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the Computational Geometry ommunity, espeially in the last few years. Compu-tational Geometry (see, e.g., the textbook: Computational Geometry | Algorithmsand Appliations, by de Berg, van Kreveld, Overmars and Shwarzkopf [2℄) dealswith the eÆient proessing of spatial data and with geometri optimization, andthus tehniques, algorithms, and data strutures from this �eld an be e�etivelyutilized for solving faility loation problems of a geometri avor.Key words: Faility loation, omputational geometry, maxmin, minsum.
1 IntrodutionMany loation problems deal with undesirable or obnoxious failities (see, e.g.[1,3{5,9,13℄). A faility is alled undesirable or obnoxious if it may pose a dan-ger to the individuals living nearby, may have an adverse e�et on propertyvalues, or may ause lower quality of life through pollution. Examples of ob-noxious failities are nulear power plants, garbage dump sites, mega-airports,and hemial plants.In this paper we study two general problems onerned with loating an unde-sirable faility (or a number of failities) amidst demand points. We onsidervarious distane funtions, a varying number of failities, or weighted demandpoints, and varying faility onstraints. In the rest of this setion we desribethe problems, survey previously known algorithms for them, and state ourresults whih are based on onepts and tehniques from Computational Ge-ometry.Problem 1: Maxmin multi-faility loation. In their paper \Multi-failityloation using a maximin riterion and retangular distanes", Brimberg andMehrez [4℄ solve the maxmin multiple failities loation problem, under theL1 norm. This problem is stated as follows. Given a set P = fp1; : : : ; png of npoints in a retangular region R, and given a distane r and another distaneD, loate k undesirable failities, F = ff1; : : : ; fkg, suh that the smallestdistane between eah demand point and the failities is at least r, and thedistane between any pair of failities is at least D. Their approah involves abranh and bound algorithm, and their algorithm runs in time O(n2k).We twist the problem slightly by turning it into an optimization problem. Weseek the largest r for whih it is still possible to plae k undesirable failitiesunder the distane onstraints stated above. The algorithms that we presentfor this optimization problem run in time O(n log2 n) for k = 2 or 3, and intime O(nk�2 log2 n) for k � 4. In order to solve the optimization problem, we�rst solve the orresponding deision problem, whih is exatly the problem2



of Brimberg and Mehrez, and then apply an optimization sheme due to Fred-erikson and Johnson [10℄ (see below), whih adds a logarithmi fator to thetime bounds of the algorithms that we obtain for the deision problem.Our algorithms for the deision problem an be extended, in a straightforwardway and within the same time bounds, to handle di�erent separation valuesri for the points pi 2 P , instead of one value r. In addition we show thatunder the Eulidean norm the deision problem for k = 2 an be solved intime O(n logn).Problem 2: Minsum overage. Another type of obnoxious faility loationproblems is desribed in a paper by Drezner and Wesolowsky [9℄: Given aset P of weighted demand points ontained within a large retangular (orirular) domain R, and given a retangle (or a irle) Q of a �xed size, �nda plaement of Q within R so that the sum of weights of the demand pointsthat are ontained in Q is minimal. In more detail, eah point pi 2 P has aweight wi assigned to it, the goal is to �nd how to plae Q within R suh thatthe following sum is minimized Xfi j pi2Qgwi:This kind of problem might arise, e.g., when an obnoxious faility whih af-fets its lose neighborhood has to be plaed in a populated area. Assumingthis neighborhood is of a known size retangle (resp. irle), and that eahpopulation site has a weight assigned to it, whih might be the number ofpeople at that site, one would like to minimize the total number of peoplewho are a�eted by this faility.Drezner and Wesolowsky [9℄ present O(n2)-time algorithms for both the ret-angular and the irular ase. We improve the algorithm for the retangularase and present an O(n logn)-time algorithm. In addition, we obtain a lowerbound of 
