Improved Algorithms for Placing Undesirable
Facilities

Matthew J. Katz

Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105,
Israel

Klara Kedem

Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105,
Israel

Michael Segal

Communication Systems Engineering Department, Ben-Gurion University,
Beer-Sheva 84105, Israel

Abstract

We improve several existing algorithms for determining the location of one or more
undesirable facilities amidst a set P of n demand points, under various constraints
and distance functions. We assume that the demand points reside within some
given bounded region R. Applying concepts and techniques from Computational
Geometry, we provide efficient algorithms for the following problems:

(1) Maxmin multi-facility location: Locate k undesirable facilities within R
under the constraints that the smallest distance between each demand point
and the facilities is at least a given r, and the distance between any two facilities
is at least a given D. Under the L, (L;) norm we present efficient algorithms
for any k, and under the Ly norm we can locate efficiently two such facilities.
In all cases R is assumed to be an axis-parallel rectangle.

(2) Minsum coverage: Given a set of weighted demand points contained in an
axis-parallel rectangular region R, and given a smaller axis-parallel rectangle
@, place @@ within R such that the sum of weights of the demand points
contained in () is minimized.

Scope and Purpose
Using tools from Computational Geometry we study two facility location problems

that were previously studied by Brimberg and Mehrez [4], Drezner and Wesolowsky
[9]. Geometric instances of facility location problems have attracted researchers from

Preprint submitted to Elsevier Preprint 10 June 2001

the Computational Geometry community, especially in the last few years. Compu-
tational Geometry (see, e.g., the textbook: Computational Geometry — Algorithms
and Applications, by de Berg, van Kreveld, Overmars and Schwarzkopf [2]) deals
with the efficient processing of spatial data and with geometric optimization, and
thus techniques, algorithms, and data structures from this field can be effectively
utilized for solving facility location problems of a geometric flavor.

Key words: Facility location, computational geometry, maxmin, minsum.

1 Introduction

Many location problems deal with undesirable or obnozious facilities (see, e.g.
[1,3-5,9,13]). A facility is called undesirable or obnoxious if it may pose a dan-
ger to the individuals living nearby, may have an adverse effect on property
values, or may cause lower quality of life through pollution. Examples of ob-
noxious facilities are nuclear power plants, garbage dump sites, mega-airports,
and chemical plants.

In this paper we study two general problems concerned with locating an unde-
sirable facility (or a number of facilities) amidst demand points. We consider
various distance functions, a varying number of facilities, or weighted demand
points, and varying facility constraints. In the rest of this section we describe
the problems, survey previously known algorithms for them, and state our
results which are based on concepts and techniques from Computational Ge-
ometry.

Problem 1: Maxmin multi-facility location. In their paper “Multi-facility
location using a maximin criterion and rectangular distances”, Brimberg and
Mehrez [4] solve the maxmin multiple facilities location problem, under the
Lo norm. This problem is stated as follows. Given a set P = {p1,...,p,} of n
points in a rectangular region R, and given a distance r and another distance
D, locate k undesirable facilities, F = {f1,..., fr}, such that the smallest
distance between each demand point and the facilities is at least r, and the
distance between any pair of facilities is at least D. Their approach involves a
branch and bound algorithm, and their algorithm runs in time O(n?).

We twist the problem slightly by turning it into an optimization problem. We
seek the largest r for which it is still possible to place k undesirable facilities
under the distance constraints stated above. The algorithms that we present
for this optimization problem run in time O(nlog®n) for k = 2 or 3, and in
time O(n*~21og®n) for k > 4. In order to solve the optimization problem, we
first solve the corresponding decision problem, which is exactly the problem

of Brimberg and Mehrez, and then apply an optimization scheme due to Fred-
erickson and Johnson [10] (see below), which adds a logarithmic factor to the
time bounds of the algorithms that we obtain for the decision problem.

Our algorithms for the decision problem can be extended, in a straightforward
way and within the same time bounds, to handle different separation values
r; for the points p; € P, instead of one value r. In addition we show that
under the Euclidean norm the decision problem for £ = 2 can be solved in
time O(nlogn).

