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Abstract

Wireless sensor networks have recently posed many newnsysiédding challenges. One of the
main problems is energy conservation since most of the semse devices with limited battery life
and it is infeasible to replenish energy via replacing vete An effective approach for energy conser-
vation is scheduling sleep intervals for some sensorsgvthd remaining sensors stay active providing
continuous service, i.e., maintain sensing coverage amgbnieconnectivity. In this paper we consider
the problem of selecting a set of active sensors of minimurdicality satisfying the above require-
ments. We develop constant-factor approximation algordtifior fixed and variable sensor locations.
Our algorithms are based on different techniques, whiawallto find the desired trade-off between
the complexity and the quality of approximation. We alsospré an improved-approximation al-
gorithm for the minimum connected dominating set problenaniit disk graphs. Finally, we propose
algorithms for connecting a covering set.

1 Introduction

Recent technological advances have led to the emergenceatif fow-power devices that integrate sen-
sors with limited on-board processing and wireless compatitin capabilities [4, 15]. Pervasive networks
of such sensors open new perspectives for many potentitaippns, such as surveillance, environment
monitoring and biological detection [1, 27]. A sensor natkvoonsists of multiple sensor nodes and each
sensor can sense certain physical phenomena like lighpeierture or vibrations around its location. The
purpose of a sensor network is to process some high-levsingetasks and report the data to the applica-
tion.

Minimizing energy consumption to prolong the system lifegiis a major design objective for sensor
networks since sensors need to operate for a long time oerpgtbwer. If all the sensor nodes simulta-
neously operate in active mode, an excessive amount oferevgasted and the data collected is highly
correlated and redundant. In addition, multiple packeigiohs may occur when all the sensors in a cer-
tain area try to transmit as a result of a triggering evenmldPging the network lifetime can be achieved
by scheduling some nodes to sleep (a power saving mode) thkileemaining active nodes provide con-
tinuous service. Note that as long as coverage and conitgdcie maintained, a sensor network still
functions properly even if some sensors die much earlier tlers.

Many existing solutions have treated the problems of sgnsinerage and network connectivity sepa-
rately. The problem of sensing coverage has been studiedsxely. A protocol that uses a local geomet-
ric calculation to preserve the sensing coverage is predent31]. In this protocol if the sensing area of
a node is completely covered by its neighbors, it entergpgieede. A distributed probing-based density
control algorithm for robust sensing coverage PEAS has Hesigned in [35]. In PEAS a sleeping node



wakes up occasionally to check if there exist working nodessivicinity. If so, it sleeps again, otherwise
it enters active mode. Several algorithms that use lineagramming techniques to select a minimal set
of active nodes for maintaining coverage have been prop[@e2P]. However, these protocols do not
guarantee network connectivity.

On the other hand, many protocols have been designed toaimaimgtwork connectivity. Although
a wireless ad-hoc network has physicalbackbone infrastructure,\artual backbone can be formed by
nodes in a connected dominating set of the correspondinedishi graph. The most important benefit of
virtual backbone-based routing is significant reductiotthim protocol overhead, which greatly improves
the network throughput. GAF [34] conserves energy by dngda region using a rectangular grid and
electing a leader in each cell while putting all the otherewihto sleep. In SPAN [9] a hode decides
whether it should be active or sleeping based on the comitg@imong its neighbors. A different approach
is used in ASCENT [7], where to make the decision each nodmatss the number of active neighbors
and the per-link data loss rate.