(n logn) for the unweighted retangular ase, thus proving theoptimality of our algorithm.The paper is organized as follows. In Setion 2 we present our algorithms forProblem 1 above and for several of its speial instanes. Towards the end ofthe setion, we show how to solve the optimization problem, by applying anoptimization sheme devised by Frederikson and Johnson [10℄, whih involvesa fast searh in a olletion of impliit sorted matries whose entries onsistof all potential solutions. Sine applying this sheme is almost standard (see,e.g., Glozman et al. [11℄), we only disuss it briey. In Setion 3 we presentour event-driven algorithm for Problem 2. Roughly speaking the events areof the type \Q meets a point of P", \a point leaves Q", or \Q touhes theboundary of R". We employ a segment tree data struture (see [14℄) in whih3
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Fig. 1. The retangle R; the points P ; around eah point there is a grey square ofsize r; the white region is V ; the two andidate solutions are fa; bg and f; dg.we dynamially maintain the sum of weights of the points that are within Q ateah event. The minimum of these sums of weights ditates the best loationfor Q. A lower bound for the minsum problem is also shown in Setion 3.2 Maxmin multi-faility loationBrimberg and Mehrez [4℄ observed that under the maximum norm (L1) Prob-lem 1 above an be restated as follows. (Reall that the L1 distane betweenpoints a and b is maxfjax � bxj; jay � byjg.) Draw around eah of the pointspi 2 P , a square of size r (where the size of a square is half its side length),and observe the union of the squares U . The failities should be loated in the(losed) region V = R � U , suh that their pairwise distanes are at least D.This turns out to be our deision problem. We de�ne the deision problem asthe question: \For the given square size r, does there exist a set of k loationsin V suh that their pairwise distanes are at least D ?" If there is one, wereport the loations of the failities and the answer \yes". If not, we return\no". The assoiated optimization problem will output the largest square sizer� for whih the answer to the deision problem is \yes". We will desribe ittowards the end of this setion.We solve several variants of the deision problem. Under the L1 norm, we �rstpresent O(n logn)-time algorithms for k = 2; 3, and then present a generalsheme for larger values of k that yields, for any k � 4, an algorithm thatruns in time O(nk�2 logn). Thus, signi�antly improving the O(n2k) (for anyk � 1) solution proposed by Brimberg and Mehrez [4℄. As we show, the spaerequirements of our algorithms vary between O(n) and O(n logn), while thesolution in [4℄ requires O(n2) spae.k = 2. It is well known that the ombinatorial omplexity of the boundary ofthe union of n squares is linear in n (see Preparata and Shamos [15℄). In other4



words, the boundary of this union onsists of O(n) verties and edges and anbe omputed in time O(n logn) and spae O(n), using, e.g., a sweepline algo-rithm (see [14℄). Thus the boundary of V an be omputed in time O(n logn)and spae O(n). The problem of loating two failities whose L1 inter-distaneis at least D, boils down to �nding two pairs of points on the boundary ofV (see Figure 1). One pair onsisting of points in V with the smallest andlargest x-oordinates, respetively (points a and b in Figure 1), and anotherpair onsisting of points with the smallest and largest y-oordinates, respe-tively (points  and d in Figure 1). It is easy to see that we an hoose these4 points to be verties of the boundary of V , thus, they an be found in timeO(n), by traversing the boundary verties. If the inter-distane for both pairsof points is smaller than D, then we annot plae the failities as required,and the answer to the deision problem is \no". If one of the pairs has inter-distane at least D, then we plae the failities at these points and return theirloations and the answer \yes".Theorem 2.1 The two-faility loation problem an be solved in O(n logn)time and O(n) spae.k = 3. As in the previous ase ompute the region V and laim:Claim 1 If there exists a solution for the three-faility loation problem underthe onstraints above, then there exists a solution in whih at least one of thethree failities is on a vertex of the boundary of V .Proof. Assume the points a; b and  are the loations of the failities in thesolution. Assume that a is the leftmost point (the point with the smallest x-oordinate among the three), b is the middle point (again, with respet to thex-oordinate), and  is the rightmost point. By pushing a and  horizontallyleftwards and rightwards, respetively, until they reah vertial edges of theboundary of V , we only inrease the distanes among the solution points. Now,if b is the highest (resp. lowest) point, we an push the lower (resp. higher)point between a and  downwards (resp. upwards) until it reahes a vertex ofthe boundary of V . Otherwise, if b is not the highest nor the lowest amongthe three failities, then we an push the higher between the points a and upwards, and the lower between a and  downwards, until they reah vertiesof V .Based on this laim we design our algorithm as follows. For eah vertex v ofthe boundary of V , we assume that one of the failities, say f1, is loated onv. In order to loate the remaining two failities f2 and f3, we solve a two-faility loation problem, but with a slightly di�erent region than V . Let Qvbe a square of size D entered at v. It is easy to see that the failities f2 andf3 should reside in V �Qv (see Figure 2).5
