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Abstract

Given a wireless network, we want to assign each node a transmission power, which will
enable transmission between any two nodes (via other nodes). Moreover, due to possible faults,
we want to have at least k vertex-disjoint paths from any node to any other, where k is some
fixed integer, depending on the reliability of the nodes. The goal is to achieve this directed k-
connectivity with a minimal overall power assignment. The problem is NP-Hard for any & > 1
already for planar networks. Here we first present an optimal power assignment for uniformly
spaced nodes on a line for any k£ > 1. Based on it, we design an approximation algorithm for
linear radio networks with factor min{2, (%)a}, where A and ¢ are the maximal and minimal
distances between adjacent nodes respectively and parameter a > 1 being the distance-power
gradient. We then extend it to the weighted version. Finally, we develop an approximation

algorithm with factor O(k?), for planar case, which is, to the best of our knowledge, the first
non-trivial result for this problem.

1 Introduction

A wireless ad-hoc network consists of several transceivers, communicating by radio. Each transceiver
t is assigned a transmission power p(t), which gives it some transmission range, denoted by r;. This
is customary to assume that the minimal transmission power required to transmit to a distance d
is d*, where the distance-power gradient o is usually taken to be in the interval [2,4] (see [22]).
Thus, a transceiver s receives transmissions from ¢ if p(t) > d(t, s)®, where d(t, s) is the Euclidean
distance between ¢ and s. The transmission possibilities resulting from a power assignment induce
a communication graph. Research efforts have focused on finding power assignments, for which the
induced communication graph satisfies a certain connectivity property, while minimizing the total
cost.

This paper is organized as follows. In the rest of this section we present the model, previous work
and briefly describe our own contribution results. Sections 2 and 3 deal with linear radio networks
and planar networks, respectively. Finally, we conclude in Section 4.

1.1 The model

We are given a system of n transceivers ti,1s,... ,t,, positioned in R?, d > 1. Denote such a
system by S, = (T, D), where T is the set of transceivers and D denotes the distances between
them. When each transceiver is assigned a transmission power p(t) = r{¥, an ad-hoc network is
created. A power assignment for S, is a vector of transmission powers {p(t) | t € T} and is denoted
by A(Sy,) (usually abbreviated to A). The resulting communication (directed) graph is denoted by
Hy = (T, E,), where E4 is the set of directed edges resulting from the power assignment A(S),):

Ea=A{(t,s) | p(t) = d(t,s)}.
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Namely there is a directed edge from ¢ to s if ¢ has sufficient transmission power to reach s.
Throughout this paper we address transceivers as nodes. The cost C4 of the assignment is the sum
of all transmission powers:

Ca= Zp(t)-

In [2], a weighted version of the model is considered. To each transceiver ¢ we correspond an energy
unit cost parameter -y, which measures the cost associated with assigning one unit of power to
t. Note that different transceivers may have distinct energy unit costs due to differences between
them, their environments and other factors. Let W,, = {~; | t € T'} be the vector of unit costs. The
cost of an assignment A with respect to a vector of weights W, is:

Caw, =Y 7p(t).

teT

When the transceivers are positioned on a line, e.g. antennas along a highway, the resulting network
is often called a linear radio network. In this kind of system we only need to consider the distances
between adjacent transceivers rather than between any pair of transceivers. Put d; = d(t;,ti4+1),
1<i<n-—1and

gl = dltith),  1<i<k, gi = 1 dltitigg), 1<i<n—Fk,
ik d(ti,ti,k), k<i < n, ik d(tl,tn)a n—k<i <n.
Denote such a linear system of transceivers by L, = (T, D) where D = (di);zll. A linear system
with uniform distances dy = do = ... = d_1 is denoted by U,.

Recall that a graph G = (V, E) is k-connected if for any two nodes u,v € V there are k vertex-
disjoint paths connecting uw to v. Equivalently, G is k-connected if it remains connected after
omitting any set of up to k£ — 1 vertices. Our main problem in this paper is:

Problem 1.1 (K¢(Sp,k)).