In general, aconnected dominating séEDS) of a graphG = (V, E) is a subsel’’ C V such that
each node i/ \ V' is adjacent to some node W, which induces a connected subgraph. A dominating
set isweakly connected the graph induced by the stars of vertices of dominatirngsseonnected. We
notice that the problem of finding and maintaining of minimaize CDS in the corresponding unit-disk
graph is equivalent to the (minimum energy) broadcast prabdith the restriction that source is defined
in advance. In this case we aim to minimize the number of métting nodes. Similarly, one can define a
“partial” CDS of a given graph that corresponds to a multi¢eee. It has been show that the problem of
finding CDS (or weakly CDS) is NP-hard even for unit-disk draypl12]. Guha and Khuller [20] gave an
algorithm that works for general graphs and finds CDS thafast@r of O(H(A)) far from the optimum
CDS, whereA is the maximal degree of the given graph difids the harmonic function. Chen and Liest-
man [10] used the result in [20] in order to datA-approximation factor algorithm. Dubhashi et al. [14]
obtained dog A approximation algorithm for general graphs that finds wegakhnected dominating set.
Papers [2, 6, 32] all give a constant factor approximatiorCS in unit-disk graphs with the differences
in algorithms complexity and approximation ratio. Cardeak [6] give an algorithm with facto8 and
message complexity « A, where A is the maximum degree of unit disk graph. Thus, in worst case
they [6] have a quadratic message complexity. Wan et al.j8ent factoB algorithm withO(n logn)
message complexity. However, they [32] used the broadcadehof transmission that counts only the
broadcasted messages without received messages. Irhfatbtal amount of received messages can be
as large a®)(n?). An algorithm given by Alzoubi et al. [2] has linear time an&ssage complexity, but
the obtained approximation factor deteriorates to 192.nGlet al. [11] gave a PTAS for finding CDS in
unit disk graphs. Their algorithm has an approximatiororafi(1 + 1/s) with running timen©((s10g)*),
The hidden constant in the running time here is huge and trualgorithm is impractical. We note that
all these protocols do not ensure complete coverage.

Unfortunately, satisfying only coverage or connectivitgree is not sufficient since nodes may not
be able to coordinate effectively or monitor the environimaith sufficient accuracy. Thus, the problem
of reducing energy consumption by keeping a minimal numiieseasor nodes in active mode while
maintaining sensing coverage and connectivity has redgei\great deal of attention in recent time. Gupta
et al. [22] design centralized and distributed approxioratalgorithms for the connected sensor cover
problem that achieve @(log n) approximation with respect to the size of an optimal senewvec where
n is the network size. Zhang and Hou [36] prove that if the radi@e is at least twice the sensing range, a
complete coverage of a convex area implies connectivityrgntioe nodes and derive optimality conditions



under which a subset of working sensor nodes can be choséuifooverage. Wang et al. [33] design a
Coverage Configuration Protocol (CCP) that can providedifit degrees of connected coverage and also
present a geometric analysis of the relationship betweesrage and connectivity.

Since a sensor network is usually deployed to perform slamee and monitoring tasks, another
definition of coverage is calculating a path with specifiqgamties through a sensor network. The maximal
support problem is to find a path that minimizes the maximstiagice of a point on the path to the closest
sensor and the maximal breach problem is to find a path whictinmizes the minimal distance of a point
on the path to the closest sensor. In [28] they derive cémtihlalgorithms for finding a maximal breach
path and a maximal support path in a sensor network usingndotiagram and Delaunay triangulation
techniques. Distributed algorithms for both problems avergin [25]. In [17] they present constant-
approximation algorithms for dynamic maintenance of tretdsase and the worst-case coverage distances.
They also improve the running time of the shortest maximppsut path algorithms due to [28, 25].

When a sensor network already functions, the locationsegémsors are fixed. However, intelligent
sensor placement algorithms can be applied prior to theogepnt of the sensor network in order to
optimize the underlying architecture. In [13] they presalgiorithms for finding efficient placement of
sensors that guarantee probabilistic coverage of the giictgo Sensor placement for surveillance and
target location is considered in [8]. They consider the [mmis of achieving the desired coverage while
minimizing the cost (sensors may have different ranges astst and covering every grid point by a
unique subset of the sensors.