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Fig. 2. The square Qv, and the verties in B depited as empty or blak-�lled tinysquares, where the blak-�lled squares are the extremal points of B.Inorporating this observation in the two-faility algorithm in the naive wayleads to a roughly quadrati algorithm. This is beause the boundary, �Qv,of Qv might interset the boundary, �V , of V in O(n) points, and we mustompute V � Qv for eah vertex v of the boundary of V . However, we laimthat it is not neessary to ompute all the points of intersetion between �Qvand �V before applying the two-faility algorithm. Let us denote by B theverties that are formed by subtrating Qv from V . Notie (Figure 2) that Bonsists of the verties that are both on �(V � Qv) and on �Qv (depited inthe Figure by small squares on �Qv). De�ne the extremal points of B as thepair of leftmost and rightmost points of B on eah of the horizontal sides of�Qv, and the pair of lower and upper points of B on eah of the vertial sidesof Qv. There are at most 8 suh points (in the Figure they are the blak �lledsmall squares).Claim 2 If there exists a solution for the two-faility loation problem in V �Qv, where one (resp. both) of the failities f2 and f3 is (resp. are) in B, thenthere exists a solution in whih one (resp. both) of the failities is an extremalpoint of B.Proof. Assume, without loss of generality, that f2 is on a vertex b 2 B and bis not an extremal point of B. We show how f2 an be moved to an extremalpoint of B without dereasing the distanes between the failities. Clearly, thedistane between f2 and f1 remains D when f2 is moved to a new loation on�Qv. (Reall that f1 is on the enter of Qv.) As for the distane between f2and f3 there are a number of ases, all are essentially similar and we mentiononly one: If b is on a horizontal edge of Qv and f3 is loated to its left, then wean move b to the right extremal point of B on that edge without dereasingthe distane between f2 and f3. Now if f3 is also on a vertex  2 B that is notan extremal point of B, then we move it to the extremal point of the edge to6



whih  belongs for whih the distane to f2's new loation inreases.This laim ensures that even if we do not ompute all the new verties thatare formed by subtrating Qv from V , i.e., we �nd only the extremal pointsof B, we an still �nd a solution to the three-faility loation problem if oneexists.How do we eÆiently �nd the verties of �(V � Qv) where f2 and f3 maybe plaed? This proess is divided into two parts. In one we �nd by rangesearhing the verties of �V that lie outside of Qv, and thus are andidateplaements for the two failities. These verties are not enumerated but areknown impliitly, as will be explained below. In the other part we �nd by rayshooting the extremal points of B.For the �rst part we ompute the boundary of V and preproess its verties fororthogonal range searhing (see [2℄) with the frational asading tehnique(see [6℄). Now we have a data struture for range searhing queries. When weplae f1 on v (for eah boundary vertex v 2 V ), we perform a range searhquery with Qv in this data struture, and �nd the verties of V that lie outsideof Qv. This algorithm is standard (see e.g [2℄). However we give a rough skethof it for ompleteness of the presentation.We build a 2-dimensional range tree T whih onsists of two levels as desribedin [2℄. The main tree is a balaned binary searh tree T1 ordered by the x-oordinates of the verties of �V . For eah internal node or a leaf node w 2 T1,we assoiate a anonial subset P (w) onsisting of the verties stored in theleaves of the subtree of T1 rooted at w. The anonial subset P (w) is stored ina balaned binary searh tree Tw ordered by the y-oordinates of the points inP (w). We all Tw the assoiated struture of w. At eah of the nodes u of Tw,we store the leftmost, rightmost, topmost, and bottommost verties amongthe