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The temporary and unfixed physical topology of a wireless ad-hoc net-
work is determined by the distribution of the wireless nodes as well as
the transmission power (range) assignment of each node. This paper stud-
ies asymmetric power assignments for which the induced communication
graph is k-strongly connected, while minimizing the total energy assigned
and maximizing the network lifetime.

We show that our power assignment algorithm from [9] achieves a
bicriteria approximation ratio of (O(k), O(k log n k

√
nϕ(n))) with high

probability, where ϕ(n) is any function with limn→∞ ϕ(n) = ∞, for
the minimal total cost/maximal network lifetime problem in the plane,
respectively, in the case of arbitrary battery charges. The same algorithm
provides an (O(k), O(1))-approximation in the case of uniform batteries.
To the best of our knowledge, this is the first attempt to provide a bicriteria
approximation ratio for the total power assignment cost and the network
lifetime under the k-fault resilience criterion. In addition, we study the spe-
cial cases where the nodes are located on a torus or along a line. In the linear
case with uniform batteries, we show that our algorithm from [33] obtains
an (O(1), 1)-approximation. For the toral case, we suggest an assignment
which is simultaneously the optimum in terms of each of the criteria.
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1 INTRODUCTION

A wireless ad-hoc network consists of several transceivers (nodes) located in
the plane, communicating by radio. The underlying physical topology of the
network depends on the distribution of the wireless nodes (location) as well
as the transmission power (range) assignment of each node.

In addition to the general case, there are several special cases of nodes
layout. When the wireless nodes are positioned on a line, e.g., antennas along a
highway, the network is called a linear network. Another layout we consider in
this paper is when the nodes are located on a grid in the torus [14,18–20]. In this
type of a network, there are no edge effects (as opposed to a grid in the plane).

The transmission range rt of node t is determined by the power assigned
to that node, denoted by p(t). It is customary to assume that the minimal
transmission power required to transmit to distance d is dα , where the distance-
power gradient α is usually taken to be in the interval [2, 4] (see [29]). Thus,
node t receives transmissions from s if p(s) ≥ d(s, t)α , where d(s, t) is
the Euclidean distance between s and t . In this work we assume α = 2 for
simplicity, although our results can be easily extended to any constant α.

There are two possible models: symmetric and asymmetric. In the sym-
metric settings, also referred to as the undirected model, there is an undirected
communication link between two nodes u, v ∈ T if p(u) ≥ d(u, v)α and
p(v) ≥ d(v, u)α , that is node u can reach node v and node v can reach
node u. The asymmetric variant allows directed (one-way) communication
links between two nodes. Krumke et al. [26] argued that the asymmetric ver-
sion is harder than the symmetric one. This paper addresses the asymmetric
model.

The most fundamental problem in wireless ad-hoc networks is to find a
power assignment which induces a communication graph that satisfies some
topology property. Two natural optimization objectives arise, minimizing the
total energy consumption and maximizing the network lifetime.

This paper is organized as follows. In the rest of this section, we present
the model, discuss previous work and state our results. In Sections 2, 3, 4 we
derive a bicriteria approximation factor for the linear, planar and toral layout of
nodes. Section 5 presents some simulation results, and finally, and in Section 6
we conclude.

1.1 The model
We are given a set T of n transceivers t1, t2, . . . , tn, positioned in the plane
or on the torus, T

2. A power assignment for T is a vector of transmission
powers A = (p(t))t∈T . The transmission possibilities resulting from a power
assignment induce a directed communication graph HA = (T , EA), where
EA = {(s, t) | p(s) ≥ d(s, t)α} is the set of directed edges. The cost of
the power assignment is given by CA = ∑

t∈T p(t). For each node t ∈ T ,
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let Nt ⊆ T be the set of k nodes closest to t , and let r∗
t = maxt ′∈Nt

d(t, t ′).
That is, r∗

t is the minimum range so that t has at least k outgoing edges in HA.
We assume that all the nodes share the same frequency band, and time is

divided into equal size slots that are grouped into frames. Thus, the study
is conducted in the context of TDMA. In TDMA wireless ad-hoc networks,
a transmission scenario is valid if and only if it satisfies the following three
conditions:

1. A node is not allowed to transmit and receive simultaneously.

2. A node cannot receive from more than one neighboring node at the
same time.

3. A node receiving from a neighboring node should be spatially separated
from any other transmitter by at least some distance D.

However, if nodes use unique signature sequences (i.e., a joint TDMA/CDMA
scheme), then the second and third conditions may be dropped, and the
first condition only characterizes a valid transmission scenario. Thus, our
MAC layer is based on TDMA scheduling [15,16,34], such that collisions and
interferences do not occur.

The wireless distribution of communication nodes presumes that each
transceiver does not have unlimited power supply, but rather has to rely on
its own energy sources. Each node t has some initial battery charge bt , which
is sufficient for a limited amount of time, depending on the power assigned
to t . It is common to take the lifetime of a wireless node t to be lt = bt/rt

α .
Let B = (bt )t∈T be a vector of initial battery charges. The network lifetime is
defined as the time it takes the first node to run out of its battery charge. For a
given power assignmentA, the network lifetime of the induced communication
graph with respect to the initial battery charges B is

lA(B) = min
t∈T

lt = min
t∈T

bt

rt α
.