Our results. We study the problem of providing coverage and connectivitg unified framework.
First we consider fixed sensor locations. We present therseater algorithm, which provides complete
coverage and has an approximation facto®¢fog m), wherem is the maximal number of neighbors of
a single sensor in the corresponding unit disk graph. Thedevige the grid placement and the domi-
nating cover algorithms, which achieve approximationdesbf6r and32, respectively. However, these
algorithms provide only partial coverage. We present aordlgn with sub-quadratic running time for
the minimum connected dominating set problem in unit diskpbs that achieves an approximation fac-
tor better thar6. This improves upon the previous best known approximatimtof of8 due to [6, 32].
Thereafter we consider variable sensor locations. We dpuble discrete grid algorithm that has a con-
stant approximation guarantee and finds partial coveragpe. atcuracy of the coverage is a parameter,
i.e., the higher the running time the better the accuracyalfe consider a model in which sensors must
be placed only at the grid points. Finally, we propose atbors for connecting a covering set.

The rest of the paper is organized as follows. Our model isrie] in Section 2. In Section 3 and
Section 4 we consider fixed and variable sensor locatiospertively. Section 5 studies how to connect a
covering set. We conclude with Section 6.

2 Model Description

Given a set of sensorsS = {sy, ..., s, } distributed on the plane. Each sensphas a locatior{z;, ;).
The locations of the sensors may or may not be given in advaroe sensos; can monitor objects that
are within a distancd?’ from s;. This area is called thsensing regiorof s; and is denoted byl;. We
define asectorto be a maximal region that is formed by intersection of a neindd sensing regions such
that all points within the sector are covered by the samefssrsors.

The communication grapld of the network is the undirected graph in which nodes arecssrend
there is an edge between two nodes if they can communicatesaith other. For a subset of nod&sthe
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communication subgrapis the subgraph induced by the nodesSin

Let P be a region of interest on the plane.cAnnected coveof P is a subset’ = {s;,,...,s;,, } Of
sensors such thdt = 4;, U...U A4, and the communication subgraph inducedsys connected. An
example of a connected cover is presented in Figure 1.

Figure 1:A connected cover example.

Definition 2.1 Given a region of interesP, theconnected coverage probleato find a connected cover
of P that uses a minimum number of sensors. We deno2Ri§/ an optimal connected cover.

Definition 2.2 We say that an algorithml has the approximation factor @f if the size of the solution
produced byA is at mostc - |OPT| for any instance of the problem.

We say thatA finds apartial coveragef the set of the selected sensors does not céveompletely.
We make a few simplifying assumptions.

1. We assume that all sensors have the same sensing radius

2. We assume that two sensors can communicate with eachibtherdistance between them is at
mostR. andR,. > 2R;.

3. We assume tha? is convex.

Theorem 2.1 ([33, 36]) Under the above assumptions, complete coverage impliegectnity.
In Section 5 we show how to replace assumption (3) by a motstieaassumption thak, = R;.

3 Fixed Sensor Locations

In this section we study the case in which the locations os#resors are fixed. We derive the sector cover
approximation algorithm, which provides complete coveragd has the approximation factorlafr in

the worst case. Then we present the grid placement and thmalimg cover algorithms, which achieve
constant approximation factors but provide only partialezage. We also describe a névapproximation
algorithm for the minimum connected dominating set problemnit disk graphs.



3.1 Sector Cover Algorithm

In this section we develop the sector cover algorithm. Wesictar the sectors produced by the sensors as
elements to be covered while each sensor represents a sapplyeahe greedy set cover algorithm due to
Johnson [18]. At each step, the algorithm selects the séinabcovers the maximal number of uncovered
sectors.

In [3] they present an algorithm that determines in tiég@:!*¢) whether a polygon is completely
covered by a set of unit disks. We apply this algorithm to &hebether a feasible solution exists, i.e.,
whether the region of intere$t is completely covered by the available sensors.

Observation 1 The number of sectors created by intersectiom afisks on the plane is at mos{n —
1)+ 1.

Our algorithm is presented in Figure 3. The running time efdlyorithm isO(n?log n): Stepl takes
O(n'*<) time and Step can be implemented i@ (n? log n) time.