verties stored in the leaves of the subtree rooted at u. At the node wwe store a pointer to the root of Tw. The whole struture requires O(n logn)storage spae.Assume that Qv, the orthogonal range query, is given by [x; x0℄ � [y; y0℄. Thequery algorithm �rst selets O(logn) anonial subsets that together ontainthe points whose x-oordinates lie in the range [x; x0℄. Of those subsets, thealgorithm reports the points whose y-oordinates lie in the range [y; y0℄, as aolletion of O(log2 n) nodes of assoiated strutures. The union of the anon-ial subsets of these nodes onsists of the desired set of points. The runtimeof the above query algorithm is O(log2 n) whih an be improved to O(logn)applying the frational asading tehnique of [7℄.In the ray shooting part we determine, for eah of the edges of Qv, its twoextreme points in B (if they exist). We employ a ray-shooting algorithm (see7
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Fig. 3. f2 must be plaed on the right edge of Qv.[2℄) whih we sketh here. We �rst preproess the horizontal edges of theboundary of V for logarithmi time vertial ray shooting queries. We performa similar preproessing step for horizontal ray shooting. We will have two datastrutures, and two types of queries, respetively, one for the vertial diretionand one for the horizontal diretion. We ontinue to desribe just the vertialray shooting. This data struture oupies O(n logn) spae (see [2℄).Given the query retangle Qv, we hek whether the endpoints of its vertialedge e = ab lie in V (i.e., in R but not in U). An endpoint that lies inV is already an extremal point of B. Assuming, say, a (resp. b) is not anextremal point of B, we perform an orthogonal ray shooting query with theray emanating from a (resp. b) and ontaining e, to detet the point of B (one) whih is losest to a (resp. b), if suh a point exists. This an be done inO(logn) time (see [2℄).In order to solve the two-faility loation problem in V � Qv in logarithmitime, we onsider the O(logn) extreme verties stored in the O(logn) nodes ofassoiated strutures that were reported by the range searhing, together withthe at most 8 extreme verties of B. Among all these verties, we selet thetwo farthest verties in eah of the diretions x and y. If the distane of oneof these farthest pairs is at least D, then we have a solution to the two-failityloation problem in V � Qv, otherwise, there is no solution. Figure 3 showsthat we may have to plae one of the remaining two failities f2 and f3 onthe boundary of Qv, otherwise, there does not exists a solution. The abovedeliberations lead toTheorem 2.2 The three-faility loation problem an be solved in O(n logn)time and O(n logn) spae. 8



(a)(b)()
fifi fj

�V D
Fig. 4. Proof of Lemma 2.3.k � 4. In this ase we laim thatLemma 2.3 We may assume that at least one of the failities is on a vertexof the boundary of V .Proof. Let us onsider the retilinear free spae V = R�U . Assume that thereis an initial positioning for k failities suh that none of them is on a vertexof V . Our approah is to move the failities, maintaining the � D distanerequirement, suh that at least one of them will be on a vertex. Denote thefailities by F = ff1; : : : ; fkg. About eah faility f draw an axis-parallelsquare  with side length D (f being the square's enter). Clearly in the giveninitial positioning the squares do not interset. See Figure 4 (a). We push allthe squares as muh to the left as possible (Figure 4 (b)), so that they stilldo not interset, and their enters remain in V throughout the motion. If atsome point during this stage, one of the failities oinides with a vertex of V ,then we are done. If not, then, at the end of this stage, the leftmost faility fimust lie on a vertial edge of the boundary of V (if there are several leftmostfailities then fi is taken to be the lowest among them). Next we push thesquares as muh down as possible (Figure 4 ()), again, not letting any pairof them to interset and not letting the failities to penetrate into U nor leaveR, and stopping if at some point a faility passes through a vertex of V . Atthe end of this stage, the bottommost faility fj must lie on a horizontal edgeof the boundary of V (and if there are several bottommost failities fj is theleftmost among them).Assuming we have not stopped with a faility on a vertex, then we know thati 6= j, sine otherwise the orresponding faility lies on a vertex and we wouldhave stopped. We now hek whether we an slide the square j to the left,under the same limitations, so that its enter fj oinides with a vertex of V .If we an, then we are done. Otherwise we proeed as follows. Consider thesouth west quarter plane de�ned by the line through the bottom edge of iand the line through the left edge of j. Notie that there exists at least onesquare that is fully ontained in this quadrant. (This is true sine there existsa square x bloking i from below, and there exists a square y bloking j from9