Input: A system S, of transceivers.
Output: A power assignment A(S),), where H4 is k-connected, with a minimal possible cost Cy.

We shall also consider the following generalization:
Problem 1.2 (WKc(Sn, Wi, k)).

Input: A system S, of transceivers, a vector W,, of unit costs.
Output: A power assignment A(S),), where H, is k-connected, with a minimal possible cost Ca w, .

1.2 Previous work

Kirousis et al. [19] introduced the MinRange (SC) problem, which is K¢ (Sy,k) for & = 1. They
proved it to be NP-Hard for the three dimensional Euclidean space for any value of . The
same paper provided a 2-approximation algorithm for the planar case and an exact O(n*) time
algorithm for the one dimensional case. In the planar case, the NP-hardness of the problem for
every a has been proved in [13] and a simple 1.5-approximation algorithm for the case & = 1 has
been provided in [3]. Some researchers add an additional constraint parameter to the problem,
the bounded diameter h of the induced communication graph, see results in [11, 14, 15]. Ambuhl
et al. [2] presented some algorithms for the weighted power assignment, solving it optimally for
the broadcast, multi-source broadcast and strong connectivity problems for the linear case (they
achieved the same running time for the connectivity problem as in [19]). They also presented
some approximation algorithms for the multi-dimensional case. An excellent survey covering many
variations of the problem is given in [12].

A natural generalization of the strong connectivity requirement is k-connectivity. These networks
also provide multi-path redundancy for load balancing or transmission fault tolerance. As power-
optimal strong connectivity is NP-Hard, so is power-optimal k-connectivity. Two versions of the



problem arise: symmetric and asymmetric. In the symmetric version for any two nodes t,s € T,
p(t) > d(t,s)* < p(s) > d(s,t)®, that is a node t can reach node s if and only if s can reach node
t, we can also refer to it as an undirected model. The asymmetric version allows directed links
between two nodes. Krumke et al. [20] argued that the asymmetric version is harder than the
symmetric version. Another possible connectivity property is k-edge connectivity, which implies
that the removal of any k edges results in a disconnected graph. In [7], Calinescu and Wan
presented various aspects of symmetric/asymmetric k-connectivity and k-edge connectivity. They
first proved NP-Hardness of the symmetric two-edge and two-node connectivity and then provided
a 4-approximation algorithm for both symmetric and asymmetric biconnectivity (k = 2) and a 2k-
approximation for both symmetric and asymmetric k-edge connectivity. Hajiaghayi et al. [17] give
two algorithms for symmetric k-connectivity, with O(klog k) and O(k)-approximation factors and
also some distributed approximation algorithms for k¥ = 2 and k¥ = 3 in geometric graphs. Jia et al.
in [16] present various approximation factors (depending on k) for the symmetric k-connectivity,
such as 3k-approximation algorithm for any k& > 3 and 6-approximation for & = 3. Additional
results can be found in [1, 5, 6, 9, 14, 21]. It is worth mentioning that unless otherwise specified,
all the algorithms are centralized.

Other relevant work in the area of energy efficient power assignment includes energy-efficient broad-
casting and multicasting in wireless networks. The problem, given a source node s, is to find a
minimum power assignment such that the induced communication graph contains a spanning tree
rooted at s. This problem was proved to be NP-Hard. In [10, 18, 25, 26], authors presented
some heuristic solutions and gave some theoretical analysis. Srinivas and Modiano in [24] pro-
vided a polynomial algorithm that optimally finds k node-disjoint paths for a given pair of nodes
while minimizing the total node power needed on these k£ node-disjoint paths. They also provide a
polynomial algorithm for solving the 2 edge-disjoint paths problem.

