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Abstract

In this paper we consider several different problems of placing an obnoxious facility on
geometric networks. In particular, our main results show how to obtain efficient polynomial
time algorithms for locating an obnoxious facility on the given network under various distance
functions such as maximizing the total sum of distances or maximizing the smallest of the
distances from the facility to the nodes of the network. Our algorithms are obtained by applying
concepts and techniques from Computational Geometry such as range searching, constructing
spanners and other optimization schemes.
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1 Introduction

Many location problems deal with undesirable or obnoxious facilities on the networks [5, 6, 10, 12].

A facility is called undesirable or obnoxious if it may pose a danger to the individuals living

nearby, may have an adverse effect on property values, or may cause lower quality of life thru

pollution. Examples of obnoxious facilities are garbage dumps, nuclear reactors, prisons, and

military installations.

In this paper we consider a number of problems, all of which are concerned with locating

an undesirable facility on a geometric network (or in the interior of a network) under varying

constraints. We survey previously known algorithms for these problems and propose more efficient

algorithms which are based on concepts and techniques from Computational Geometry.

Problem 1: Obnoxious facility in the interior of a planar network. Drezner and Wesolowsky [12]

solve the following problem: Consider a planar connected network G = (V,E) consisting of n nodes
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and m arcs connecting some pairs of nodes such that each arc e ∈ E is a straight line between

the end nodes in V ; distances are Euclidean. Assume also that the boundary of the network is

connected with arcs. A positive weight wv is associated with each node v ∈ V and a positive weight

we is associated with each edge arc e ∈ E. Denote by CH(G) the convex hull of the nodes in V .

Our goal is to find a point c ∈ CH(G) which maximizes

min{min
v∈V

{wvdV (c, v)},min
e∈E

{wedE(c, e)}},

where dV (c, v) defines the Euclidean distance between c and v, and dE(c, e) defines the Euclidean

distance between c and e. In other words, our goal is to find a point inside of the convex hull of V

that will maximize the minimum weighted distance between the point and the nodes and arcs of

the network.

The main motivation comes from the urban setting when the network may consist of noisy or

polluting roads, transportation corridors, or rail lines. In [12] an O(m3 log (1/ε)) time algorithm is

presented for an ε-approximate solution in the weighted case and it is shown how to deal with the

unweighted case (wv = we = 1) in O(mn2) time.

We show how to reduce the running time for the ε-approximate solution to O(m2 log n log (1/ε))

time. We slightly change the definition of the problem and consider the case of the rectilinear

network: the arcs between nodes are either horizontal or vertical. The rectilinear paths in such

networks usually represent urban routes in grid city models. Instead of demanding the facility

to lie inside of the CH(V ) we bound our network by the smallest enclosing rectangle B(V ) of V

and require the location of the facility to be inside of B(V ). The distances measured between the

facility and nodes (edges) are under L∞ metric. We show how to solve the weighted instance of the

rectilinear network in O(n log2 n) time significantly improving the previous result of Drezner and

Wesolowsky for this type of networks.

Problem 2: Obnoxious facility: maximizing the minimum distance from all demand

nodes or maximizing the sum of distances from all demand nodes. Tamir [23] and later,

Berman and Drezner [5] considered a problem where we are given a network G = (V,E) with n

weighted nodes and m edges and we wish to find a facility c that is allowed to be placed on an edge

or node that maximizes

min
v∈V

wvdist(c, v),

where dist(c, v) defines the length of path between c and v. They [23, 5] show how to solve the

unweighted case in O(m) time and weighted case in O(n3) time. In fact, Tamir [23] presents
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O(mn) time algorithm when the distance matrix between all nodes is given. Tamir [24] also gave a

subquadratic algorithm for solving the problem on tree network. We note that there exist a simple

O(n log n) time algorithm for the complete Euclidean network (unweighted case). The objective of

maximizing the (weighted) sum of distances from all demand nodes has been also studied ([10, 14]).

In this problem we are looking for a facility c that is allowed to be placed on an edge or node that

maximizes
∑

v∈V

wvdist(c, v).