1. Apply the algorithm of [3] to check whether the sensorsetdte region of interesP. If not,
report failure.

2. Apply the greedy set cover algorithm to the sectors thatsectP. That is, until all sectors ar
covered, at each iteration select a sensor that covers thien@anumber of uncovered sectors,

11%

Figure 2: The sector cover algorithm.

The next theorem shows that the sector cover algorithm firidé @nnected coverage.

Theorem 3.1 The covering set found by the sector cover algorithm is caiegeandP is completely
covered.

Proof: Stepl of the algorithm ensures that the union of the sensing regionersP and in Steg® all
sensing regions that intersetare covered. Thug? is completely covered. According to Theorem 2.1,
this set is connected. i

The following theorem establishes the approximation facfdhe sector cover algorithm.

Theorem 3.2 The approximation factor of the sector cover algorithm isvaistlog m, wherem is the
maximal number of sectors covered by a single sensor.

We also present a matching lower bound. The proof of thevidtlg theorem is omitted due to the
lack of space.

Theorem 3.3 The approximation factor of the sector cover algorithm iseaist(2(log m).

Since in most real sensor networksis typically a constant, in fact the sector cover algorittohiaves
a constant factor approximation in the average case. Gbgeat this algorithm can be easily extended to
the case of non-uniform sensing radii and the case of olestagthout affecting the approximation factor.

3.2 Grid Placement Algorithm

In this section we present the grid placement algorithm. il gr defined as a packed tiling of regular
rectangles called cells. We assume that the sides for edhk oélls are parallel to theandy axes of the
plane. In a nutshell, we place a grid with cell sizeR)f/v/2 x R,/\/2 over the region of interes®. A



specific instance of grid is defined by its position. Then weode exactly one sensor in each cell to be in
the cover. Finally, we add extra sensors to make the coveghgonnected.

Observation 2 The selection of the cell size implies that each sensor sdtgeeell completely and sensors
in neighboring cells are able communicate with each other.

Observe that depending on the position of the grid, soms g&lly be empty. To obtain better coverage,
we aim to minimize the number of such cells. In [5] they giveatgorithm for solving the grid placement
problem that minimizes the number of grid cells not contairéiny point with running time o (n log n)
for a set ofn. points. We use the algorithm of [5] to optimize the grid piaeat.

Our algorithm is presented in Figure 3. The running time @f éitgorithm isO(n?): Step?2 takes
O(nlogn) time, Stepi(a) takesO(n?) time and Step@(b) takesO(n?) time.

1. Define a grid with cell size ok, /v/2 x R/+/2 coveringP.
2. Apply the algorithm of [5] to find the grid placement thatniniizes the number of empty cells.

3. Select the sensor closest to the center in each non-erlbyne add it to the covering set (the
basiccover).

4. Add extra sensors to the covering set to make it connected:

(a) Create a weighted graghC' in which nodes are the connected components in the commu-
nication subgraph induced by the nodes from the basic codvere is an edge between two
super-nodes andwv in GC' if there exists a path between them that does not contain any
node directly reachable from another super-nedaut not directly reachable from either
orv. The weight of the edge equals to the number of regular nddgste not included in
the basic cover on a shortest path satisfying the above tiamdi

(b) Apply Prim’s minimum spanning tree (MST) algorithm ortgraphGC'.
(c) Add to the covering set the nodes that lie on the short@$ispcorresponding to the edges
of the MST (theextendedcover).

Figure 3: The grid placement algorithm.

The following theorem states that the grid placement aligariis correct.
Theorem 3.4 The covering set found by the grid placement algorithm isiected. The uncovered area
of P is bounded by the union of the empty cells.
Proof: We argue that if there exists a path between two super-nedesiv in G, then there also exists

a path between them i@C'. If GC contains edgéu, v), we are done. Otherwise, by our constructian,
can reachy in GC through another super-node Therefore, the algorithm returns a connected covering

set.
By Observation 2, all non-empty cells are covered. Heneeutttovered area dtf is bounded by the

union of the empty cells. |

We note that the grid placement algorithm will find almost pdete coverage for dense instances of
the problem. Next we derive the approximation factor of thid glacement algorithm.