the left. Now, if x = y then this square is suh a square. Otherwise, if x liesto the left of the left edge of j, then x is suh a square. And if x does not lieto the left of the left edge of j, then j is neessarily below the bottom edgeof x, and therefore y whih annot be higher than x is fully ontained in theabove quarter plane.) We remove all the squares that are not fully ontainedin this quadrant, thus removing at least two squares (i.e., the squares i andj), and repeat the whole proess for the remaining set of squares, et. (Notiethat there is no fear that the D learane property will be violated sine theremaining squares are moved only left and down.) Eventually, if we do notstop earlier we are left with a single square, and this square an learly bemoved (left and down) so that its enter lies on a vertex.Similarly to the three faility ase we will position a square Qv of side length2D entered on eah vertex v of the boundary of V . For eah suh positioningof Qv we ompute the boundary of V 0 = V �Qv. The solution for the (k� 1)-faility loation problem is applied to the verties of the boundary of V 0, andso on, reursively. At any point in the omputation, the boundary of V 0 is ofomplexity O(n), and an be omputed in O(n) time from V .Theorem 2.4 The k-faility loation problem, for k � 4, an be solved inO(nk�2 logn) time and O(n logn) spae.Proof. We �rst ompute V = R � U in time O(n logn). Notie that addinga square Qvi at vertex vi and updating the boundary of the free spae anbe done in O(n) time. Thus, the running time for k failities is T (k) =n(O(n) + T (k� 1)). Realling that T (3) = O(n logn), we obtain that T (k) =O(nk�2 logn).Remark 1. If, instead of one separation value, r, eah point pi 2 P has itsown separation value, ri, then the same algorithms apply without additionalost in time or spae. This is beause the boundary of the union of thesesquares is also linear in the number of squares (see Preparata and Shamos[15℄), and the rest follows immediately.Remark 2. As far as we know nothing has been done onsidering the Eu-lidean norm (L2). In this ase instead of n squares of size r we have n diss ofradius r. For k = 2, it is easy to show that if there exists a solution, then thereexists a solution in whih the two failities are on verties of the boundary ofV = R�U . The ombinatorial omplexity of U and V is O(n) (see Kedem etal. [12℄), and, after omputing V , we an ompute the farthest pair of vertiesin O(n logn) time, using the orresponding algorithm in [15℄ for omputingthe diameter of a set of points. Thus, the two-faility loation problem underthe Eulidean norm an also be solved in O(n logn) time and O(n) spae.10
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Fig. 5. Data for the initial segment tree.The optimization shemeIn order to �nd the largest value r� for whih there still exists a solution tothe k-faility loation problem (keeping D �xed), we employ the optimizationtehnique of Frederikson and Johnson [10℄ (see, e.g., Glozman et al. [11℄).Eah pair pi; pj of demand points determines eight ritial values, four foreah dimension. We list the ritial values for the x-di�erene dx between piand pj: (i) dx=2, (ii) dx, (iii) (dx�D)=2, and (iv) (D�dx)=2. In addition, eahdemand point p determines four ritial values; the two horizontal distanesbetween p and the boundary of R and the two vertial distanes between pand the boundary of R.We an represent all these distanes as a onstant olletion of sorted matries,and then perform a binary searh on these values using the deision algorithmas an \orale". As it was shown in the paper of Frederikson and Johnson [10℄,the above sheme adds a multipliative O(logn) fator to the running time ofthe deision algorithm.3 Minsum overageLet P = fp1; : : : ; png be a set of n weighted points within an axis-parallel ret-angle R. Denote the weights by fw1; : : : ; wng, respetively. Let Q be anotheraxis-parallel retangle whih is smaller than R (both in width and in height).The goal is to plae Q within R suh that the sum of the weights of the pointsof P that are ontained in Q is minimal.Denote by  the width of Q and by d its height. Below we desribe the mainideas of our algorithm and the data struture that we employ. Assume we putat eah point pi a horizontal segment si of length , entered at pi. Assume11
