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 In this paper we will show a self-organizing hierarchical 
topology that can serve as infrastructure for efficient and 
reliable safety related communication aiming to minimize the 
interference between network participants. We will show how 
reliability, fairness, and efficiency can be achieved in our 
presented D-CUT algorithm. Our solution addresses these 
challenges in a local, distributed manner by exploiting the 
vehicle proximity map, needed from a safety point of view, as 
the building block for constructing the hierarchical topology. 
The D-CUT algorithm produces a geographically optimized 
clustering of the network, by grouping dense and consecutive 
nodes into clusters which are separated by maximally possible 
gaps. This type of clustering allows strong connections 
between cluster members and reduces the inter cluster 
interference. In addition, we present the primitives for 
interference aware communication system design, based on 
the awareness of vehicles to their surrounding vehicle 
proximity map partitioned into geographically optimized 
clusters. We present theoretically provable bounds 
demonstrating the ability of the algorithm to deal with 
dynamic nature of the VANET environment supported by 
simulation results. 

 
Keywords— beacon dissemination, distributed algorithm, 

optimal clustering assignment, self-organizing topology. 
I. INTRODUCTION 

Vehicular ad-hoc network (VANET) is a promising branch of 

traditional MANET. VANET is designed to provide wireless 

communication between vehicles and between vehicles and nearby 

roadside equipment. This communication intends to improve both 

safety and comfort on the road. To this end, the US FCC has 

allocated 75 MHz of the spectrum in the 5.9 GHz band for Direct 

Short Range Communication (DSRC). VANET have a number of 

difficulties regarding to the traditional MANET. Due to the mobile 

nature of VANET nodes, configuration in this environment is 

always changing, especially when considering short range 

communication, where links may appear and disappear very 

quickly. Furthermore, this highly dynamic configuration nature 

results with constantly changing node density. On the other hand 

VANET has some inherent advantages over the traditional 

MANET. It is generally assumed that vehicles will be aware to 

their own geographical position (which can be obtained, for 

example, by a Global Positioning Satellite). In addition, vehicles 

in a VANET environment move in an organized fashion within the 

constraints of two-dimensional traffic flow. 

In order to serve as the infrastructure for safety applications, 

highly reliable, real-time communication is required. This means 

that packets must be successfully delivered before a certain 

deadline. Meeting the tight delay restriction based on the unreliable 

wireless medium, combined with the dynamic VANET 

environment, becomes a very challenging task. When considering 

event driven dissemination this tight delay restriction drop to 0.1 

second as in the Emergency dissemination Emergency Electronic 

Brake Lights [1].  

A key component of safety applications are the periodic beacon 

messages, providing nodes with an updated and accurate vehicle 

proximity map of their surroundings. Based on this map, safety 

applications - usually refer to as Cooperative Awareness 

applications – can be used for accident prevention by informing 

drivers about evolving hazardous situations. In addition, an 

accurate vehicle proximity map can facilitate other essential multi-

layer objectives such as optimized geographic oriented forwarding 

[2] and addressing methodologies. From routing point of view, 

high awareness can be very beneficial in terms of route discovery, 

end-to-end delay, and number of retransmissions [3]. Torrent-

Moreno et al. [4] propose a transmit power control method, based 

on the vehicles’ location proximity, to control the load of beacon 

messages. To be used as a reliable infrastructure for safety 

applications, the surrounding vehicle proximity map should be as 

broad and accurate as possible. Hence, while considering a fully 

deployed high-density vehicular scenario combined with the 

dynamic topology of the vehicular environment (e.g. a free 

highway), creating a broad, and accurate vehicle proximity map 

becomes challenging. Such an accurate estimation in a dynamic 

environment requires a high transmission frequency of beacon 

messages, in broadcast fashion, from numerous nearby vehicles; 

which in turn, resulting in a high data load on the channel which 

can escalating to broadcast storm. 

To provide reliability, the medium access issues need to be 

addressed. Medium access scheme for VANET must corroborate 

different types of data traffic. In some applications, like 

information services, communications are based on unicast traffic. 

Many applications, as warning messages dissemination, or the 

exchange of information regarding nearby traffic situation, are 

based on broadcast transmission. This is because such messages’ 

content can be useful for all vehicles around.  

The IEEE 802.11p standard, designed for vehicular ad hoc 

networks (VANET) uses the CSMA-CA as its MAC method, 

despite the fact that it suffering from three well-known problems: 

First, when considering broadcast transmission, RTS (Request To 

Send)/CTS (Clear To Send) mechanism is infeasible. In such case, 

the CSMA provides no means to solve the hidden station problem, 

which can lead in a heavy traffic load to a high rate of packet 

collisions. In unicast transmission the RTS/CTS mechanism, which 

solves the hidden station problem, can be applied. However, this 

mechanism raises a new problem, known as the blocked station 

problem, when viable transmissions are disallowed. Finally, the 

CSMA/CA can be resulted under high, though realistic, traffic 

load with unacceptable channel access delays [5], and therefore, 

unable to support real-time communications.  

In order to provide reliable topology links which support real 

time deadlines, we prefer using a channelization based approach 

(as TDMA) rather than the current CSMA/CA contention based 

approach. In this manner we insure every user receives a fair, time 

bounded access to the medium. A proposed medium access 

scheme in this direction is the Space Division Multiple Access 

(SDMA) [6]. In this approach a one-to-one map between the space 

divisions and the bandwidth divisions is used so within each 

bandwidth divisions a TDMA scheme is mapped. This scheme 

provides users with collision-free access to the communication 

medium, and guarantees delay-bounded communication in real-
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time. However, this mapping is likely to be impractical in a real 

system [7], mainly because the lacking of flexible adaptation to the 

scalable and dynamic vehicular environment. In this work, we aim 

to obtain a spatial based TDMA
1
 scheme, but with adaptivity 

required to fit the scalability and the dynamic of the VANET 

environment. 

One of the main approaches to optimize the communication 

within the network is to organize it in a hierarchical topology 

fashion. The benefits of hierarchical topology are well known, and 

include routing [8], rebroadcasting [9], increasing security [10], 

and in addition, provide the flexibility required to attain Quality of 

Service. In this paper, we suggest self-organizing hierarchical 

topology to serve as the infrastructure for inter-vehicles safety 

related communication. The key design goal of this topology is to 

optimize the efficiency and reliability of the topology links in order 

to meet the highly demanding communication constraints described 

above. Moreover, for a hierarchical topology to be feasible for 

VANET, it must handle the challenging dynamic behaviors of 

vehicular networks. In addition, constructing the topology by 

designated messages in such dynamic scenarios can lead to 

significant overhead. The Distributed Construct Underlying 

Topology (D-CUT) algorithm addresses these challenges in a local, 

distributed manner by leveraging the two main qualities of VANET 

environment described above – namely, the vehicles’ location 

awareness, and vehicles’ organized movement fashion – as the 

building block for constructing the hierarchical topology. Broadly 

speaking, the D-CUT algorithm partitions the vehicle proximity 

map into road sections where each section contains geographically 

optimized clusters. Given the new location of the nearby vehicles 

attained by the beacon dissemination process, the algorithm 

updates the partitioning according to the most recent topological 

changes while aiming to maintain geographically optimized 

clusters.  