1.3 Owur contribution

We provide an optimal solution for the K¢ (Uy, k) problem. Then we give a min{2, (A )¢}-approximation

for the K¢ (Ly, k) problem, where A = max d; and 6 = min d;. Eventually we solve the
1<i<n—1 1<i<n—1

weighted version of the linear radio networks — the W K¢ (Ly,, W, k) problem and obtain an ap-

proximation factor of min{%(%)a, (1+ %)a 25}, where ' = 1ma,x vi and vy = lI<Illé] ~i. All our
<<

algorithms have an O(min{n logn,n(n—k)}) runtime. Finally we present a polynomial time O(k?)

approximation algorithm for the two dimensional instance of K¢(Sy, k).

2 Linear Radio Networks

Let L, = (T, D) be a linear radio network, and let A(L,) = {p(t) | t € T}. We assume that the
nodes are sorted by their z coordinate, that is if + < j then ¢; is to the left of ¢;. We denote

by Ng(t;) the set of right neighbours of transceiver ti : Np(t;) = {t; 1 i < j,d(t;, t;)* < p(t;)})-
The left neighbors are defined similarly and denoted by Np(t;). All neighbors are defined as
N(t;) = Nr(t:) U NL(t;)-

Definition 2.1. For a given power assignment A(Ly) a node ¢; is r-reachable from the left if there
are at least r nodes to the left of ¢; with sufficient power assignment to reach ¢;:

{tj:j <i, ti € Ng(t;)}| >
Similarly we can define r-reachability from the right.

Definition 2.2. A line is r-reachable from the left if every node t is r-reachable from the left. We
define r-reachability from the right in the same manner.

Definition 2.3. A power assignment A(L,,) is k-reachable if every node t; is both min{i — 1, k}-
reachable from the left and min{n — %, k}-reachable from the right.



Definition 2.4. For a given power assignment A(L,) node ¢; € T is k-connected to node t; € T if
there are k vertex-disjoint paths from #; to ¢;. We say that nodes #;,¢; € T" are k-connected if node
t; is k-connected to node t; and node t; is k-connected to node t;.

We say that a power assignment A(L,) forms a k-connected line if the communication graph H 4
is k-connected. The same stands for k-reachability, that is a power assignment A(L,) forms a
k-reachable line A(L,) if Hy is k-reachable.

2.1 Properties of k-connectivity and k-reachability

Property 2.5. Let L, = (T, D) be a linear radio network. Take any power assignment A that
forms a k-connected line. It holds for all ¢ € T' that |N(t)| > k.

Proof. Let L, = (T, D) be a linear radio network. Take any power assignment A(Ly) that forms
a k-connected line. Take any pair of nodes t;,t; € T. There are at least k¥ paths from #; to ¢;.
Let F C N be the set of first nodes in each path (the first from each path). Since F' C N(¢;) and
|F'| > k we conclude that N (t;) > k. |

Lemma 2.6. Let L, = (T, D) be a linear radio network. Take any power assignment A(L,) that
forms a k-connected line. Every node t¢; is min{i — 1, k}-reachable from left and min{n — i, k}-
reachable from right.

Proof. By symmetry, it is sufficient to prove left reachability. Suppose i < k. According to 2.5
every node t;, j < ¢ should have a power assignment p(t;) > d(t;,tk41)* > d(t;,t;)®. Therefore
there are 7 — 1 nodes that connect to 7. Now assume that ¢« > k. In order that node ¢; will be
k-connected to t;, there must exist k nodes having t; as a right neighbour. As a result, every node
t; is min{s — 1, k}-reachable from left. |

Corollary 2.7. If a power assignment A(L,) forms a k-connected line, then A(L,) forms a k-
reachable line.

Lemma 2.8. Let L, = (T,D) be a linear radio network. The power assignment A = {p(t;) =
(dfk)a | t; € T'} is an optimal assignment that forms a k-reachable line from the left.