The complexity of maximizing the weighted sum of distances is the same as for minimizing

the weighted sum of distances. Yet, no subquadratic algorithm has been reported in literature,

except the known folklore O(n log n) time algorithm that solves the problem for weighted complete

Manhattan network (see [16]). We present an O(n log2 n) time algorithm for the weighted rectilinear

complete network when we also require the weighted distance between the facility and the demand

nodes to be bounded by some value R and show how to find an ε-approximate solution for the

unweighted (wv = 1) Euclidean complete networks in O(n log n) time when the facility should be

located at one of the nodes. As byproduct we obtain algorithms with the same running times for

placing the desirable facility with the objective of minimizing the sum of distances from the demand

nodes. Our results are based on the existence of the Euclidean t-spanners and their decomposition

into a constant number of binary trees [2] (see also [3]). The full description of t-spanners and

results obtained by Arya et al. [2] will be given later in Section 3.

Problem 3: Obnoxious facility: number of customers within a prespecified distance

R is minimized. This problem is formulated as: Given a network G = (V,E) with n weighted

nodes and m edges of given lengths and given a number R > 0, find a facility c that is allowed to

be placed on an edge or node in order to minimize the number of nodes v such that

wvdist(c, v) ≤ R.

Berman et al. [6] show how to solve this problem in O(mn log n) time. Plastria and Carrizosa [20]

considered the problem of placing a facility in (a) the plane or (b) on a planar network such that

the total number of points lying within the influence radius from the facility should be minimized.

They [20] were able to produce all candidate solutions for the (a) case in O(n3) time with overall

O(n3 log n) time complexity for the problem, while spending total O(n3) time for the (b) case.

In fact, they were able to solve both cases in O(log n) time for any given radius R after initial
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Problems Previous result Our result

Problem 1, Euclidean, weighted, ε-appr. O(m3 log (1/ε)) [12] O(m2 log n log (1/ε))

Problem 1, Rectilinear, weighted none O(n log2 n)

Problem 2 (max-sum, discrete) O(n2 log n) [10] O(n log n), Euclidean, ε-appr.
unweighted

O(n log n) O(n log2 n), rectilinear
to all demand points bounded distance

Problem 3 O(mn log n) [6] O(n7/5polylog n), Euclidean
continuous discrete

weighted O(n log2 n), rectilinear
O(n3), Euclidean [20] unweighted, discrete

Table 1: Previous best results compared to our results.

O(n3 log n) preprocessing time. The advantage of their method is by enabling the execution of

an interactive procedure (over the values of R) in real time. We consider the case of the un-

weighted complete Euclidean and rectilinear networks when the facility must be placed at one of

the nodes. We provide an O(n7/5polylog n) time algorithm for the Euclidean case and O(n log2 n)

time algorithm for the rectilinear network case.

We summarize the previous known results and our new results in Table 1. The main contribution

of this paper is to provide a number of efficient algorithms to some well known problems in location

theory on networks. Using new ideas and techniques from Computational Geometry we show how

one can tackle these problems in geometric settings. Our paper is organized as follows. We focus

on the problem 1 and explain the concept of a hippodrome in the next section. Section 3 discovers

properties of spanners and to use of them in a solution of problem 2. Algorithm by Agarwal and

Sen [1] and orthogonal range queries are applied for solving problem 3 in Section 4. Finally we

conclude and mention some possible future work at Section 5.

2 Obnoxious facility in the interior of the network

Our objective is to maximize the minimal weighted distance from the facility to a node or an arc.

As it was observed in [12], without loss of generality, we may assume that the weights of nodes

are not larger than the weights of arcs to which they belong. Thus, we can ignore the weights of

the nodes. First we show how to deal with the Euclidean case and then turn our attention to the

rectilinear networks.
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2.1 Euclidean case

We first consider the decision problem: given a real value R determine whether there exists a

facility in the interior of the network G = (V,E) whose distance from each edge ei ∈ E, 1 ≤ i ≤ m

is greater or equal than R/wei
where wei

is the weight of the edge ei. The formulation of the

decision problem above implies that each edge ei defines a forbidden region where the facility c

cannot reside. We call this region a hippodrome H(ei, R) (see also Efrat et al. [13]). In Figure 1

the concept of a hippodrome is illustrated.

ei

Rwei
Rwei

Figure 1: The hippodrome H(ei, R).

