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Abstract

We consider a geometric optimization problem that arises in network design. Given a set P
of n points in the plane, source and destination points s, t ∈ P , and an integer k > 0, one has to
locate k Steiner points, such that the length of the longest edge of a bottleneck path between s
and t is minimized. In this paper, we present an O(n log2 n)-time algorithm that computes an
optimal solution, for any constant k. This problem was previously studied by Hou et al. [17],
who gave an O(n2 log n)-time algorithm. We also study the dual version of the problem, where
a value λ > 0 is given (instead of k), and the goal is to locate as few Steiner points as possible,
so that the length of the longest edge of a bottleneck path between s and t is at most λ.

Our algorithms are based on two new geometric structures that we develop — an (α, β)-
pair decomposition of P and a floor (1 + ε)-spanner of P . For real numbers β > α > 0,
an (α, β)-pair decomposition of P is a collection W = {(A1, B1), . . . , (Am, Bm)} of pairs of
subsets of P , satisfying: (i) For each pair (Ai, Bi) ∈ W, both minimum enclosing circles of
Ai and Bi have a radius at most α, and (ii) For any p, q ∈ P , such that |pq| ≤ β, there
exists a single pair (Ai, Bi) ∈ W, such that p ∈ Ai and q ∈ Bi, or vice versa. We construct
(a compact representation of) an (α, β)-pair decomposition of P in time O((β/α)3n log n). In
some applications, a simpler (though weaker) grid-based version of an (α, β)-pair decomposition
of P is sufficient. We call this version a weak (α, β)-pair decomposition of P .
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For ε > 0, a floor (1 + ε)-spanner of P is a (1 + ε)-spanner of the complete graph over P
with weight function w(p, q) = b|pq|c. We construct such a spanner with O(n/ε2) edges in time
O((1/ε2)n log2 n), even though w is not a metric.

Finally, we present two additional applications of an (α, β)-pair decomposition of P . In the
first, we construct a strong spanner of the unit disk graph of P , with the additional property that
the spanning paths also approximate the number of substantial hops, i.e., hops of length greater
than a given threshold. In the second application, we present an O((1/ε2)n log n)-time algorithm
for computing a one-sided approximation for distance selection (i.e., given k, 1 ≤ k ≤

(
n
2

)
, find

the k’th smallest Euclidean distance induced by P ), significantly improving the running time of
the algorithm of Bespamyatnikh and Segal.

1 Introduction

Let P be a set of n points (terminals) in the Euclidean plane. A path in P is a path in the complete
graph over P . A path in P between points p, q ∈ P is a bottleneck path if it minimizes the length
of the longest edge in the path. In the Euclidean bottleneck Steiner path (EBSP) problem, we are
given P , two terminals s, t ∈ P and an integer k, and we need to reduce, as much as possible, the
length of the longest edge in a bottleneck path between s and t, by placing k new terminals, called
Steiner points. The EBSP problem arises naturally in the design of networks, in particular, wireless
communication networks. For example, when it is required to reduce the length of the longest edge
(i.e., the maximum transmission range) in a bottleneck path between two transceivers, s and t, in
an existing network consisting of n transceivers, by adding k new transceivers. See [17, 18, 25] for
more applications in sensor networks.

The Euclidean bottleneck Steiner tree (EBST) problem is closely related to the EBSP problem.
In the EBST problem, the goal is to find a spanning tree of P with k Steiner points, minimizing the
length of the longest edge in the tree. The EBST problem is NP-hard; moreover, unless P = NP ,
there is no polynomial-time approximation algorithm for the problem with approximation ratio less
than

√
2 [29]. Unlike the EBST problem, the EBSP problem is solvable in polynomial time. Ignoring

(only for now) the dependence on k, Hou et al. [17] gave an O(n2 log n))-time exact algorithm for
the problem, based on a binary search in the set of all potential lengths (of the longest edge). In
this paper, we show that it suffices to consider a certain subset of potential lengths. This subset
is of linear size and can be computed efficiently, via an appropriate (α, β)-pair decomposition of P
(see below), leading to an O(n log2 n)-time algorithm for the EBSP problem.

We also study the dual version of the EBSP problem: Given P , two terminals s, t ∈ P and a
constant λ > 0, place as few Steiner points as possible, so that the length of the longest edge in a
bottleneck path between s and t is at most λ. We present an O(k∗2n log2 n)-time exact algorithm
for this problem, where k∗ is the number of required Steiner points. The algorithm is based on
a floor (1 + ε)-spanner of P (see below), which, in turn, is based on an appropriate (α, β)-pair
decomposition of P . Again, the corresponding version of the EBST problem is NP-hard (see [24]).

Our algorithms are based on two new geometric structures, which are interesting on their own.
For real numbers β > α > 0, an (α, β)-pair decomposition (denoted PDα,β) of P , is a collection
W = {(A1, B1), . . . , (Am, Bm)} of pairs of subsets of P , satisfying the following two properties: (i)
For each pair (Ai, Bi) ∈ W, both minimum enclosing circles of Ai and Bi have a radius at most
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α, and (ii) for any p, q ∈ P , such that |pq| ≤ β, there exists a single pair (Ai, Bi) ∈ W, such that
p ∈ Ai and q ∈ Bi, or vice versa. The weight of a PDα,β is

∑m
i=1(||Ai|| + ||Bi||). We construct (a

compact representation of) an (α, β)-pair decomposition of P of weight O((β/α)2n log n) in time
O((β/α)3n log n). More precisely, we describe how to obtain a PDα,β of P from a, so called, semi-
separated pair decomposition of P (with respect to β/α), see below. Sometimes, it is enough to
require a weaker version of property (ii), that is, (ii’) for any p, q ∈ P , such that α < |pq| ≤ β,
there exists a single pair (Ai, Bi) ∈ W, such that p ∈ Ai and q ∈ Bi, or vice versa. We refer to a
collection of subsets of P satisfying properties (i) and (ii’) as a weak (α, β)-pair decomposition of
P . Such a weak decomposition of weight O((β/α)2n) can be easily constructed in O((β/α)2n log n)
time.

The second structure that we introduce is the floor (1 + ε)-spanner. For ε > 0, a floor (1 + ε)-
spanner of P is a (1 + ε)-spanner of the complete graph over P with weight function w′(p, q) =
b|pq|c, where |pq| is the Euclidean distance between points p and q. Notice that w′ is not a
metric; in particular, the shortest path between p and q is not necessarily the edge between them.
Nevertheless, we construct a floor (1+ε)-spanner of P with O(n/ε2) edges in time O((1/ε2)n log2 n).
Informally, the edge set of a floor (1 + ε)-spanner is the union of the edge set of a minimum
spanning tree of P , a set that is obtained from an appropriate (α, β)-pair decomposition of P , and
an additional set that is obtained by picking a special edge in each cone around each point in P ,
as in the construction of a Θ-graph (see [13,20]).