Problem 2: Minsum coverage. Another type of obnoxious facility location
problems is described in a paper by Drezner and Wesolowsky [9]: Given a
set P of weighted demand points contained within a large rectangular (or
circular) domain R, and given a rectangle (or a circle) @ of a fixed size, find
a placement of () within R so that the sum of weights of the demand points
that are contained in () is minimal. In more detail, each point p; € P has a
weight w; assigned to it, the goal is to find how to place) within R such that
the following sum is minimized

w;.
{i | picQ}

This kind of problem might arise, e.g., when an obnoxious facility which af-
fects its close neighborhood has to be placed in a populated area. Assuming
this neighborhood is of a known size rectangle (resp. circle), and that each
population site has a weight assigned to it, which might be the number of
people at that site, one would like to minimize the total number of people
who are affected by this facility.

Drezner and Wesolowsky [9] present O(n?)-time algorithms for both the rect-
angular and the circular case. We improve the algorithm for the rectangular
case and present an O(nlogn)-time algorithm. In addition, we obtain a lower
bound of Q(nlogn) for the unweighted rectangular case, thus proving the
optimality of our algorithm.

The paper is organized as follows. In Section 2 we present our algorithms for
Problem 1 above and for several of its special instances. Towards the end of
the section, we show how to solve the optimization problem, by applying an
optimization scheme devised by Frederickson and Johnson [10], which involves
a fast search in a collection of implicit sorted matrices whose entries consist
of all potential solutions. Since applying this scheme is almost standard (see,
e.g., Glozman et al. [11]), we only discuss it briefly. In Section 3 we present
our event-driven algorithm for Problem 2. Roughly speaking the events are
of the type “@) meets a point of P”, “a point leaves)7, or “@) touches the
boundary of R”. We employ a segment tree data structure (see [14]) in which

Fig. 1. The rectangle R; the points P; around each point there is a grey square of
size r; the white region is V; the two candidate solutions are {a,b} and {c,d}.

we dynamically maintain the sum of weights of the points that are within @) at
each event. The minimum of these sums of weights dictates the best location
for Q. A lower bound for the minsum problem is also shown in Section 3.

2 Maxmin multi-facility location

Brimberg and Mehrez [4] observed that under the maximum norm (L) Prob-
lem 1 above can be restated as follows. (Recall that the L., distance between
points a and b is max{|a, — b;|,|a, — b,|}.) Draw around each of the points
pi € P, a square of size r (where the size of a square is half its side length),
and observe the union of the squares U. The facilities should be located in the
(closed) region V' = R — U, such that their pairwise distances are at least D.
This turns out to be our decision problem. We define the decision problem as
the question: “For the given square size r, does there exist a set of k£ locations
in V such that their pairwise distances are at least D 7”7 If there is one, we
report the locations of the facilities and the answer “yes”. If not, we return
“no”. The associated optimization problem will output the largest square size
r* for which the answer to the decision problem is “yes”. We will describe it
towards the end of this section.

We solve several variants of the decision problem. Under the L., norm, we first
present O(nlogn)-time algorithms for k& = 2,3, and then present a general
scheme for larger values of k£ that yields, for any & > 4, an algorithm that
runs in time O(nf~2logn). Thus, significantly improving the O(n?*) (for any
k > 1) solution proposed by Brimberg and Mehrez [4]. As we show, the space
requirements of our algorithms vary between O(n) and O(nlogn), while the
solution in [4] requires O(n?) space.

k = 2. It is well known that the combinatorial complexity of the boundary of
the union of n squares is linear in n (see Preparata and Shamos [15]). In other

words, the boundary of this union consists of O(n) vertices and edges and can
be computed in time O(nlogn) and space O(n), using, e.g., a sweepline algo-
rithm (see [14]). Thus the boundary of V' can be computed in time O(nlogn)
and space O(n). The problem of locating two facilities whose Lo, inter-distance
is at least D, boils down to finding two pairs of points on the boundary of
V' (see Figure 1). One pair consisting of points in V' with the smallest and
largest z-coordinates, respectively (points a and b in Figure 1), and another
pair consisting of points with the smallest and largest y-coordinates, respec-
tively (points ¢ and d in Figure 1). It is easy to see that we can choose these
4 points to be vertices of the boundary of V', thus, they can be found in time
O(n), by traversing the boundary vertices. If the inter-distance for both pairs
of points is smaller than D, then we cannot place the facilities as required,
and the answer to the decision problem is “no”. If one of the pairs has inter-
distance at least D, then we place the facilities at these points and return their
locations and the answer “yes”.

