplete node. If the degree is3, then the
nodeOPTC corresponds to one complete and two incomplete nodes. If thedegree is4, then the worst
case happens when5 nodes fromOPTC correspond to one complete and13 incomplete nodes. Finally,
if the degree is5, then the worst case occurs when6 nodes fromOPTC correspond to one complete and
16 incomplete nodes (other situations are geometrically non-realizable due to the properties of unit disk
graphs). Henceforth,|IS| < 3|OPTC|.
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When convertingIS into connected dominating set, we observe that the number ofthe chosen grey
nodes is less than or equal to the number of the original blacknodes. The approximation factor of6

follows.
Considering runtime of the algorithm, we assume that we are only givenn disks (not the graph itself).

In order to build a graph (which in naive fashion can takeO(n2) time), we use the data structure forn disks
given in Gupta et al. [21] that can be built inO(n) time such thatp disks that are intersected by a query
disk can be reported inO(n3/4 + p) time. We query this data structuren times for construction of the unit
disk graph, spendingO(n3/4+k) time. Next, in order to find a disk with the largest number of independent
neighbors, we consider separatelyn circular arc graphs, where a disk plays a role of a circle and the disks
intersecting it play a role of arcs. We use an algorithm withO(m log m) runtime [23, 24, 26], wherem is
the number of arcs, to compute a maximum independent set for each circular arc graph. To compute the
total running time spent for these operations, we observe that each arc is involved in the computation only
a constant number of times, since there is a constant number of independent2-hop neighbors (at distance
2 in a unit disk graph) for each disk. Thus, it yieldsO(k log k) time. In order to construct a CDS, we
start join black nodes by inserting additional grey nodes. This can be implemented as a disjoint-set data
structure, where we use operations like make-set, find and union. The total time needed to accomplish
Steps 6-8 isO(n + kα(k)), whereα(·) is a very slowinverse Ackermann’sfunction [30]. Finally, BFS
takesO(k) time in order to connect the remaining black components.

The dominating cover algorithm is presented in Figure 5. Thecoverage property of the dominating
cover algorithm follows by Observation 3.

1. Construct the disk graphGD in which all disks intersectP and have radiusRs/4.

2. Apply the CDS algorithm to calculate a connected dominating set inGD.

Figure 5: The dominating cover algorithm.

Theorem 3.7 The covering set found by the dominating cover algorithm is connected. The uncovered
area ofP is bounded by the parts ofP that is not covered by the same set of sensors having the sensing
radius ofRs/4.

The following theorem establishes the approximation factor of the dominating cover algorithm.

Theorem 3.8 The approximation factor of the dominating cover algorithmalgorithm is at most32.

Proof: The area covered by a single sensor from theIS computed by the CDS algorithm isπR2
s/16. On

the other hand, any sensor inOPT can cover the area of at mostπR2
s . The theorem follows since the size

of the final CDS is at most twice that of IS.

4 Variable Sensor Locations

In this section we consider the case in which we have to define the locations of the sensors. We develop
the discrete grid algorithm that has a constant approximation factor and computes partial coverage. The
running time of the discrete grid algorithm depends on the accuracy of the coverage. Then we study an
extension of our model, where sensors must be placed only at the grid points.
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4.1 Discrete Grid Algorithm

In this section we present the discrete grid algorithm, which is based on a discrete grid scheme. We divide
the region of interestP into cells using a fine grid with cells of sizea×a, wherea ≤ Rc/

√
2. The vertices

of the grid define a set of points. Then we cover these points with a minimal number of sensors. We use
the PTAS of [19] for covering points with unit disks. Finally, we add extra sensors to connect the resulting
set.

Observation 4 The selection of the cell size implies that sensors coveringadjacent vertices of the greed
are able communicate with each other.

The discrete grid algorithm appears in Figure 6. The runningtime of the algorithm isO(k), wherek

is the number of cells. Next we analyze the performance of thediscrete grid algorithm.

1. Define a grid with cell size ofa × a coveringP .

2. Apply the PTAS of [19] to find a coverage of the grid vertices(thebasiccover).

3. Add extra sensors to the covering set to make it connected:

(a) Create an unweighted graphGC in which nodes are the connected components in the com-
munication subgraph induced by the nodes from the basic cover. There is an edge between
every two super-nodesu andv in GC if they cover adjacent cells.

(b) Calculate a spanning tree (ST) of the graphGC.

(c) Add to the covering set a sensor that connects the endpoints of each ST edge (theextended
cover).

Figure 6: The discrete grid algorithm.

Theorem 4.1 The covering set found by the discrete grid algorithm is connected. The uncovered area of
P is inversely proportional to the cell size.

Proof: By Observation 4, the graphGC is connected. Thus, our algorithm returns a connected covering
set. Note that all the grid vertices are covered. Thus, when the cell size tends to zero, we obtain complete
coverage. Therefore, the uncovered area ofP is inversely proportional to the cell size.

Theorem 4.2 The approximation factor of the discrete grid algorithm is at most2(1 + ǫ).

Proof: The number of nodes in the basic cover is at most(1 + ǫ)|OPT | since an optimal solution has to
cover all vertices of the grid. By our construction, the sizeof the extended cover is bounded by twice the
size of the basic cover.

