
Improved Algorithms for Pla
ing UndesirableFa
ilitiesMatthew J. KatzDepartment of Computer S
ien
e, Ben-Gurion University, Beer-Sheva 84105,IsraelKlara KedemDepartment of Computer S
ien
e, Ben-Gurion University, Beer-Sheva 84105,IsraelMi
hael SegalCommuni
ation Systems Engineering Department, Ben-Gurion University,Beer-Sheva 84105, IsraelAbstra
tWe improve several existing algorithms for determining the lo
ation of one or moreundesirable fa
ilities amidst a set P of n demand points, under various
onstraintsand distan
e fun
tions. We assume that the demand points reside within somegiven bounded region R. Applying
on
epts and te
hniques from ComputationalGeometry, we provide eÆ
ient algorithms for the following problems:(1) Maxmin multi-fa
ility lo
ation: Lo
ate k undesirable fa
ilities within Runder the
onstraints that the smallest distan
e between ea
h demand pointand the fa
ilities is at least a given r, and the distan
e between any two fa
ilitiesis at least a given D. Under the L1 (L1) norm we present eÆ
ient algorithmsfor any k, and under the L2 norm we
an lo
ate eÆ
iently two su
h fa
ilities.In all
ases R is assumed to be an axis-parallel re
tangle.(2) Minsum
overage: Given a set of weighted demand points
ontained in anaxis-parallel re
tangular region R, and given a smaller axis-parallel re
tangleQ, pla
e Q within R su
h that the sum of weights of the demand points
ontained in Q is minimized.S
ope and PurposeUsing tools from Computational Geometry we study two fa
ility lo
ation problemsthat were previously studied by Brimberg and Mehrez [4℄, Drezner and Wesolowsky[9℄. Geometri
 instan
es of fa
ility lo
ation problems have attra
ted resear
hers fromPreprint submitted to Elsevier Preprint 10 June 2001

the Computational Geometry
ommunity, espe
ially in the last few years. Compu-tational Geometry (see, e.g., the textbook: Computational Geometry | Algorithmsand Appli
ations, by de Berg, van Kreveld, Overmars and S
hwarzkopf [2℄) dealswith the eÆ
ient pro
essing of spatial data and with geometri
 optimization, andthus te
hniques, algorithms, and data stru
tures from this �eld
an be e�e
tivelyutilized for solving fa
ility lo
ation problems of a geometri

avor.Key words: Fa
ility lo
ation,
omputational geometry, maxmin, minsum.
1 Introdu
tionMany lo
ation problems deal with undesirable or obnoxious fa
ilities (see, e.g.[1,3{5,9,13℄). A fa
ility is
alled undesirable or obnoxious if it may pose a dan-ger to the individuals living nearby, may have an adverse e�e
t on propertyvalues, or may
ause lower quality of life through pollution. Examples of ob-noxious fa
ilities are nu
lear power plants, garbage dump sites, mega-airports,and
hemi
al plants.In this paper we study two general problems
on
erned with lo
ating an unde-sirable fa
ility (or a number of fa
ilities) amidst demand points. We
onsidervarious distan
e fun
tions, a varying number of fa
ilities, or weighted demandpoints, and varying fa
ility
onstraints. In the rest of this se
tion we des
ribethe problems, survey previously known algorithms for them, and state ourresults whi
h are based on
on
epts and te
hniques from Computational Ge-ometry.Problem 1: Maxmin multi-fa
ility lo
ation. In their paper \Multi-fa
ilitylo
ation using a maximin
riterion and re
tangular distan
es", Brimberg andMehrez [4℄ solve the maxmin multiple fa
ilities lo
ation problem, under theL1 norm. This problem is stated as follows. Given a set P = fp1; : : : ; png of npoints in a re
tangular region R, and given a distan
e r and another distan
eD, lo
ate k undesirable fa
ilities, F = ff1; : : : ; fkg, su
h that the smallestdistan
e between ea
h demand point and the fa
ilities is at least r, and thedistan
e between any pair of fa
ilities is at least D. Their approa
h involves abran
h and bound algorithm, and their algorithm runs in time O(n2k).We twist the problem slightly by turning it into an optimization problem. Weseek the largest r for whi
h it is still possible to pla
e k undesirable fa
ilitiesunder the distan
e
onstraints stated above. The algorithms that we presentfor this optimization problem run in time O(n log2 n) for k = 2 or 3, and intime O(nk�2 log2 n) for k � 4. In order to solve the optimization problem, we�rst solve the
orresponding de
ision problem, whi
h is exa
tly the problem2