Theorem 2.1 The two-facility location problem can be solved in O(nlogn)
time and O(n) space.

k = 3. As in the previous case compute the region V' and claim:

Claim 1 If there exists a solution for the three-facility location problem under
the constraints above, then there exists a solution in which at least one of the
three facilities is on a vertex of the boundary of V.

Proof. Assume the points a,b and ¢ are the locations of the facilities in the
solution. Assume that a is the leftmost point (the point with the smallest -
coordinate among the three), b is the middle point (again, with respect to the
x-coordinate), and c is the rightmost point. By pushing a and ¢ horizontally
leftwards and rightwards, respectively, until they reach vertical edges of the
boundary of V', we only increase the distances among the solution points. Now,
if b is the highest (resp. lowest) point, we can push the lower (resp. higher)
point between a and ¢ downwards (resp. upwards) until it reaches a vertex of
the boundary of V. Otherwise, if b is not the highest nor the lowest among
the three facilities, then we can push the higher between the points a and ¢

upwards, and the lower between a and ¢ downwards, until they reach vertices
of V. I

Based on this claim we design our algorithm as follows. For each vertex v of
the boundary of V', we assume that one of the facilities, say fi, is located on
v. In order to locate the remaining two facilities f; and f;, we solve a two-
facility location problem, but with a slightly different region than V. Let @,
be a square of size D centered at v. It is easy to see that the facilities f, and
f3 should reside in V' — @, (see Figure 2).

(] e ° .
- -
° g [
. . v ®
1 0Q i
q . Di
® ; n
: ' :
. o ° .

Fig. 2. The square @),, and the vertices in B depicted as empty or black-filled tiny
squares, where the black-filled squares are the extremal points of B.

Incorporating this observation in the two-facility algorithm in the naive way
leads to a roughly quadratic algorithm. This is because the boundary, 0Q),,
of @, might intersect the boundary, 0V, of V' in O(n) points, and we must
compute V — @, for each vertex v of the boundary of V. However, we claim
that it is not necessary to compute all the points of intersection between 0Q,
and 0V before applying the two-facility algorithm. Let us denote by B the
vertices that are formed by subtracting @, from V. Notice (Figure 2) that B
consists of the vertices that are both on d(V — @,) and on 0Q, (depicted in
the Figure by small squares on 0Q),). Define the extremal points of B as the
pair of leftmost and rightmost points of B on each of the horizontal sides of
0@, and the pair of lower and upper points of B on each of the vertical sides
of @,. There are at most 8 such points (in the Figure they are the black filled
small squares).

Claim 2 If there exists a solution for the two-facility location problem in V —
Q., where one (resp. both) of the facilities fo and f3 is (resp. are) in B, then
there exists a solution in which one (resp. both) of the facilities is an extremal
point of B.

Proof. Assume, without loss of generality, that f; is on a vertex b € B and b
is not an extremal point of B. We show how f; can be moved to an extremal
point of B without decreasing the distances between the facilities. Clearly, the
distance between f, and f; remains D when f5 is moved to a new location on
0Q),. (Recall that f; is on the center of @),.) As for the distance between f,
and f3 there are a number of cases, all are essentially similar and we mention
only one: If b is on a horizontal edge of @), and f3 is located to its left, then we
can move b to the right extremal point of B on that edge without decreasing
the distance between fy; and f3. Now if f3 is also on a vertex ¢ € B that is not
an extremal point of B, then we move it to the extremal point of the edge to

which ¢ belongs for which the distance to f>’s new location increases. B

This claim ensures that even if we do not compute all the new vertices that
are formed by subtracting @), from V', i.e., we find only the extremal points
of B, we can still find a solution to the three-facility location problem if one
exists.