Definition 3.1 We say that a super-node G{” coversa cell if it includes a node from the basic cover that
is located in this cell.

Theorem 3.5 The approximation factor of the grid placement algorithnatisnostr.

Proof: Let k and! be the number of nodes in the basic and the extended covpecte®ly. The area
covered by a single sensor from the basic covét4g2. On the other hand, any sensoiT can cover
the area of at mostR2. Therefore,

k <2m|OPT|,

sinceP is covered by the grid.

We will show that the number of sensors in the extended cevatros®(k — 1). Clearly, the number
of nodes inGC' is at mostk and thus the number of edges in the MST is bounded by1l. We claim
that the weight of any edge IGC is at most two. Suppose towards a contradiction that theiweigjan
edge between super-nodesandv is greater than two. We have that at least one intermediate oo
the shortest path from to v must lie in a cellC not covered by the super-nodesandv. Let w be the
super-node covering'. We obtain that the node frod on the path between andv is directly reachable
from w and not directly reachable fromor v, which contradicts to our constructioh Therefore,

1< 2(k 1),

which establishes the theorem.}j

3.3 Connected Dominating Set

In this section we describe the dominating cover algoritfilne algorithm uses the connected dominating
set (CDS) algorithm as a subroutine. First we present a ngovitim for the CDS problem that achieves
an approximation factor af. Let GD be a disk graph in which each sensor corresponds to a disk with
radius R;/4. We will compute a connected dominating setG. The following observation will be
useful to demonstrate the coverage property.

Observation 3 If a diskd in GD intersects another disk’, then the sensor located in the centerdof
completely coverd'.

Our idea of building CDS is formed from two steps. At the firgps we construct a minimal size
independent set of the unit disk (communication) graph antleasecond step, we connect the chosen
nodes by inserting additional disks. In order to accomplighfirst step, we always select a nalehat
has a maximal number (at mdstof the independent neighbors and removela neighbors by taking
D into the current independent set. Then we convert our intige set to a connected dominating set by
increasing its size by at most a factor of two. The formal dpton of the algorithm is given in Figure 4.

Theorem 3.6 The CDS algorithm finds a connected dominating set in a setufdit radius disks that
is of factor6 from an optimal size using)(n7/4 + klog k) time, wherek is the number of edges in the
underlying graph.

Proof: Stepsl — 5 find a maximal independent séb. Let OPTC be an optimal CDS solution. We
claim that|IS| < 3|OPTC|. In order to see this, we classify the nodes of the given usk graph into
two types.completeandincomplete Complete node is a node that has been chosen during Btepgo
be in/S and at the time it was selected no one of its neighbors hasrbe®ved yet. All other nodes from

"Note that in the construction @fC' we can restrict our attention to paths of length at most two.



1. LetlS = 0.

2. Choose a dislO with a largest number of independent neighbors.
3. IS =15 U {D}.

4. Remove all the neighbors af.

5. Repeat stepd— 4 until S = 0.

6. Mark each disk inf'S as black; all other disks as grey. Each black node represedifferent
component.

7. Choose a grey nodeé (if exists) with at least two black neighbor nodes in differeomponents
8. RecolorU to black and unio/ and all its black neighbor nodes into one component.

9. Repeat steps— 8 until either there is no such grey node or we have only oneklidamponent.
If we left with one black component we are done. Otherwisatinoe with stepl 0.