Finally, we present two additional applications of an (α, β)-pair decomposition. In the first,
which demonstrates the full power of an (α, β)-pair decomposition, we construct a spanner of the
unit disk graph of P (denoted udg(P )), with some desirable properties. That is, given constants
t > 1 and 0 < λ < 1, we construct a spanner G of udg(P ) with the following properties: For any
two points p, q ∈ P , there exists a path ΠG(p, q) in G between p and q, such that (i) the length
of ΠG(p, q) is bounded by t times the length of the shortest path between p and q in udg(P ), (ii)
each edge in ΠG(p, q) is of length at most |pq|, and (iii) the number of edges in ΠG(p, q) of length
greater than λ is at most the number of such edges in the shortest path between p and q in udg(P ).
Properties (i) and (ii) simply say that G is a strong t-spanner of udg(P ), but property (iii) is new.
One can think of λ as a threshold, such that the delay of an edge is substantial if and only if its
length is above λ. Property (iii) guarantees that the delay caused by using ΠG(p, q) is not greater
than the delay caused by using the shortest path between p and q in udg(P ). The number of edges
in the spanner G is only O(s4n) and it can be constructed in time O(s4n log2 n), where s = s(t, λ)
is an appropriate constant.

The second application deals with the well-known distance selection problem. Given an integer
k, 1 ≤ k ≤

(
n
2

)
, compute the k-th smallest Euclidean distance, dk, among the

(
n
2

)
distances

determined by pairs of points in P . The best known deterministic algorithm for computing a one-
sided approximation of dk (i.e., a value d such that dk ≤ d ≤ (1 + ε)dk) is due to Bespamyatnikh
and Segal [6] and runs in time O(n log3 n). We present a deterministic O(n log n)-time algorithm
for computing a one-sided approximation of dk, using an appropriate (α, β)-pair decomposition
of P .
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1.1 Related work

The EBST problem has received much attention. The best approximation ratio to date is 1.866,
achieved by an algorithm of Wang and Li [30]. Bae et al. [4] presented a Θ(n log n)-time exact
algorithm and an O(n2)-time exact algorithm for the special cases k = 1 and k = 2, respectively.
Li et al. [23] presented a (

√
2 + ε)-approximation algorithm, and a matching

√
2 inapproximability

result, for a special case of the problem where paths may not contain edges between Steiner points.
The dual version of the EBST problem has also received considerable attention, see, e.g., [11,12,24].

A pair decomposition of a set P of n points in the plane is a collectionW = {(A1, B1), . . . , (Am, Bm)}
of pairs of subsets of P , such that for any two points p, q ∈ P , there exists a single pair (Ai, Bi) ∈ W
such that p ∈ Ai and q ∈ Bi, or vice versa. Callahan and Kosaraju [9] introduced the well-
separated pair decomposition (WSPD). A pair decomposition W is well-separated with respect to
a parameter s > 0, if, for each pair (Ai, Bi) ∈ W, the distance between Ai and Bi is at least
s ·max{r(DAi), r(DBi)}, where r(DAi) and r(DBi) are the radii of the minimum enclosing disks of
Ai and Bi, respectively. Callahan and Kosaraju showed that a WSPD consisting of m = O(s2n)
pairs can be constructed in O(s2n + n log n) time; the weight of the decomposition can be Ω(n2).
This disadvantage has led Varadarajan [28] to define the semi-separated pair decomposition (SSPD).
A pair decomposition W is semi-separated with respect to s, if, for each pair (Ai, Bi) ∈ W, the dis-
tance between Ai and Bi is at least s ·min{r(DAi), r(DBi)}. Varadarajan showed how to compute a
SSPD of weight O(n log4 n) in O(n log5 n) time, and used it to efficiently compute a min-cost perfect
matching. Subsequently, Abam et al. [1] showed how to construct a SSPD of weight O(s2n log n) in
O(s2n log n) time, and used it to construct region-fault tolerant geometric spanners. Since any pair
decomposition has weight Ω(n log n) (see [7]), the result of Abam et al. [1] is optimal. Recently,
Abam and Har-Peled [2] gave alternative constructions of SSPDs.

Geometric spanners have been studied extensively in the last few years, see the book by
Narasimhan and Smid [26] for a comprehensive survey of the topic. Θ-graphs were introduced
by Clarkson [13] and Keil [20]; they are especially useful for navigation. Notice that any strong
(1 + ε)-spanner of a set P of n points in the plane is also a (1 + ε) spanner of udg(P ), and such
a spanner with O(n) edges can be constructed in O(n log n) time (see [31]). Unit disk graphs are
often used to model wireless networks; see the book by X-Y Li [21] for results on spanners in the
context of wireless networks. In particular, substantial research has been done on constructing
spanners of unit disk graphs in a local manner, see, e.g., [3,8,22]. Roditty and Segal [27] considered
spanners containing bounded leg short paths, i.e., short paths consisting of edges whose length does
not exceed a prescribed value L.

The best deterministic algorithm to date for the distance selection problem runs in time
O(n4/3 log2+ε n) (see Katz and Sharir [19]), and the currently best deterministic algorithm for
computing a one-sided approximation of the k-th smallest distance runs in time O(n log3 n+n/ε2)
(see Bespamyatnikh and Segal [6]). Chan [10] presented an O(n log n+n2/3k1/3 log5/3 n) expected-
time algorithm for distance selection, and Har-Peled and Raichel [16] recently presented an O(n/ε2)
expected-time algorithm for computing a two-sided approximation of the k-th smallest distance.
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1.2 Overview

The rest of the paper is organized as follows. In Section 2, we introduce the notion of an (α, β)-
pair decomposition of P , and describe how to construct a compact representation of it of weight
O((β/α)2n log n) in time O((β/α)3n log n). We also define the notion of a weak (α, β)-pair decom-
position of P , which is essentially a grid-based construction. In Section 3, we demonstrate the full
power of an (α, β)-pair decomposition, by constructing in O(n log2 n) time a strong hop-sensitive
spanner of udg(P ) with O(n) edges. In Section 4, we present solutions to the EBSP problem and
to its dual version. For the former problem, we present an O(k2n log n+ n log2 n)-time algorithm,
and for the latter problem, we present an O(k∗2n log2 n)-time algorithm. Section 5 deals with the
construction of a floor spanner of P . We show how to construct a floor (1 + ε)-spanner of P with
O(n/ε2) edges in time O((1/ε2)n log2 n), for any ε > 0. Finally, in Section 6, we employ an (α, β)-
pair decomposition of P to obtain a more efficient implementation of Bespamyatnikh and Segal’s
algorithm for computing a one-sided approximation of the k’th smallest distance induced by P , for
1 ≤ k ≤

(
n
2

)
. The new running time is O((1/ε2)n log n).

2 (α, β)-Pair Decomposition

Throughout this paper, |pq| denotes the Euclidean distance between points p and q, d(Di, Dj)
denotes the distance between the boundaries of two disjoint disks Di and Dj , r(D) denotes the
radius of a disk D, and DA denotes the smallest enclosing disk of a set of points A.