How do we efficiently find the vertices of O(V — @,) where f; and f; may
be placed? This process is divided into two parts. In one we find by range
searching the vertices of JV that lie outside of @),, and thus are candidate
placements for the two facilities. These vertices are not enumerated but are
known implicitly, as will be explained below. In the other part we find by ray
shooting the extremal points of B.

For the first part we compute the boundary of V' and preprocess its vertices for
orthogonal range searching (see [2]) with the fractional cascading technique
(see [6]). Now we have a data structure for range searching queries. When we
place f; on v (for each boundary vertex v € V'), we perform a range search
query with (), in this data structure, and find the vertices of V' that lie outside
of),. This algorithm is standard (see e.g [2]). However we give a rough sketch
of it for completeness of the presentation.

We build a 2-dimensional range tree T which consists of two levels as described
in [2]. The main tree is a balanced binary search tree T} ordered by the z-
coordinates of the vertices of V. For each internal node or a leaf node w € 17,
we associate a canonical subset P(w) consisting of the vertices stored in the
leaves of the subtree of T rooted at w. The canonical subset P(w) is stored in
a balanced binary search tree T, ordered by the y-coordinates of the points in
P(w). We call T, the associated structure of w. At each of the nodes u of Ty,
we store the leftmost, rightmost, topmost, and bottommost vertices among
the vertices stored in the leaves of the subtree rooted at u. At the node w
we store a pointer to the root of T,,. The whole structure requires O(nlogn)
storage space.

Assume that @), the orthogonal range query, is given by [z, 2'] X [y,y']. The
query algorithm first selects O(logn) canonical subsets that together contain
the points whose z-coordinates lie in the range [z, z']. Of those subsets, the
algorithm reports the points whose y-coordinates lie in the range [y, 1], as a
collection of O(log” n) nodes of associated structures. The union of the canon-
ical subsets of these nodes consists of the desired set of points. The runtime
of the above query algorithm is O(log® n) which can be improved to O(logn)
applying the fractional cascading technique of [7].

In the ray shooting part we determine, for each of the edges of @Q,, its two
extreme points in B (if they exist). We employ a ray-shooting algorithm (see

unknown vertices of V' — Q,

Qu

Fig. 3. fo must be placed on the right edge of Q.

[2]) which we sketch here. We first preprocess the horizontal edges of the
boundary of V' for logarithmic time vertical ray shooting queries. We perform
a similar preprocessing step for horizontal ray shooting. We will have two data
structures, and two types of queries, respectively, one for the vertical direction
and one for the horizontal direction. We continue to describe just the vertical
ray shooting. This data structure occupies O(nlogn) space (see [2]).

Given the query rectangle J,, we check whether the endpoints of its vertical
edge e = ab lie in V (i.e., in R but not in U). An endpoint that lies in
V' is already an extremal point of B. Assuming, say, a (resp. b) is not an
extremal point of B, we perform an orthogonal ray shooting query with the
ray emanating from a (resp. b) and containing e, to detect the point of B (on
e) which is closest to a (resp. b), if such a point exists. This can be done in
O(logn) time (see [2]).

In order to solve the two-facility location problem in V' — @, in logarithmic
time, we consider the O(logn) extreme vertices stored in the O(logn) nodes of
associated structures that were reported by the range searching, together with
the at most 8 extreme vertices of B. Among all these vertices, we select the
two farthest vertices in each of the directions x and y. If the distance of one
of these farthest pairs is at least D, then we have a solution to the two-facility
location problem in V' — @,, otherwise, there is no solution. Figure 3 shows
that we may have to place one of the remaining two facilities f; and f3 on
the boundary of (),, otherwise, there does not exists a solution. The above
deliberations lead to

Theorem 2.2 The three-facility location problem can be solved in O(nlogn)
time and O(nlogn) space.

oV
fi .

() (b) (a)
Fig. 4. Proof of Lemma 2.3.

k > 4. In this case we claim that

Lemma 2.3 We may assume that at least one of the facilities is on a vertex

of the boundary of V.