In the special case where all initial battery charges are equal, that is bt = b

for all t ∈ T , we say that B is uniform. Otherwise, B is arbitrary.
For a power assignment A, the communication graph HA is strongly con-

nected if, for any two nodes s, t ∈ T , there exists a directed path from s to t

in HA. In this paper, we require that HA remains strongly connected even if
any set of at most k − 1 nodes is deleted.1 We refer to k as the fault resistance
parameter. If HA satisfies this requirement, HA is a k-fault resistant strongly
connected graph. In short, HA is k-strongly connected.

This paper addresses the minimum energy-maximum lifetime k-fault resis-
tant strong connectivity problem (MEMLkSC).

1The deletion of a node removes all edges adjacent to it as well.
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Problem 1 (MEMLkSC).
Input: A set of nodes T in R

2 or T
2, a vector of initial battery charges

B and a constant k ≥ 1.
Output: A power assignment A, so that HA is a k-fault resistant strongly

connected graph.
Objective: Minimize CA and maximize lA(B).

1.2 Previous work
In [32], a formal study of controlling the network topology by adjusting the
transmission power of the nodes was initiated. Most of the problems are aimed
at computing a low energy power assignment that meets global topological
constraints. In this paper we focus on the topological property of strong con-
nectivity (all-to-all). This property is extremely useful in certain applications
of wireless networks (e.g., a battlefield or rescue operation).

To the best of our knowledge, no non-trivial results are known for both the
total power assignment cost and network lifetime under the k-fault resilience
criterion. In what follows, we present previous results separately for estimating
the cost of the power assignment and for maximizing the network lifetime.

Total energy consumption. Kirousis et al. [25] were the first to study the
strong connectivity problem while minimizing the total energy consumption.
They proved it to be NP-hard for the 3-dimensional Euclidean space for any
value of α. For the planar case, they provided a 2-approximation algorithm.
The NP-hardness for the 2-dimensional Euclidean space for any value of α

was proved in [12], and a simple 1.5-approximation algorithm for the case
α = 1 has been provided in [3]. Further results may be found in [2,5,11].

A natural extension to the topology problems above is to impose the con-
straint of fault resistance. The benefits of a k-fault resistant topology is the
multi-path redundancy for load balancing and higher transmission reliabil-
ity. As power-optimal strong connectivity is NP-hard, so is power-optimal
k-strong connectivity. The best approximation result up to date for planar
asymmetric k-strong connectivity is due to Carmi et al. [9], with an approx-
imation ratio of O(k). Another possible connectivity property is k-edge
connectivity, which implies that the removal of any k edges results in a
disconnected graph. In [7], Calinescu and Wan presented various aspects
of symmetric/asymmetric k-strong connectivity for nodes and edges. Haji-
aghayi et al. [21] gave an algorithm for symmetric k-strong connectivity
with O(k)-approximation factor in geometric graphs. Jia et al. [23] present
various approximation factors (depending on k) for the symmetric k-strong
connectivity. Additional results can be found in [1,4,6,13,22,27].

Network lifetime. In the case of uniform battery charges, maximizing the
network lifetime is equivalent to minimizing the maximal power assigned
to any node. The first to study this problem were Ramanathan and Hain [32],
who provided an optimal polynomial time algorithm for this problem under the
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strong connectivity property. A general approach, which leads to polynomial
time algorithms for any monotone2 property, was developed in [27]. In [5], a
PTAS for the problem under various network tasks was developed by devising
an LP formulation for the problem. For additional results, see [10,24].

Moscibroda and Wattenhofer [28] tackle the problem for data gathering
applications by maximizing the time the network is clustered by a dominat-
ing set. They give approximation algorithms with an approximation ratio of
O(log n) for the cases of both uniform and arbitrary battery charges. In the case
of uniform batteries, they also add the k-fault resilience criterion. A similar
problem, maximizing the residual energy of a node after a broadcast operation,
the so-called critical energy problem, was studied in [30], for which an opti-
mal polynomial time algorithm was designed. Some results for efficient sensor
scheduling and sensing range assignment to maximize the network lifetime
can be found in [8].

1.3 NP-Hardness
The MEMLkSC problem has a double optimization objective—total power
cost and network lifetime. These objectives are quite similar in the sense that
they aim to be energy conserving. Let us introduce notations for the optimal
value of each of them for a given set of nodes T and initial battery charges B:

C∗ = min{CA : HA is k-strongly connected},
l∗ = max{lA(B) : HA is k-strongly connected}.