Given a set P of n points in the plane and two real numbers β > α > 0, we are interested in a
collection W = {(A1, B1), (A2, B2), . . . , (Am, Bm)} of pairs of subsets of P , satisfying the following
two properties:

(i) For each pair (Ai, Bi) ∈ W, max{r(DAi), r(DBi)} ≤ α, and

(ii) For any two distinct points p, q ∈ P such that |pq| ≤ β, there exists a single pair (Ai, Bi) ∈ W,
such that p ∈ Ai and q ∈ Bi, or vice versa.

We refer to such a structure as an (α, β)-pair decomposition (denoted, PDα,β) of P . The size of a
PDα,β is the number of pairs, m, and its weight is

∑m
i=1(‖Ai‖+ ‖Bi‖), where ‖Ai‖ (resp. ‖Bi‖) is

the cardinality of Ai (resp. Bi). In this section, we show how to construct in O(c4n log n) time a
PDα,β of P of size O(c4n) and weight O(c4n log n), where c = β

α .
Sometimes, it is enough to require property (ii’) below instead of property (ii).

(ii’) For any two distinct points p, q ∈ P such that α < |pq| ≤ β, there exists a single pair
(Ai, Bi) ∈ W such that p ∈ Ai and q ∈ Bi, or vice versa.

We refer to a collection of pairs of subsets of P satisfying properties (i) and (ii’) as a weak (α, β)-pair
decomposition (denoted, PDw

α,β) of P .

2.1 PDα,β of P

Let A and B be two sets of points in the plane and let s > 0 be a constant. We say that A and B
are semi-separated with respect to s (or with separation s), if d(DA, DB) ≥ s ·min{r(DA), r(DB)}.
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Definition 2.1. Let P be a set of n points in the plane and let s > 0 be a constant. A semi-
separated pair decomposition (SSPD) of P with respect to s is a collection {(A1, B1), . . . , (Am, Bm)}
of pairs of subsets of P , such that:

(i) Ai and Bi are semi-separated with respect to s, for i = 1, . . . ,m, and

(ii) For any two distinct points p, q ∈ P , there exists a single pair (Ai, Bi) in the collection, such
that p ∈ Ai and q ∈ Bi, or vice versa.

Abam et al. [1] showed that a SSPD of P of size O(s2n) and weight O(s2n log n) can be
constructed in O(s2n log n) time. We construct a PDα,β of P from this SSPD.

Let P be a set of n points in the plane and let β > α > 0 be two real numbers. We first
construct in O(s2n log n) time a SSPD S of P with respect to s = β/α. Next, we remove all pairs
(Ai, Bi) ∈ S for which d(DAi , DBi) > β. Denote by W the collection of pairs surviving this step,
and notice that for any two distinct points p, q ∈ P such that |pq| ≤ β, there exists a single pair
(Ai, Bi) ∈ W, such that p ∈ Ai and q ∈ Bi (or vice versa), and for each pair (A,B) ∈ W, we have
min{r(DA), r(DB)} ≤ β/s = α.

Now, for each pair (A,B) ∈ W, we either keep it in W, if max{r(DA), r(DB)} ≤ α, or we
replace it by a collection of O((β/α)2) pairs, otherwise. Consider a pair (A,B) ∈ W such that
max{r(DA), r(DB)} > α, and assume without loss of generality that r(DA) < r(DB). Put γA =
r(DA) ≤ α, and let oA be the center of DA. Let h be the half plane containing DB that is defined by
the line through oA perpendicular to the line through oA and the center of DB. We partition h into

t = dπ/θe cones C1, . . . , Ct, each with apex at oA and angle at most θ, where θ = 2 arcsin
(

α
2(β+γA)

)
;

see Figure 1(a). Let B(i) be the subset consisting of points of B that lie in DB ∩ Ci and whose
distance from oA is at most β + γA. We now explain how to partition B(i) into disjoint subsets

B
(i)
1 , . . . , B

(i)
l , such that B

(i)
j is contained in a disk of radius at most α, for j = 1, . . . , l.

(b)

DA

DB

oA

≤ θ

Ci

(a)

B(i)

DA

oA B
(i)
1

x

y

x

y

β + γA

B
(i)
2

B
(i)
3

T2T3 T1

α

γA

Figure 1: (a) The cones and the subset B(i). (b) Partitioning B(i) into B
(i)
1 , . . . , B

(i)
l .

Let x and y be the two points on Ci’s boundary, whose distance from oA is β + γA, and let ∆
denote the triangle xoAy. Since ∠xoAy ≤ θ, we have |xy| ≤ 2(β+γA)·sin θ

2 = 2(β+γA)· α
2(β+γA)

= α.
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We now divide ∆ into at most l = dβ/αe trapezoids T1, . . . , Tl, each with base parallel to xy and

height α; see Figure 1(b). Next, we partition B(i) into l disjoint subsets B
(i)
1 , . . . , B

(i)
l , such that

B
(i)
j is the set of points of B(i) that lie in Tj , for j = 2, . . . , l, and B

(i)
1 is the set of points of B(i)

that lie either in T1 or to the right of xy.

Clearly, each subset B
(i)
j is contained in a disk of radius at most α (actually,

√
2
2 α). Therefore,

for each pair (A,B
(i)
j ), we have max{r(DA), r(D

B
(i)
j

)} ≤ α. In addition, for any two points p ∈ A

and q ∈ B(i), there exists a single pair (A,B
(i)
j ), such that q ∈ B

(i)
j . After repeating the above

procedure for each of the cones C1, . . . , Ct, we replace the pair (A,B) with the collection of t · l
pairs {(A,B(1)

1 ), . . . , (A,B
(1)
l ), . . . , (A,B

(t)
1 ), . . . , (A,B

(t)
l )}.

Clearly, we have obtained a PDα,β of P . The following theorem summarizes its properties.

Theorem 2.2. Given a set P of n points in the plane and two real numbers β > α > 0, a PDα,β

of P of size O(c4n) and weight O(c4n log n) can be computed in O(c4n log n) time, where c = β/α.
A compact representation of PDα,β of weight O(c2n log n) can be computed in O(c3n log n) time.

Proof: A SSPD of sizeO((β/α)2n) and weightO((β/α)2n log n) can be computed inO((β/α)2n log n)
time [1]. For each pair (A,B) ∈ W (i.e., for each (A,B) of the SSPD such that d(DA, DB) ≤ β),
we first partition B into t disjoint subsets B(1), . . . , B(t), and then partition each B(i) into at most

l disjoint subsets B
(i)
1 , . . . , B

(i)
l . That is, B is partitioned into t · l disjoint subsets, and this can

clearly be done in time (t + l) · ‖B‖. Since t = dπ/θe = O(β/α) 1 and l = O(β/α), the resulting
PDα,β is of size2 O(t · l · (β/α)2n) = O((β/α)4n) and weight

∑
(A,B)∈W

t∑
i=1

l∑
j=1

(‖A‖+
∥∥∥B(i)

j

∥∥∥) =
∑

(t · l · ‖A‖+ ‖B‖)

≤ t · l ·
∑

(‖A‖+ ‖B‖)
= O(t · l · (β/α)2n log n) = O((β/α)4n log n),

and its total construction time is O(t · l · (β/α)2n log n) = O((β/α)4n log n). In the compact
representation of PDα,β, we keep only one copy of each set A of the SSPD (instead of t·l copies).