The rest of this paper is organized as follows. In Section II, we 

summarize other approaches for building hierarchical topology in 

VANET. In Section III we present an interference-aware system 

design and the clustering strategy, and according to both, we give a 

formal definition of the clustering optimization problem considered 

in this paper. Then, in Section IV, we describe the D-CUT 

algorithm and in Section V, we show theoretically provable bounds 

for the algorithm performance. In Section VI, we show a 

simulation study which supports our analytical results. Finally, 

Section VII discusses the ability of the D-CUT algorithm to serve 

as the infrastructure for safety application, under the very dynamic 

nature of the VANET environment. 

II. RELATED WORK 

There are several, well known, clustering mechanisms for 

mobile ad hoc networks, see for instance [11]-[15]. One approach 

for clustering formation in VANET is by adopting MANET 

algorithm according to the characteristics of the vehicular 

                                                           
1
 We remark that our scheme is compatible with any other 

multiple access schemes such as FDMA, CDMA, etc. 

environment. In [16], Fan et al. analyzes the obtained network 

structure taking direction, mobility features, and leadership 

duration into consideration. Another approach for cluster 

formation, presented in [8] and [17], is to distribute the state of 

nodes (undecided, member, gateway or cluster-head) on the regular 

transmission of beacons. Each node chooses its appropriate state 

according to the state of the nodes nearby. Both approaches try to 

maximize the clustering stability in to avoid the overhead caused 

by clustering formation designated messages. However, they are 

not taking advantage of the vehicle proximity map required by 

safety considerations. In several papers, see [9],[10],[18], it is 

demonstrated how to dissect the roads into predetermined area cells 

which define clusters. This method does not take into account the 

placement of the vehicles on the road. As a result, unbalanced 

clusters can be produced and dense vehicles can be partitioned into 

different clusters. An additional drawback of this method is the 

requirement for preloaded dissection of the area map into cells.  

 

III. SYSTEM MODEL AND PROBLEM DEFENITION 

In this section we describe the geographic clustering 

optimization problem. Alongside with optimizing the clustering 

according to the following suggested communication system 

design, we seek for a clustering scheme which can handle the 

environmental conditions of VANET.  

A. Model 

We are given a network N with n ordered nodes U={u1,u2,…,un} 

that are moving along a road from left to right (see Fig. 1). Instead 

of denoting the location of nodes explicitly, we use their relative 

locations. Let us denote by D={d0,d1,…,dn} the set of inter-

distances such that di is the inter-distance between ui and ui+1. The 

inter-distances d0,dn denote the space at the edge of the model and 

are set to . In some cases, we will need to observe subsets of the 

sets U and D. Hence, let U(di,dj) be the subset of U framed by the 

inter-distances di,dj, i.e., U(di,dj)={ui+1,ui+2,...,uj}. Similarly, let 

D(di,dj) be the D subset: {di+1,di+1,...,dj-1}. To indicate that one or 

both of the endpoints is to be included in the set, we substitute a 

square bracket for the corresponding parenthesis, e.g D[di,dj)= 

{di,di+1,...,dj-1}. In addition, let us denote by S={C1,C2,…,Cm} the set 

of clusters such that Ci is a set of consecutive nodes that forms the 

i'th cluster in set, and m is the number of clusters in the model. 

Accordingly, let G={g0,g1,…,gm} be  the set of inter-cluster gaps, 

such that gi represent the inter-distance located between the clusters 

Ci and Ci+1, and g0,gm represent the end-points d0,dn, respectively. 

Notice that according to the above notations Ci=U(gi-1,gi).  

Remark: The D-CUT algorithm is based on comparing the length 

of inter-distances and gaps. In order to deal with ties in gap or 

inter-distance comparisons, the gap/inter-distance having the 

smaller index wins. 

B. Interference aware communication system design 

We consider the following, two-level general hierarchy (see Fig. 

2). First, the network is split into clusters of adjacent vehicles 

which cover the entire vehicle population. Each cluster contains a 

designated vehicle referred to as the clusterhead which acts as a 

relay point of communication for the cluster members. Thus, the 

first level of the topology consists of links between each 

clusterhead and its cluster members (i.e., a star topology). On top 

of these intra-cluster links, clusterheads can aggregate and 

disseminate information from and to its cluster members in a 

centralized manner. To prevent clusterheads from becoming 

bottlenecks of their clusters, we limit the number of members 

within each cluster. The second level of the topology consists of 

 
Fig. 1.  The model basic notations. 
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the inter-cluster links which connect between adjacent 

clusterheads. When one clusterhead is not in transmission range of 

its adjacent clusterhead, communication takes place through 

intermediate nodes referred to as gateways (if connectivity exists). 

Subsequently, the clusterheads and gateways generate the 

backbone infrastructure of the network. This general topology 

provides, as mentioned above, multi-layer benefits; however, to 

receive reliability and efficiency we aim to design a 

communication system which provides an optimal interference 

aware channel access scheme. 

As in [10], we suggest spatial based TDMA approach. In this 

work we design communication system which intends to deal with 

VANET dynamicity. For this purpose, we group adjacent channel 

contesters into not overlapping clusters, and synchronize their 

channel access according to their current location within the cluster 

(which can be derived from the vehicle map). A feasible TDMA 

scheme requires limiting the cluster size. The intra-cluster 

synchronization prevents interference among cluster members (i.e., 

intra-cluster interference is avoided). Bandwidth efficiency is 

achieved by bandwidth reuse among clusters. However, this 

bandwidth reuse causes interference from adjacent clusters as 

vehicles from adjacent clusters are assigned with the same time 

slot. 

In order to minimize this interference, we demand the clusters to 

be as dense as possible, and far apart from each other. Furthermore, 

to optimize the capacity, i.e., to maximize the benefit of the spatial 

reuse, we aim to increase the clusters size up to their limits.  

C. Clustering scheme strategy 

To fit the environmental conditions of VANET, we identify the 

following clustering scheme strategy requirements: self-

organization, locality and stability. In order to find the balanced 

way between stability and adaptation, we seek for road dissection 

strategy which follows the trends rather than a single vehicle's 

behavior. Hence, we propose dissecting the road by prioritizing the 

dissection candidate - the inter-distances - according to their size. 

By this simple yet meaningful strategy we gain stability by 

disregarding small scale (intra-cluster) reconfiguration changes.  

D. Problem definition 

At the cluster level, we look for star topology which allows one 

hop aggregation/dissemination. This objective requires the 

existence of at least one clusterhead candidate that is in the 

transmission range of all cluster members. Our second objective is 

to limit the cluster size for the two reasons mentioned above: (i) 

preventing clusterhead to become a bottleneck, and (ii) feasible 

medium access allocation. Each cluster that fulfills these 

objectives will be defined as a valid cluster. 

Definition 1. The Boolean objective function F receives two inter-

distances di,dj, which form the subset U(di,dj), and returns true if 

and only if this subset satisfies the following two conditions: 

 Exist a clusterhead candidate u’U(di,dj), where dist(u,u’) ≤ 

Rmax for  all uU(di,dj), when dist(u,u’) denotes the Euclidian 

distance between u and u’ , and Rmax denote the maximal 

transmission range. 

 k ≤ kmax , where k=|U(di,dj)|.
We note here that the D-CUT algorithm properties are preserved 

for any objective function which satisfies: 

If (U(di,dj)U(dx,dy) & F(dx,dy)=true) F(di,dj)=true 

(e.g., an objective function which allows some p hops 

connection between clusterhead and its cluster members). 

Based on this definition, we define a valid solution for the network 

N as follows. 

Definition 2. Given the network N with the set of nodes 

{u1,u2,…,un}, the Clustering Assignment (CA) is a function 

assigning each node in the network to a cluster; for which, the 

received cluster set S fulfils: (i) every cluster in S satisfies the 

objective function; (ii) each node belongs to only one cluster; (iii) 

the union of all clusters in S contains all nodes in the network. 