Denote by UR the union of all H(ei, R), 1 ≤ i ≤ m. An admissible location for the facility

c exists if and only if the interior of the convex hull enclosing the network is not covered by UR.

Since the total number of the intersection points of all hippodromes is at most O(m2) we can detect

whether UR covers the convex hull by walking along the contour of UR in O(m2 log m) time [21].

Applying a bisection method similar to the one described in [12] requires O(log (1/ε)) iterations

to find a solution within an ε of the optimum. Thus we conclude by

Theorem 1 The ε-approximate solution for Problem 1 can be found in O(m2 log n log (1/ε)) time.

Remark 1. If we assume that we = 1,∀e ∈ E we can design a faster runtime algorithm. The idea

is to generate Voronoi diagram for a set of m edges. It is known, how to compute such diagram

in O(m log m) time [27]. All possible candidate solutions for the facility are the vertices of this

diagram since they are equidistant from the triplets (or more) of the segments. We can check all

these O(m) vertices in order to find the location of the facility.

Remark 2. Notice that the optimal interior point has a property that its weighted distances to

some pair or triplet of nodes and edges are identical. Thus, we can found an exact solution by

applying a binary search over the set of values corresponding to the set of planar points satisfying

the above balancing property between triplets of edges and nodes. Unfortunately, generating all

values explicitly will lead to O(m3) additional runtime factor which is worse in factor O(m/ log m)
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than our result for the decision problem. Another possibility is to try to generate all the candidate

solution values implicitly. In order to do so, we can apply a parametric search of Megiddo [19]. This

technique requires an efficient parallel algorithm for the decision problem. Assuming that O(Ts)

(O(Tp)) is the running time of the sequential (resp. parallel) algorithm for the decision problem and

P is the number of processors used in the parallel algorithm, Megiddo [19] shows how to solve the

optimization problem in O(PTp + TsTp log P ) time. The parallel implementation of the sequential

algorithm above is not straightforward, since the sequential algorithm employ a sequential iteration

over the contour of the union of hippodromes. Nevertheless, this iteration can be parallelized, using

persistent trees and related techniques. Combining this with Megiddo’s technique we can obtain

O(m2polylog n) time algorithm for the optimization problem. For the sake of brevity, we do not

provide any further details, and leave them to the interested reader.

2.2 Rectilinear case

As in the Euclidean case we first solve the decision problem and then show how to deal with the

optimization stage. Notice, that from the definition, any rectilinear network with n nodes has

only O(n) edges as shown in Figure 2. Let B be the smallest axis-parallel rectangle enclosing the

network. Since we are working under the L∞ metric all hippodromes H(ei, R) become axis-parallel

rectangles. Our problem, thus, is to find whether the union of these axis-parallel rectangles covers

B. This problem can be efficiently solved in O(n log n) time using the data structure called segment

tree T [18]. For the sake of completeness we sketch this algorithm below.

The leaves of T correspond to the ascending sorted order of the y-coordinates of the endpoints

of the vertical sides of rectangles H(ei, R), 1 ≤ i ≤ m. We define the range of a leaf l to be [yi, yi+1),

i = 1, . . . , O(n), where yi is the y-coordinate that corresponds to l, and yi+1 is the y-coordinate

that corresponds to the next consecutive leaf after l. The range at each internal node in T contains

the union of ranges in the nodes of its children and the range of the root of T corresponds to

the vertical side of B. A vertical line is swept over the plane from left to right stopping at the

endpoints of the horizontal sides of the H(ei, R), 1 ≤ i ≤ m. At each stop, either a rectangle is

added to the union or it is deleted from it. The vertical side v of this rectangle is inserted to (or

deleted) the segment tree T and is stored (removed) in (from) O(log n) nodes of T (v is stored

in O(log n) nodes and equals to the disjoint union of the ranges of these nodes). The update of