Proof. Let us consider the rectilinear free space V= R—U. Assume that there
is an initial positioning for k facilities such that none of them is on a vertex
of V. Our approach is to move the facilities, maintaining the > D distance
requirement, such that at least one of them will be on a vertex. Denote the
facilities by F' = {f1,..., fe}. About each facility f draw an axis-parallel
square ¢ with side length D (f being the square’s center). Clearly in the given
initial positioning the squares do not intersect. See Figure 4 (a). We push all
the squares as much to the left as possible (Figure 4 (b)), so that they still
do not intersect, and their centers remain in V' throughout the motion. If at
some point during this stage, one of the facilities coincides with a vertex of V/,
then we are done. If not, then, at the end of this stage, the leftmost facility f;
must lie on a vertical edge of the boundary of V' (if there are several leftmost
facilities then f; is taken to be the lowest among them). Next we push the
squares as much down as possible (Figure 4 (¢)), again, not letting any pair
of them to intersect and not letting the facilities to penetrate into U nor leave
R, and stopping if at some point a facility passes through a vertex of V. At
the end of this stage, the bottommost facility f; must lie on a horizontal edge
of the boundary of V' (and if there are several bottommost facilities f; is the
leftmost among them).

Assuming we have not stopped with a facility on a vertex, then we know that
i # j, since otherwise the corresponding facility lies on a vertex and we would
have stopped. We now check whether we can slide the square ¢; to the left,
under the same limitations, so that its center f; coincides with a vertex of V.
If we can, then we are done. Otherwise we proceed as follows. Consider the
south west quarter plane defined by the line through the bottom edge of ¢;
and the line through the left edge of ¢;. Notice that there exists at least one
square that is fully contained in this quadrant. (This is true since there exists
a square x blocking ¢; from below, and there exists a square y blocking ¢; from

the left. Now, if x = y then this square is such a square. Otherwise, if x lies
to the left of the left edge of ¢;, then z is such a square. And if x does not lie
to the left of the left edge of ¢;, then ¢; is necessarily below the bottom edge
of z, and therefore y which cannot be higher than z is fully contained in the
above quarter plane.) We remove all the squares that are not fully contained
in this quadrant, thus removing at least two squares (i.e., the squares ¢; and
¢j), and repeat the whole process for the remaining set of squares, etc. (Notice
that there is no fear that the D clearance property will be violated since the
remaining squares are moved only left and down.) Eventually, if we do not
stop earlier we are left with a single square, and this square can clearly be
moved (left and down) so that its center lies on a vertex. W

Similarly to the three facility case we will position a square @, of side length
2D centered on each vertex v of the boundary of V. For each such positioning
of @, we compute the boundary of V' =V — @,. The solution for the (k—1)-
facility location problem is applied to the vertices of the boundary of V', and
so on, recursively. At any point in the computation, the boundary of V' is of
complexity O(n), and can be computed in O(n) time from V.

Theorem 2.4 The k-facility location problem, for k > 4, can be solved in
O(n*2logn) time and O(nlogn) space.

Proof. We first compute V' = R — U in time O(nlogn). Notice that adding
a square (), at vertex v; and updating the boundary of the free space can
be done in O(n) time. Thus, the running time for k facilities is T'(k) =
n(O(n) +T(k —1)). Recalling that T'(3) = O(nlogn), we obtain that T'(k) =
O(n*2logn). I

Remark 1. If, instead of one separation value, r, each point p; € P has its
own separation value, r;, then the same algorithms apply without additional
cost in time or space. This is because the boundary of the union of these
squares is also linear in the number of squares (see Preparata and Shamos
[15]), and the rest follows immediately.

Remark 2. As far as we know nothing has been done considering the Eu-
clidean norm (Ls). In this case instead of n squares of size r we have n discs of
radius r. For k = 2, it is easy to show that if there exists a solution, then there
exists a solution in which the two facilities are on vertices of the boundary of
V = R —U. The combinatorial complexity of U and V" is O(n) (see Kedem et
al. [12]), and, after computing V', we can compute the farthest pair of vertices
in O(nlogn) time, using the corresponding algorithm in [15] for computing
the diameter of a set of points. Thus, the two-facility location problem under
the Euclidean norm can also be solved in O(nlogn) time and O(n) space.

10

I I
L |
| ——
1 R e 1
I I
| —— —e—
I I
I N I
T I
i 5 o
—;—9— —_—— :
I : Q d
—_—T— —e—
l b T — T Jr
T
I

—:—0/24— +—c —F
Fig. 5. Data for the initial segment tree.