2.2 PDw
α,β of P

Lay a regular grid over P , such that the side length of a grid cell is α/2, and set Pσ = P ∩ σ, for
each grid cell σ. Next, for each pair of non-empty grid cells σ, σ′ (σ 6= σ′), such that the distance
between the boundaries of their enclosing disks is at most β (where the distance is 0 if the disks
intersect), add the pair {Pσ, Pσ′} to W. Clearly, the collection of pairs W satisfies properties (i)
and (ii’) above, and the size and weight of W is only O((β/α)2n). It is also easy to see that W can
be computed in O((β/α)2n log n) time, using orthogonal range searching. We thus have

1This follows from the fact that arcsin(x) > x, for any x > 0.
2Notice that the size of the produced PDα,β can not exceed the weight of the SSPD. Thus, the size is O((β/α)2n ·

min{logn, (β/α)2}).
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Theorem 2.3. Given a set P of n points in the plane and two real numbers β > α > 0, a PDw
α,β

of P of size and weight O(c2n) can be computed in O(c2n log n) time, where c = β/α.

The advantage of the weak version of an (α, β)-pair decomposition is obvious; it is simpler,
the power of the factor β/α in the size and weight bounds is only 2 rather than 4, and moreover
the weight bound is O(n) rather than O(n log n). However, in some cases we do need the strong
version, as in the construction of a hop-sensitive spanner in Section 3 below.

Remark. Notice that a PDw
α,β (that is constructed according to the description above) actually

satisfies a slightly stronger property (ii’); this will become useful in Section 6.

(ii”) For any two distinct points p, q ∈ P such that |pq| ≤ β, exactly one of the following two
conditions holds. There exists a single subset Pσ such that both p and q belong to Pσ, or
there exists a single pair {Pσ, Pσ′} ∈ W such that p ∈ Pσ and q ∈ P ′σ, or vice versa. Moreover,
if α < |pq| ≤ β, then the latter condition holds.

3 Hop-Sensitive Spanner

In this section we demonstrate the power of an (α, β)-pair decomposition by using it to construct
a spanner of a unit disk graph with some desirable properties. Let P be a set of n points in the
plane and let E = {{p, q} | p, q ∈ P, 0 < |pq| ≤ 1}. The graph (P,E) is called the unit disk graph
of P and is denoted udg(P ). A Euclidean graph G over P is a strong t-spanner of udg(P ), for a
given constant t > 1, if for any two points p, q ∈ P there exists a path ΠG(p, q) in G between p and
q, such that (i) ΠG(p, q) is a t-spanning path, i.e., its length is bounded by t times the length of the
shortest path between p and q in udg(P ), and (ii) each edge in ΠG(p, q) is of length at most |pq|.
Finally, let 0 < λ < 1 be a constant. A path ΠG(p, q) in G between p and q is a λ-hop-sensitive
path, if the number of edges in ΠG(p, q) of length greater than λ is at most the number of such
edges in the shortest path between p and q in udg(P ).

Our goal in this section is to construct a strong λ-hop-sensitive t-spanner of udg(P ). That
is, given constants t > 1 and 0 < λ < 1, we wish to construct a Euclidean graph G over P , such
that for any two points p, q ∈ P , there exists a path ΠG(p, q) in G between p and q, such that (i)
ΠG(p, q) is a t-spanning path, (ii) each edge in ΠG(p, q) is of length at most |pq|, and (iii) ΠG(p, q)
is a λ-hop-sensitive path. Moreover, we require that the number of edges in G is only O(n). Such
a spanner is useful when, e.g., the cost of an edge is proportional to its length and the delay of an
edge is negligible if its length is at most λ but substantial otherwise. For the rest of this section,
we assume that t ≤ 2, since otherwise, we simply set t = 2 in our construction.

We construct such a spanner from an appropriate (α, β)-pair decomposition of P . Recall that
in the construction of an (α, β)-pair decomposition (Section 2.1), we set the separation (of the

underlying SSPD) to s = β
α and the angle (of the cones) to θ = 2 arcsin

(
α

2(β+γA)

)
. However, when

t is small (i.e., t→ 1), these values might not be suitable (i.e., not big enough, in the case of s, or
not small enough, in the case of θ) to obtain a t-spanner. We thus first update the values of s and
θ to accommodate t as well; we denote the new values by s∗ and θ∗.
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Given P , constants t > 1 and 0 < λ < 1, set α = λ
2 and β = 1. Moreover, set s′ = 4√

t−1 and s∗ =

max{s, s′}. Let ψ be such that cosψ−sinψ = 1√
t
, that is, let ψ = arccos( 1√

2t
)− π

4 , and set θ′ = ψ/2

and θ∗ = min{θ, θ′}. We construct an (α, β)-pair decomposition W = {(A1, B1), . . . , (Am, Bm)} of
P , by constructing a SSPD of P with respect to separation s∗ (instead of s) and using the angle θ∗

(instead of θ), as described in Section 2.1. Next, we construct G from W. Initially, G’s edge set E
is empty. We add at most m edges to E as follows. For each pair (Ai, Bi) ∈ W, we find the closest
pair of points (pi, qi) in Ai × Bi and add the edge {pi, qi} to E if its length is at most 1. We now
claim that G has the desired properties.

Lemma 3.1. G has properties (i)–(iii).

Proof. It is enough to show that for each edge {p, q} of udg(P ), there exists a path ΠG(p, q) in G
between p and q, such that (i) its length is bounded by t|pq|, (ii) each edge in ΠG(p, q) is of length
at most |pq|, and (iii) the number of edges in ΠG(p, q) of length greater than λ is at most 1, if
|pq| > λ, and 0, otherwise. Given an edge {p, q} of udg(P ), Algorithm 1 below constructs a path
ΠG(p, q) in G between p and q.

Algorithm 1 ΠG(p, q)
1: p0 ← p
2: i← 0
3: while pi 6= q do
4: let (Ai, Bi) be the pair in W, such that pi ∈ Ai and q ∈ Bi (or vice versa)
5: let (ai, bi) be the closest pair of points in Ai ×Bi
6: πi ← ΠG(pi, ai) (i.e., the path returned when calling Algorithm 1 with points pi and ai)
7: pi+1 ← bi
8: i← i+ 1
9: ΠG(p, q)← p0, π0, p1, π1, . . . , pi

10: return ΠG(p, q)

Consider the path ΠG(p, q) = (p = p0, . . . , a0, p1, . . . , a1, . . . , pm−1, . . . , am−1, pm) obtained
by Algorithm 1. First notice that if {p, q} ∈ E, then ΠG(p, q) = (p, q). Moreover, since s∗ is
sufficiently large (s∗ ≥ s ≥ 4√

t−1 > 8), |piai| < |pq|, and the angle between |piq| and |pipi+1| is at

most 2θ∗ ≤ 2θ′ = ψ, for 0 ≤ i ≤ m− 1, and therefore

|pi+1q| ≤ |piq| − (cosψ − sinψ)|pipi+1| < |piq| (∗)

(see [26], Lemma 4.1.4). The latter inequalities imply that the algorithm terminates and that
indeed pm = q (since, as i increases the distance between pi and q decreases).