Proof. 1t is easy to see that A(L,) forms a k-reachable line from the left. Let us prove the optimality
of the assignment. We prove it by contradiction. Suppose there exist a power assignment A'(L,) =
{p'(t) =7;" | t €T} suchthat Car < C4. Let ¢; be the rightmost node with a transmission range
r,'fj = dff < dfk, where 0 < f < k. Since A’ is k-reachable from the left, there exists a node
t;, 1 <4 < j with a range assignment of réi = dfj k> Otherwise ¢;,x is not k-reachable from
the left. Note that because A’ is optimal the range assignment of ¢; cannot exceed reaching ¢; .
Let A"(Ly) = {p"(t) | t €T}, where p"(t;) = (df,;_;)*, p"(t;) = (df},)* and p"(t) = p'(t), for
t # t;,t; (see Figure 1). It is clear that k-reachability of the line remains unchanged so we need
to compare Cy and Cy». We compare the power assignments of #; and ¢; as the rest remain
unchanged. We use the fact that for any convex function f it holds

fla+b)+ f(b+c) < fla+b+c)+ f(b) Va,b,c>0

_ JR
Gif—jr # = Ay gy Thus,

p(t) +p'(t) — (" (t:) +0"(t) = (@ +y+2)* + b= (z +y)* = (y+2)* >0

Therefore C4v < C4. We can continue to improve the cost of the assignment by taking the
rightmost node ¢; with assigned power that is less than dfk and increase it to dfk, while decreasing
the power of some other node. In this fashion we obtain an assignment A = A since in the end
every node t; has a power assignment df’k just like in A. In addition, because we are constantly
improving we have C'; < Cy. But C; = Ca. We have reached a contradiction, and therefore
A(Ly) is optimal. ]



Due to symmetry, the optimal assignment that forms a k-reachable line from the right is A =
{p(t:) = (d3)* | t: € T}.
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Figure 1: ¢} < C'

2.2 Unit distances

First we provide an optimal solution for the K¢ (Up, k) problem.

Theorem 2.9. Let U,, = (T, D) be a linear radio network with distances d; = §, for 1 <i <n — 1.
Then the power assignment A*(Uy,) = {p(t) = (kd)® | t € T'} is unique and optimal solution for the
Ko (Uy, k) problem.

We prove the following lemma, first.

Lemma 2.10. The communication graph H 4 resulting from the power assignment A*(U,,) in The-
orem 2.9 is k-connected.

Proof. We need to prove that there are k disjoint paths from ¢; to ¢; for arbitrary 1 <14,j < n.
Note that every node ¢; has |[Ng(t;)| > min{n — i,k} and |N5(¢;)| > min{i — 1,k}. Without loss
of generality assume 7 < j. We consider three possibilities (see Figure 2). The first possibility is
j—1 > k: then we simply jump right to the neighbours of ¢; (there are at least k) and then continue
to jump k neighbours to the right until we go over ¢;. The second possibility is 7 —7 < k and
1 < n—k: then our first jump is to one of the neighbours of ¢; to the right and then immediately to
t; (unless we landed on ¢; straightaway). The third and final possibility is j —¢ < k and i > n — k.
In this case we jump right to n — 7 neighbours and then to ¢;, which gives us n — 4 paths. We also

jump to k — (n — ¢) neighbours to the left and immediately to ;. [

Proof of Theorem 2.9. According to Corrolary 2.7 every power assignment A that forms a k-
connected line also forms a k-reachable line. It easy to see that A* forms a k-reachable line from
both left and right and is optimal by Lemma 2.8. According to Lemma 2.10 the assignment A*
forms a k-connected line. We conclude that A* is an optimal solution for the K¢ (U,, k) problem.

The assignment is unique because in A* every node ¢t € T is assigned p; = (kd)2. [ |

2.3 Arbitrary distances

Next, we provide an approximation algorithm for the more general problem K(L,,k). Given a
linear radio network L, = (D,T), let 6 = 1<nlin ldi and A = ax ldi. Let A* be the optimal

<i<n— 1<i<n—
solution for the K (Ly,, k).
Lemma 2.11. Cx- > n(kd)*.