of Brimberg and Mehrez, and then apply an optimization s
heme due to Fred-eri
kson and Johnson [10℄ (see below), whi
h adds a logarithmi
 fa
tor to thetime bounds of the algorithms that we obtain for the de
ision problem.Our algorithms for the de
ision problem
an be extended, in a straightforwardway and within the same time bounds, to handle di�erent separation valuesri for the points pi 2 P , instead of one value r. In addition we show thatunder the Eu
lidean norm the de
ision problem for k = 2
an be solved intime O(n logn).Problem 2: Minsum
overage. Another type of obnoxious fa
ility lo
ationproblems is des
ribed in a paper by Drezner and Wesolowsky [9℄: Given aset P of weighted demand points
ontained within a large re
tangular (or
ir
ular) domain R, and given a re
tangle (or a
ir
le) Q of a �xed size, �nda pla
ement of Q within R so that the sum of weights of the demand pointsthat are
ontained in Q is minimal. In more detail, ea
h point pi 2 P has aweight wi assigned to it, the goal is to �nd how to pla
e Q within R su
h thatthe following sum is minimized Xfi j pi2Qgwi:This kind of problem might arise, e.g., when an obnoxious fa
ility whi
h af-fe
ts its
lose neighborhood has to be pla
ed in a populated area. Assumingthis neighborhood is of a known size re
tangle (resp.
ir
le), and that ea
hpopulation site has a weight assigned to it, whi
h might be the number ofpeople at that site, one would like to minimize the total number of peoplewho are a�e
ted by this fa
ility.Drezner and Wesolowsky [9℄ present O(n2)-time algorithms for both the re
t-angular and the
ir
ular
ase. We improve the algorithm for the re
tangular
ase and present an O(n logn)-time algorithm. In addition, we obtain a lowerbound of
(n logn) for the unweighted re
tangular
ase, thus proving theoptimality of our algorithm.The paper is organized as follows. In Se
tion 2 we present our algorithms forProblem 1 above and for several of its spe
ial instan
es. Towards the end ofthe se
tion, we show how to solve the optimization problem, by applying anoptimization s
heme devised by Frederi
kson and Johnson [10℄, whi
h involvesa fast sear
h in a
olle
tion of impli
it sorted matri
es whose entries
onsistof all potential solutions. Sin
e applying this s
heme is almost standard (see,e.g., Glozman et al. [11℄), we only dis
uss it brie
y. In Se
tion 3 we presentour event-driven algorithm for Problem 2. Roughly speaking the events areof the type \Q meets a point of P", \a point leaves Q", or \Q tou
hes theboundary of R". We employ a segment tree data stru
ture (see [14℄) in whi
h3

a b

dr

Fig. 1. The re
tangle R; the points P ; around ea
h point there is a grey square ofsize r; the white region is V ; the two
andidate solutions are fa; bg and f
; dg.we dynami
ally maintain the sum of weights of the points that are within Q atea
h event. The minimum of these sums of weights di
tates the best lo
ationfor Q. A lower bound for the minsum problem is also shown in Se
tion 3.2 Maxmin multi-fa
ility lo
ationBrimberg and Mehrez [4℄ observed that under the maximum norm (L1) Prob-lem 1 above
an be restated as follows. (Re
all that the L1 distan
e betweenpoints a and b is maxfjax � bxj; jay � byjg.) Draw around ea
h of the pointspi 2 P , a square of size r (where the size of a square is half its side length),and observe the union of the squares U . The fa
ilities should be lo
ated in the(
losed) region V = R � U , su
h that their pairwise distan
es are at least D.This turns out to be our de
ision problem. We de�ne the de
ision problem asthe question: \For the given square size r, does there exist a set of k lo
ationsin V su
h that their pairwise distan
es are at least D ?" If there is one, wereport the lo
ations of the fa
ilities and the answer \yes". If not, we return\no". The asso
iated optimization problem will output the largest square sizer� for whi
h the answer to the de
ision problem is \yes". We will des
ribe ittowards the end of this se
tion.We solve several variants of the de
ision problem. Under the L1 norm, we �rstpresent O(n logn)-time algorithms for k = 2; 3, and then present a generals
heme for larger values of k that yields, for any k � 4, an algorithm thatruns in time O(nk�2 logn). Thus, signi�
antly improving the O(n2k) (for anyk � 1) solution proposed by Brimberg and Mehrez [4℄. As we show, the spa
erequirements of our algorithms vary between O(n) and O(n logn), while thesolution in [4℄ requires O(n2) spa
e.k = 2. It is well known that the
ombinatorial
omplexity of the boundary ofthe union of n squares is linear in n (see Preparata and Shamos [15℄). In other4