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1 2 3 4 5 9 10871 23 5 3 3 2 8 26 6 7 5 5 3 3 6 36 6 QInterval:Weight:
S11 12 135 10 121411Fig. 6. Elementary segments and their weights.we have two more segments, b and t, assigned to the bottom and top edgesof R respetively. The segments b and t oinide with the orresponding sidesof R but are shorter on eah side by =2 (see Figure 5). This is beause weare looking for the best loation of the enterpoint of Q suh that Q is fullyontained in R.The data struture we employ for better eÆieny of our algorithm is thesegment tree. We briey outline the struture of the segment tree (for moredetails see [14℄). To onstrut the segment tree we need to �rst de�ne the ele-mentary intervals. We orthogonally projet the endpoints of all the segmentssi onto b. They subdivide b into small, elementary intervals. More preisely,the elementary intervals are the maximally onneted segments, starting andending at projeted endpoints and not having a projeted endpoint in theirinteriors. In Figure 6 we show the projetions of all the endpoints, and denotebelow R the 14 elementary intervals.At the initial phase of our algorithm we hek where to loate Q if its lowerside is onstrained to oinide with b. As Q an slide left and right touhing b,this de�nes a slab S in R of height d. We de�ne the weight of an elementaryinterval e to be the sum of weights of all the intervals si of the points ofP \ S that ontain e. Observe that the x-oordinate of the enter of Q anbe anywhere along b, and that the sum of weights of the points that Q overswhen its enter is at a ertain elementary interval, is exatly the weight of thisinterval. The laim is that at this phase the best loation for the enterpoint ofQ is when its x-oordinate is anywhere within the elementary interval whihhas the smallest weight (this interval is not neessarily unique, in our exampleit an be either interval 7, 8 or 10). In the Figure we put Q's enter in interval7.We desribe the segment tree T and its onstrution. Initially we ompute all12



the elementary intervals and onstrut a binary tree whose leaves orrespondto the elementary intervals sorted from left to right. We assign two attributesto eah node in T : 1. The interval that the node overs, and 2. The weightof the node. The weight of eah leaf is initially zero, and the interval is itselementary interval. Reursively, the interval of an inner node v is the unionof the intervals of its two hildren-nodes, and the weight of an inner node v isthe minimum of the weights of its two hildren-nodes plus the weights of thesegments that are stored in v. (Thus, initially, the weight of all inner nodes isalso zero.)We now insert all the segments si that are ontained in S (when S is in theinitial phase, namely, touhing b). The trik of the segment tree is that eahsegment an be inserted in at most O(logn) nodes and the weight attribute ofthe nodes an therefor be updated in the same number of nodes (please referto Mehlhorn [14℄ for details). At eah insertion the weight at the root of T isthe smallest weight of all the elementary intervals. One all the segments inS have been inserted, the root ontains the minsum weight for Q when it isonstrained to touh b. Finding the elementary interval(s) that ahieve thisweight is easily done by peeking at the two hildren of the root and ontinuingdown the tree in the diretion of the hild with smaller weight. (If both hildrenare of equal weight, we pik one of them arbitrarily.)We keep the weight of the root at this phase and ontinue to the next phasesof the algorithm in our searh for a better loation for Q. The next phases areaused by the events of moving the slab S upwards. Eah event is either (i)a point pi gets on the lower side of S and is about to leave S, or (ii) a pointpi gets on the upper side of S and is about to enter S, or (iii) the top of Soinides with t.Eah of these ases is easily handled using the segment tree. For a type (i)event we delete the segment si from T and update the weights on the treenodes that were a�eted by deleting si. We store this phase if the weight atthe root is smaller than the minimum root weight that we ahieved before.For a type (ii) event we insert a segment si, and update T . Event of type (iii)terminates the algorithm. The best loation of Q and the phase it has beenfound in are stored and we retrieve them.The tree T has n leaves and its depth is O(logn). Eah segment update, be itinsertion or deletion, takes O(logn) time (this is the most important propertyof the segment tree). There are about n events, n + 2 if we ount the eventswhen the slab touhes the bottom and top of R. Thus, we obtain the followingtheoremTheorem 3.1 Given a set P of n weighted points within an axis-parallel ret-angle R, and another axis-parallel retangle Q whih is smaller than R, it is13