T involves maintaining a counter for each node. The counter for node u ∈ T counts how many

vertical rectangle sides cover the range of this node and do not cover the range of its parent. At
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Figure 2: Rectilinear network with 17 nodes and enclosing rectangle.

each stop we check whether B is covered by the current union of rectangles using the counter of the

root of T by checking whether the counter is greater than 0. If at deleting a rectangle the height

of B is not wholly covered by all the vertical segments that are currently in T , then the answer to

the decision problem is “no”, namely the union of the axis-parallel rectangles does not cover B. If

the height of B is fully covered, then we update T by deleting a segment from at most O(log n)

nodes and recomputing the counter value for these nodes and their O(log n) ancestors. Since the

number of events is linear the whole process takes O(n log n) time.

Now, we turn our attention to the optimization problem. As one can observe, assuming that the

optimal solution is not attained on the boundary of B, there is an optimal facility c and two edges ei

and ej such that either wei
dx(c, ei) = wej

dx(c, ej) = optimal value, or wei
dy(c, ei) = wej

dy(c, ej) =

optimal value, where dx (dy) is the horizontal (vertical) distance between c and an edge of the

network. Denote by x(ei) (resp. y(ei)) the x-coordinate (y-coordinate) of the endpoints of edge

ei ∈ E. Notice that x(ei) (resp. y(ei)) is defined uniquely for vertical (horizontal) edge ei, and may

attain one of two values for horizonal (vertical) edge ei. This implies (with the given assumption)

that the optimal distance R∗ from the facility to the nodes and edges in the network is an element

in one of the following four sets:

S1 = {(x(ei) − x(ej))/(1/wei
+ 1/wej

) : ei, ej ∈ E},
S2 = {|(x(ei) − x(ej))/(1/wei

− 1/wej
)| : ei, ej ∈ E},

S3 = {(y(ei) − y(ej))/(1/wei
+ 1/wej

) : ei, ej ∈ E},
S4 = {|(y(ei) − y(ej))/(1/wei

− 1/wej
)| : ei, ej ∈ E}.

In order to locate R∗ in the above four sets we can, as in [4], directly apply the search procedure

of Megiddo and Tamir [17] with the modification described in Cole [11]. Each one of the four sets

is of the form: S′ = {(ai + bj)/(ci + dj) : 1 ≤ i, j ≤ n}, for an appropriate set of 4n numbers

ai, bj , ci, dj , (1 ≤ i, j ≤ n). The goal is then to find two elements s, t ∈ S′ such that s < R∗ ≤ t and

7



no other element of S′ is strictly between s and t. The total running time of the above scheme is

O((n + Ts) log n), where Ts is the runtime of the decision algorithm. Since our decision algorithm

runs in O(n log n) time we conclude that if the optimal solution is not attained on the boundary

of B then the optimal solution can be found in O(n log2 n) time.

The case where the optimal solution is attained on the boundary of the rectangle can be solved

by looking at four one-dimensional problems, corresponding respectively to the four edges of the

rectangle. The time needed to solve each one-dimensional problem is O(n log n), as shown by

Tamir [23].

Theorem 2 The optimal solution for Problem 1 for the rectilinear network under L∞ metric can

be found in O(n log2 n) time and O(n) space.

It should be noted that the same approach does not work for every block norm (norm with a

polyhedral unit ball in R
2). The main reason is the dependency of our algorithm on the use of the

segment tree data structure which keeps track of only one type (vertical, in our case) segments.

The difficulty is that in order to check the covering of the network we need a data structure that

can keep a combined track of different types of segments; each type is parallel to one of the sides

of a convex polyhedron that defines our norm.

3 Obnoxious facility: maximizing the minimum distance or the

sum of the distances

The problem is to locate a facility c on a given network G = (V,E) with n nodes and m edges

in order to (a) maximize the minimal distance from all demand nodes or (b) maximize the sum

of distances from all demand nodes. We note that when G represents the complete Euclidean

graph the unweighted version of the case (a) can be easily solved in O(n log n) by determining the

diameter for the set of points corresponding to V , see e.g. [21]. In this section we mainly consider

the case (b). We first present our approximate solution when the facility c is restricted to be one of

the |V | nodes for the Euclidean complete network and then show how to solve this problem exactly

for the rectilinear network.