Proof. Let U}, = (D', T) be a linear radio network with distances d} = 4, for 1 <7 <n — 1. Also let
A’ be the optimal solution for the K (U}, k) problem. It is easy to see that Cy+ > C4r. According
to Theorem 2.9 Cs = n(kd)* and therefore Cax > n(kd)?. ]

Lemma 2.12. Let L, = (T,D) be a linear radio network. The power assignment A(U,) =
{p(t) = (kA)* | t € T} is a solution for the K¢ (Ly, k) problem and it holds C4 < (%)a Cax.
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Figure 2: The three possibilities with k¥ = 3

Proof. 1t is easy to see that power assignment A forms a k-connected line. The proof is similar
to the one presented in Lemma 2.10, which uses the fact that every node ¢; has at least min{s —
1,k} (min{n —14,k}) neighbours to its left (right), respectively. According to Lemma 2.11 Cy+ >
n(kd)* and therefore

Ca  n(kA)~ < nk®A*  (A\“®
CA* o CA* - nkaéa N (S

|
Next we try to improve on the ratio of the approximation. We propose an assignment that is just
enough for every node to reach k neighbours from either side. We argue that such an assignment
is no worse than 2 times the optimal cost.
Theorem 2.13. Let L, = (T,D) be a linear radio network. The power assignment A(L,) =
{p(ti) = (max{dly, dB})* | t; € T} is a solution for the K¢ (L, k) problem and it holds Oy <
20 gx.
Proof. The power assignment A forms a k-connected line, based on the proof in Lemma 2.10. Let

A1 be the the optimal assignment that forms a line k-reachable from the left, and let Ag be the
corresponding assignment providing right k-reachability. According to Lemma, 2.8

n n

Cap =) (d3)* and Ca, = ) (df})”

By Corollary 2.7 we conclude that Cyq+ > C4, and Cy+ > Cau,. Finally we note that Cy <
Ca, + Cap and as a result we obtain Cy < 2C4+. [ ]
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Figure 3 shows that the approximation factor 2 of our algorithm is tight. The nodes are spread on
the line in groups of 2k except for the first and last. In every group the nodes are equaly spaced at
a distance of . Assume n >> k, d >> ¢ and ¢ being infinitely small.

We obtain a ratio infinitely close to 2 in Figure 3 because the optimal solution has to assign the

k middle nodes of every group a range assignment of d* + O((d + €)* '), and the rest of the
nodes in the group should be assigned a transmission power of O(¢%). In addition p(t1) = p(t,) =
d® + O((d + €)*1). The total cost would be

n—2
2

Car = (n;2 +2> (d*+0(d+¢e)* 1) + O(e%)

By using our algorithm each node is assigned a transmission power of d* + O((d + €)*~1), because
it needs to reach the k-th neighbour. And so the total cost would be

Ca=n(d*+0(d+¢e"))
It is easy to see that the approximation ratio is tight.

Corollary 2.14. Let L, = (T, D) be a linear radio network. The power assignment A(L,) =
{p(ti) = (max{d{“’k,dfk )Y |t € T} is a solution for the K¢(Ly, k) problem and it holds

C4 < min {2, <%> }C’A*

Proof. Follows immediately from Lemma 2.12 and Theorem 2.13. ]

2.4 Weighted instance

We finish the linear radio networks section by giving an approximate solution to the W K¢ (L, W, k)

problem. Given a linear radio network L,, = (D, T) and the energy unit cost vector W, let § and A

be as before and let v = 1r<m<n v, and I' = JDax V. First we prove two lemmas based on the results
<i<n i<n

achieved for unit and arbitrary distances. Let A* be the optimal solution for the WK (Ly, k).
Lemma 2.15. Cys- > ny(kd)?.

Proof. Let L;, = (D',T) be a linear radio network with distances d}, = ¢ for 1 <7 < n—1 and
an energy unit costs vector W, with weights v; = v, for 1<i<n. Let U) = (D",T) be a
linear radio network with distances dj = d¢/y for 1 <i<n —1. Let A" and A” be the optimal
solutions for the K¢ (L!,, k) and K¢ (U/!, k) problems respectively. Easy to see that Cyr = Cy» and
that Cy» > Cya = Cyn. According to Theorem 2.9 Cyn = n(kd ¢/7)* = ny(kd)* and therefore
Cy» > ny(ko)®. |



Lemma 2.16. Let L, = (T, D) be a linear radio network with energy unit costs vector W,,. The
power assignment A(Ly) = {p(t) = (kA)* | t € T'} is a solution for the W K¢ (Ly,, W,,, k) problem
and it holds C4 < L ($)% Ca-.