The optimization scheme

In order to find the largest value rx for which there still exists a solution to
the k-facility location problem (keeping D fixed), we employ the optimization
technique of Frederickson and Johnson [10] (see, e.g., Glozman et al. [11]).
Each pair p;,p; of demand points determines eight critical values, four for
each dimension. We list the critical values for the z-difference d, between p;
and p;: (1) dy/2, (ii) dg, (iii) (d, —D)/2, and (iv) (D —d,)/2. In addition, each
demand point p determines four critical values; the two horizontal distances
between p and the boundary of R and the two vertical distances between p
and the boundary of R.

We can represent all these distances as a constant collection of sorted matrices,
and then perform a binary search on these values using the decision algorithm
as an “oracle”. As it was shown in the paper of Frederickson and Johnson [10],
the above scheme adds a multiplicative O(logn) factor to the running time of
the decision algorithm.

3 Minsum coverage

Let P = {p1,...,pn} be a set of n weighted points within an axis-parallel rect-
angle R. Denote the weights by {ws,...,w,}, respectively. Let @) be another
axis-parallel rectangle which is smaller than R (both in width and in height).
The goal is to place () within R such that the sum of the weights of the points
of P that are contained in () is minimal.

Denote by ¢ the width of) and by d its height. Below we describe the main
ideas of our algorithm and the data structure that we employ. Assume we put
at each point p; a horizontal segment s; of length ¢, centered at p;. Assume

11

o

| |
| |
| |

| |

| |

| |

| |

| |

| |

T |
& |
T B 1
T

|

|

|

|

|

1

I

|

T

|

- < 3

3

Pro

as Q ,

Interval: 1 2°'3'4°5 6 7 8 910111213 14
Weight: 6 6 6 7 5 5 3 3 6 3 5111012

Fig. 6. Elementary segments and their weights.

we have two more segments, b and ¢, assigned to the bottom and top edges
of R respectively. The segments b and ¢ coincide with the corresponding sides
of R but are shorter on each side by ¢/2 (see Figure 5). This is because we
are looking for the best location of the centerpoint of () such that @ is fully
contained in R.

The data structure we employ for better efficiency of our algorithm is the
segment tree. We briefly outline the structure of the segment tree (for more
details see [14]). To construct the segment tree we need to first define the ele-
mentary intervals. We orthogonally project the endpoints of all the segments
s; onto b. They subdivide b into small, elementary intervals. More precisely,
the elementary intervals are the maximally connected segments, starting and
ending at projected endpoints and not having a projected endpoint in their
interiors. In Figure 6 we show the projections of all the endpoints, and denote
below R the 14 elementary intervals.

At the initial phase of our algorithm we check where to locate @ if its lower
side is constrained to coincide with b. As () can slide left and right touching b,
this defines a slab S in R of height d. We define the weight of an elementary
interval e to be the sum of weights of all the intervals s; of the points of
P NS that contain e. Observe that the xz-coordinate of the center of () can
be anywhere along b, and that the sum of weights of the points that () covers
when its center is at a certain elementary interval, is exactly the weight of this
interval. The claim is that at this phase the best location for the centerpoint of
(@ is when its z-coordinate is anywhere within the elementary interval which
has the smallest weight (this interval is not necessarily unique, in our example
it can be either interval 7, 8 or 10). In the Figure we put @’s center in interval
7.

We describe the segment tree T" and its construction. Initially we compute all

12

the elementary intervals and construct a binary tree whose leaves correspond
to the elementary intervals sorted from left to right. We assign two attributes
to each node in 7: 1. The interval that the node covers, and 2. The weight
of the node. The weight of each leaf is initially zero, and the interval is its
elementary interval. Recursively, the interval of an inner node v is the union
of the intervals of its two children-nodes, and the weight of an inner node v is
the minimum of the weights of its two children-nodes plus the weights of the
segments that are stored in v. (Thus, initially, the weight of all inner nodes is
also zero.)