3.1 Euclidean case

Let G = (V,E) be a graph, where each edge e ∈ E has weight we and let dG(u, v) be the length

of a shortest path between vertices u and v in G. Let t > 1 be a given constant. A subgraph G′
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is a t-spanner for G if, for all pairs of vertices u and v, dG′(u, v)/dG(u, v) ≤ t. When V is a set of

points in R
d, G is a complete graph, and the length of edge (u, v) is the Euclidean distance between

these points, we call G′ an Euclidean t-spanner. It is known how to construct such spanners having

O(n) edges in O(n log n) time [7, 22, 25]. Moreover, Arya et al. [2] (see also [3]) present a new

construction of such spanners with a remarkable property that such spanner can be decomposed

into a constant number of binary trees, so that each of the O(n2) spanner paths is mapped entirely

to a path in one of these trees. More precisely, Arya et al. [2] proved the following theorem.

Theorem 3 (Arya et al.[2]) Given a set of points V ∈ R
d, and given t > 1, a forest consisting

of O(1) rooted binary trees Ti can be built in O(n log n) time and O(n) space, having the following

properties:

1. For each tree Ti in the forest, there is a 1 − 1 correspondence between the leaves of this tree

and the points of V .

2. Each internal node has a unique representative point, which can be selected arbitrarily from

the points in any of its descendent leaves.

3. Given any two points u, v there is a tree T of the forest, so that the path formed by walking

from representative to representative along the unique path in T between these nodes, is a

t-spanner path for u and v.

Our goal is to compute, for each one of the nodes (representing points) in the forest of trees, the

sum of distances to all other nodes and then choose a node that gives a maximal sum. Since we

have a number of such trees Ti, computing the sum of the distances between each leaf in Ti and all

other leaves will not provide a solution yet. The main problem that for a given nodes v, u,w ∈ V

corresponding to leaves v, u,w in each tree, a t-spanner path between v and u may be defined by

the leaves v and u in some tree Ti while a t-spanner path between v and w may be defined by

the leaves v and w in some other tree Tj. Fortunately, we can deal with this problem. We need

to distinguish between the t-spanner paths and non t-spanner paths in each tree Ti. In order to

do so, we look carefully at the definition of each Ti. Arya et al. [3] showed that each Ti contains

different types of nodes; one of them is called a dumbbell node. They [3] observe that if two leaves

u and v lie on opposite sides of a dumbbell node (which is always exist) then the path from u to v

is a t-spanner path. Our idea is to count, for each tree Ti and every leaf u ∈ Ti the total sum of

the lengths of the t-spanner paths between u and other leaves. Then, for each point u ∈ V (that
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corresponds to a constant number of leaves in a small collection of binary trees) we compute the

total sum of the lengths of all t-spanner paths starting from u using the values computed for the

corresponded leaves. We choose as our solution a point u ∈ V with a maximal computed sum Smax

of distances from u to all other nodes in G′. Let Sopt be a sum of the distances from the optimal

solution node to all nodes in G and let Su be a sum of the distances from u to all nodes in G.

Clearly Sopt ≥ Su. Choosing t = 1 + ε, we obtain: (1 + ε)Sopt ≥ (1 + ε)Su ≥ Smax ≥ Sopt. Thus,

Sopt ≥ Su ≥ Sopt/(1 + ε) ≥ (1 − ε)Sopt.

It remains to show how to compute, for a given tree T and every leaf u ∈ T the total sum

SUMu of the lengths of the t-spanner paths between u and all other leaves in T . We proceed in two

stages. At the first stage, for each node w in T we compute five values: C l
w, the sum of the lengths

of the paths between w and all leaves at the left subtree of w, Cr
w, the sum of the lengths of the

paths between w and all leaves at the right subtree of w, N1
w, the number of leaves in T excluding

the tree rooted at w, N2
w, the number of leaves in the left subtree of w and N3

w, the number of

leaves in the right subtree of w. All these values can be evaluated in linear time starting at leaves

and processing towards the root of T .