Unfortunately, the optima in the two problems are typically obtained at
distinct points. For example, Figure 1 depicts a case where the two objec-
tives cannot be achieved simultaneously even for uniform initial battery
charges BU . There are 5 nodes with distances d(a, b) = d(d, e) = 10,
and d(b, c) = d(c, d) = 3. The minimal cost power assignment A1, for
1-strong connectivity, is to assign p(c) = 132, p(b) = p(d) = 32, and
p(a) = p(e) = 102, with C∗ = CA1 = 387 and lA1(BU) = b/169. While
the maximal network lifetime for 1-strong connectivity is obtained in A2,
which assigns p(c) = 32 and p(a) = p(b) = p(d) = p(e) = 102, with
l∗ = lA2(BU) = b/100, but C∗ = CA2 = 409. This fact encourages us to

3 310 10

a b c d e

FIGURE 1
Reaching both optimal values in one power assignments is impossible.

2A property is monotone if it continues to hold when the powers of some nodes are increased
and the other remain unchanged.
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seek a solution which approximates both. A power assignment A is a bir-
creteria (γ, λ)-approximation to the MEMLkSC problem if CA ≤ γC∗ and
lA(B) ≥ l∗/λ.

The NP-Hardness of the MEMLkSC problem easily follows from the fact
that the problem of finding a power assignment with minimum cost that induces
a 1-strongly connected graph is NP-Hard [12].

1.4 Our contribution
We study the MEMLkSC problem for the one-, two-, and three-dimensional
(toral) cases. We analyze the power assignment algorithms for k-strong
connectivity in [9,33] and show that, in addition to admitting provable approx-
imation bounds for the total energy consumption, they also produce a good
approximation factor for the maximal network lifetime in the linear and planar
cases, respectively. We also show a power assignment which optimizes both
the total cost and lifetime in the case of a torus network. In particular, our
main contributions are:

1. For the linear layout of nodes (one-dimensional case), we show that
the algorithm described in [33] results in an optimal network lifetime
in the case of uniform B, which guarantees an (O(1), 1) bicriteria
approximation for the MEMLkSC problem.

2. In the planar (two-dimensional) case, we show that the algo-
rithm described in [9] achieves a bicriteria approximation of
(O(k), O(k log n k

√
nϕ(n))) with high probability, where ϕ(n) is any

function with limn→∞ ϕ(n) = ∞, for the MEMLkSC problem with
arbitrary initial battery charges. For uniform initial battery charges, the
same algorithm is an (O(k), O(1))-approximation.

3. If the nodes are positioned on a torus (three-dimensional), we construct
an optimal power assignment to the MEMLkSC problem for arbitrary
battery charges in terms of total power cost and network lifetime.

4. We provide simulation results that compare the network lifetime of the
power assignment in [9] to the optimal network lifetime in [32].

2 LINEAR NODE LAYOUT

In this section we address the linear layout of nodes T and uniform initial
battery charges BU . We show that the power assignment proposed in [33]
results in an optimal network lifetime for linear k-strong connectivity.

2.1 Linear k-strong connectivity ([33])
Put di = d(ti , ti+1), for 1 ≤ i ≤ n − 1, and

dL
i,k = d(ti , tmax{1,i−k}), dR

i,k = d(ti , tmin{n,i+k}).
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Now, for each i, assign p(ti) = max{(dL
i,k)

2, (dR
i,k)

2}. Let AL,k denote the
resulting power assignment. It was shown in [33] that the cost of this power
assignment is within a constant factor from the optimum.

Easy to see that there are k node-disjoint paths between any two nodes
ti , tj , in both directions, for 1 ≤ i < j ≤ n. For example, the l-th path from
ti to tj , 1 ≤ l ≤ k, can be described as Pl = (ti , ti+l , ti+l+k, ti+l+2k, . . . , tj ).
Note that, if node ti reaches tj in one hop, there is no need to have k node-
disjoint paths from ti to tj , since any failure of a node other than ti , tj does
not interrupt transmission from ti to tj .

2.2 Analysis
In our analysis of the network lifetime lAL,k

(BU) we use the following
observation from [33].

Observation 2.1 ([33]). For a linear layout of nodes T , let AL be a power
assignment so that HA is a k-strongly connected line. Then for each node
ti ∈ T there are at least min{i − 1, k}(min{n − i, k}) nodes to its left (right)
with sufficient range assignment to reach ti in one hop.

The following theorem shows that the network lifetime of the power
assignments AL,k is optimal.

Theorem 2.2. For a linear layout of nodes T , and uniform initial battery
charges BU , the power assignment AL,k results in an optimal network lifetime,
that is lAL,k

(BU) = l∗.

Proof. From Lemma 2.1 it easily follows that

l∗ ≤ min
1≤i≤n

b

(dL
i,k)

2
and l∗ ≤ min

1≤i≤n

b

(dR
i,k)

2
,

since ti has to be reachable in one hop by at least min{i −1, k} (min{n− i, k})
nodes to its left (right). Therefore, lAL,k

(BU) ≤ l∗. �

3 PLANAR NODE LAYOUT

This section addresses the planar layout of nodes T . We analyze the network
lifetime of a power assignment developed in [9].

3.1 Planar k-strong connectivity ([9])
Compute a minimum spanning tree mst of the Euclidean graph induced by T .
Assign to each node t ∈ T the range r∗

t . Denote this initial range assignment
by A′. For each edge e = (t, s) of mst, increase the range of the nodes in
Nt ∪Ns (if necessary), so that each node t ′ ∈ Nt will reach all nodes in Ns∪{s},
and vice versa. Let Ak denote the resulting power assignment. The cost of the
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power assignment has an approximation ratio of O(k) times the optimum and
can be computed in O(n log n) time.