We now insert all the segments s; that are contained in S (when S is in the
initial phase, namely, touching b). The trick of the segment tree is that each
segment can be inserted in at most O(logn) nodes and the weight attribute of
the nodes can therefor be updated in the same number of nodes (please refer
to Mehlhorn [14] for details). At each insertion the weight at the root of T is
the smallest weight of all the elementary intervals. Once all the segments in
S have been inserted, the root contains the minsum weight for) when it is
constrained to touch b. Finding the elementary interval(s) that achieve this
weight is easily done by peeking at the two children of the root and continuing
down the tree in the direction of the child with smaller weight. (If both children
are of equal weight, we pick one of them arbitrarily.)

We keep the weight of the root at this phase and continue to the next phases
of the algorithm in our search for a better location for). The next phases are
caused by the events of moving the slab S upwards. Each event is either (i)
a point p; gets on the lower side of S and is about to leave S, or (ii) a point
p; gets on the upper side of S and is about to enter S, or (iii) the top of S
coincides with ¢.

Each of these cases is easily handled using the segment tree. For a type (i)
event we delete the segment s; from 7" and update the weights on the tree
nodes that were affected by deleting s;. We store this phase if the weight at
the root is smaller than the minimum root weight that we achieved before.
For a type (ii) event we insert a segment s;, and update 7. Event of type (iii)
terminates the algorithm. The best location of) and the phase it has been
found in are stored and we retrieve them.

The tree T has n leaves and its depth is O(logn). Each segment update, be it
insertion or deletion, takes O(logn) time (this is the most important property
of the segment tree). There are about n events, n + 2 if we count the events
when the slab touches the bottom and top of R. Thus, we obtain the following
theorem

Theorem 3.1 Given a set P of n weighted points within an azis-parallel rect-
angle R, and another axis-parallel rectangle () which is smaller than R, it is

13

possible to locate Q@ within R in O(nlogn) time, such that the sum of the
weights of the points lying in () is minimized.

A lower bound

A lower bound is obtained on a much simpler problem and thus it applies to
the weighted minsum problem. Assume each point p; has weight 1 and assume
they are all on the z-axis and that @) is a zero height rectangle, namely a
segment.

Bespamyatnikh et al. [3] obtained an (nlogn) lower bound for the following
problem. Given n positive real numbers and a number v, determine whether
there exist two consecutive numbers in their sorted sequence aq,...,a,, whose
difference is greater than 7. The reduction of our problem to theirs is as
follows. Let R be the segment [a;,a,], and let @ be a segment of length ~.
Every number corresponds to a 1-dimensional point with weight 1. If we can
place (Q within R so that the sum of the weights of the points lying in @) is
0, then two such numbers exist. Otherwise, we cannot find such a pair. We
conclude that

Theorem 3.2 Given a set P of n weighted points within an axis-parallel rect-
angle R, and another axis-parallel rectangle () which is smaller than R, it is
possible to locate Q@ within R in ©(nlogn) time, such that the sum of the
weights of the points lying in () is minimized.

4 Implementation

We have implemented the algorithms for both problems. The algorithm for
the maxmin multi-facility problem has been implemented in Java under Win-
dows NT. The main non trivial part of the algorithm was implementing the
advanced data structures, such as the 2-dimensional range trees and the ray-
shooting data structure. We used Red-Black trees (see [8]) in the implemen-
tation of the two data structures. We have implemented and applied a matrix
search algorithm for the optimization step. The code for the latter algorithm
is simple and short - less than 1000 lines, and runs very fast. We performed
a number of tests, one of them, for example, with 20 facilities which are sup-
posed to be at least 100 pixels apart pairwise, and with 180 input data points
which are required to be at least 50 pixels away form the facilities. On Pentium
3 (700 MHZ) the computation was completed in 3 seconds. The code has a
nice graphics interface and can be sent on CDROM upon request.

14

Regarding the second algorithm we should note that our code finds all the pos-
sible locations for the given rectangle. This algorithm has been implemented
in C++ using the graphics library GL on Silicon Graphics platform. It can be
downloaded from

http://www.cs.bgu.ac.il/"segal/locate.