At the second stage we proceed to compute the actual SUMu values for every leaf u ∈ T . We

recursively traverse T starting at root towards the leaves. For a currently traversed node w we

compute a value Aw which is defined as follows. If w is the root of Ti then Aw = 0. If a dumbbell

node v is a father of w (and suppose w is the left son of v) then Aw = Cr
v + distG(w, v)N3

v +

distG(w, v)Av . If w is the right son of a dumbbell node v then Aw = C l
v + distG(w, v)N2

v +

distG(w, v)Av . In all other cases Aw = distG(w, v)Av . In this fashion we ignore the non t-spanner

paths and count only the needed information. At the end, SUMu = Au for every leaf u ∈ T . The

whole process can be accomplished in linear time using, e.g. preorder tree traversal. We conclude

with the following theorem.

Theorem 4 Given a set of n points in the plane, using the results of Arya et al. [3] we can ε-

approximately compute the sum of unweighted Euclidean distances from each point to all other

points in O(n log n) time using O(n) space. In particular, we can find an ε-approximate solution

(i.e. a node that produces the sum of the distances within factor (1− ε) of the optimal solution) for

Problem 2 in O(n log n) time using O(n) space.

Remark 3. Using the same approach we can find an approximate median of the complete Eu-

clidean network G = (V,E) (i.e. a node that produces the sum of the distances that within factor
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(1 + ε) of the optimal minimal sum of the distances) in O(n log n) time using O(n) space.

Remark 4. We note that when G is a planar graph in the theorem above the optimal solution

can be computed using the algorithm of Frederickson [15] that evaluates the distances between all

pairs of nodes of G in O(n2) total time.

One may think about approximating the optimal solution within some constant factor δ > 0,

i.e. find a node that produces the sum of the distances S′, such that Sopt + δ ≤ S′ ≤ Sopt. We use a

single bootstrapping approach in order to achieve this bound. Note, that for a given ε > 0, we can

find S′ such that (1− ε)Sopt ≤ S′ ≤ Sopt. Since we need to choose εSopt < δ, without knowing Sopt

we first run our algorithm with, say, ε = 1

2
, and obtain 1

2
Sopt ≤ S′. Then we choose ε = δ

2S′ < δ
Sopt

and run the algorithm to obtain the desired precision.

3.2 Rectilinear case

With any node u of the rectilinear network G = (V,E) we associate the x and y coordinates of

the point in the plane that corresponds to u and refer to them as x(u) and y(u). A path p =<

v1, v2, . . . , vk > in G is called xy-monotone (increasing or decreasing) if x(v1) ≤ x(v2) ≤ . . . ≤ x(vk)

and either y(v1) ≤ y(v2) ≤ . . . ≤ y(vk) or y(v1) ≥ y(v2) ≥ . . . ≥ y(vk). Since we are interested

to work with the rectilinear distances but on the other hand we don’t require our network to be

complete we make an assumption that for any pair of nodes u, v in G such that x(u) ≤ x(v) there

is an xy-monotone path connecting u and v. Such network is called a Manhattan network, see [16].

Using this assumption our problem can be restated as follows. Given a set V of n points in the

plane and given a positive value R, find a point c ∈ V such that the sum of the weighted L1

distances from c to the points in V at distance at most R from c is maximized. We found that

working under L∞ metric is easier from the reasons that will be shown later. We rotate the entire

graph by 45 degrees, obtaining the network G′ = (V ′, E′) and now measure the L∞ distances. It is

well known that the metrics L1 and L∞ are dual in the plane, in the sense that nearest neighbors

under L1 in a given coordinate system are also nearest neighbors under L∞ in a 45 degrees rotated

coordinate system (and vice versa). The distances, however, are different by a multiplicative factor

of
√

2. Thus, after finding a point producing the maximal sum under L∞ metric we multiply the

sum by
√

2 and obtain the desired sum.