We group consecutive nodes into clusters which are separated by 

maximally possible gaps. This type of clustering allows strong 

connection between cluster members and reduces the inter cluster 

interference. Having fairness design goal in mind, we consider a 

Max-Min gap objective as the first objective of the optimization 

problem. In addition, in order to enhance the advantages of the 

hierarchical topology, that is, to maximize the spatial reuse and 

minimize the network diameter, we consider minimizing the 

number of clusters in the network as the second objective of the 

optimization problem.  

Let V(N) be the set of all possible clustering assignments of the 

network. Now we are ready to formally define the optimal 

geographical clustering objectives described above: 

 Objective 1: mini[1…m-1]gi is maximized over all solutions 

from V(N).  

 Objective 2: The number of clusters is minimized over all 

solutions from V(N). Let us denote by Sopt the optimal solution 

such that |Sopt|=min SV(N) |S|. 

  The D-CUT algorithm produces the Geographically Optimal 

Clustering Assignment (GOCA) with the resulted cluster set S’ 

which meets Objective 1 and approximates Objective 2 by a factor 

of 3 (i.e., |S’|≤ 3|Sopt |).  

IV. THE D-CUT ALGORITHM 

In this section we present the Distributed Construct Underlying 

Topology (D-CUT) algorithm. The D-CUT algorithm is an 

iterative algorithm, which strives to discover and maintain a 

geographically optimal clustering for the current network 

configuration. At each iteration, the D-CUT algorithm gets a 

snapshot of the local vehicle proximity map and updates the 

clustering solution according to the changes in the network 

configuration. The D-CUT algorithm is stand only on top of a 

strong connection between adjacent clusters. Based on these 

connections, each cluster obtains information about last iteration 

CA of its adjacent clusters, and their updated location. Both can be 

obtained by the beacon dissemination process (which described in 

the following section).  

Fig. 3 presents the D-CUT algorithm run by vehicles which 

belong to the cluster Ci. The algorithm use as input the last iteration 

 
Fig. 2.  The hierarchical network topology is  created by grouping sets 
of sequential nodes into clusters. At the intra cluster level, the cluster 

members of each cluster are linked to a designated clusterhead (CH). At 

the inter-cluster level, CH’s are linked, if needed via gatetways (GW’s), 
to their adjacent clusters. 
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CA of its vicinity (Ci-1,Ci,,Ci+1) with updated members’ locations. 

As output, the algorithm produces the new CA of Ci members. The 

algorithm is based on split and join operations between adjacent 

clusters, and can be logically partitioned into 3 parts according to 

the different clustering reorganization procedures. (i) The Split-

Join procedure (stages 1,2)  enables two adjacent clusters to 

greedily replace the inter-cluster gap trapped between them, by 

larger gaps. The algorithm tries to replace first (stage 1) cluster’s 

left inter-cluster gap, and then its right inter-cluster gap (stage 2). 

(ii) By the Split procedure (stage 3), invalid or discontinued cluster 

is Split. (iii) Finally, the Join procedure (stages 4-5) enables two 

adjacent clusters to greedily remove the inter-cluster gap located 

between them by Join operation (Objective 2). To guarantee 

coordinated join operation, the join conditions check whether the 

cluster to be joined with is not going to be split at the same 

iteration.  

Definition 3. The Max-Min Inter-Distance Pair (MMIDP) is a 

function that finds an inter-distances pair (denoted by (d
(l)

,d
(r)

)) 

from adjacent clusters, such that, the minimal value in the pair is 

maximized over all possible pairs which form a valid cluster.  

More formally, given the inter-cluster gap gi, let X = 

{(d,d’)dD[gi-1,gi),d’D(gi,gi+1],F(d,d’) = true}. The split 

candidates pair (d
(l)

,d
(r)

) is the pair that maximizes min(d,d’) over 

all possible choices of (d,d’)X.  When more than one pair 

satisfied the condition, the pair with the maximal second pair value 

determines the unique MMIDP. In some cases we will refer the 

output of the function, (d
(l)

,d
(r)

), as MMIDP. 

Definition 4. We define the following Split-Join Condition (SJC): 

SJC(d
(l)

,d
(r)

,gi)= min(d
(l)

,d
(r)

)>gi. 

Split-Join Procedure (Stages 1-2): Given the inter-cluster gap gi-1 

(stage 1), the Split-Join procedure (see Fig. 4a) enables two 

adjacent clusters to form the optimal cluster in the range U(gi-2,gi) 

in terms of Objective 1. For this purpose, the procedure begins with 

finding the MMIDP, (d
(l)

,d
(r)

). Then, the SJC verifies whether 

min(d
(l)

,d
(r)

) is larger than the inter-cluster gap, gi, trapped between 

them. When this condition is satisfied, the Split-Join procedure 

removes gi by joining U(d
(l)

,gi-1), U(gi-1,d
(r)

) to form the new cluster 

U(d
(l)

,d
(r)

). In case d
(l)

  gi-2, preceding Split operation is applied on 

d
(l) 

, resulting with the additional cluster: U(gi-2,d
(l)

). Symmetrically, 

when d
(r)

  gi, U(d
(r)

,gi) is formed. Only the members of new 

cluster U(d
(l)

,d
(r)

) terminate this iteration of the algorithm at the end 

of this stage, the rest continue to the successive stages. By 

combining together the (optional) Split, and Join operations to the 

same iteration, intermediate clustering reorganizations are avoided. 

Each cluster applies the procedure first (stage 1) on its left inter-

cluster gap and then (stage 2) on its right inter-cluster gap. 

Nevertheless, as we shall see later, this procedure is performed in a 

coordinated fashion between the clusters.  

Definition 5. We define the following Split Conditions:  

 SC1(Ci)= !F(gi-1,gi); 

 SC2(Ci)= d’>gi-1,gi, where d’max(D(gi-1,gi)). 

Split Procedure (Stage 3): Given a cluster Ci and some inter-

distance d’, the split procedure is defined to partition the cluster Ci 

into two clusters: U(gi–1,d’) and U(d’,gi). In order to maintain stable 

CA which consists of large clusters, the D-CUT tries to modify the 

current CA by Split procedure, only when the current CA contains 

clusters which are: (i) not satisfied by the objective function F, or 

(ii) discontinuous. When cluster ceases to satisfy the objective 

function F, the first split condition (SC1) is fulfilled. The second 

split condition (SC2) is satisfied when inner gap becomes larger 

than its delimiting inter-cluster gaps. In both cases, the split 

operation is done on the maximal inter-distance that results in 

creation of 2 valid clusters.  

Remark: The D-CUT algorithm produces a valid CA at each 

iteration, due to the SC1. An invalid CA will be received when the 

last iteration CA, updated by the new node’s locations, creates one 

or more invalid clusters. When some of the clusters do not satisfy 

the objective function F, Split operation, triggered by SC1, will 

occur. As a result, each invalid cluster is replaced by two
2
 valid 

clusters. Since this operation is triggered independently among 

clusters, the split operations are occur simultaneously, and valid 

CA is received. 

Definition 6. We define the following 2 Join Conditions: 

 JC1(gi)=(gi–1>gi) && !F(gi,gi+2) && F(gi-1,gi+1); 

 JC2(gi)=(gi+1>gi) && !F(gi–2,gi) && F(gi-1,gi+1). 