words, the boundary of this union
onsists of O(n) verti
es and edges and
anbe
omputed in time O(n logn) and spa
e O(n), using, e.g., a sweepline algo-rithm (see [14℄). Thus the boundary of V
an be
omputed in time O(n logn)and spa
e O(n). The problem of lo
ating two fa
ilities whose L1 inter-distan
eis at least D, boils down to �nding two pairs of points on the boundary ofV (see Figure 1). One pair
onsisting of points in V with the smallest andlargest x-
oordinates, respe
tively (points a and b in Figure 1), and anotherpair
onsisting of points with the smallest and largest y-
oordinates, respe
-tively (points
 and d in Figure 1). It is easy to see that we
an
hoose these4 points to be verti
es of the boundary of V , thus, they
an be found in timeO(n), by traversing the boundary verti
es. If the inter-distan
e for both pairsof points is smaller than D, then we
annot pla
e the fa
ilities as required,and the answer to the de
ision problem is \no". If one of the pairs has inter-distan
e at least D, then we pla
e the fa
ilities at these points and return theirlo
ations and the answer \yes".Theorem 2.1 The two-fa
ility lo
ation problem
an be solved in O(n logn)time and O(n) spa
e.k = 3. As in the previous
ase
ompute the region V and
laim:Claim 1 If there exists a solution for the three-fa
ility lo
ation problem underthe
onstraints above, then there exists a solution in whi
h at least one of thethree fa
ilities is on a vertex of the boundary of V .Proof. Assume the points a; b and
 are the lo
ations of the fa
ilities in thesolution. Assume that a is the leftmost point (the point with the smallest x-
oordinate among the three), b is the middle point (again, with respe
t to thex-
oordinate), and
 is the rightmost point. By pushing a and
 horizontallyleftwards and rightwards, respe
tively, until they rea
h verti
al edges of theboundary of V , we only in
rease the distan
es among the solution points. Now,if b is the highest (resp. lowest) point, we
an push the lower (resp. higher)point between a and
 downwards (resp. upwards) until it rea
hes a vertex ofthe boundary of V . Otherwise, if b is not the highest nor the lowest amongthe three fa
ilities, then we
an push the higher between the points a and
upwards, and the lower between a and
 downwards, until they rea
h verti
esof V .Based on this
laim we design our algorithm as follows. For ea
h vertex v ofthe boundary of V , we assume that one of the fa
ilities, say f1, is lo
ated onv. In order to lo
ate the remaining two fa
ilities f2 and f3, we solve a two-fa
ility lo
ation problem, but with a slightly di�erent region than V . Let Qvbe a square of size D
entered at v. It is easy to see that the fa
ilities f2 andf3 should reside in V �Qv (see Figure 2).5

v �Qv
r

D
Fig. 2. The square Qv, and the verti
es in B depi
ted as empty or bla
k-�lled tinysquares, where the bla
k-�lled squares are the extremal points of B.In
orporating this observation in the two-fa
ility algorithm in the naive wayleads to a roughly quadrati
 algorithm. This is be
ause the boundary, �Qv,of Qv might interse
t the boundary, �V , of V in O(n) points, and we must
ompute V � Qv for ea
h vertex v of the boundary of V . However, we
laimthat it is not ne
essary to
ompute all the points of interse
tion between �Qvand �V before applying the two-fa
ility algorithm. Let us denote by B theverti
es that are formed by subtra
ting Qv from V . Noti
e (Figure 2) that B
onsists of the verti
es that are both on �(V � Qv) and on �Qv (depi
ted inthe Figure by small squares on �Qv). De�ne the extremal points of B as thepair of leftmost and rightmost points of B on ea
h of the horizontal sides of�Qv, and the pair of lower and upper points of B on ea
h of the verti
al sidesof Qv. There are at most 8 su
h points (in the Figure they are the bla
k �lledsmall squares).Claim 2 If there exists a solution for the two-fa
ility lo
ation problem in V �Qv, where one (resp. both) of the fa
ilities f2 and f3 is (resp. are) in B, thenthere exists a solution in whi
h one (resp. both) of the fa
ilities is an extremalpoint of B.Proof. Assume, without loss of generality, that f2 is on a vertex b 2 B and bis not an extremal point of B. We show how f2
an be moved to an extremalpoint of B without de
reasing the distan
es between the fa
ilities. Clearly, thedistan
e between f2 and f1 remains D when f2 is moved to a new lo
ation on�Qv. (Re
all that f1 is on the
enter of Qv.) As for the distan
e between f2and f3 there are a number of
ases, all are essentially similar and we mentiononly one: If b is on a horizontal edge of Qv and f3 is lo
ated to its left, then we
an move b to the right extremal point of B on that edge without de
reasingthe distan
e between f2 and f3. Now if f3 is also on a vertex
 2 B that is notan extremal point of B, then we move it to the extremal point of the edge to6