Proof. The proof is similar to the one given in Lemma 2.12 and it uses Lemma 2.15 for the lower
bound. ]
Lemma 2.17. Let L, = (T, D) be a linear radio network with energy unit costs vector W,. The
power assignment A(L,) = {p(ti) = (max{df’k, dfk )| ti € T} is a solution for the W K¢ (Ly,, W, k)
problem and it holds C4 < 250,4*.

Proof. As in Lemma 2.10, the assignment A(L,) is a solution. Let L} = (T, D) be a linear radio
network with energy unit costs vector W,! so that 'yz-l = 1. Similar to the proof of Theorem 2.13, let
Al be the the optimal assignment that forms a line k-reachable from the left given a linear radio
network L' and let A}% be the corresponding assignment providing right k-reachability. Easy to see

that 'yC’AlL < Cy~+ and 'yC’A}% < Cy+ due to Corollary 2.7. Tt is also clear that C4 < T (CAIL + CA%)-
As a result we have Cy < 2%CA*. [ ]
Now we prove another bound. The 2-approximation achieved in the previous section will not fit
here, since the optimal assignment that forms a k-reachable line unnecessarily also forms a k-
connected line as in Theorem 2.13. As before we try to assign a node just enough power to reach

k neighbours from either side. For any node t; let d; ; be the radius so that if p(i) = (d; ) then
|N(t;)| > k. We start from the following simple observation.

Observation 2.18. Forany 1 <!/ <n—1and 1<14,57 <n—1I, given two intervals of [ + 1 nodes
long each, (t;,t;+1) and (¢;,%;41), it holds

d(ti, titr)

>| D>

A
d(tiati—}-l) < ?d(tjatj-l-l) and d(tj,tj_H) <

Lemma 2.19. For any node ¢; € T it holds max{df’k,dfk} <1+ %)di,k.

Proof. Take some node t;. Suppose that as a result of a power assignment p(t;) = (d; x)*, t; reaches
f nodes to its left (i.e. |[Np(#)| = f) and k — f nodes to its right(i.e. |[Ng(t;)| =k — f).

Without loss of generality we prove dik < (1+ %)di,k. Let | = i— f be the index of the leftmost node
reached from ¢;. In order to reach the k-th node to its left ¢; needs to reach additional m =k — f
nodes from that side (see Figure 4). We can conclude that alZ-L’,c <d+ dfm. By Observation 2.18

we have dfm < %di,k. As a result we have dik <1+ %)di,k. [ |
li—k 12 ti livk—f
- b« |
- di d;
i

Figure 4: max{df’k,dfk} <1+ 5)dig

We are ready to prove the main Theorem.



Theorem 2.20. Let L, = (T, D) be a linear radio network with energy unit costs vector W,,. The
power assignment A(L,,) = {p(ti) = (max{dﬁk, dfk )Y |t € T} is a solution for the W K¢ (Ly,, Wi, , k)
problem and it holds C4 < (1+ £)% Cax.

n

Proof. According to definition of d;; and Property 2.5 we have Cy+ > Z’)Ii(di,k)a. By Lemma,
=1

2.19 we have max{dfk, dfk} <(1+ %)di,k and therefore

n n n A e}
Ca = Yowolt) = Lwtmax{dlsdli) <3 (145 )y

i=1
A\ A\
= <1+ 3) ;'Yi(di,lc)a < (1 + E) Ca-

Corollary 2.21. Let L, = (T, D) be a linear radio network with energy unit costs vector W,,. The
power assignment A(L;,) = {p(ti) = (max{dﬁk, di e |t € T} is a solution for the W K¢ (Ly,, W, k)

problem and it holds
o) «
C4 <min E é , 1+é ,2E C 4~
v \9 0 gl

Proof. Follows immediately from Lemma 2.16, Lemma 2.17 and Theorem 2.20. [

All our algorithms need to compute for each node the k-th neighbour to its left and right. It can
be done very fast using an approach of posets described by Segal and Kedem [23], which has a
running time of O(min{nlogn,n(n —k)}).