4.2 Sensors Placement at Grid Points

We study the problem introduced in [13], but focus on deterministic (and not probabilistic) coverage. The
model is as follows. We are given aN × N grid and the goal is to cover a subset of grid points using the
minimum number of sensors. The restriction is that sensors must be placed only at the grid points. There
may be someobstacleson the plain, and thus some parts of the sensing region of a sensor can be obscured.
We assume that each cell has sizea× a. We present two constant-factor approximation algorithmsfor the
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model with and without obstacles. We improve upon the results of [13], where they give algorithms with
running timeO(N4) providing no worst-case performance guarantees.

Our first algorithm for the modelwith obstaclesis based on greedy set cover. The greedy point cover
algorithm is presented in Figure 7. The running time of the greedy point cover algorithm isO(N2 log N).

Theorem 4.3 The approximation factor of the greedy point cover algorithm is at mostlog
(

4πR2
s/a

2
)

.

The theorem follows since each sensor covers at most4πR2
s/a

2 points.

1. ConsiderN2 sensors located at the grid points. Each sensor cover the points in its sensing region
that are not obscured by the obstacles.

2. Apply the greedy set cover algorithm. That is, until all points of interest are covered, at each
iteration select a sensor that covers the maximal number of uncovered points.

Figure 7: The greedy point cover algorithm.

The second algorithm for the modelwithout obstaclesappears in Figure 8. We use the PTAS of [19]
to cover the points. Then we adjust the locations of the sensors to be at the grid points duplicating sensors
if necessary. This algorithm has running time ofO(N2).

Theorem 4.4 The approximation factor of the PTAS point cover algorithm is at most4(1 + ǫ).

The theorem holds due to the fact that in Step2 we replace each sensor by at most four sensors.

1. Apply the PTAS of [19] to find a coverage of the points of interest.

2. Replace each sensor that is located not at a grid point by a minimal set of sensors located at the
neighboring grid points covering the same set of points.

Figure 8: The PTAS point cover algorithm.

We note that although the covering sets calculated by the greedy point cover and the PTAS point cover
algorithms may be disconnected, one can connect them using the techniques developed in the next section.

5 Connectivity

In this section we show how to convert anycompletecovering set into a connected covering set under a
realistic assumption thatRc = Rs. We present two algorithms based on MST and Steiner Tree techniques.
Suppose that we are given abasiccoverB calculated by an algorithmA.

Observation 5 For each sensor from the basic cover, there is a sensor inOPT at distance of at mostRs.

The observation follows from the fact that the sensing radius isRs and if there is no such a sensor, the
center of the disk is not covered byOPT . Observation 5 implies the following lemma.

Lemma 5.1 Adding nodes inOPT makes the basic cover connected.

The MST connection algorithm is presented in Figure 9. The next theorem derives the performance
guarantee of the MST connection algorithm.

Theorem 5.2 The size of the extended cover calculated by the MST connection algorithm is at most
2(|B| − 1).
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Proof: According to Lemma 5.1,GC is connected. We argue that the weight of any edge inGC is at
most two. Otherwise,A’s coverage is incomplete because there exists a disk which is not directly reachable
from any of the super-nodes and thus its center is not covered. The theorem follows since the number of
edges in a spanning tree is|B| − 1.

1. Create a weighted graphGC in which nodes are the connected components in the communication
subgraph induced by the nodes inB. There is an edge between two super-nodesu andv in GC if
there exists a path between them that does not contain any node directly reachable from another
super-nodew but not directly reachable from eitheru or v. The weight of the edge equals to the
number of regular nodes that are not included in the basic cover on a shortest path satisfying the
above condition.

2. Apply Prim’s MST algorithm on the graphGC.

3. Add to the covering set the nodes that lie on the shortest paths corresponding to the edges of the
MST (theextendedcover).

Figure 9: The MST connection algorithm.

The Steiner Tree connection algorithm appears in Figure 10.We use the algorithm of [16] for the
node-weighted steiner tree problem. The following theoremestablishes the performance guarantee of the
Steiner Tree connection algorithm.

Theorem 5.3 The size of the extended cover calculated by the Steiner Treeconnection algorithm is at
most(ln |B|) · |OPT |.
Proof: By Lemma 5.1, the cost of an optimal steiner tree is at most|OPT |. The approximation factor
follows by Theorem5.1 and Theorem5.2 [16].

1. Create an unweighted graphGC in which nodes are the connected components in the communi-
cation subgraph induced by the nodes inB and the other nodes ofG not included intoB.

2. Apply the algorithm of [16] for the node-weighted steinertree with unit weights on the graph
GC, where nodes inB represent the terminal nodes.

3. Add to the covering set the steiner nodes (theextendedcover).

Figure 10: The Steiner Tree connection algorithm.

Remark 1 We note that even ifA provides only partial coverage, the algorithms will still return a con-
nected set as long asOPT provides complete coverage.

6 Concluding Remarks

In this paper we investigate the problem of maintaining coverage and connectivity by keeping a minimal
number of sensor nodes in active mode in wireless sensor networks. We present centralized algorithms
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with provable worst-case constant approximation factors for the fixed as well as the variable sensor loca-
tions. We also propose an improved approximation algorithmfor the minimum connected dominating set
problem in unit disk graphs. In addition, we derive algorithms for connecting a covering set. An interesting
future research direction is to design distributed versions of our algorithms.
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