whi
h
 belongs for whi
h the distan
e to f2's new lo
ation in
reases.This
laim ensures that even if we do not
ompute all the new verti
es thatare formed by subtra
ting Qv from V , i.e., we �nd only the extremal pointsof B, we
an still �nd a solution to the three-fa
ility lo
ation problem if oneexists.How do we eÆ
iently �nd the verti
es of �(V � Qv) where f2 and f3 maybe pla
ed? This pro
ess is divided into two parts. In one we �nd by rangesear
hing the verti
es of �V that lie outside of Qv, and thus are
andidatepla
ements for the two fa
ilities. These verti
es are not enumerated but areknown impli
itly, as will be explained below. In the other part we �nd by rayshooting the extremal points of B.For the �rst part we
ompute the boundary of V and prepro
ess its verti
es fororthogonal range sear
hing (see [2℄) with the fra
tional
as
ading te
hnique(see [6℄). Now we have a data stru
ture for range sear
hing queries. When wepla
e f1 on v (for ea
h boundary vertex v 2 V), we perform a range sear
hquery with Qv in this data stru
ture, and �nd the verti
es of V that lie outsideof Qv. This algorithm is standard (see e.g [2℄). However we give a rough sket
hof it for
ompleteness of the presentation.We build a 2-dimensional range tree T whi
h
onsists of two levels as des
ribedin [2℄. The main tree is a balan
ed binary sear
h tree T1 ordered by the x-
oordinates of the verti
es of �V . For ea
h internal node or a leaf node w 2 T1,we asso
iate a
anoni
al subset P (w)
onsisting of the verti
es stored in theleaves of the subtree of T1 rooted at w. The
anoni
al subset P (w) is stored ina balan
ed binary sear
h tree Tw ordered by the y-
oordinates of the points inP (w). We
all Tw the asso
iated stru
ture of w. At ea
h of the nodes u of Tw,we store the leftmost, rightmost, topmost, and bottommost verti
es amongthe verti
es stored in the leaves of the subtree rooted at u. At the node wwe store a pointer to the root of Tw. The whole stru
ture requires O(n logn)storage spa
e.Assume that Qv, the orthogonal range query, is given by [x; x0℄ � [y; y0℄. Thequery algorithm �rst sele
ts O(logn)
anoni
al subsets that together
ontainthe points whose x-
oordinates lie in the range [x; x0℄. Of those subsets, thealgorithm reports the points whose y-
oordinates lie in the range [y; y0℄, as a
olle
tion of O(log2 n) nodes of asso
iated stru
tures. The union of the
anon-i
al subsets of these nodes
onsists of the desired set of points. The runtimeof the above query algorithm is O(log2 n) whi
h
an be improved to O(logn)applying the fra
tional
as
ading te
hnique of [7℄.In the ray shooting part we determine, for ea
h of the edges of Qv, its twoextreme points in B (if they exist). We employ a ray-shooting algorithm (see7

f1 r
f2 f3

unknown verti
es of V �QvQv > D< DD
Fig. 3. f2 must be pla
ed on the right edge of Qv.[2℄) whi
h we sket
h here. We �rst prepro
ess the horizontal edges of theboundary of V for logarithmi
 time verti
al ray shooting queries. We performa similar prepro
essing step for horizontal ray shooting. We will have two datastru
tures, and two types of queries, respe
tively, one for the verti
al dire
tionand one for the horizontal dire
tion. We
ontinue to des
ribe just the verti
alray shooting. This data stru
ture o

upies O(n logn) spa
e (see [2℄).Given the query re
tangle Qv, we
he
k whether the endpoints of its verti
aledge e = ab lie in V (i.e., in R but not in U). An endpoint that lies inV is already an extremal point of B. Assuming, say, a (resp. b) is not anextremal point of B, we perform an orthogonal ray shooting query with theray emanating from a (resp. b) and
ontaining e, to dete
t the point of B (one) whi
h is
losest to a (resp. b), if su
h a point exists. This
an be done inO(logn) time (see [2℄).In order to solve the two-fa
ility lo
ation problem in V � Qv in logarithmi
time, we
onsider the O(logn) extreme verti
es stored in the O(logn) nodes ofasso
iated stru
tures that were reported by the range sear
hing, together withthe at most 8 extreme verti
es of B. Among all these verti
es, we sele
t thetwo farthest verti
es in ea
h of the dire
tions x and y. If the distan
e of oneof these farthest pairs is at least D, then we have a solution to the two-fa
ilitylo
ation problem in V � Qv, otherwise, there is no solution. Figure 3 showsthat we may have to pla
e one of the remaining two fa
ilities f2 and f3 onthe boundary of Qv, otherwise, there does not exists a solution. The abovedeliberations lead toTheorem 2.2 The three-fa
ility lo
ation problem
an be solved in O(n logn)time and O(n logn) spa
e. 8