Join Procedure (Stages 4-5): Given the gap gi, the Join procedure 

(see Fig. 4b) is defined by removing the gap gi to create the new 

cluster U(gi-1,gi+1). The Join procedure is motivated by Objective 2, 

i.e., reducing the number of clusters in the model. Two join 

conditions allow continuously increasing cluster size to its limit as 

long as this operation is not preventing a more beneficial future 

Join or Split-Join procedures. For this purpose, the join conditions 

allow two clusters to join not only when a gap is trapped between 

two larger gaps as in the SJC, but also when it is trapped by a 

larger gap from one side, and non-joinable clusters from the other 

side (JC1 and JC2). 

V. ANALYTICAL ANALYSIS 

In this section we conduct an analytical analysis of the ability of 

the D-CUT algorithm to self start and maintain the GOCA in the 

dynamic environment of VANET. This section is organized as 

follows.  

A. Lower bound  

First, let us show lower bound for approximation ratio for 

Objective 2, to every CA satisfies Objective 1.  

THEOREM 1: There is a network N such that any valid
3
 CA that 

meets Objective 1 has to approximate Objective 2 with factor of 2.  

Proof: We consider a network N organized in dense, equally 

spaced, groups of kmax/2 and kmax/2+1 nodes, where each group of 

kmax/2 nodes is followed by group of kmax/2+1 nodes. Moreover, the 

inter-distances that separate the groups are larger than the inter-

distances that separate the group member’s. Let us denote by S1 

and S2 the CAs that satisfy Objective 1 and Objective 2, 

correspondingly. Under this configuration, the size of each cluster 

in S2 is maximal, i.e., |C|=kmax for CS2. Accordingly, |S2| = 

n/kmax. On the other end, the CA that meets Objective 1 clusters 

each group into a cluster. Hence, |S1| = 2n/(kmax/2+kmax/2+1). So, 

the ratio between |S1| and |S2| is 2.   ■ 
 

B. Self-Organization  

In this section we will demonstrate that the D-CUT algorithm 

self-organizes the hierarchical topology. For this, we will show that 

even though nodes hold only a local portion of the vehicle map, 

and therefore nodes from different clusters hold different section of 

the vehicle map, the CA produced by the D-CUT algorithm is 

coordinated among all nodes, as long as there vehicle proximity 

                                                           
2
 Here we assume that an invalid cluster, which was valid cluster in the previous 

iteration, can be split into 2 valid clusters. The algorithm can intuitively be expanded 
to deal with the case where invalid cluster is required to be split into more than 2 

clusters. 
3
 For every objective function, when the number of cluster’s members is 

bounded. 

 



 5 // Stage 1 - Split-Join procedure on gi-1 

(d
(l)

,d
(r)

) = MMIDP(gi-1);  

 if (SJC(d
(l)

,d
(r)

,gi-1))     

        if uU(d
(l)

,d
(r)

) then Ci-1=U(d
(l)

,d
(r)

) and exit; 

        else Ci=U(d
(r)

,gi); 

// Stage 2 - Split-Join procedure on gi 

(d
(l)

,d
(r)

)= 
 
MMIDP(gi);  

 if(SJC(d
(l)

,d
(r}

,gi))   

        if uU(d
(l)

,d
(r)

) then Ci+1=U(d
(l)

,d
(r)

) and exit; 

        else Ci=U(gi-1,d
(l)

); 

// Stage 3 - apply Split procedure on Ci  

if(SC1(Ci) SC2(Ci)) 

       d’=max(D(gi-1,gi)) where F(gi-1,d’)= F(d’,gi)=true; 

       if uU(gi-1,d’) then Ci=U(gi-1,d’) and exit; 

       else Ci+1=U(d’,gi) and exit; 

// Stage 4 apply Join procedure on gi-1.  

if(JC1(gi-1) JC2(gi-1)) && !(SJC(gi-2) SC2(Ci-1))) 

       Ci=U(gi-2,gi); 

// Stage 5 apply Join procedure on gi-1. 

if(JC1(gi) JC2(gi)) && !(SJC(gi+1) SC2(Ci+1))) 

       Ci=U(gi-1,gi+1); 
Fig. 3.  The D-CUT algorithm. 

map overlapping section is the same. More formally, assume the 

output of D-CUT for some node ux is Cp, and for uy is Cq; if uyCp 

then Cp=Cq. Before proving the above assertion, let us establish the 

following: 

Observation 1: In case SJC(d
(l)

,d
(r)

,gi) is satisfied: (i) if d
(l)

 > d
(r)

 

then d
(l)

 maxD[d
(l)

,d
(r)

]) and d
(r)

  maxD[gi,d
(r)

]); (ii) 

symmetrically, if d
(l)

 < d
(r)

, d
(r)

 maxD[d
(l)

,d
(r)

]), and d
(l)

 

maxD[d
(l)

,gi]). 

Observation 2: If SJC(d1
(l)

,d1
(r)

,gi-1)= true and  

SJC(d2
(l)

,d2
(r)

,gi)=true then U(d2
(l)

,d1
(r)

) =  .  

Lemma 1: Given that one of the join conditions is satisfied on gi-1, 

then gi is not satisfying any of the join conditions at the same 

iteration. 

Proof: Since gi–1 is satisfying one of the join conditions we can 

conclude that F(gi–2,gi)=true and either gi–1 < gi or               F(gi-

1,gi+1)=false. But for gi to satisfy join condition, the expression 

F(gi-1,gi+1)=true must be fulfilled and either gi–1>gi or F(gi–

2,gi)=false. Thus, the lemma holds.                               ■ 

THEOREM 2: Let the output of D-CUT for some node ux be Cp 

and for uy be Cq. If uyCp then Cp=Cq. 

C. Independent sub-model clustering 

In a good clustering algorithm, configuration changes in a 

certain place of the model would influence the clustering process of 

only some local sub-model around it. The algorithm, as we prove 

below, partitions the model N into local sub-models, where each 

sub model is clustered independently.  

Definition 7. Let Q(d’,t) be the set of any inter-distances d that 

satisfies either F(d’,d) =true, or F(d,d’) =true at iteration t. We 

define d’ as a local maximum inter-distance in the timeframe [t’, 

t’’], if and only if, d’ > dQ(d’,t) at any iteration t, t’   t  t’’.  

Now we shall confirm that as long as the two inter-distances 

remains local maximum in the time interval [t’, t’’], the sub-model 

trapped between them is clustered independently.  

Definition 8. Let gv(t) be the inter-cluster gap located at the inter-

distance dv in iteration t, i.e., dv = gv(t). Accordingly,      gv(t)-1,gv(t)+1 

are the 2 inter-cluster gaps that frame dv from left and right, 

respectively, at the iteration t.  

THEOREM 3: Consider dv,du, 2 consecutive local maximum 

inter-distances in the time frame [t’,t’’]. Then, the D-CUT 

algorithm is clustering the sub-network U(dv,du) independently 

with the rest of the model, in the time frame [t’+1, t’’]. 

D. Convergence Process 

In this section we would like to show the fast and strict 

convergence of the D-CUT algorithm, from any given valid CA to 

a GOCA. Furthermore, when assuming uniform distribution of the 

inter-distances’ length, we will show logarithmic time 

convergence. Consequently, when the configuration is stable we 

maintain a stable CA. In dynamic configuration, the algorithm is 

promptly reacts to the configuration changes. 

 In order to demonstrate the above, we will take advantage of the 

correlation between the D-CUT convergence processes, and the 

Split Binary Tree (SBT), a particular tree representation of the 

inter-distance set D. Below, we analyze the convergence process 

by the following three stages: firstly, we present the SBT and prove 

that it is a Binary Search Tree with expected height of O(log(D)); 

secondly, we limit the convergence process duration of the D-CUT 

algorithm by the height of the SBT; thirdly, we want to express the 

SBT height as a function of the distance between the initial CA and 

the GOCA.  