It is rather simple to show that HAk
is k-strongly connected. We construct

k node-disjoint paths along the edges of the mst. Think of each Nt as a large
intersection, which contains k intersection points. For every edge (t, s) in the
mst, all nodes in Ns ∪{s} are made reachable in one hope from the nodes in Nt .
The range assignment of each node t must be at least r∗

t (otherwise k-strong
connectivity is impossible), and in addition sufficient enough to create the
intersections mentioned above.

3.2 Analysis
We start by showing a constant factor approximation in the case of uni-
form initial battery charges BU . Then we present our analysis for the general
case, BA.

3.2.1 Uniform battery charges
First we assume that the initial battery charges BU are uniform, that is bt = b

for all t ∈ T . In our analysis we need the following lemma from [9].

Lemma 3.1 ([9]). Given an mst edge (t, s), let r
t,s
t ′ be the range which node

t ′ ∈ Nt has to be assigned in order to reach all nodes in Ns ∪ {s}. Then

r
t,s
t ′ < r∗

t + d(t, s) + r∗
s .

Note that the inequality holds if t ′ is replaced by any s′ ∈ Ns . For a given
edge e = (t, s), we denote |e| = d(t, s). The following two lemmas provide
upper bounds for the optimal network lifetime l∗.

Lemma 3.2. l∗ ≤ mint∈T
b

r∗
t

2 .

Proof. For a graph to be k-strongly connected, each node has to have at least
k neighbors. Thus, each node t ∈ T has to be assigned p(t) ≥ r∗

t
2. �

Lemma 3.3. l∗ ≤ mine∈mst b

|e|2 .

Proof. Obviously, the network lifetime decreases as the fault resistance factor
increases. That is, the higher the value of k, the lower the maximal possible
network lifetime. This is the case since higher fault resistance requires larger
range assignments. Consider the maximal possible lifetime of a 1-strongly
connected graph. Let Amst be a power assignment in which each node is
assigned to reach its neighbors in the mst. It is easy to see that HAmst is
1-strongly connected. Let el = (u, v) be the longest edge in the mst, so that

lAmst(BU) = min
e∈mst

b

|e|2 = b

|el |2 . (1)

Suppose by contradiction that there exists some power assignment A′ such
that the corresponding network lifetime lA′(BU) > lmst(BU) and HA′ is
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a 1-strongly connected graph. Consider the cut (S, T ) induced by el in mst.
Since the graph HA′ is 1-strongly connected, there exists an edge e′ = (s′, t ′) ∈
EA′ such that s′ ∈ S and t ′ ∈ T . Clearly, e′ is not in the mst. From (1) and
the fact that l′ ≤ b

|e′|2 , we obtain b

|el |2 < b

|e′|2 . This means that the mst is not
a minimum spanning tree of the Euclidean graph induced by T , which is a
contradiction. �

Let r∗
max = maxt∈T r∗

t and let e∗ ∈ mst be the longest edge of the mst, so
that |e∗| = maxe∈mst |e|. We are ready to state our main result.

Theorem 3.4. For the planar k-strong connectivity power assignment Ak and
uniform initial battery charges BU , it holds lAk

(BU) ≥ l∗/9.

Proof. According to the range assignment algorithm, each node t is initially
assigned a power p(t) = r∗

t
2 so as to have at least k neighbors. Then the

power of each node is increased if needed according to some mst edge. We
distinguish between two cases:

Case 1: p(t) = r∗
t

2. If the power of node t does not increase, then obviously
p(t) ≤ r∗2.

Case 2: p(t) > r∗
t

2. Then the power is increased due to some mst edge
e = (u, v). According to Lemma 3.1:

p(t) = (r
u,v
t )2 < (r∗

u + |e| + r∗
v )2.

Consider two possibilities:

(a) If |e| ≤ max{r∗
u, r∗

v }, then

p(t) < 9(max{r∗
u, r∗

v })2 ≤ 9r∗2
max.

(b) If |e| > max{r∗
u, r∗

v }, then

p(t) < 9|e|2 ≤ 9|e∗|2.
We have shown that the power assignment of each node t is
O((max{r∗

max, |e∗|})2). According to Lemmas 3.2 and 3.3, for every t ∈ T
we have lt ≥ l∗/9, and therefore lAk

(BU) ≥ l∗/9. �

3.2.2 Arbitrary battery charges
In the case of arbitrary battery charges we use a probabilistic approach, assum-
ing that nodes are placed uniformly in the unit square, and analyze the lifetime
for a sufficiently large number of nodes n.

Recall that the range increase of some node t ′ is at most r∗
t + d(t, s) + r∗

s ,
where t ′ ∈ Nt and e = (t, s) is some mst edge adjacent to t . Unfortunately, in
the case of arbitrary initial battery charges BA we cannot use previous bounds
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on maximal network lifetime (Lemmas 3.2 and 3.3). In the following lemma
we state a much more general bound on the maximal network lifetime.