Before we proceed to prove that ΠG(p, q) has the desired properties, consider the following
“virtual” path

ΠV (p, q) = (p = p0, p1, . . . , pm = q).

We call it virtual since it is not necessarily in G. We bound the length of ΠV (p, q) as in [26] (where
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it is called a Θ-walk or a ψ-walk in our notation). From (∗), we have

|pipi+1| ≤
|piq| − |pi+1q|
cosψ − sinψ

=
√
t(|piq| − |pi+1q|) ,

for 0 ≤ i ≤ m− 1. Therefore, the length of ΠV (p, q) is at most

m−1∑
i=0

|pipi+1| ≤
√
t
m−1∑
i=0

(|piq| − |pi+1q|) ≤
√
t(|p0q| − |pmq|) ≤

√
t|pq| .

We conclude that the length of ΠV (p, q) is at most
√
t|pq|.

We now prove that ΠG(p, q) satisfies properties (i)–(iii). The proof is by induction on the rank
of the edges of udg(P ) sorted by length.
Base: {p, q} is the shortest edge of udg(P ). In this case, {p, q} ∈ E, and therefore, by the
observation above, ΠG(p, q) = (p, q) and satisfies properties (i)–(iii).
Induction hypothesis: For any edge {u, v} of udg(P ), such that |uv| < |pq|, the path ΠG(u, v)
between u and v in G satisfies properties (i)–(iii).
Inductive step: Since W is a refinement of a SSPD, we have the following two inequalities for
any 0 ≤ i ≤ m− 1 (see [26]):

(a) |piai| ≤ 2
s∗ |aipi+1| ≤ 2

s∗ |pq|, and

(b) |pipi+1| ≤ (1 + 2
s∗ )|aipi+1|.

We first prove that ΠG(p, q) has properties (ii) and (iii). We cut ΠG(p, q) into 3 paths, the path
between p and a0 (i.e., π0 = ΠG(p, a0)), the single edge (a0, p1), and the path between p1 and q
(which is ΠG(p1, q), as can be easily verified). Since |p0a0| < |pq| (by inequality (a)) and since
|p1q| < |pq| (by (∗)), we can apply the induction hypothesis to {p0, a0} and to {p1, q}. By applying
the induction hypothesis to the first pair, we get that π0 has property (ii), with respect to |p0a0| ≤
2α ≤ λ < 1, and therefore it does not contain edges of length greater than λ. Similarly, by applying
the induction hypothesis to second pair, we get that ΠG(p1, q) has property (ii), with respect to
|p1q| ≤ 2α ≤ λ < 1, and therefore it also does not contain edges of length greater than λ. Finally,
since |p0p1| ≤ |pq|, we conclude that ΠG(p, q) has properties (ii) and (iii).

We now prove that ΠG(p, q) is also a t-spanning path. By inequality (a) and by the induction
hypothesis we have that w(πi) ≤ t|piai| (where w(πi) is the length of πi), and therefore, by inequality
(a) again, w(πi) ≤ 2t

s∗ |aipi+1|. The length of ΠG(p, q) is at most

m−1∑
i=0

(w(πi) + |aipi+1|) ≤
m−1∑
i=0

(
2t

s∗
|aipi+1|+ |aipi+1|)

= (
2t

s∗
+ 1)

m−1∑
i=0

|aipi+1| ≤ (
2t

s∗
+ 1)

m−1∑
i=0

|pipi+1|

= (
2t

s∗
+ 1)w(ΠV (p, q)) ≤ (

2t

s∗
+ 1)
√
t|pq|

≤ (
4

4/(
√
t− 1)

+ 1)
√
t|pq| = t|pq|.
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The following theorem summarizes the result of this section.

Theorem 3.2. Let P be a set of n points in the plane, and let t > 1 and 0 < λ < 1 be two
constants. Then, one can construct a strong λ-hop-sensitive t-spanner of udg(P ) with O(s∗4n)
edges in O(s∗4n log2 n) time.

Remark. Our spanner G actually satisfies a stronger version of property (iii): For any two points
p, q ∈ P and for any path ρ in udg(P ) between p and q, there exists a path in G, such that the
number of edges in it of length greater than λ is at most the number of such edges in ρ.

4 Euclidean Bottleneck Steiner Paths

Let P be a set of n terminals in the plane. For two terminals p, q ∈ P , let δ(p, q) denote a path in P
(i.e., in the complete Euclidean graph over P ) between p and q, and let bn(δ(p, q)) be the bottleneck
of δ(p, q), i.e., bn(δ(p, q)) is the length of a longest edge in δ(p, q). A bottleneck path between p and
q in P , denoted δ∗(p, q), is a path δ(p, q) with smallest bottleneck.

Given a set P of n terminals in the plane, two terminals s, t ∈ P and an integer k, the goal in
the Euclidean Bottleneck Steiner Path (EBSP) problem is to place at most k new terminals, called
Steiner points, so as to minimize the bottleneck of a bottleneck path between s and t. (We refer
to such a path as a bottleneck Steiner path.)
Problem 1 (EBSP). Given a set P of n terminals in the plane, two terminals s, t ∈ P and a
positive integer k, find a bottleneck Steiner path between s and t with at most k Steiner points.

The dual version of the EBSP problem is defined as follows:
Problem 2 (Dual-EBSP). Given a set P of n terminals in the plane, two terminals s, t ∈ P and
a constant λ > 0, find a Steiner path between s and t with bottleneck at most λ that uses as few
Steiner points as possible.

The decision version of both problems is:
Problem 3 (Dec-EBSP). Given a set P of n terminals in the plane, two terminals s, t ∈ P , a
positive integer k and a constant λ > 0. Does there exist a Steiner path between s and t with at
most k Steiner points and bottleneck at most λ?

Problems 1 and 2 are dual in the following sense. Assume we have computed (perhaps implicitly)
a finite set of values, such that the optimum bottleneck (resp., the optimum number of Steiner
points) is in the set (i.e., we have restricted the search space to some finite set), then we can solve
Problem 1 (resp., Problem 2) by applying binary search to this set of values, using an efficient
algorithm for Problem 2 (resp., Problem 1) as the decision algorithm.