(a)(b)(
)
fifi fj

�V D
Fig. 4. Proof of Lemma 2.3.k � 4. In this
ase we
laim thatLemma 2.3 We may assume that at least one of the fa
ilities is on a vertexof the boundary of V .Proof. Let us
onsider the re
tilinear free spa
e V = R�U . Assume that thereis an initial positioning for k fa
ilities su
h that none of them is on a vertexof V . Our approa
h is to move the fa
ilities, maintaining the � D distan
erequirement, su
h that at least one of them will be on a vertex. Denote thefa
ilities by F = ff1; : : : ; fkg. About ea
h fa
ility f draw an axis-parallelsquare
 with side length D (f being the square's
enter). Clearly in the giveninitial positioning the squares do not interse
t. See Figure 4 (a). We push allthe squares as mu
h to the left as possible (Figure 4 (b)), so that they stilldo not interse
t, and their
enters remain in V throughout the motion. If atsome point during this stage, one of the fa
ilities
oin
ides with a vertex of V ,then we are done. If not, then, at the end of this stage, the leftmost fa
ility fimust lie on a verti
al edge of the boundary of V (if there are several leftmostfa
ilities then fi is taken to be the lowest among them). Next we push thesquares as mu
h down as possible (Figure 4 (
)), again, not letting any pairof them to interse
t and not letting the fa
ilities to penetrate into U nor leaveR, and stopping if at some point a fa
ility passes through a vertex of V . Atthe end of this stage, the bottommost fa
ility fj must lie on a horizontal edgeof the boundary of V (and if there are several bottommost fa
ilities fj is theleftmost among them).Assuming we have not stopped with a fa
ility on a vertex, then we know thati 6= j, sin
e otherwise the
orresponding fa
ility lies on a vertex and we wouldhave stopped. We now
he
k whether we
an slide the square
j to the left,under the same limitations, so that its
enter fj
oin
ides with a vertex of V .If we
an, then we are done. Otherwise we pro
eed as follows. Consider thesouth west quarter plane de�ned by the line through the bottom edge of
iand the line through the left edge of
j. Noti
e that there exists at least onesquare that is fully
ontained in this quadrant. (This is true sin
e there existsa square x blo
king
i from below, and there exists a square y blo
king
j from9

the left. Now, if x = y then this square is su
h a square. Otherwise, if x liesto the left of the left edge of
j, then x is su
h a square. And if x does not lieto the left of the left edge of
j, then
j is ne
essarily below the bottom edgeof x, and therefore y whi
h
annot be higher than x is fully
ontained in theabove quarter plane.) We remove all the squares that are not fully
ontainedin this quadrant, thus removing at least two squares (i.e., the squares
i and
j), and repeat the whole pro
ess for the remaining set of squares, et
. (Noti
ethat there is no fear that the D
learan
e property will be violated sin
e theremaining squares are moved only left and down.) Eventually, if we do notstop earlier we are left with a single square, and this square
an
learly bemoved (left and down) so that its
enter lies on a vertex.Similarly to the three fa
ility
ase we will position a square Qv of side length2D
entered on ea
h vertex v of the boundary of V . For ea
h su
h positioningof Qv we
ompute the boundary of V 0 = V �Qv. The solution for the (k� 1)-fa
ility lo
ation problem is applied to the verti
es of the boundary of V 0, andso on, re
ursively. At any point in the
omputation, the boundary of V 0 is of
omplexity O(n), and
an be
omputed in O(n) time from V .Theorem 2.4 The k-fa
ility lo
ation problem, for k � 4,
an be solved inO(nk�2 logn) time and O(n logn) spa
e.Proof. We �rst
ompute V = R � U in time O(n logn). Noti
e that addinga square Qvi at vertex vi and updating the boundary of the free spa
e
anbe done in O(n) time. Thus, the running time for k fa
ilities is T (k) =n(O(n) + T (k� 1)). Re
alling that T (3) = O(n logn), we obtain that T (k) =O(nk�2 logn).Remark 1. If, instead of one separation value, r, ea
h point pi 2 P has itsown separation value, ri, then the same algorithms apply without additional
ost in time or spa
e. This is be
ause the boundary of the union of thesesquares is also linear in the number of squares (see Preparata and Shamos[15℄), and the rest follows immediately.Remark 2. As far as we know nothing has been done
onsidering the Eu-
lidean norm (L2). In this
ase instead of n squares of size r we have n dis
s ofradius r. For k = 2, it is easy to show that if there exists a solution, then thereexists a solution in whi
h the two fa
ilities are on verti
es of the boundary ofV = R�U . The
ombinatorial
omplexity of U and V is O(n) (see Kedem etal. [12℄), and, after
omputing V , we
an
ompute the farthest pair of verti
esin O(n logn) time, using the
orresponding algorithm in [15℄ for
omputingthe diameter of a set of points. Thus, the two-fa
ility lo
ation problem underthe Eu
lidean norm
an also be solved in O(n logn) time and O(n) spa
e.10