Lemma 3.5. l∗ ≤ mint∈T
bt

r∗
t

2 .

We omit the proof; it is similar to the one in Lemma 3.2, but with varying
initial battery charges. The difference between the bounds given by Lem-
mas 3.2 and 3.5 is crucial, since we cannot use them in a similar manner as
we did in the proof of Theorem 3.4. For example, node t ′ can be assigned a
range of O(r∗

t ), which will result in an arbitrarily small network lifetime, as
depicted in Figure 2. We counter that by proving in Lemma 3.6 that the ratio
between r∗

t and r∗
s for any two nodes is bounded with high probability under

uniform distribution of nodes in the plane for k < n
(1+γ ) log n

, where γ is any
positive constant. Let r∗

max = maxt∈T r∗
t and r∗

min = mint∈T r∗
t .

Lemma 3.6. For a set of n points T placed uniformly in the unit square

lim
n→∞ Pr

[
r∗

max

r∗
min

= O

(√
k log n

k
√

nϕ(n)

)]
= 1,

where ϕ(n) is any function with limn→∞ ϕ(n) = ∞.

To prove the lemma, we will need Lemmas 3.9 and 3.10 below. Before we
get there, let us point out an additional difficulty, due to the fact that we cannot
use the bound projected by the longest edge in the mst (Lemma 3.3). To cope
with that, we use the following lemma.

Lemma 3.7 (Penrose [31]). For n points placed uniformly in the unit square,
let Mn (respectively, M ′

n) be the longest edge-length of the nearest neigh-
bor graph (respectively, the minimum spanning tree) on these points. Then,
limn→∞ Pr[Mn = M ′

n] = 1.

Since Mn ≤ r∗
max for any value of k, and e∗ = M ′

n, we can easily derive
the following conclusion.

r∗
t

r∗
t ′ t

t ′

s
e

FIGURE 2
Node t ′ ∈ T is assigned a range of O(r∗

t ′ ) to reach all nodes in Ns . The lifetime of t ′ is decreased
by a factor of r∗

t /r∗
t ′ , which may be arbitrarily large.



“aswin104” — 2008/10/28 — 13:51 — page 11 — #11

Lifetime Efficient Connectivity 11

Conclusion 3.8. For a set of n points, placed uniformly in the unit square,

lim
n→∞ Pr[|e∗| ≤ r∗

max] = 1.

Lemma 3.9. For a set of n points, placed uniformly in the unit square,

lim
n→∞ Pr

[
r∗

max > 2

√
(k + 1) log n

π(n − 1)

]
= 0.

Proof. Let ε = 2
√

(k+1) log n
π(n−1)

. Since

Pr[r∗
max > ε] = Pr

(⋃
t∈T

[r∗
t > ε]

)
≤
∑
t∈T

Pr[r∗
t > ε],

we have
lim sup
n→∞

Pr[r∗
max > ε] ≤ lim sup

n→∞

∑
t∈T

Pr[r∗
t > ε].

We will prove that limn→∞
∑

t∈T Pr[r∗
t > ε] = 0. For any node t , the

probability that there are at most k − 1 out of the other n − 1 nodes within a
distance ε from t is maximal when the point t is a corner of the unit square.
Therefore,

∑
t∈T

Pr[r∗
t > ε] ≤ n

k−1∑
i=0

(
n − 1

i

)(
πε2

4

)i (
1 − πε2

4

)n−1−i

≤ n

k−1∑
i=0

(1 − 1
4πε2)n−1

i!

(
1
4πε2(n − 1)

1 − 1
4πε2

)i

= n

(
1 − (k + 1) log n

n − 1

)n−1 k−1∑
i=0

1

i!

(
(k + 1) log n

1 − (k+1) log n
n−1

)i

≤ n

e(k+1) log n

k−1∑
i=0

1

i!

(
(k + 1) log n

1 − (k+1) log n
n−1

)i

= 1

nk

k−1∑
i=0

1

i!

(
(k + 1) log n

1 − (k+1) log n
n−1

)i

≤ k

nk(k − 1)!

(
(k + 1) log n

1 − (k+1) log n
n−1

)k−1

≤ k

n(k − 1)!
(

(k + 1) log n

n − 1 − (k + 1) log n

)k−1
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Clearly limn→∞
∑

t∈T Pr[r∗
t > ε] = 0 for k < n

(1+γ ) log n
, where γ is any

positive constant. �

Lemma 3.10. For a set of n points, placed uniformly in the unit square

lim
n→∞ Pr

[
r∗

min <

√
1

2π(n − 1) k
√

nϕ(n)

]
= 0,

where ϕ(n) is any function with limn→∞ ϕ(n) = ∞.

Proof. Let δ =
√

1
2π(n−1) k

√
nϕ(n)

. Similarly to the previous lemma,

Pr[r∗
min < δ] = Pr

(⋃
t∈T

[r∗
t < δ]

)
≤
∑
t∈T

Pr[r∗
t < δ],

so that
lim sup
n→∞

Pr[r∗
min < δ] ≤ lim sup

n→∞

∑
t∈T

Pr[r∗
t < δ].