We first observe that we may assume that the Steiner points must lie on edges of the complete
graph over P . (Consider an optimal Steiner path and two consecutive original terminals x and y
in the path. If the subpath between x and y passes through l Steiner points, then one can replace
them with l evenly-spaced Steiner points on the edge between x and y, without increasing the
bottleneck of the path.) Notice, however, that it is not enough to consider only the edges of a
minimum spanning tree of P , as shown in Figure 2. By the observation above, there exists a trivial
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Figure 2: (a) A minimum spanning tree of P . (b) An optimal location for a single Steiner point.

search space for Problem 1 of size O(kn2): For each edge e in the complete graph over P , add the

k + 1 values |e|, |e|2 , . . . ,
|e|
k+1 to the search space.

In Section 3.1, we present a simple algorithm for solving Dec-EBSP. We then use this algorithm,
in Section 4.2, after computing a (non-trivial) linear-size search space, to solve EBSP. In Section
3.3, we study the dual version of EBSP.

4.1 Solving Dec-EBSP

Given a set P of n terminals in the plane, two terminals s, t ∈ P , a positive integer k and a constant
λ > 0, the following simple algorithm decides whether there exists a Steiner path between s and t
in P with at most k Steiner points and bottleneck at most λ. Assume for now that G = (P,E) is
the complete graph over P .

Algorithm 2 Dec-EBSP(G = (P,E), s, t, k, λ)

1: for each e ∈ E do
2: w(e)← d|e|/λe − 1
3: δ(s, t)← the shortest path between s and t in G under w
4: if w(δ(s, t)) ≤ k then
5: return TRUE
6: else
7: return FALSE

For each edge e ∈ E, we assign a weight w(e) equal to the minimum number of Steiner points
needed to traverse e by steps of size at most λ; see Algorithm 1. We now apply Dijkstra’s algo-
rithm [14] to find a shortest path δ(s, t) between s and t in G, with respect to the weight function w.
It is easy to see that w(δ(s, t)) Steiner points are both necessary and sufficient to achieve bottleneck
at most λ.

Lemma 4.1. Given a set P of n terminals in the plane, two terminals s, t ∈ P and a constant
λ > 0, one can decide in O(|E|+ n log n) time whether there exists a Steiner path between s and t
in G with at most k Steiner points and bottleneck at most λ.
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Note that an O(n2)-time algorithm for Dual-EBSP can be derived immediately from Algo-
rithm 2. Moreover, in view of the remark preceding Section 4.1, an O(kn2 + n2 log n)-time algo-
rithm for EBSP can be derived from Algorithm 2. (Actually, the latter bound can be improved by
observing that the search space can be represented implicitly as a sorted matrix; see the complexity
analysis at the end of Section 4.2.)

4.2 Solving EBSP

In this section we assume that k = o(n). We develop an O(n log2 n)-time algorithm for EBSP, if k
is a constant. More precisely, the running time of our algorithm is O(k2n log n+ n log2 n).

Let G = (P,E) be the complete graph over P . Let δ∗G(s, t, k) be a bottleneck Steiner path
between s and t in G with at most k Steiner points and let λ∗ denote its bottleneck. We first
compute a 2-approximation of λ∗.

Lemma 4.2. Let t′ > 1 be a constant and let G′ be a t′-spanner of G. Then, bn(δ∗G′(s, t, k)) ≤ t′ ·λ∗.

Proof: Let δG(s, t) be the path between s and t in G that is obtained from δ∗G(s, t, k) by removing
the Steiner points. Consider any edge ei = (p, q) in δG(s, t) and let ki be the number of Steiner
points located on ei in δ∗G(s, t, k). (Recall that we showed that we may assume that the Steiner
points in δ∗G(s, t, k) lie on edges of G.) Since G′ is a t′-spanner of G, there exists a path δG′(p, q)
in G′ of length at most t′ · |ei|. Thus, by locating ki evenly-spaced Steiner points on δG′(p, q), we

obtain a Steiner path between p and q in G′ of bottleneck at most
|δG′ (p,q)|
ki+1 ≤ t′ · |ei|ki+1 ≤ t′ · λ∗,

where |δG′(p, q)| =
∑

e∈δG′ (p,q)
|e|.

Let G′ = (P,E′) be a t′-spanner of G. Let δ∗G′(s, t, k) be a bottleneck Steiner path be-
tween s and t in G′ with at most k Steiner points and let λ′ be its bottleneck. Finally, let

S =
{
|e|
i : e ∈ E′, i ∈ {1, . . . , k + 1}

}
and notice that λ′ ∈ S. It is well known that G′ has O(n)

edges and can be constructed in O(n log n) time; see [26]. Thus, we can compute λ′ by performing
a binary search in S, and using Algorithm 2 to decide whether, for a given value λ ∈ S, there exists
a path from s to t in G′ with at most k Steiner points and bottleneck at most λ.

Corollary 4.3. For any constant t′ > 1, a Steiner path between s and t in P with at most k Steiner
points and bottleneck at most t′ · λ∗, can be computed in O(n log2 n) time.

Proof. Compute a t′-spanner G′ of G in O(n log n) time, and then compute a bottleneck Steiner
path between s and t in G′ with at most k Steiner points, as described above. Notice that S can
be represented implicitly by a (k + 1) × |E′| sorted matrix, and selection in S can be performed
in O(k log n) time [15] (see the analysis above Theorem 4.6). Therefore, the total running time is
O((k log n+ n log n) log n) = O(n log2 n).

We now set t′ = 2 and apply Corollary 4.3 to obtain, in O(n log2 n) time, a value λ′, such that
λ′ ≤ 2λ∗. More precisely, λ′

2 ≤ λ∗ ≤ λ′.
Our next goal is to characterize the edges of E on which we may want to place Steiner points

in the construction of a bottleneck Steiner path. Notice that it does not make sense to locate a
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Steiner point on an edge e ∈ E with |e| ≤ λ′

2 or |e| > (k+ 1)λ′. Thus, Steiner points will be located

only on edges that belong to the set E′′ = {e ∈ E : λ
′

2 < |e| ≤ (k + 1)λ′}.
Let T be a minimum spanning tree of G. Let T1, T2, . . . , Tm be the forest T obtained from T

by removing the edges of length greater than λ′

2 ; see Figure 3. Let Vi ⊂ P be the vertex set of
Ti, for i = 1, . . . ,m. For 1 ≤ i, j ≤ m, i 6= j, let ei,j be the shortest edge between a terminal
in Vi and a terminal in Vj , that is, |ei,j | = d(Vi, Vj). Finally, let E∗ be the set consisting of all

edges ei,j , for which |ei,j | ≤ (k + 1)λ′. Notice that all edges of E∗ are of length greater than λ′

2 ,
and, therefore, E∗ ⊆ E′′. In the following lemmas, we show that it is sufficient to consider the
edges of E∗ (together with the edges of T ) in the construction of a bottleneck Steiner path, that
|E∗| = O(k2n), and that E∗ can be computed efficiently.

Ti

Tj

ei,j

Figure 3: The edges of T (solid lines) and E∗ (dashed lines).