dddd dd dd d d d d
dd d

d
/2

t
b dQ

R
Fig. 5. Data for the initial segment tree.The optimization s
hemeIn order to �nd the largest value r� for whi
h there still exists a solution tothe k-fa
ility lo
ation problem (keeping D �xed), we employ the optimizationte
hnique of Frederi
kson and Johnson [10℄ (see, e.g., Glozman et al. [11℄).Ea
h pair pi; pj of demand points determines eight
riti
al values, four forea
h dimension. We list the
riti
al values for the x-di�eren
e dx between piand pj: (i) dx=2, (ii) dx, (iii) (dx�D)=2, and (iv) (D�dx)=2. In addition, ea
hdemand point p determines four
riti
al values; the two horizontal distan
esbetween p and the boundary of R and the two verti
al distan
es between pand the boundary of R.We
an represent all these distan
es as a
onstant
olle
tion of sorted matri
es,and then perform a binary sear
h on these values using the de
ision algorithmas an \ora
le". As it was shown in the paper of Frederi
kson and Johnson [10℄,the above s
heme adds a multipli
ative O(logn) fa
tor to the running time ofthe de
ision algorithm.3 Minsum
overageLet P = fp1; : : : ; png be a set of n weighted points within an axis-parallel re
t-angle R. Denote the weights by fw1; : : : ; wng, respe
tively. Let Q be anotheraxis-parallel re
tangle whi
h is smaller than R (both in width and in height).The goal is to pla
e Q within R su
h that the sum of the weights of the pointsof P that are
ontained in Q is minimal.Denote by
 the width of Q and by d its height. Below we des
ribe the mainideas of our algorithm and the data stru
ture that we employ. Assume we putat ea
h point pi a horizontal segment si of length
,
entered at pi. Assume11

ddd dd dd d d
d

dd d dd
d

..

..

..

..

..

..

..

..

..

..

..

..

..
R

1 2 3 4 5 9 10871 23 5 3 3 2 8 26 6 7 5 5 3 3 6 36 6 QInterval:Weight:
S11 12 135 10 121411Fig. 6. Elementary segments and their weights.we have two more segments, b and t, assigned to the bottom and top edgesof R respe
tively. The segments b and t
oin
ide with the
orresponding sidesof R but are shorter on ea
h side by
=2 (see Figure 5). This is be
ause weare looking for the best lo
ation of the
enterpoint of Q su
h that Q is fully
ontained in R.The data stru
ture we employ for better eÆ
ien
y of our algorithm is thesegment tree. We brie
y outline the stru
ture of the segment tree (for moredetails see [14℄). To
onstru
t the segment tree we need to �rst de�ne the ele-mentary intervals. We orthogonally proje
t the endpoints of all the segmentssi onto b. They subdivide b into small, elementary intervals. More pre
isely,the elementary intervals are the maximally
onne
ted segments, starting andending at proje
ted endpoints and not having a proje
ted endpoint in theirinteriors. In Figure 6 we show the proje
tions of all the endpoints, and denotebelow R the 14 elementary intervals.At the initial phase of our algorithm we
he
k where to lo
ate Q if its lowerside is
onstrained to
oin
ide with b. As Q
an slide left and right tou
hing b,this de�nes a slab S in R of height d. We de�ne the weight of an elementaryinterval e to be the sum of weights of all the intervals si of the points ofP \ S that
ontain e. Observe that the x-
oordinate of the
enter of Q
anbe anywhere along b, and that the sum of weights of the points that Q
overswhen its
enter is at a
ertain elementary interval, is exa
tly the weight of thisinterval. The
laim is that at this phase the best lo
ation for the
enterpoint ofQ is when its x-
oordinate is anywhere within the elementary interval whi
hhas the smallest weight (this interval is not ne
essarily unique, in our exampleit
an be either interval 7, 8 or 10). In the Figure we put Q's
enter in interval7.We des
ribe the segment tree T and its
onstru
tion. Initially we
ompute all12