10. Build a connectivity graplt:’, such that the nodes @’ correspond to the remaining black
components and each such node is connected (if possiblaghoother node by a path with only
two grey nodes. In order to define such path we check for eamhrmgydev (that is connected
to black nodew) all of its grey neighbor nodes that are connected to ottem #hblack nodes.
If such nodes exist, say;, vo, ..., v, (v1 connects to blacky;, vo connects to blackv, and
so on) we put additional nodes & that correspond t@, vy, vs, ..., v; and undirected edge

(w,v), (v,v1), (V,02),...(v,vE), (v1,w1), (Vo, w3), ... (Vg, Wk).

n

11. Connect all the black components nodeé&/0tising a BFS traversal.

Figure 4: The CDS algorithm.

IS are incomplete. The question we ask is: how many completdraatnplete nodes correspond (are
adjacent) to the nodes in the optimal solution? The trivéecis when complete nodematches some
node from the optimal solution. Thus, we assume thdbesn’t match any node fro@PT'C'. Therefore,
some node» from OPTC should be a neighbor af. Clearly, to each complete node corresponds at
least one node fror® PT'C and there is no node froMPT'C that corresponds to two (or more) complete
nodes. The problem is that the same node fédRiI"C can correspond to some complete node and several
incomplete nodes.

Definition 3.2 We define theegreeof a node to be the maximal number of its independent neighbor

We consider different cases when the degree of a completis@d3, 4, 5. If the degree i2, then
the node fromO PT'C corresponds to one complete and one incomplete node. lfetped is3, then the
nodeOPTC corresponds to one complete and two incomplete nodes. Hebeee ist, then the worst
case happens whénnodes fromO PT'C correspond to one complete ahglincomplete nodes. Finally,
if the degree i$, then the worst case occurs whg&nodes fromO PT'C correspond to one complete and
16 incomplete nodes (other situations are geometrically neafizable due to the properties of unit disk
graphs). Henceforth/ S| < 3|OPTC)|.



When converting/ S into connected dominating set, we observe that the numbtireothosen grey
nodes is less than or equal to the number of the original htedes. The approximation factor 6f
follows.

Considering runtime of the algorithm, we assume that we alegivenn disks (not the graph itself).
In order to build a graph (which in naive fashion can téke:?) time), we use the data structure fodisks
given in Gupta et al. [21] that can be built @(n) time such thap disks that are intersected by a query
disk can be reported i@ (n?/* + p) time. We query this data structuretimes for construction of the unit
disk graph, spendin@(n®/*+k) time. Next, in order to find a disk with the largest number afépendent
neighbors, we consider separatelgircular arc graphs, where a disk plays a role of a circle hadlisks
intersecting it play a role of arcs. We use an algorithm w@thn log m) runtime [23, 24, 26], where: is
the number of arcs, to compute a maximum independent seafdr @rcular arc graph. To compute the
total running time spent for these operations, we obsemeeiich arc is involved in the computation only
a constant number of times, since there is a constant nunfib@tependen-hop neighbors (at distance
2 in a unit disk graph) for each disk. Thus, it yield§k log k) time. In order to construct a CDS, we
start join black nodes by inserting additional grey nodesis Tan be implemented as a disjoint-set data
structure, where we use operations like make-set, find afmhumhe total time needed to accomplish
Steps 6-8 iD(n + ka(k)), wherea(-) is a very slowinverse Ackermann’unction [30]. Finally, BFS
takesO (k) time in order to connect the remaining black componentd.

The dominating cover algorithm is presented in Figure 5. dtwerage property of the dominating
cover algorithm follows by Observation 3.

1. Construct the disk grapf D in which all disks intersecP and have radiug; /4.

2. Apply the CDS algorithm to calculate a connected donmggsiet inG D.

Figure 5: The dominating cover algorithm.

Theorem 3.7 The covering set found by the dominating cover algorithmoisnected. The uncovered
area of P is bounded by the parts @ that is not covered by the same set of sensors having thengensi
radius of R /4.

The following theorem establishes the approximation facfdhe dominating cover algorithm.
Theorem 3.8 The approximation factor of the dominating cover algoritalgorithm is at mos82.