We will prove that limn→∞
∑

t∈T Pr[r∗
t < δ] = 0. For any node t , the

probability that there are at least k out of the other n − 1 nodes within a
distance δ from t is maximal when the point t is at a distance of at least δ

from the boundary of the unit square. Let ai = (
n−1

i

)
(πδ2)i(1 − πδ2)n−1−i ,

for 0 ≤ i ≤ n − 1. It is easy to verify that, for δ ≤
√

1
2π(n−1)

, we have

ai+1 ≤ ai/2 for each i. Therefore,

∑
t∈T

Pr[r∗
t < δ] ≤ n

n−1∑
i=k

(
n − 1

i

)
(πδ2)i(1 − πδ2)n−1−i

≤ 2n

(
n − 1

k

)
(πδ2)k(1 − πδ2)n−1−k

≤ 2n(n − 1)!
k!(n − 1 − k)! (πδ2)k ≤ 2n(n − 1)k

k! (πδ2)k �

Lemma 3.6 follows easily from Lemmas 3.9 and 3.10. We are ready to state
our main result.

Theorem 3.11. For a set of n points, placed uniformly in the unit square,
arbitrary initial battery charges B and a planar k-strong connectivity power
assignment Ak , the network lifetime lAk

(BA) is at most O(k log n k
√

nϕ(n))

times worse than l∗ with high probability, where ϕ(n) is any function with
limn→∞ ϕ(n) = ∞.

Proof. The proof resembles the proof of Theorem 3.4. If the power of node t

is increased due to some mst edge e = (u, v), then according to Lemma 3.1
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it holds p(t) = (r
u,v
t )2 < (r∗

u + |e| + r∗
v )2. In conjunction with Conclu-

sion 3.8, we have p(t) ≤ 9r∗ 2
max with high probability. By Lemma 3.5,

l∗ ≤ mint∈T bt/r
∗
t

2. Finally, from Lemma 3.6, for any node t ,

(r∗
max/r

∗
t )2 ≤ (r∗

max/r
∗
min)

2 = O(k log n
k
√

nϕ(n))

with high probability. This rests our proof. �

4 TORUS NODES LAYOUT

Here we assume that the nodes are positioned on a unit torus and have arbitrary
initial battery charges BA. We also assume that the number of nodes is suffi-
ciently large, so that flattening the torus produces only a negligible difference
in the distance between any two nodes. In other words, we assume that the
close environment of each node is a flat grid.

We claim that assigning each node with enough power to reach its k-closest
neighbors is sufficient to induce a k-strongly connected communication graph,
and the power assignment is optimal in terms of lifetime and total power.

4.1 Optimal power assignment
Let AT be a power assignment, so that p(t) = (r∗

t )2 for every t ∈ T . It is
easy to see that AT is indeed optimal in terms of both network lifetime and
total power, since, in any k-strongly connected graph, each node has enough
power to reach at least k other nodes. Since on a unit torus the range to the k

closest nodes is the same for all nodes, we may denote r∗ = r∗
t , for any t ∈ T .

4.2 k-strong connectivity
We argue that the induced communication graph HAT

is indeed k-strongly
connected. To prove that, we need to show the existence of k node-disjoint
paths from any s ∈ T to any t ∈ T .

On a unit torus, it is usually the case that each node has more than k

neighbors in HAT
. Let k′ be the number of these neighbors. We shall construct

k′ node-disjoint paths from s to t . Note that k′ is divisible by 4. We refer
to the points, where these k′ nodes around s are located, as origin points.
Similarly, the closest k′ nodes to t are destination points (see Figure 3). It is
easy to see that each of the k′ node-disjoint paths from s to t starts at one of
the nodes in the origin points and ends at one of the destination points.

It turns out to be non-trivial to find k′ node-disjoint paths from s to t . We
address the following alternative formulation of the problem. Suppose there
are k′ (chess-like) pieces located at the origin points. We need to navigate each
piece through the grid points in a way that no point is used by more than one
piece, while a single piece move is from one grid point to another within a
distance of at most r∗ (Figure 4).
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s

t

origin points

destination points

FIGURE 3
Origin and destination points, k′ = 20.

s

(a) Before the move

s

(b) After the move

FIGURE 4
The traveled distance is 2, while r∗ = √

5.

The pieces will be distinguished according to their initial location into two
classes—axis pieces and inner pieces. There are four groups of axis points and
four groups of inner points (see Figure 5). The pieces are usually moved in
groups, each having its own movement pattern. Each group is navigated along
a route, which depends on the relative location of s and t . Let l = �r∗
 be the
number of points in an axis group. Next we discuss the movement patterns of
each group type.

Axis group movement. Each axis group can move either horizontally or
vertically. The move is performed by moving the last piece to the head of the
group. For example, in Figure 6(a), a horizontal axis makes one move right,
and in Figure 6(b) it then performs a left turn of 90◦. The distance traveled by
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axis

inner

FIGURE 5
Axis and inner groups.