the elementary intervals and
onstru
t a binary tree whose leaves
orrespondto the elementary intervals sorted from left to right. We assign two attributesto ea
h node in T : 1. The interval that the node
overs, and 2. The weightof the node. The weight of ea
h leaf is initially zero, and the interval is itselementary interval. Re
ursively, the interval of an inner node v is the unionof the intervals of its two
hildren-nodes, and the weight of an inner node v isthe minimum of the weights of its two
hildren-nodes plus the weights of thesegments that are stored in v. (Thus, initially, the weight of all inner nodes isalso zero.)We now insert all the segments si that are
ontained in S (when S is in theinitial phase, namely, tou
hing b). The tri
k of the segment tree is that ea
hsegment
an be inserted in at most O(logn) nodes and the weight attribute ofthe nodes
an therefor be updated in the same number of nodes (please referto Mehlhorn [14℄ for details). At ea
h insertion the weight at the root of T isthe smallest weight of all the elementary intervals. On
e all the segments inS have been inserted, the root
ontains the minsum weight for Q when it is
onstrained to tou
h b. Finding the elementary interval(s) that a
hieve thisweight is easily done by peeking at the two
hildren of the root and
ontinuingdown the tree in the dire
tion of the
hild with smaller weight. (If both
hildrenare of equal weight, we pi
k one of them arbitrarily.)We keep the weight of the root at this phase and
ontinue to the next phasesof the algorithm in our sear
h for a better lo
ation for Q. The next phases are
aused by the events of moving the slab S upwards. Ea
h event is either (i)a point pi gets on the lower side of S and is about to leave S, or (ii) a pointpi gets on the upper side of S and is about to enter S, or (iii) the top of S
oin
ides with t.Ea
h of these
ases is easily handled using the segment tree. For a type (i)event we delete the segment si from T and update the weights on the treenodes that were a�e
ted by deleting si. We store this phase if the weight atthe root is smaller than the minimum root weight that we a
hieved before.For a type (ii) event we insert a segment si, and update T . Event of type (iii)terminates the algorithm. The best lo
ation of Q and the phase it has beenfound in are stored and we retrieve them.The tree T has n leaves and its depth is O(logn). Ea
h segment update, be itinsertion or deletion, takes O(logn) time (this is the most important propertyof the segment tree). There are about n events, n + 2 if we
ount the eventswhen the slab tou
hes the bottom and top of R. Thus, we obtain the followingtheoremTheorem 3.1 Given a set P of n weighted points within an axis-parallel re
t-angle R, and another axis-parallel re
tangle Q whi
h is smaller than R, it is13

possible to lo
ate Q within R in O(n logn) time, su
h that the sum of theweights of the points lying in Q is minimized.A lower boundA lower bound is obtained on a mu
h simpler problem and thus it applies tothe weighted minsum problem. Assume ea
h point pi has weight 1 and assumethey are all on the x-axis and that Q is a zero height re
tangle, namely asegment.Bespamyatnikh et al. [3℄ obtained an
(n logn) lower bound for the followingproblem. Given n positive real numbers and a number
, determine whetherthere exist two
onse
utive numbers in their sorted sequen
e a1; : : : ; an, whosedi�eren
e is greater than
. The redu
tion of our problem to theirs is asfollows. Let R be the segment [a1; an℄, and let Q be a segment of length
.Every number
orresponds to a 1-dimensional point with weight 1. If we
anpla
e Q within R so that the sum of the weights of the points lying in Q is0, then two su
h numbers exist. Otherwise, we
annot �nd su
h a pair. We
on
lude thatTheorem 3.2 Given a set P of n weighted points within an axis-parallel re
t-angle R, and another axis-parallel re
tangle Q whi
h is smaller than R, it ispossible to lo
ate Q within R in �(n logn) time, su
h that the sum of theweights of the points lying in Q is minimized.4 ImplementationWe have implemented the algorithms for both problems. The algorithm forthe maxmin multi-fa
ility problem has been implemented in Java under Win-dows NT. The main non trivial part of the algorithm was implementing theadvan
ed data stru
tures, su
h as the 2-dimensional range trees and the ray-shooting data stru
ture. We used Red-Bla
k trees (see [8℄) in the implemen-tation of the two data stru
tures. We have implemented and applied a matrixsear
h algorithm for the optimization step. The
ode for the latter algorithmis simple and short - less than 1000 lines, and runs very fast. We performeda number of tests, one of them, for example, with 20 fa
ilities whi
h are sup-posed to be at least 100 pixels apart pairwise, and with 180 input data pointswhi
h are required to be at least 50 pixels away form the fa
ilities. On Pentium3 (700 MHZ) the
omputation was
ompleted in 3 se
onds. The
ode has ani
e graphi
s interfa
e and
an be sent on CDROM upon request.14