1) The Split Binary Tree (SBT) 

In what follows, we refine the notation of D to represent only the 

subset of the inter-distances which are involved in the convergence 

process. More formally, let D be subset which contains all the 

inter-distances that at some iteration, during the convergence 

process, served as a inter-cluster gap, i.e., D = 

G(t0)G(t0+1)G(t0+2) …G(t0+t2) where t0,t2 denote the first 

and last iterations in the conversance process, respectively. 

Definition 9. Given a network N with configuration D, the Split 

Binary Tree (SBT) is a tree representation of the given 

configuration (see Fig. 5). The root entry of the SBT is the 

associated with the full set D(ds,df). Each subsequent SBT entry is 

associated with subset of D obtained by the following process: We 

start by setting dk, the maximum inter-distance of the set D(ds,df), 

as the root entry. Then, we partition the set D(ds,df) into 2 subsets: 

D(ds,dk), and D(dk,df); where the first subset associated with the 

root’s left child, and the second with the right child. Then, we set 

the maximum inter-distances dy and dz - where dy =max(D(ds,dk)), 

and dz=max(D(dk,df)) - as the left and right child of dk, respectively. 

We continue with recursive process to the point when each 

received subset contains single inter-distance which acts as its own 

maximum. As key entry, we use the index of the maximum inter-

distance (e.g. if dv is the maximum in distance in the entry we set 

the key entry as v). By l(d) and r(d) we denote the left and right end 

points of associated range of d. Finally, the function h(dv) returns 

height of the subtree rooted at the entry v .  

Corollary 1: Given inter-distance set D, where D values are 

uniformly distributed, SBT(D) produces a Random Binary Search 

Tree on the indices of inter-distances with expected height of 

O(logD). 

Proof: Consider the SBT(D) produced by the inserting the tree’s 

entries in decreasing order. That is, we set the maximal inter-

distance as the root. Then, at each stage we insert into the SBT the 

subsequently maximal value, which has not yet inserted. We end 

when all inter-distances in D have been inserted. This SBT of the 

values of D is a Binary Search Tree considering the indices of D as 

entry’s keys. When the inter-distances’ values are uniformly 

distributed, this process inserts into the binary tree a random 

permutation of the keys set. This process produces a Random 
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Binary Search Tree on the indexes of inter-distances. As shown in 

[19], the expected height of Random Binary Search Tree is O(log 

D).                           ■ 

To show convergence, we need to assume a stable 

configuration. We define a stable configuration as a configuration 

where: (i) ds,df  remain local maximums during all the convergence 

process and (ii) the SBT representation of the sub-model D(ds,df)  is 

unchanged.  

2) Bounding the convergence process duration by the height 

of SBT 

For bounding the convergence process duration by the height of 

SBT, we will show that each inter-distance is classified to its final 

state in the GOCA according to its height in the SBT. First, we 

represent the CA at some iteration t by G(t), the set of inter-cluster 

gaps separating the CA clusters at t, in the sub-model D[ds,df].  

Definition 10. We say that the inter-distance d is classified at 

iteration t’ as inner gap if dG(t) for every t > t’. We say that the 

inter-distance d is classified at iteration t’ as inter-cluster gap if 

dG(t) for every t > t’. 

Definition 11. Let us define a refined height h’(dv) of the sub tree 

rooted at the entry v by counting only entries that will be classified 

as inner gap.  

We associate any inter-distance with one of 4  types.  

Definition 12. Given dvD(ds,df), we associate dv according to the 

validity of the clusters trapped between l(dv), dv, r(dv) as follows: 

(a) dvA1 if and only if F(l(dv),r(dv))=true; (b) dvA2 if and only if 

F(l(dv),dv))=F(dv,r(dv)) = true and F(l(dv),r(dv))=false; (c) dvA3 if 

and only if F(l(dv),dv) = true and F(dv,r(dv))= false; (d) dvA4 if 

and only if F(l(dv),dv) = false and F(dv,r(dv))= true.  

Remark: The final case where F(l(dv),dv))=F(dv,r(dv)) = false is 

already defined as local maximum, i.e., the two sub-model end 

points.   

The next observation exhibits the relationship between inter-

distance type and the type of its descendants in the SBT. 

Observation 3: Consider some inter-distance dv, if F(l(dv),dv)=true 

then all dD(l(dv),dv)) belong to A1. 

From this observation we can conclude that if d{A1A2} then 

all d descendants belong to A1. Furthermore, the left descendants of 

dA3 and the right descendants of dA4 belong to A1 as well. 

Next, we will show the bottom-up classification process on 

the SBT. This process begins with inter-distances associate with A1 

that placed (if exist) in the bottom of the SBT. Lemma 2 assures 

that every dA1 is classified as inner gap at iteration t = h’(d). 

Lemma 3 shows that the CA obtained at the end of this phase 

satisfies Objective 1. Then, in Lemma 4 we ensure that dA2 is 

classified as inter-cluster gap once its descendants, that are all 

associated with A1, are classified. Notice that this condition is 

fulfilled at iteration t= h’(d). We continue with bottom up process 

by demonstrating (Lemma 5) that d{A3A4} is classified either as 

inner gap or as inter-cluster gap at iteration t = h’(d). To conclude, 

we prove that after the classification of all dD[ds,df] the obtained 

CA is in fact the GOCA (Lemma 6). Note that the sub-model end 

points ds,df  are classified as inter-cluster gaps at iteration t0 as we 

have shown in the proof of Theorem 3. 

In order to demonstrate the classification of inter-distance d as 

inner gap, we will ensure that if dG(t) at iteration t = h’(d) then 

Join operation will be applied on d. In case dA1 we will 

demonstrate that SJC is satisfied, and when dA3,A4} the 

operation will be triggered by JC1 or JC2. However, to guarantee 

the classification, we need to prove that this operation will not be 

overturned by future Split operation.  

Remark: As we assume valid CA at iteration t0, and as all the D-

CUT operations produce valid clusters, in the following we assume 

Split operation to be trigger either by SC2 or by SJC.   

Observation 4: If SC2(Ci) is satisfied on d’ then d’ =  maxD[gi-

1,gi]). 

Observation 5: Let gi(t)-1,gi(t) be two consecutive inter-cluster gaps 

at iteration t. For every t > t0, all dD(gi(t)-1,gi(t)) are smaller than 

max(gi(t)-1,gi(t)). 

Observation 6: If D(l(dv),r(dv))G(t’) = , then D(l(dv),r(dv))G(t) 

=  for every t > t’. 

Lemma 2: If dvA1, then dv is classified at iteration t = h’(dv), as 

inner gap.    

Lemma 3: Let t1 = t0 + max(h(d))  for all dD(ds,df)A1G(t) 

satisfies Objective 1 for every t  t1. 

In order to demonstrate the classification of d as inter-cluster gap 

we will show that d is located between two clusters, such that their 

union produces an invalid cluster. Considering such d, and 

assuming that all d descendants from A1 are classified as inner 

gaps, the following ensures that this state is irreversible. 

Observation 7: Consider dvA1 (dv = gv(t)). If                     F(gv(t)-

1,gv(t)+1)=false at some iteration t  h’(dv), then        F(gv(t)-

1,gv(t)+1)=false at any iteration t’  t. 