Proof: The area covered by a single sensor fromtieomputed by the CDS algorithm is?2/16. On
the other hand, any sensorGhPT can cover the area of at mosfz2. The theorem follows since the size
of the final CDS is at most twice that of IS. |]

4 Variable Sensor Locations

In this section we consider the case in which we have to ddfiedocations of the sensors. We develop
the discrete grid algorithm that has a constant approxondtictor and computes partial coverage. The
running time of the discrete grid algorithm depends on thmuexy of the coverage. Then we study an
extension of our model, where sensors must be placed ore @frid points.



4.1 Discrete Grid Algorithm

In this section we present the discrete grid algorithm, Widdased on a discrete grid scheme. We divide
the region of interesP into cells using a fine grid with cells of sizex a, wherea < RC/\/i. The vertices

of the grid define a set of points. Then we cover these poirts avminimal number of sensors. We use
the PTAS of [19] for covering points with unit disks. Finallye add extra sensors to connect the resulting
set.

Observation 4 The selection of the cell size implies that sensors covexitjgcent vertices of the greed
are able communicate with each other.

The discrete grid algorithm appears in Figure 6. The runtimg of the algorithm i< (k), wherek
is the number of cells. Next we analyze the performance ofliéirete grid algorithm.

1. Define a grid with cell size of x a coveringP.
2. Apply the PTAS of [19] to find a coverage of the grid verti¢t® basiccover).
3. Add extra sensors to the covering set to make it connected:

(a) Create an unweighted grapit' in which nodes are the connected components in the gom-
munication subgraph induced by the nodes from the basia.cohere is an edge between
every two super-nodesandv in GC' if they cover adjacent cells.

(b) Calculate a spanning tree (ST) of the grdpf.

(c) Add to the covering set a sensor that connects the engpafieach ST edge (thextended
cover).

Figure 6: The discrete grid algorithm.

Theorem 4.1 The covering set found by the discrete grid algorithm is emted. The uncovered area of
P isinversely proportional to the cell size.

Proof: By Observation 4, the graptiC is connected. Thus, our algorithm returns a connected icayer
set. Note that all the grid vertices are covered. Thus, whertell size tends to zero, we obtain complete
coverage. Therefore, the uncovered are® i inversely proportional to the cell size. i

Theorem 4.2 The approximation factor of the discrete grid algorithm tw@ost2(1 + ¢).

Proof: The number of nodes in the basic cover is at njost €)|OPT'| since an optimal solution has to
cover all vertices of the grid. By our construction, the sif¢he extended cover is bounded by twice the
size of the basic cover. |

4.2 Sensors Placement at Grid Points

We study the problem introduced in [13], but focus on detarstic (and not probabilistic) coverage. The
model is as follows. We are given/é x N grid and the goal is to cover a subset of grid points using the
minimum number of sensors. The restriction is that sensarst e placed only at the grid points. There
may be somebstaclen the plain, and thus some parts of the sensing region ofsasean be obscured.
We assume that each cell has size a. We present two constant-factor approximation algoritfionshe
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model with and without obstacles. We improve upon the resafl{13], where they give algorithms with
running timeO(N*) providing no worst-case performance guarantees.

Ouir first algorithm for the modekith obstacless based on greedy set cover. The greedy point cover
algorithm is presented in Figure 7. The running time of treedy point cover algorithm i©(N?log N).
Theorem 4.3 The approximation factor of the greedy point cover algaritts at mostog (47 R? /a?).

The theorem follows since each sensor covers at moBE /o points.

1. ConsiderN? sensors located at the grid points. Each sensor cover thespoiits sensing region
that are not obscured by the obstacles.

2. Apply the greedy set cover algorithm. That is, until allnte of interest are covered, at each
iteration select a sensor that covers the maximal numbenagdwered points.

Figure 7: The greedy point cover algorithm.

The second algorithm for the modslthout obstaclesppears in Figure 8. We use the PTAS of [19]
to cover the points. Then we adjust the locations of the geriede at the grid points duplicating sensors
if necessary. This algorithm has running timefN?).