(a) Horizontal move
right

(b) A 90◦ left turn (c) Final position

FIGURE 6
Axis movement to the right and a left turn.

(a) Horizontal move
right

(b) A 90◦ left turn (c) Final position

FIGURE 7
Inner group movement.

a piece is at most l, and therefore the move is legal. The final position is given
in Figure 6(c).

Inner group movement. A group of inner pieces can move horizontally and
vertically. While moving horizontally (vertically, resp.), each row (column,
resp.) moves in a similar way to a horizontal (vertical, resp.) axis group. The
turn is then performed on each row (column, resp.) in the same way as for an
axis group (Figure 7).

We now demonstrate the navigation of the k′ pieces at the origin points
to the destination points. Let xs, ys and xt , yt be the x, y-coordinates of the
nodes s and t , respectively. Without loss of generality, xs ≤ xt and ys ≤ yt .
We distinguish between several cases:

Case 1. xt > xs + 2l, yt > ys + 2l.
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s

t

axis

inner

FIGURE 8
Case 1 navigation for r∗ = √

5.

This case is very simple. The sets of origin and destination points cannot
possibly intersect. The routes of the axis and inner groups are depicted in
Figure 8.

Case 2. xs + l < xt < xs ≤ 2l, ys + l < yt .

In this case, the destination points are entirely in the first quadrant relative to s.
First we consider a situation where the sets of origin and destination points do
not intersect.

The routes remain the same as in the previous case, except for the inner
group of pieces in the first quadrant of the origin points (Figure 9). The first
quadrant is still navigated to the third quadrant of the destination points, but
in a different way. These pieces are navigated in a 2-step process as described
below.

The first step, called trimming, is performed when the sets of origin points
and destination points have different projections on the x-axis. The leftmost
column and bottom row of inner pieces are moved to the corresponding top
row and rightmost column, respectively. This process repeats until the remain-
ing sets of points have the same projections on the x-axis. For example, in
Figure 10 we are able to trim two columns and two rows. The 4 columns
of remaining pieces are positioned exactly below the remaining 4 columns
of destination points.
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s

t

axis

inner

FIGURE 9
Case 2 navigation for r∗ = √

5 and l = 2.

origin points

destination points

FIGURE 10
Trimming.

The second step is to navigate the remaining pieces. Note that the number
of pieces in the leftmost column is the same as the number of destination points
in the rightmost column, the number of pieces in the second column from the
left is the same as the number of destination points in the second column from
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(a) Balancing (b) Moving up

FIGURE 11
Balance and movement up (cont. from Figure 10).

s

t origin points

destination points

intersection points

FIGURE 12
Case 2-intersection.

the right, and so on. We start by balancing the columns of pieces to match in
size the columns of destination points above them. Let m be the number of
columns (numbered from left to right), and let aj , 1 ≤ j ≤ m, be the initial
number of pieces in the j -th column. We move aj − am−j+1 pieces from
j -th column to the (m − j + 1)-st column3, 1 ≤ j ≤ �m/2
. For example,
in Figure 11(a), two nodes from the leftmost column move to the rightmost

3It holds aj ≥ aj+1 for any 1 ≤ j ≤ m − 1.
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s

t

origin points

destination points

intersection points

FIGURE 13
Case 2-intersection.

column and one node from the second column moves to column 3. Finally,
each column moves up as before, the only difference being that the origin
points where the relocated pieces have resided are skipped (Figure 11(b)). By
the end of this step (shown only in part in Figure 11), all pieces have arrived
at their final destination.

If there is an intersection between the sets of origin and destination points
(Figure 12), the routes remain the same and we still navigate the first quadrant
of origin points into the third quadrant of destination points, but in a different
way. Note that we do not move the pieces in the intersection points, as they
have already reached their destination.

We now examine the intersecting quadrants in more detail. In Figure 13 we
see two intersecting quadrants with r∗ = √

68. The trimming, balancing and
moving-up is performed in a similar way as before for columns/rows without
intersecting points (Figure 14).

Finally, on the remaining columns, with intersecting points, we perform
an operation of crossing. The first type of crossing is for rows which do not
contain intersection points. We simply move the whole row to a matching row
in the set of destination points (Figure 15(a)).

As for rows with intersection points, we perform another type of crossing
(Figure 15(b)), which is iterative, and continues until there are no pieces to
move. In each iteration the pieces from the bottom row and the leftmost column
are moved to the destination top row and rightmost column, respectively.

Case 3. xs + l < xt , ys ≤ yt < ys + l.
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s

t

(a) Trimming

s

t

(b) Balancing and moving up

FIGURE 14
Trimming, balancing and moving up of intersecting quadrants (case 2).

s

t

(a) Crossing of rows without intersection
points

s

t

(b) Crossing of rows with intersection
points

FIGURE 15
Case 2, intersection-crossing.

In this last case, the y-coordinate of some of the points in the destination
set is smaller than ys . Again, we start from a non-intersecting position of the
sets of origin and destination points.

The navigation we propose uses the toroidal properties of the space. We
route the second and third quadrants (with all three adjacent axes) leftward
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s

t

FIGURE 16
Case 3 navigation for r∗ = √

17 and l = 4.

s

t

FIGURE 17
Case 3-moving the remaining axis group (cont. from Figure 16).