possible to loate Q within R in O(n logn) time, suh that the sum of theweights of the points lying in Q is minimized.A lower boundA lower bound is obtained on a muh simpler problem and thus it applies tothe weighted minsum problem. Assume eah point pi has weight 1 and assumethey are all on the x-axis and that Q is a zero height retangle, namely asegment.Bespamyatnikh et al. [3℄ obtained an 
(n logn) lower bound for the followingproblem. Given n positive real numbers and a number , determine whetherthere exist two onseutive numbers in their sorted sequene a1; : : : ; an, whosedi�erene is greater than . The redution of our problem to theirs is asfollows. Let R be the segment [a1; an℄, and let Q be a segment of length .Every number orresponds to a 1-dimensional point with weight 1. If we anplae Q within R so that the sum of the weights of the points lying in Q is0, then two suh numbers exist. Otherwise, we annot �nd suh a pair. Weonlude thatTheorem 3.2 Given a set P of n weighted points within an axis-parallel ret-angle R, and another axis-parallel retangle Q whih is smaller than R, it ispossible to loate Q within R in �(n logn) time, suh that the sum of theweights of the points lying in Q is minimized.4 ImplementationWe have implemented the algorithms for both problems. The algorithm forthe maxmin multi-faility problem has been implemented in Java under Win-dows NT. The main non trivial part of the algorithm was implementing theadvaned data strutures, suh as the 2-dimensional range trees and the ray-shooting data struture. We used Red-Blak trees (see [8℄) in the implemen-tation of the two data strutures. We have implemented and applied a matrixsearh algorithm for the optimization step. The ode for the latter algorithmis simple and short - less than 1000 lines, and runs very fast. We performeda number of tests, one of them, for example, with 20 failities whih are sup-posed to be at least 100 pixels apart pairwise, and with 180 input data pointswhih are required to be at least 50 pixels away form the failities. On Pentium3 (700 MHZ) the omputation was ompleted in 3 seonds. The ode has anie graphis interfae and an be sent on CDROM upon request.14



Regarding the seond algorithm we should note that our ode �nds all the pos-sible loations for the given retangle. This algorithm has been implementedin C++ using the graphis library GL on Silion Graphis platform. It an bedownloaded fromhttp://www.s.bgu.a.il/~segal/loate.We implement and maintain a segment tree. One diÆulty in the implemen-tation was dealing with all the end-ases, e.g., when two segments have thesame endpoint. Still, the ode is very short (less than 400 lines) and extremelyfast. For an input onsisting of 400 points the solution is found in 1.4 seondson the SGI.5 ConlusionThe norm that we use in this paper (L1) lends itself to some very fast al-gorithmi tools, by whih we ould improve existing algorithms for plaingundesirable failities. This is beause a \unit-irle" under L1 is atually anaxis-parallel square of size one. Under the Eulidean norm, the unit-irle isa irle (of ourse), and the tools above do not apply for irles. Therefore, itis probably more diÆult to obtain solutions to the Eulidean versions of thetwo problems onsidered in this paper, whih are as eÆient as those proposedhere. Thus, we are asking (1) Can the maxmin multi-faility loation problem,under the Eulidean norm, be solved eÆiently for values of k greater than 2?and (2) Can the O(n2)-time result of Drezner and Wesolowsky [9℄ for plainga small disk within a large disk be improved?Aknowledgments { Work by M. Katz and K. Kedem has been supportedby the Israel Siene Foundation founded by the Israel Aademy of Sienesand Humanities, and by the Israel Ministry of Industry and Trade, LSRTonsortium of the MAGNET program.Referenes[1℄ B. Ben-Moshe, M. Katz and M. Segal, \Obnoxious faility loation: ompleteservie with minimal harm", International Journal of Computational Geometryand Appliations, 10, 581{592, 2000.[2℄ M. de Berg, M. van Kreveld, M. Overmars and O. Shwarzkopf, \ComputationalGeometry: Algorithms and Appliations", Springer-Verlag, 1997.15
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