In order to compute efficiently the sums of distances for all points v′ ∈ V ′ we apply the orthog-

onal range searching algorithm for weighted points of Willard and Lueker [26] which is defined as
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follows. Given n weighted points in d-space and a query d-dimensional rectangle Q, compute the

accumulated weight of the points in Q. The data structure in [26] is of size O(n logd−1 n), it can

be constructed in time O(n logd−1 n), and a range query can be answered in time O(logd n). We

show how to apply their data structure and algorithm to our problem (see also a similar approach

in [4]).

Q1

v′

Figure 3: Division into four wedges. The wedge Q1 is shaded.

Let v′ ∈ V ′ be the point for which we want to compute the sum of distances from it to all points

v′i ∈ V ′. Let T be the square centered at v′ with side length
√

2R. Clearly T can be decomposed

into four triangles by its diagonals such that the L∞ distance between all points of V ′ within one

triangle is, without loss of generality, the sum of y coordinates of the points of V ′ in this triangle

minus the y coordinate of v′ times the number of points of V ′ in this triangle. More precisely, let

∆u be the closed triangle whose base is the upper side of R and whose apex is v′. Denote by σu

the sum of the weighted L∞ distances between the points in ∆u and v′, and by Nu the number of

points in V ′

u = {V ′ − v′} ∩ ∆u. Then

σu =
∑

v′
i
∈V ′

u

wv′
i
y(v′i) − y(v′) · Nu.

Our goal in what follows is to prepare two data structures for orthogonal range search for weighted

points, as in [26], one with the weights being the x coordinates of the points of V ′ multiplied by a

weight of a corresponding point and one with the y coordinates as weights multiplied by a weight

of a corresponding point, and then to define orthogonal ranges, corresponding to the triangles in T

for which the sums of x (y) coordinates multiplied by the weights of points will be computed.

We proceed with computing σu. Let l1 a line whose slope is 45◦ passing through the origin and

l2 be a line whose slope is 135◦ passing through the origin. These lines define 4 wedges (see Figure

3 above). The first type of wedges: Q1 and Q2 – the wedges of points whose absolute value of y

coordinates are larger than their absolute value of x coordinates, (2) The second type of wedges: Q3
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and Q4 – the wedges of points whose absolute value of x coordinates are larger than their absolute

value of y coordinates.

The wedges Q1 and Q2 and the wedges Q3 and Q4 define two data structure, as in [26]. Observe,

e.g., the wedge Q1 (that contains ∆u). We transform l1 and l2 into corresponding axes of an

orthogonal coordinate system, and apply the same transformation on all the points v′i ∈ V ′. We

construct the orthogonal range search data structure for the transformed points with the original y

coordinates multiplied by the weights of points as weights. (Similarly we construct data structures

for the points of V transformed according to Q3 (Q4) for the x sums.) Using this data structure it

is easy to compute
∑

v′
i
∈V ′

u
wv′

i
y(v′i)

To compute Nu we can use the same wedge range search scheme, but with unit weights on

the data points (instead of coordinates multiplied by the weights of points ). In a similar way we

compute the sum σd for the lower triangle in T (σl and σr for the left and right triangles in R

respectively) and the corresponding number of points Nd (Nl and Nr). Our formula for the sum of

the L∞ distances from all the points of V ′ to v′ is Sv′ = σu + σd + σl + σd.

The algorithm described above requires O(n log n) preprocessing time and space, and then

O(log2 n) query time per point v′i ∈ V ′ to determine the sum of distances to the points in V

lying at distance
√

2R from v′i. Thus, in total O(n log2 n) time we can determine a node v in the

rectilinear network G = (V,E) which maximizes (or minimizes) the sum of the distances from it to

the other nodes in the network lying at distance R from v. Thus, we have

Theorem 5 Given a rectilinear network G = (V,E) with a property that every two nodes are

connected by xy-monotone path and given a value R we can find a node that produces the maximal

sum of the weighted distances for Problem 2 in O(n log2 n) time using O(n log n) space.

4 Obnoxious facility: minimizing the number of customers within

a prespecified distance R

Given a network G = (V,E) with n nodes and m edges of given lengths, find a node on the network

such that the number of nodes within a prespecified distance R from it is minimized. First we

solve the case of the complete Euclidean network and then present more efficient algorithm for the

rectilinear network.
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4.1 Euclidean case

The following lemma is due to Agarwal and Sen [1].