Lemma 4.4. There exists a bottleneck Steiner path δ∗G(s, t, k), such that, for any two consecutive
(original) terminals p and q in δ∗G(s, t, k),

(i) if |pq| ≤ λ′

2 , then (p, q) ∈ T , and

(ii) if |pq| > λ′

2 , then (p, q) ∈ E∗.

Proof: Let δG(s, t, k) be a bottleneck Steiner path between s and t. Consider any two consecutive
terminals p1 and q1 in δG(s, t, k). If |p1q1| ≤ λ′

2 but (p1, q1) 6∈ T , then p1 and q1 are in the same
subset Vi, for some 1 ≤ i ≤ m, and there exists a path δTi(p1, q1) between p1 and q1 in Ti, such that
each edge in δTi(p1, q1) is of length at most |p1q1|. We replace the edge (p1, q1) in δG(s, t, k) by the
path δTi(p1, q1) to obtain a new bottleneck Steiner path between s and t that satisfies condition (i)
(and (ii)) (for the subpath between p1 and q1).

If |p1q1| > λ′

2 but (p1, q1) 6∈ E∗, then we distinguish between two cases:
Case 1. p1, q1 ∈ Vi, for some 1 ≤ i ≤ m. Then, there exists a path δTi(p1, q1) between p1 and q1
in Ti, such that each edge in δTi(p1, q1) is of length at most |p1q1|. As above, we replace the edge
(p1, q1) in δG(s, t, k) by the path δTi(p1, q1) to obtain a new bottleneck Steiner path between s and
t that satisfies condition (i) (and (ii)) (for the subpath between p1 and q1).
Case 2. p1 ∈ Vi and q1 ∈ Vj , for i 6= j. By the optimality of δG(s, t, k), |p1q1| ≤ (k + 1)λ′. Hence,
d(Vi, Vj) ≤ (k + 1)λ′ and the edge ei,j = (p, q), whose length is d(Vi, Vj), belongs to the set E∗.
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Let l ≥ 0 be the number of Steiner points between p1 and q1 in δG(s, t, k). We replace the subpath
of δG(s, t, k) between p1 and q1 by the path that is formed by concatenating the paths δTi(p1, p),
the edge ei,j = (p, q) with l evenly-spaced Steiner points on it, and the path δTj (q, q1). We have
obtained a new bottleneck Steiner path between s and t that satisfies conditions (i) and (ii) (for
the subpath between p1 and q1).

We repeat this operation for the remaining pairs of consecutive terminals that violate one of
the two conditions. Eventually, we obtain a bottleneck Steiner path δ∗G(s, t, k) as required.

Lemma 4.5. E∗ is of size O(k2n) and can be computed in O(k2n log n+ n log2 n) time.

Proof: Let G′ be a 2-spanner of G and let δ∗G′(s, t, k) be a bottleneck Steiner path between s and
t in G′ with at most k Steiner points and bottleneck λ′. By Corollary 4.3, λ′ can be computed in
O(n log2 n) time. Put α = λ′

2 and β = (k + 1)λ′. We compute, according to Theorem 2.3, a weak
(α, β)-pair decomposition W = {(A1, B1), . . . , (Am, Bm)} of P in O((β/α)2n log n) = O(k2n log n)
time. For each pair (A,B) ∈ W, let (a, b) be a shortest edge connecting between a point a ∈ A
and a point b ∈ B, and let E∗∗ be the set of these m edges. For a pair (A,B) ∈ W, (a, b) can be
computed in O((||A||+ ||B||) log(||A||)) time, by computing the Voronoi diagram of A together with
a corresponding point location data structure and performing point location queries in the diagram
with the points in B. Thus, since m = O(k2n) and

∑m
i=1(||Ai||+ ||Bi||) = O(k2n), |E∗∗| = O(k2n)

and it can be computed in time

m∑
i=1

(||Ai||+ ||Bi||) log (||Ai||) ≤ log n ·
m∑
i=1

(||Ai||+ ||Bi||) = O(k2n log n) .

We now show that E∗ ⊆ E∗∗. Recall that, for any two points p, q ∈ P , with λ′/2 = α < |pq| ≤
β = (k + 1)λ′, there exists a single pair (Ai, Bi) ∈ W, such that p ∈ Ai and q ∈ Bi, or vice versa.
Let Vi, Vj , i 6= j, be any two subsets for which |ei,j | = |(p, q)| ≤ (k + 1)λ′. (Recall that ei,j is the
shortest edge between Vi and Vj and that |ei,j | > λ′/2.) We need to show that ei,j ∈ E∗∗. There
exists a single pair (Al, Bl) ∈ W, such that p ∈ Al and q ∈ Bl. Since Al (resp. Bl) is contained in a
grid cell of diagonal λ′/(2

√
2), the distance between any two points in Al (resp. in Bl) is less than

λ′

2 , and, therefore, Al ⊆ Vi and Bl ⊆ Vj . This implies that ei,j is also the shortest edge between Al
and Bl, and therefore ei,j ∈ E∗∗.

Finally, we obtain E∗ from E∗∗ as follows. We first compute the sets V1, V2, . . ., and, for each
p ∈ P , we indicate the set Vi to which it belongs. Then, for each edge (a, b) ∈ E∗∗, such that a and
b are in different sets Vi, Vj , we proceed as follows. If there already exists an edge in E∗ between
Vi and Vj , then we replace it by (a, b) if and only if (a, b) is shorter. Otherwise, we add the edge
(a, b) to E∗. This stage can be performed in O(k2n+ n log n) time.

We are now ready to present our algorithm. Given a set P of n terminals, two terminals
s, t ∈ P and a positive integer k, Algorithm 3 finds a Steiner path between s and t with at most
k Steiner points and with bottleneck λ∗, where λ∗ is the optimum bottleneck. It first constructs
the set E∗ ∪ T , and then generates a search space of (k + 1)|E∗| potential values that necessarily
includes λ∗. Finally, it finds the value λ∗, by performing a binary search in the search space, using
Algorithm 2 to decide whether, for a given value λ, there exists a path from s to t with at most k
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Steiner points and bottleneck at most λ. Once λ∗ is found, it is easy to produce the desired Steiner
path.

Algorithm 3 EBSP (P, s, t, k)

1: compute E∗ ∪ T
2: S ←

{
|e|
i : e ∈ E∗, i ∈ {1, . . . , k + 1}

}
3: find λ∗ by performing a binary search in S, resolving comparisons of the form λ ≤ λ∗, for λ ∈ S,

by calling Dec-EBSP (G = (P,E∗ ∪ T ), s, t, k, λ)
4: for each e ∈ E∗ ∪ T do
5: w[e]← d|e|/λ∗e − 1
6: δ(s, t)← the shortest path between s and t in (P,E∗ ∪ T ) under w
7: for each e ∈ δ(s, t) do
8: place w[e] evenly-spaced Steiner points on e

Correctness. The correctness of the algorithm follows from the lemmas and text preceding it.