Lemma 4: If dvA2 then dv is classified as inter-cluster gap at the 

iteration t = h’(dv)  

To show the classification of dv{A3A4} at the iteration t = 

h’(dv), in the following two observations we characterize the inter-

cluster gaps gv(t)-1,gv(t)+1, framing dv=gv(t) from left and right, 

respectively, at this iteration.  

Observation 8: Let t’ = h’(dv). If dvA3 then gv(t)-1 > gv(t) for every t 

 t’. 

Observation 9: Let t’ = h’(dv). If dvA3 then gv(t)+1{A2A3} for 

every t  t’. 

In the following we subdivide the set A3 into two subsets. 

Definition 13. Given dvA3 (dv = gv(t)), if F(gv(t)-1,gv(t)+1)=true at 

iteration t = h’(dv) then dv is associated with the subset A3*, else dv 

is associated with the subset A3\A3*. 

 
 
Fig. 4.  (a) The Split Join procedure. In this example SJC(d(l),d(r),gi) is 

satified. As a result, Split operation on d(l) is triggered, which followed, at 

once, by Join operation over gi. Thus, the new CA of this range is the 2 
clusters U(gi-1,d

(l)) and U(d(l),gi+1). (b) The Join procedure. Here, JC2(gi) 

is fulfilled. Consequently, Join operation over gi  produces the new cluser. 

U(gi-1,gi+1). 
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Lemma 5: If dvA3 then dv is classified at iteration t=h’(dv) either 

as inner gap when dvA3* or as inter-cluster gap when dv A3\A3*.  

Proof: Following Observation 7, if dv A3\A3* then dv is classified 

as inter-cluster gap. Hence, to prove the lemma, we will ensure that 

if dvA3*, then Join operation, triggered by JC1(gv(t)), occurs at 

iteration t. We will demonstrate it by induction on the inter-

distance refine height. By Observation 8 we get that gv(t)-1 > gv(t) at 

iteration t. To show that JC1(gv(t)) is satisfied it is suffice to show 

that F(gv(t),gv(t)+2)= false. 

For the base case, we consider the dv without descendant from 

A3*. Thus, h’(dv) is the height of the highest dv descendant 

belonging to A1. Notice that gv(t)+1 is gv(t) descendant and belongs to 

{A2,A3} (Observation 9). According to Lemma 4, if gv(t)+1A2 then 

F(gv(t),gv(t)+2)= false. If gv(t)+1A3, F(gv(t),gv(t)+2)= false as dv has no 

descendant from A3* (i.e., gv(t)+1A3\A3*). Therefore, JC1(gv(t)) is 

satisfied. Following Observation 6, Split operation on dv will not be 

applied at any iteration t’ > t, and thus, dv is classified as inner gap. 

Assume that our induction hypothesis holds for all d such that h’(d) 

 t-1. Here as well, the case where gv(t)+1A2 yield from Lemma 4. 

If gv(t)+1A3, F(gv(t),gv(t)+2)= false follows directly the inductive 

hypothesis. As in base case, the assertion is concluded by 

Observation 6.■ 

For reasons of symmetry the above lemma holds for dvA4. 

Lemma 6: Let t2 = t0 + max(h’(d) for all dD(ds,df). G(t) 

satisfies Objective 2 with an approximation ratio of at most 3 for 

every t  t2.  

Proof: In order to compare between the values of Objective 2 in 

optimal CA and the CA produced by the D-CUT algorithm we will 

bound the number of inter-cluster gaps in each sub-model range 

separately. As the sub-model D[ds,df] shares the endpoint ds with 

its left sub-model and df with its right sub-model, we count only the 

left endpoints in each sub-model. To be exact, we charge G(t2)-1 

inter-cluster gaps for the sub-model D[ds,df].  Each inter-cluster 

gap gi(t2)G(t2), excluding the sub-model end points {gs(t2),gf(t2)}, 

satisfies F(gi(t2)-1,gi(t2)+1) = false. Accordingly, G(t2) can be 

segmented into 






 

2

1)( 2tG
pairs of  consecutive clusters, where the 

union of each clusters pair produces an invalid cluster. More 

formally, F(gs(t)+2i,gs(t)+2i+2) = false for i= 0,1,2,…, 1
2

1)( 2








 tG . 

This implies that every valid CA has at least 







 

2

1)( 2tG inter-cluster 

gaps in the range D[ds,df] since every valid CA contains at least one 

inter-cluster gap in the range of each consecutive pair of clusters. 

Let Gopt be the set of the inter-cluster gaps in optimal CA in the 

range D[ds,df]. We obtain 
opt

opt

G
G

tG















1
21)( 2

. As F(ds,df) 

=false, Gopt  1. In worst case we get an approximation ratio of 3.     

■ 

Corollary 2: The D-CUT algorithm converges to the GOCA after 

no more than t2 iterations. 

3) D-CUT strict convergence 

After we have limited the convergence process duration by the 

SBT refined height, we want to express the SBT refined height as a 

function of the distance between the initial CA and the GOCA, i.e., 

(G(t0)G(t2))\(G(t0)G(t2)). We consider only the following 

distance subset to express the refined height of SBT:  

Definition 14. Let  = G(t0)\G(t2), be the set of inter-cluster 

gaps in the range D(ds,df) which belong to the initial CA G(t0), but 

not belong to the GOCA, G(t2).   
Definition 15. Let  = D(ds,df)\(G(t0))G(t2)), be the set of 

temporary inter-cluster gaps in the range D(ds,df), that appears (by 

Split operation), and then removed (by Join operation), during the 

course of the convergence process. 

Notice that the union of the sets  and gives the set of all inter-

distances that classified as inner gaps. As the refined height is a 

function of the inter-distances that classified as inner gaps, and  is 

a lower bound of the distance between the initial CA and the 

GOCA, our goal is to express the ratio between the size of sets  

and .  

Below, we will demonstrate that ||  3.5|| by showing 

that ||  2.5||. In order to give this bound, we will relate all 

Split operations that occur during the convergence process to an 

explicit subset of . In particular, we define the subset v to be the 

set of inter-cluster gaps that are located in the range D(l(dv),r(dv)) at 

iteration t0, i.e., v D(l(dv),r(dv))G(t0), where dvand both 

l(dv)r(dv) Since every dD(l(dv),r(dv)) belongs to A1, we can 

conclude that v. The right neighbor of v is denoted by u= 

D(r(dv),r(du))G(t0). 

Firstly, we relate each Split operation that takes place in the 

range D[l(dv),r(dv)] to the subset v. According to Observation 6, if 

v=, then Split operation will not take place in the range 

D(l(dv),r(dv)). Moreover, from Observation 9 follows that if v= 

and Split operation, triggered by SC2, takes place on r(dv), then u, 

is not empty. Accordingly, any Split operation triggered by SC2 

can be related to one of  subsets. However, Split operation 

triggered by SJC(d
(l)

,d
(r)

,gi), giD[l(dv),r(dv)], can be spread 

outside the range D[l(dv),r(dv)]. In Observation 10 we demonstrate 

that in such case, e.g., d
(l)
D[l(dv),r(dv)], d

(l)
A1. Thus, d

(l) 
will not 

trigger additional Split operation. Hence, by relating any Split 

operation, triggered by SJC(d
(l)

,d
(r)

,gi), where giD[l(dv),r(dv)], to 

the subset v we ensure that any Split operation triggered by SJC 

will be related to one of  subsets.  

Definition 16. We say that Split operation on d is resulted by v, 

v, if one of the following is satisfied: (i) dD[l(dv),r(dv)], (ii) 

dD[l(dv),r(dv)] and the operation is triggered by SJC(d
(l)

,d
(r)

,gi), 

where giD[l(dv),r(dv)].  