Lemma 6 ([1]) Let S be a set of n points in the plane, and let s be a parameter, with n ≤ s ≤ n3.

S can be preprocessed in time O(s log n) into a data structure of size O(s), so that the number of

points lying in a query disk can be counted in O((n3/4/s1/4) logc n) time, for some constant c > 0.

Since we are dealing with the complete Euclidean network the above lemma is applicable for our

purposes. More precisely, we set s = n7/5, preprocess S as in the Lemma 6 and query it with disk

of radius R centered at each node vi ∈ V . Then we choose the node that produces the minimal

answer. Therefore, we have

Theorem 7 Given a complete Euclidean network G = (V,E) in time O(n7/5 logc n), for some

constant c > 0, we can find a node in G such that the number of nodes within a prespecified

distance R from it is minimized.

4.2 Rectilinear case

We can do much better for the rectilinear networks with xy-monotone paths between each pair of

nodes. The idea is similar to one used in the previous section: we rotate the network by 45 degrees,

obtaining G′ = (V ′, E′) and now work with the L∞ distances. Using the fact that the distances

in these metrics are different by a multiplicative factor of
√

2 we use the following approach. For

each node vi ∈ V we perform an orthogonal range query: we count the number of nodes of the

network inside of the square with side length
√

2R centered at vi, by applying Chazelle’s [8, 9]

orthogonal range counting technique. Chazelle proposes a data structure that can be constructed

in time O(n log n) and occupies O(n) space, such that a range-counting answer for a query square

can be answered in time O(log n). We report a node with the minimal number of nodes inside of

its square. We conclude by

Theorem 8 Given a rectilinear network G = (V,E) with xy-monotone paths between each pair of

nodes, in time O(n log n) we can find a node in G such that the number of nodes within a prespecified

distance R from it is minimized.

Remark 5. Using the same approach described in Theorem 8 we can solve the following problem:

Given a rectilinear network G = (V,E) with xy-monotone paths between each pair of nodes and
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a number 1 ≤ k ≤ n − 1, find a node v in G such that the distance to the kth nearest node

of v is maximized. By considering a rotated graph G′ = (V ′, E′) we observe that the candidate

values for such distance are
√

2|x(v′i) − x(v′j)| and
√

2|y(v′i) − y(v′j)| for all v′i, v
′

j ∈ V ′. Notice that

nearest neighbors under L1 in a given coordinate system are also nearest neighbors under L∞ in

a 45 degrees rotated coordinate system (and vice versa). For each node v′i ∈ V ′ we perform a

binary search with orthogonal range counting (in each step) in the sets {x(v′j) | x(v′j) > x(v′i)},
{x(v′j) | x(v′j) < x(v′i)}, {y(v′j) | y(v′j) > y(v′i)} and {y(v′j) | y(v′j) < y(v′i)} , in order to find the

smallest square centered at v′i that contains k + 1 (including v′i) nodes of G′. We check the size of

the square produced for each node of G′ and then report the node contributing the largest square

(the side length of this square multiplied by
√

2 is the maximal distance to the kth nearest node in

G). The whole process takes O(n log2 n) time.

5 Conclusions

In this paper we have presented a number of efficient algorithms to the well known problems in

location theory on graphs. The efficiency of our algorithms is based on novel ideas and techniques

from Computational Geometry. There is a wide range of open questions which are posed by this

paper. The most intriguing one is how to generalize our algorithms for problems 2 and 3 (Euclidean

case) for weighted case? Another interesting question concerns the optimizations stage of problem

1 (Euclidean case): how to generate a set of all possible solutions of cardinality O(m3) in less than a

cubic time. Our parametric search algorithm is rather complicated and, therefore, one should look

for other, much simpler algorithm. Finally, removing the assumption of existence of xy-monotone

paths in problem 2 (rectilinear case) can generalize our solution for L1 metric. In addition, we

strongly believe that using similar approaches one can tackle various location problems on the

networks in geometric settings.
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