3 Planar case

We move on to a problem in which the transceivers are located in the plane. As we mentioned in
the introduction, the problem is hard for the planar case even if k = 1. Here we provide a O(k?)-
approximation algorithm which is based on finding a Hamiltonian cycle first and then assigning each
transceiver enough power to reach k/2 transceivers in both directions in the cycle. A Hamiltonian
cycle, is a graph cycle (i.e., closed loop) through a graph that visits each node exactly once. A
graph possessing a Hamiltonian circuit is said to be a Hamiltonian graph or simply Hamiltonian.
Below we prove the correctness of the above scheme. For simplicity, we assume a = 2. We start
our analysis from definitions.

3.1 Definitions

Given a system of n transceivers S, we define G.(S,) = (T, E, ) to be a complete graph where
T ={t | t€T} is a set of nodes, E is the set of directed edges between all pairs of nodes and
a cost vector ¢ = {c(t,s) = d(t,s)? | t,s € T}. The complete graph G.(Sn) is said to follow the
r-triangle inequality if for any nodes t,s,q € T it holds c(t,q) < r - (c(t,s) + ¢(s,q)). Easy to see
that in our case r = 2. This is because the nodes are placed in the Euclidean plane, that is for
every t,s,q € T it holds that d(t,q) < d(t,s) + d(s,q). We use Cauchy-Shwartz to obtain for every
titi,t €T : d(ti, t))? <2 (d(ti,t]‘)Q + d(tj,tl)Q). Moreover, it can be proved that » = 2%~! for any
a > 2.

Let us denote by A} the optimal solution of the K.(Sy,k) problem. We say that an assignment
A gorltn:s aAk-connected graph if H4 is k-connected. We denote by p4(t) the power assignment of
node ¢ in A.
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Figure 5: Power assignment of ¢ with k = 2

Given a graph G = (V, E, ¢) we denote by h(G) some Hamiltonian cycle in G. We use the following
notation for a Hamiltonian cycle in G starting at some node ¢

MG) = {t =tr0,t11,- - s ty(no1), tn =t}
or
h(G) = {t = t—n’tf(nfl)’tf(an)’ e at—la t—O = t}

Where nodes (t4);_, and (t_;);_, are disjoint and #;,t,(;;+1) are two consecutive nodes in the
n—1

Hamiltonian cycle h(G). We denote by Ch(qy = Z c(t+i,t4(i4+1)) the cost of a Hamiltonian cycle.
i=0
We denote the optimal Hamiltonian (with the minimized cost) by A*(G). For any Hamiltonian
k—1 k—1
cycle h(G) let djf (t) = d(t 1,1 (1) and dig (£) =D d(t_i,t_(i41))-
i=0 i=0

3.2 The algorithm

First we want to compute a 2-connected communication graph. Since finding A3 is NP-Hard we
find a minimal cost asymmetric biconnectivity as described in [7]. Then we build a Hamiltonian
cycle as described in [4]. Afterwards we assign power to nodes according to Hamiltonian cycle
construction.