Theorem 4.4 The approximation factor of the PTAS point cover algoritismatimosti(1 + ¢).
The theorem holds due to the fact that in S2epe replace each sensor by at most four sensors.

1. Apply the PTAS of [19] to find a coverage of the points of ietd.

2. Replace each sensor that is located not at a grid point bipienal set of sensors located at the
neighboring grid points covering the same set of points.

Figure 8: The PTAS point cover algorithm.

We note that although the covering sets calculated by thedgrpoint cover and the PTAS point cover
algorithms may be disconnected, one can connect them usrigehniques developed in the next section.

5 Connectivity

In this section we show how to convert aogmpletecovering set into a connected covering set under a
realistic assumption that. = R,. We present two algorithms based on MST and Steiner Treaitpads.
Suppose that we are giverbasiccover B calculated by an algorithm.

Observation 5 For each sensor from the basic cover, there is a sensGritY’ at distance of at mogg,.

The observation follows from the fact that the sensing @ik, and if there is no such a sensor, the
center of the disk is not covered B}PT. Observation 5 implies the following lemma.

Lemma 5.1 Adding nodes i PT' makes the basic cover connected.

The MST connection algorithm is presented in Figure 9. The tieeorem derives the performance
guarantee of the MST connection algorithm.

Theorem 5.2 The size of the extended cover calculated by the MST coanealgorithm is at most
2(|B] - 1).
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Proof: According to Lemma 5.1GC is connected. We argue that the weight of any edg@dnis at
most two. Otherwised’s coverage is incomplete because there exists a disk whinbt idirectly reachable
from any of the super-nodes and thus its center is not covéied theorem follows since the number of
edges in a spanning tree|/B| — 1. 1

1. Create a weighted grajghC' in which nodes are the connected components in the commiiamica
subgraph induced by the nodesBn There is an edge between two super-nadaadv in GC if
there exists a path between them that does not contain amydiattly reachable from another
super-nodev but not directly reachable from eitheror v. The weight of the edge equals to the
number of regular nodes that are not included in the basieramv a shortest path satisfying the
above condition.

2. Apply Prim’s MST algorithm on the grapRC'.

3. Add to the covering set the nodes that lie on the shortéls garresponding to the edges of the
MST (theextendedtover).

Figure 9: The MST connection algorithm.

The Steiner Tree connection algorithm appears in Figure\W8.use the algorithm of [16] for the
node-weighted steiner tree problem. The following theoestablishes the performance guarantee of the
Steiner Tree connection algorithm.

Theorem 5.3 The size of the extended cover calculated by the Steinercbmgection algorithm is at
most(ln |B|) - |OPT|.

Proof: By Lemma 5.1, the cost of an optimal steiner tree is at fto$t7’|. The approximation factor
follows by Theorenb.1 and Theoren’.2 [16]. |

1. Create an unweighted grapiC' in which nodes are the connected components in the communi-
cation subgraph induced by the nodedsimnd the other nodes ¢f not included intaB.

>

2. Apply the algorithm of [16] for the node-weighted steitiere with unit weights on the grap
GC, where nodes itB represent the terminal nodes.

3. Add to the covering set the steiner nodes ékendedover).

Figure 10: The Steiner Tree connection algorithm.

Remark 1 We note that even il provides only partial coverage, the algorithms will stifturn a con-
nected set as long &3P7T provides complete coverage.

6 Concluding Remarks

In this paper we investigate the problem of maintaining cage and connectivity by keeping a minimal
number of sensor nodes in active mode in wireless sensomorietwWe present centralized algorithms
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with provable worst-case constant approximation factorgte fixed as well as the variable sensor loca-
tions. We also propose an improved approximation algorifitinthe minimum connected dominating set
problem in unit disk graphs. In addition, we derive algarithfor connecting a covering set. An interesting
future research direction is to design distributed versigiour algorithms.
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