We implement and maintain a segment tree. One difficulty in the implemen-
tation was dealing with all the end-cases, e.g., when two segments have the
same endpoint. Still, the code is very short (less than 400 lines) and extremely
fast. For an input consisting of 400 points the solution is found in 1.4 seconds
on the SGI.

5 Conclusion

The norm that we use in this paper (L) lends itself to some very fast al-
gorithmic tools, by which we could improve existing algorithms for placing
undesirable facilities. This is because a “unit-circle” under L., is actually an
axis-parallel square of size one. Under the Euclidean norm, the unit-circle is
a circle (of course), and the tools above do not apply for circles. Therefore, it
is probably more difficult to obtain solutions to the Euclidean versions of the
two problems considered in this paper, which are as efficient as those proposed
here. Thus, we are asking (1) Can the maxmin multi-facility location problem,
under the Euclidean norm, be solved efficiently for values of k greater than 27
and (2) Can the O(n?)-time result of Drezner and Wesolowsky [9] for placing
a small disk within a large disk be improved?

Acknowledgments — Work by M. Katz and K. Kedem has been supported
by the Israel Science Foundation founded by the Israel Academy of Sciences
and Humanities, and by the Israel Ministry of Industry and Trade, LSRT
consortium of the MAGNET program.

References

[1] B. Ben-Moshe, M. Katz and M. Segal, “Obnoxious facility location: complete
service with minimal harm”, International Journal of Computational Geometry
and Applications, 10, 581-592, 2000.

[2] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, “Computational
Geometry: Algorithms and Applications”, Springer-Verlag, 1997.

15

[3] S. Bespamyatnikh, K. Kedem K and M. Segal, “Optimal facility location under
various distance functions”, Workshop on Algorithms and Data Structures, 318—
329, 1999.

4] J. Brimberg and A. Mehrez, “Multi-facility location using a maximin criterion
g g
and rectangular distances”,

Location Science, 2(1), 11-19, 1994.

[5] J. Brimberg and G. O. Wesolowsky, “The rectilinear distance minsum problem
with minimum distance constraints”, Location Science, 3(3), 203215, 1995.

[6] B. Chazelle and L. Guibas, “Fractional cascading: I. A data structuring
technique”, Algorithmica, 1, 133-162, 1986.

[7] B. Chazelle and L. Guibas, “Fractional cascading: II. Applications”,
Algorithmica, 1, 163-191, 1986.

[8] T. Cormen, C. Leiserson, R. Rivest, “Introduction to algorithms”, MIT Press,
1990.

9] Z. Drezner and G. O. Wesolowsky, “Finding the circle or rectangle containing
the minimum weight of points” Location Science, 2(2), 83-90, 1994.

[10] G. Frederickson and D. Johnson, “Generalized selection and ranking: sorted
matrices”, STAM Journal of Computing, 13, 14-30, 1984.

[11] A. Glozman, K. Kedem and G. Shpitalnik, “Efficient solution of the two-
line center problem and other geometric problems via sorted matrices”,
Computational Geometry: Theory and Applications, 11, 17-28, 1998.

[12] K. Kedem, R. Livne, J. Pach and M. Sharir, “On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles”, Discrete
Computational Geometry, 1, 59-71, 1986.

[13] Y. Konforty and A. Tamir, “The single facility location problem with minimum
distance constraints”, Location Science, 5(3), 147-163, 1997.

[14] K. Mehlhorn, “Multi-dimensional Searching and Computational Geometry.
Data Structures and Algorithms”, 3, Springer-Verlag, 1984.

[15] F. Preparata and M. Shamos, “Computational Geometry: An Introduction”,
Springer-Verlag, New York, 1985.

Matthew J. Katz is a Senior Lecturer in the Department of Computer
Science, Ben-Gurion University, Israel. His primary area of research is com-
putational geometry — theory and applications, including geometric facility
location optimization.

Klara Kedem is an Associate Professor in the Department of Computer
Science, Ben-Gurion University, Israel. Her research area is computational

16

geometry with applications to facility and placement optimization, computer
vision and structural computational biology.

Michael Segal is a Lecturer in the Department of Communication Systems
Engineering, Ben-Gurion University, Israel. His primary research is algorithms
(sequential and distributed) and data structures with applications to optimiza-
tion problems.

17