Lemma 3.1. Let S, be a system of transceivers in the plane. Let A2(S),) be a power assignment
so that Hy, is 2-connected. Then there exists a Hamiltonian cycle h’ so that Cp: < 8Cjy,

Proof. Let UD(A2) be an improved assignment of assignment Ag, that is if ¢ reaches s in Ao
then the power of s in UD(Ag2) is increased (if necessary) to reach ¢ in UD(Az). It is clear that
Cup(as) < 2Ca,. We follow the proof in Theorem 1 in [4] and build a Hamiltonian cycle h' based
on UD(A2) with cost Cp < 2rCypm 4,)7 where 7 = 2. The inequality follows from the proof of
Theorem 1 in [4] because for any node ¢ € T it holds d(t,¢41)* < 2 pyp(a,)(t)- That is each node

is assigned no more than 2r times its power in UD(A3) while constructing the Hamiltonian cycle.
As a result we obtain Cj < 4CUD(A2) < 8C4,. [ ]

Our algorithm uses the same approach as the one used for constructing a k-connected line. The
original direction of a Hamiltonian cycle will be called the clockwise direction and the opposite
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counter-clockwise direction. We want each node to reach k/2 nodes in clockwise and k/2 nodes in

a counter-clockwise direction (for simplicity we assume k is even). Figure 5 gives an example for
k=2.

Algorithm (PLANE-K-CONNECT)

1. Find a Hamiltonian cycle h' as described in Lemma 3.1, where A, is the assignment given in
[7] for asymmetric biconnectivity.

2. Assign Ay = {p(t) - max{(d;:/?(t))?, (d,;/Q(t))2} | te T}

Theorem 3.2. The assignment Ay in the algorithm PLANE-K-CONNECT solves the K¢ (Sy,, k) prob-
lem and it holds Cy, < 16k20Az.

Proof. First we proof that H 4, is k-connected. It is clear that for every node ¢ the set {t+1, N /2} -
Ng(t) and {t_ k)25 t—(k/2-1)> - .,t_1} C Ni(t). Now it is easy to see that H, is k-connected. This

is due to the same arguments as given in 2.10. This time for any pair of nodes ¢,s € T, ¢ can reach

s by using k/2 paths going in clockwise direction and using k/2 pathes going in counter-clockwise
direction.

Next we prove the approximation ratio. Due to Cauchy-Shwartz inequality we have that

Mlk‘

-1

(M

-1

_ k
d(t_H', t—|—(i—|—1))2 and also (dk/2 (t))2 S 5 d(t_i, t—(i+1))2
=0 1=0

(A, (1))? < §

And as a result we have:
——1

Zmax{ 12 (8)75 (dy o (t } Z 12 )2+Z(d1;/2 Z Zdt+,,t+(z+1)

tET teT teT tET =0

Z Z d(t_;,t_ z+1) [Notlce that each edge in the cycle is ”"bought” 3 times in each direction
tGT =0

k2 k?
( > d(tio,t41)’ Zdt ot ) " (20w) < "-(1604,) = 4k7Cla, < 166°Cag
teT tET
The last inequality is due to asymmetric biconnectivity results in [7]. Since A} > Aj we obtain
CAk < 16]{:20,42 [ |

Remark: The result above can be improved by a constant factor using a theorem by Chvatal
and Erdos in [8] that proves an existence of Hamiltonian cycle for every k-connected graph G with
n > 3 and k > 3, where ( is the size of maximum independent set of GG, has a Hamiltonian cycle.
Notice that for every k-connected graph we have 8 < ¢ (follows immediately from Lemma 2.5). If

k € Q(y/n) then it holds Cs: > Cp«(q,)- Following a similar method to the one described above we
can obtain an assignment Ay that forms a k-connecetd line so that Cy, < SkQC’h*(GC). As a result
we obtain an approximation factor of 8%2.

4 Conclusions and Future Work

In this paper we addressed the problem of power assignment in wireless ad-hoc networks. We
have presented an optimal solution for a uniform linear radio network and provided fast constant
factor approximation algorithms for the more general case of linear networks. We have also given

a non-trivial O(k?) approximation algorithm for the planar case.
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Our work opens several directions for future research. First, it is of interest to find a better
approximation factor for the planar case. It would also be of interest to explore the problem of
asymmetric k-connectivity for multicast and broadcast problems. Here, given a source node s we
would like to have a power assignment so that in the induced communication graph there are k
vertex-disjoint pathes from s to every other node.
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