Observation 9: Let v,u be two adjacent  subsets. Let d’ = r(dv) 

= l(du). If SC2 is satisfied on d’ at iteration t0, then either v, or 

u. 

Observation 10: Consider the case when SJC(d
(l)

,d
(r)

,gi) is satisfied. 

If giD(l(dv),r(dv)) and d
(l)
A1 then d

(l)
D(l(dv),r(dv)). 

According to the above, we can establish the inequality ||  

2.5|| by showing that the number of Split operations resulted by 

the set v is bounded by 2.5 v. 

We first consider the base case where v = 1. In this case no 

more than 2 Split operations (on l(dv),r(dv)) will be resulted by the 

Join operation on gi(t
0
). This is because SJC(l(dv),r(dv),gi(t0)) = true 

at iteration t0. After the Join operation on gi(t0), the range 

D(l(dv),r(dv)) (which does not contain any inter-cluster gap) will 

not be split, as demonstrated in Observation 6.  

Next, we show that if v  2, no more than 2v + 1 Split 

operations will be resulted by the set v. As we seek for an upper 

bound, we are allowed to assume that if v   then 

SJC(l(dv),r(dv),dv) will be satisfied. Therefore, we presume that 
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Split on l(dv),r(dv) will be resulted by v . According to the 

above, the total number of Split operations resulted by the set v is 

limited to the sum of: (i) the number of Split operations on the both 

ends of the sub-model: l(dv),r(dv),(ii) the number of Split operations 

(either by fulfilling SJC or SC2) taking place in the range 

D(l(dv),r(dv)), and (iii) the number of Split operations taking place 

(by fulfilling SJC(d
(l)

,d
(r)

,gi)) outside the range D[l(dv),r(dv)], where 

giD(l(dv),r(dv)).  

In the following two observations we will characterize the split 

candidates in the range D(l(dv),r(dv)) according to the initial CA at 

this range. Let Dv,j(t) = D[l(dv),r(dv)]          D[gj(t)-1,gj(t)]. 

Observation 12: If SJC(d
(l)

,d
(r)

,gi(t)) is satisfied, and both 

d
(l)

,gi(t)Dv,i(t) at iteration t, then d
(l)

 = max(Dv,i(t)). 

For reasons of symmetry, the above observation holds for d
(r)

 as 

well. In Observation 12 we demonstrated that a split candidate d 

must satisfy d = max(Dv,i(t)). In the following we extend this split 

candidate prerequisite to d = max(Dv,i(t0)). 

Observation 13: If d  max(Dv,j(t0)) then d  max(Dv,j(t)) for every 

t  t0. 

After stating the above, we are ready to limit the number of Split 

operations resulted by the set v.  

Lemma 8: The maximal number of Split operations on 

dD(l(dv),r(dv)), resulted by the set v, is v - 1.  

Lemma 9: The maximal number of Split operations triggered by 

SJC(d
(l)

,d
(r)

,gi(t)), where gi(t)D(l(dv),r(dv)) and d
(l)

 or 

d
(r)
D[l(dv),r(dv)], is v. 

Proof: First we would like to show that if SJC(d
(l)

,d
(r)

,gi(t)) is 

satisfied, where gi(t)D(l(dv),r(dv)) then either d
(l)
D(l(dv),r(dv)), or 

d
(r)
D(l(dv),r(dv)) holds. Assume the opposite, that is, 

D(l(dv),r(dv))D(d
(l)

,d
(r)

). Since: (i) by definition F(d
(l)

,d
(r)

) = true, 

and (ii) following Observation 1, min(d
(l)

,d
(r)

)
 
> min(l(dv),r(dv)), 

then min(l(dv),r(dv))A1 which contradicts v definition, when 

l(dv)r(dv).  

Thus, the only scenario where the Split operation, resulted by v, 

will take place on d
(l)
D[l(dv),r(dv)] is when both 

d
(r)

,gi(t)D(l(dv),r(dv)). In case when d
(r)
D(l(dv),r(dv)) and  

d
(l)
D[l(dv),r(dv)], we denote d

(r)
 by d

(r)*
. In the symmetric case 

when d
(l)
D(l(dv),r(dv)) and  d

(r)
D[l(dv),r(dv)] , we denote d

(l)
 by 

d
(l)*

. As demonstrated in Lemma 8, there are only v - 1 inter-

distances in the range D(l(dv),r(dv)) that can play the role of d
(r)*

 (or 

d
(l)*

) since d
(r)* 

= max(D[gj(t0)-1,gj(t0)]) for gj(t0)-1,gj(t0)v. To 

conclude, notice that any of those v - 1 inter-distances can play 

the role of d
(r)*

 (or d
(l)*

) only once. This happens because if 

SJC(d
(l)

,d
(r)*

,gi(t)) is satisfied, then gi(t) is the leftmost inter-cluster 

gap in the range D(l(dv),r(dv)). After this operation, d
(r)*

 become the 

leftmost inter-cluster gap in this range, and therefore, will not play 

the role as d
(r)*

 again. Following the same reason, only the last 

inter-distance removed from the v - 1 Split candidates can play 

the role of both d
(r)*

 and d
(l)*

. This is because once inter-distance 

play the role of d
(r)*

 it can play the role of d
(l)*
only after the rest of 

the Split candidates have been classified as inner gaps.             ■ 

Corollary 3:   3.5 .  
THEOREM 4: From any given starting point, the D-CUT 

algorithm converges to GOCA under the assumption of stable 

configuration status. The convergence process requires O() worst 

case time; and O(log) expected time, under the assumption of 

random permutation of the size of the inter-distances in the set 

D(ds,df). 

VI. SIMULATIONS 

In order to evaluate the performance of the D-CUT algorithm 

under realistic road conditions we have performed the following 

simulations.  

A. Simulation Setup 

The D-CUT algorithm highly depends on the inter-distances 

between cars. Thus, for faithful evaluation of the algorithm, a 

realistic mobility model for individual vehicles is required. Hence, 

we base our simulation on a microscopic model presented in [20] 

designed for multi-lane traffic flow dynamics. Each car 

experiences a force resulting from a combination of the desire of 

the driver to attain a certain velocity, aerdynamic drag, and change 

of the force due to car–car interactions. The model includes multi-

lane simulation capabilities. We simulate 200 vehicles on a 3 lane 

straight road with a single entrance and exit on a 20 Km road 

section. The velocity of the vehicles was randomly generated 

according to normal distribution function with a mean of 120 Km/h 

and a deviation of 15. In addition, Rmax is set to 500 meters, and 

kmax to 20. Unless stated otherwise, beacon transmission cycle time 

is set to 0.4 sec. 

B. Tracking the Optimal Solution 

As proved above, under stable configuration status, the D-CUT 

algorithm produces the GOCA that meets Objective 1 and 

approximates Objective 2 by factor of 3. Fig. 6 exhibits the ability 

of the algorithm to satisfy the objectives under real traffic 

condition. Fig. 6(a) compares the minimal gap of the CA produced 

by the D-CUT algorithm with the minimal gap of optimal CA 

which satisfies Objective 1. In this figure beacon transmission 

cycle time is set to 0.3 sec, and the first 50 iterations are plotted. 