Regarding the se
ond algorithm we should note that our
ode �nds all the pos-sible lo
ations for the given re
tangle. This algorithm has been implementedin C++ using the graphi
s library GL on Sili
on Graphi
s platform. It
an bedownloaded fromhttp://www.
s.bgu.a
.il/~segal/lo
ate.We implement and maintain a segment tree. One diÆ
ulty in the implemen-tation was dealing with all the end-
ases, e.g., when two segments have thesame endpoint. Still, the
ode is very short (less than 400 lines) and extremelyfast. For an input
onsisting of 400 points the solution is found in 1.4 se
ondson the SGI.5 Con
lusionThe norm that we use in this paper (L1) lends itself to some very fast al-gorithmi
 tools, by whi
h we
ould improve existing algorithms for pla
ingundesirable fa
ilities. This is be
ause a \unit-
ir
le" under L1 is a
tually anaxis-parallel square of size one. Under the Eu
lidean norm, the unit-
ir
le isa
ir
le (of
ourse), and the tools above do not apply for
ir
les. Therefore, itis probably more diÆ
ult to obtain solutions to the Eu
lidean versions of thetwo problems
onsidered in this paper, whi
h are as eÆ
ient as those proposedhere. Thus, we are asking (1) Can the maxmin multi-fa
ility lo
ation problem,under the Eu
lidean norm, be solved eÆ
iently for values of k greater than 2?and (2) Can the O(n2)-time result of Drezner and Wesolowsky [9℄ for pla
inga small disk within a large disk be improved?A
knowledgments { Work by M. Katz and K. Kedem has been supportedby the Israel S
ien
e Foundation founded by the Israel A
ademy of S
ien
esand Humanities, and by the Israel Ministry of Industry and Trade, LSRT
onsortium of the MAGNET program.Referen
es[1℄ B. Ben-Moshe, M. Katz and M. Segal, \Obnoxious fa
ility lo
ation:
ompleteservi
e with minimal harm", International Journal of Computational Geometryand Appli
ations, 10, 581{592, 2000.[2℄ M. de Berg, M. van Kreveld, M. Overmars and O. S
hwarzkopf, \ComputationalGeometry: Algorithms and Appli
ations", Springer-Verlag, 1997.15

[3℄ S. Bespamyatnikh, K. Kedem K and M. Segal, \Optimal fa
ility lo
ation undervarious distan
e fun
tions",Workshop on Algorithms and Data Stru
tures, 318{329, 1999.[4℄ J. Brimberg and A. Mehrez, \Multi-fa
ility lo
ation using a maximin
riterionand re
tangular distan
es",Lo
ation S
ien
e, 2(1), 11{19, 1994.[5℄ J. Brimberg and G. O. Wesolowsky, \The re
tilinear distan
e minsum problemwith minimum distan
e
onstraints", Lo
ation S
ien
e, 3(3), 203{215, 1995.[6℄ B. Chazelle and L. Guibas, \Fra
tional
as
ading: I. A data stru
turingte
hnique", Algorithmi
a, 1, 133{162, 1986.[7℄ B. Chazelle and L. Guibas, \Fra
tional
as
ading: II. Appli
ations",Algorithmi
a, 1, 163{191, 1986.[8℄ T. Cormen, C. Leiserson, R. Rivest, \Introdu
tion to algorithms", MIT Press,1990.[9℄ Z. Drezner and G. O. Wesolowsky, \Finding the
ir
le or re
tangle
ontainingthe minimum weight of points" Lo
ation S
ien
e, 2(2), 83{90, 1994.[10℄ G. Frederi
kson and D. Johnson, \Generalized sele
tion and ranking: sortedmatri
es", SIAM Journal of Computing, 13, 14{30, 1984.[11℄ A. Glozman, K. Kedem and G. Shpitalnik, \EÆ
ient solution of the two-line
enter problem and other geometri
 problems via sorted matri
es",Computational Geometry: Theory and Appli
ations, 11, 17{28, 1998.[12℄ K. Kedem, R. Livne, J. Pa
h and M. Sharir, \On the union of Jordan regionsand
ollision-free translational motion amidst polygonal obsta
les", Dis
reteComputational Geometry, 1, 59{71, 1986.[13℄ Y. Konforty and A. Tamir, \The single fa
ility lo
ation problem with minimumdistan
e
onstraints", Lo
ation S
ien
e, 5(3), 147{163, 1997.[14℄ K. Mehlhorn, \Multi-dimensional Sear
hing and Computational Geometry.Data Stru
tures and Algorithms", 3, Springer-Verlag, 1984.[15℄ F. Preparata and M. Shamos, \Computational Geometry: An Introdu
tion",Springer-Verlag, New York, 1985.Matthew J. Katz is a Senior Le
turer in the Department of ComputerS
ien
e, Ben-Gurion University, Israel. His primary area of resear
h is
om-putational geometry | theory and appli
ations, in
luding geometri
 fa
ilitylo
ation optimization.Klara Kedem is an Asso
iate Professor in the Department of ComputerS
ien
e, Ben-Gurion University, Israel. Her resear
h area is
omputational16

geometry with appli
ations to fa
ility and pla
ement optimization,
omputervision and stru
tural
omputational biology.Mi
hael Segal is a Le
turer in the Department of Communi
ation SystemsEngineering, Ben-Gurion University, Israel. His primary resear
h is algorithms(sequential and distributed) and data stru
tures with appli
ations to optimiza-tion problems.

17