(with a small vertical adjustment) until they emerge from the right and arrive
directly at the destination quadrants 1 and 4 and the adjacent axes. This naviga-
tion is demonstrated in Figure 16. The routed pieces and their final destinations
are outlined by a dotted rectangle. The navigation of the remaining inner
groups and one axis group is described below.

The pieces in the remaining axis group are moved to the row of the destina-
tion axis, just to the right of the rightmost origin point in that row (Figure 17).
This move is possible since s itself reaches the rightmost point in any row of
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the set of origin points and yt < ys + l. From there, it is a basic movement
right until all the axis group pieces are in place.

Next, the pieces in the first and fourth quadrants of the set of origin points
are navigated to the third and second quadrants in the set of destination points,
respectively. Note that the projections on the x-axis of the third destination
quadrant and the first origin quadrant might intersect (outlined by a solid
rectangle in Figure 17). Pieces that fall under this intersection are balanced
and moved up as before.

The rest of the pieces in these quadrants are navigated using the toroidal
properties of the space (see an example in Figure 18). The pieces in the first
quadrant are moved up until they emerge from the bottom. Then they turn
right and then left again, to match the free spots in the third quadrant of the

s

t

FIGURE 18
Case 3-moving the remaining inner groups (cont. from Figure 17).
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s

t

FIGURE 19
Case 3-intersection.

destination points. It is then balanced and moved up as before. The pieces in
the third quadrant of the set of origin points are moved down until they emerge
from the top. Unfortunately, we cannot take a left turn similarly to case of the
first quadrant, since we then step on the trail of the pieces of the first quadrant.
Instead, we take a right turn and emerge from the right. From there we need
balancing and then a final movement to the destination points.

Finally, suppose that the sets of origin and destination points intersect
(Figure 19). The navigation is exactly the same as in the non-intersecting
case. This is due to the fact that the number of intersection points in the first
quadrant of the origin set of points is the same as the number of intersection
points in the third quadrant of the destination set. The equality also holds for
intersection points in the fourth and second quadrants of the set of origin and
destination points, respectively.

We can now conclude the following Theorem.

Theorem 4.1. HAT
is k-strongly connected.

5 SIMULATIONS

Our simulations study the approximation ratio of the network lifetime resulting
from the power assignment in Section 3. We compare the network lifetime
lAk

(BU) to the optimal lifetime l∗, which results from the algorithm in [32].

5.1 Optimal network lifetime
The algorithm in [32] is aimed at minimizing the maximal power assigned
to some node, that is minimizing maxt∈T p(t), while maintaining k-strong
connectivity. Note that there are at most O(n2) different ranges that can be
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FIGURE 20
The lifetime approximation ratio for k = 2.

FIGURE 21
The lifetime approximation ratio for k = 6.

assigned. Since we look for maximizing the network lifetime, we can simply go
over these ranges, starting from the smallest one, until we obtain a k-strongly
connected graph. The smallest range r∗ which induces a k-strongly connected
graph is also the upper bound for the network lifetime, that is l∗ = b/r∗.

We performed a binary search over the sorted collection of ranges; for each
range r we assigned p(t) = r2 for all t ∈ T , and tested each induced graph for
k-strong connectivity. The k-strong connectivity test was done by a reduction
to a network flow problem according to Menger’s theorem [17].

5.2 Results
We computed the ratio l∗/lAk

for uniform random distribution of nodes on a
unit square. We tested the network lifetime of k-strongly connected networks
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FIGURE 22
The lifetime approximation ratio for k = 10.

for various values of n and k. The simulations have been carried out for values
of n ranging from 50 to 120 with steps of 2, and k being an integer value in
the interval [2, 11]. For each pair of values n and k, we took the average of 5
tries.

The ratio ranged from 1.97 to 4.25 with an average value of 2.77. This
is better than the theoretical upper bound of 9. Figures 20, 21, and 22 show
the approximation ratio as a function of n, for k = 2, k = 6, and k = 10,
respectively.

6 CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of inducing a k-strongly connected
communication graph in a wireless ad-hoc network, with two optimiza-
tion objectives: minimizing the total energy consumption and maximizing
the network lifetime. The communication graph is induced by adjusting the
transmission powers of the wireless nodes.

We addressed three different node layouts: linear, planar and toral. For
each, we proposed a power assignment which obtains a good upper bound on
the total energy and analyzed the lifetime of the induced network. To the best
of our knowledge, this is the first attempt to provide a bicriteria approximation
ratio for the total power assignment cost and the network lifetime under the
k-fault resilience criterion.

We also conducted simulations to test the performance of the induced
network in terms of lifetime.

One possible future direction is to consider a layout of nodes on a grid
in the plane. The difference from the case studied in this work will be the
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edge effects. In addition, we believe that it is possible to improve the network
lifetime analysis in the case of arbitrary battery charges and planar layout
of nodes. It could also be of interest to derive a tighter upper bound on the
network lifetime, for uniform batteries, to match the simulation results.
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