This comparison shows that the D-CUT algorithm provides a fast 

convergence towards the optimal solution, and displays high 

correlation with it after initial convergence. Fig. 6(b) shows the 

percentage of iterations where the CA produced by the D-CUT 

algorithm satisfies Objective 1 for different beacon transmission 

cycle times. At a 0.1 sec cycle time the D-CUT achieved very high 

correlation (97%). As the cycle time increases we can see the 

correlation decreases. Fortunately, even at high cycle times of 1 sec 

a 64% correlation is still achieved.  

 
Fig. 5.  The SBT of the set D’={35,40,45,30,40,42,20}. 
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Fig. 6.  Objectives evaluation: (a) comparison of the minimal gap produced 
by the D-CUT CA with the optimal CA (Objective 1). (b) percentage of 

iterations where the D-CUT CA satisfies Objective 1. (c) comparison of the 

number of clusters between the D-CUT CA and Objective 2 optimal CA. 
 

Fig. 6(c) presents a comparison between the number of clusters 

produced by optimal CA according to Objective 2 and the CA 

produced by the D-CUT algorithm for various vehicle densities. As 

we can see from the dynamic simulation, the ratio achieved is even 

better than the ratio of 3 proved before for static configuration. In 

addition, we learn that this ratio increases with the density of 

vehicles. The reason for that is since the density increases, valid 

clusters become mainly dependent on kmax criterion. Since the 

optimal solution takes into account Objective 2 and is based solely 

on the number of clusters it produces without taking into account 

Objective 1, the value |Sopt| decreases towards n/kmax. On the other 

hand, since the D-CUT algorithm includes Objective 1 in its 

consideration, density increase has moderate influence on the 

number of clusters.  

VII. DISCUSSION 

In this section we will discuss the ability of the D-CUT 

algorithm to provide a hierarchal topology suite for safety 

communication constraints. In order to minimize adjacent clusters 

mutual interference, we need to coordinate between concurrent 

channel accesses take place in adjacent clusters. In addition, a 

power assignment scheme will be designed to fairly equalize the 

mutual interference. As explained below, the clusters will be 

colored; this property allows the coordination among adjacent 

clusters. The advantage of these schemes is in design according to 

the snapshot of the local vehicle proximity map, partitioned 

according to current optimized clusters.  

A. Efficient and reliable beacon dissemination process 

The dissemination process demonstrates dual relation with the 

D-CUT algorithm. On one hand, the D-CUT algorithm is based on 

top of this process as a prerequisite that each vehicle will hold the 

updated CA of its own and its adjacent clusters. The dissemination 

process effectively utilizes the efficient and reliable hierarchical 

topology discovered by the D-CUT algorithm. Mainly, by 

replacing the traditional multipoint to multipoint broadcast 

transmission of the beacon messages with aggregation-

dissemination base process. As mentioned above, this approach 

profit from many advantages, including highly reducing the 

security related overhead [10].  

The beacon dissemination process is initiated where each vehicle 

holds the Clustered and Colored Vehicle Proximity Map (CCVPM) 

of its vicinity. At the end of the following three phases the vehicles 

hold the updated CCVMP.  

Phase 1- Beacon Aggregation by Clusterheads: At this step 

clusterheads aggregate the beacon messages from theirs cluster 

members simultaneously. For this purpose, clusterhead must satisfy 

one hop connection to any node in its cluster set. The objective 

function F assures the existence of such node. The simultaneous 

aggregation provides high bandwidth efficiency to the beacon 

dissemination process. The protocol synchronizes concurrent 

transmissions taking place in adjacent clusters according to a fair 

interference minimization criterion. Broadly speaking, we 

coordinate the channel access between adjacent clusters by taking 

advantage of the strong links between nodes located next to 

clusterheads, to deal with the weak links of the nodes located far 

from the clusterheads. 

Phase 2 - Clusterheads communication for D-CUT Algorithm 

execution: During the D-CUT run, adjacent clusterheads need to 

communicate, in order to obtain updated CCVMP of their vicinity. 

Adjacent clusterheads exchange theirs aggregated cluster 

information. In case of clustering reorganization, supplementary 

information may be exchanged to ensure that each clusterhead 

holds the full updated CCVMP. Since the information can be 

obtained from the adjacent cluster, only unicast communications 

between adjacent clusterheads are required. We note that the 

cluster coloring protocol can be embedded within this information 

exchange. After reducing the amount of channel contenders in 

Phase 1, the clusterheads communication will be on top of a sparse 

topology backbone.  

Phase 3- CCVMP dissemination: In this phase clusterhead 

disseminates the updated CCVMP to its all cluster members. 

Again, due to the objective function this can be done in one 

broadcast transmission. To avoid inter-cluster interference in this 

curtail transmission, we use the cluster coloring to guarantee that 2 

adjacent cluster members will remain silent during this 

transmission.  

4) Handling Transsmission Failures 

When the beacon transmission is not received by the 

clusterhead, current nodes location can be approximated based 

upon previous cycle data. This approximation will be disseminated 

in Phase 3 (along with failure indication), so the rest of nodes will 

coordinate accordingly. In Phase 2, the D-CUT coordination 

requirement is ensured by the acknowledgment mechanism enabled 

by the unicast transmission fashion. In the case of unsuccessful 

cluster information exchange between adjacent clusterheads, the 

reorganization operations between the two clusters will be 

coordinately ignored. When a node does not receive the 

disseminated CCVMP in Phase 3, it should skip the following 

beacon transmission in order to avoid any uncoordinated 

transmission that can lead to packet collision. Once node receives 

the updated cluster information in this phase, it can take part in the 

following beacon aggregation. 

5) Scalability  

A well-known scheme to control the channel load in dense 

network configuration is to limit the maximal transmission range. 

Here, we achieve congestion control by limiting the cluster size. 

When considering high-density vehicular scenario with high 

anticipated load on the channel, clusters’ size will come up to its 

limit. In such case, the simultaneous aggregation is most effective, 

and spatial reuse is optimized. On the other hand, when considering 

sparse configuration, the load on the channel is low. The main 

topology design goal is to provide connectivity.  Even though the 

simultaneous aggregation is less effective, connectivity is achieved 
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as transmission range is not limited for providing congestion 

control.  

B. Emergency messages dissemination process 

When considering dissemination of emergency message, reliability 

and delay are of the essence. To this end, Resta et al. [17] proposes 

a greedy strategy based on the use of the vehicle proximity map 

combined with a contention based approach. However, this strategy 

does not take into account a number of vehicles simultaneously 

detecting a hazard issue and initiating emergency messages. 

Hierarchical topology can perform well in such challenging 

scenarios by facilitating the emergency message channel access 

mechanism, and by allowing clusterheads to discard redundant 

messages. In addition, clusterheads can supply QoS (quality of 

service) by applying prioritized re-broadcast scheme.  

C. Cluster Coloring 

In order to synchronize between adjacent clusters, we want clusters 

to be colored. Cole and Vishkin [21] demonstrated that ring 

topology network can be colored by constant number of colors in 

O(log*n) rounds
4
, such that the adjacent nodes are colored by 

different colors. This scheme can be used for the initial inter-cluster 

coloring. The split-join technique used by the D-CUT algorithm 

allows maintaining inter-cluster coloring for any value bigger or 

equal than 3. To coordinate the coloring procedure, we use the 

current coloring on top of the synchronized clock. In this way we 

prevent adjacent clusters coloring at the same step.  

D. Clusterhead failure 

Hierarchical topology has inherent sensitivity to clusterhead 

failure. To increase stability we can utilize the objective function to 

demand number of clusterhead candidates to satisfy one hop 

connection. Thus, clusterhead failure sensitivity can be reduced by 

applying contention base approach among the clusterhead 

candidates. 
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