Complexity. A minimum spanning tree T can be computed inO(n log n) time, and, by Lemma 4.5,
E∗ is of size O(k2n) and can be computed in O(k2n log n + n log2 n) time. Thus, the number of
values in the search space S is O(k3n). Using Dijkstra’s algorithm [14], a shortest path between s
and t in G = (P,E∗ ∪ T ) can be found in O(k2n+ n log n) time, and, since Dijkstra’s algorithm is
applied O(log n) times, the total running time of Algorithm 3 is O(k3n+ k2n log n+ n log2 n). Ac-
tually, a more careful analysis allows us to drop the term k3n from the running time of Algorithm 3.
Observe that S can be represented implicitly by the (k+ 1)× |E∗| sorted matrix S = {si,j}, where
si,j =

ej
k−i+2 and ej is the j-th shortest edge in E∗, and therefore selection in S can be performed

in O(k log n) time [15].
The following theorem summarizes our main result.

Theorem 4.6. Given a set P of n terminals in the plane, two terminals s, t ∈ P and a positive
integer k, a bottleneck Steiner path between s and t with at most k Steiner points, can be computed
in O(k2n log n+ n log2 n) time.

Remarks. (i) Note that Algorithm 3 runs in O(n log2 n) time for any constant k ≥ 0, and in
subquadratic time for k = o(n1/2). (ii) If we forbid edges between Steiner points in our path, then
the problem can be solved in O(n log2 n) time, for any k ≥ 0.

4.3 Solving Dual-EBSP

In the dual problem, we are given a set P of n terminals in the plane, two terminals s, t ∈ P and a
constant λ > 0, and we must find a Steiner path between s and t with bottleneck at most λ, using
as few Steiner points as possible. Let k∗ denotes the minimum number of Steiner points needed to
achieve bottleneck at most λ. We discuss three approaches for computing k∗.
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As mentioned in Section 4.1, an O(|E|) = O(n2)-time algorithm for Dual-EBSP can be derived
immediately from Algorithm 1. The second approach is based on Algorithm 3. We search for k∗ in
the sequence 1, 2, . . . , 2dlog k

∗e, resolving comparisons by calls to Algorithm 3. This approach leads
to an algorithm with running time O(log k∗ · (k∗2n log n+ n log2 n)).

The third approach is based on geometric floor spanners (or, more accurately, on spanners for
the weight function w(p, q) = d|pq|e−1), introduced in the next section (see also remark at the end
of next section). For any ε > 0, the (1 + ε)-spanner of P (w.r.t. w) contains a path δ(s, t) between
s and t, such that

∑
e∈δ(s,t)(d|e|/λe − 1) ≤ (1 + ε) · k∗. Moreover, the spanner can be computed in

time O((1/ε2)n log2 n). Therefore, by taking ε < 1/k∗, we can obtain an optimal path between s
and t.

A value smaller than 1/k∗ is found by bootstrapping, as follows. We first construct in O(n log2 n)
time a (3/2)-spanner G′ of G. Let δG′(s, t) be the shortest path between s and t in G′ and let
k′ =

∑
e∈δG′ (s,t)

(d|e|/λe−1). Clearly, k∗ ≤ k′ ≤ 3k∗/2. Next, we take ε = 1/k′ ≤ 1/k∗ and construct

in O(k′2n log2 n) = O(k∗2n log2 n) time a (1 + 1/k′)-spanner G′′, of size O(k′2n) = O(k∗2n), that
contains an optimal path between s and t. Finally, we apply the first approach above to compute
k∗ in O(k∗2n+ n log n) time. The following theorem summarizes our result.

Theorem 4.7. Given a set P of n terminals in the plane, two terminals s, t ∈ P and a constant λ,
a Steiner path between s and t with bottleneck at most λ, using k∗ Steiner points, can be computed
in O(k∗2n log2 n) time.

5 Floor Spanner

In this section we consider the problem of constructing a floor (1+ε)-spanner of a set P of n points
in the plane. Let G = (P,E) be the complete graph over P with weight function w′(p, q) = b|pq|c.
For two points p, q ∈ P , let δG(p, q) denote the shortest path between p and q in G (under w′),
where the weight of a path is, as usual, the sum of the weights of the edges along the path. Notice
that under w′, the shortest path between two points is not necessarily the edge between them.

Definition 5.1. Let P be a set of n points in the plane and let t > 1 be a constant. A graph
G′ = (P,E′) is a floor t-spanner of P , if for each pair p, q ∈ P , w′(δG′(p, q)) ≤ t · w′(δG(p, q)). 3

We now describe how to construct, in O(n log2 n) time, a floor t-spanner of P , for any constant
t > 1. Put α = 1 and β = t

(γt−1) cos θ
2

, where γ = (cos θ− sin θ) and θ is an appropriate constant to

be specified later. We first compute a weak (α, β)-pair decomposition, W, of P . Next, we compute
fromW the set of edges E∗∗, as in the proof of Lemma 4.5. Let E1 to be the set of edges containing
E∗∗ and the edges of a minimum spanning tree of P , MST (P ). We now construct a second set of
edges, E2.

The construction of E2 is similar to that of a Θ-graph [13,20]. For each point p ∈ P , partition
the plane into k = d2π/θe cones Cp,1, Cp,2, . . . , Cp,k, with apex at p and angle at most θ. Consider a
cone Cp,i. Let lp,i be the ray emanating from p and dividing the angle of Cp,i into two halves, and let

3Notice that the latter condition is equivalent to w′(δG′(p, q)) ≤ bt · w′(δG(p, q))c, since w′(δG′(p, q)) is an integer.
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Pp,i be the set of points in P ∩Cp,i, for which the distance between their orthogonal projection onto
lp,i and p is greater than t

γt−1 . For each cone Cp,i, we add to E2 an edge between p and the point

q in Pp,i whose orthogonal projection onto lp,i is closest to p. We now show that G′ = (P,E1 ∪E2)
is a floor t-spanner of P .

Lemma 5.2. If θ is chosen so that γ = cos θ − sin θ > 1
t , then G′ is a floor t-spanner of P .

Proof: To prove the lemma it suffices to show that, for any two points p, q ∈ P , w′(δG′(p, q)) ≤
t · b|pq|c. We show this by induction on the rank of the distance |pq| in the sorted sequence of
distances in P .

Base case: If p, q are the closest pair in P , then (p, q) is an edge of the minimum spanning
tree of P , and therefore also of E1.

Induction step: If p, q are not the closest pair, then we distinguish between two cases. Assume
first that |pq| ≤ β. If p, q lie in the same grid cell, then all edges of the path inMST (P ) between p
and q are of length at most |pq| ≤ α/

√
2 < 1, and therefore, sinceMST (P ) ⊆ E1, w

′(δG′(p, q)) = 0.
If p, q lie in different grid cells, then there is a pair (A,B) ∈ W such that p ∈ A and q ∈ B. If
(p, q) ∈ E1, then we are done. Otherwise, there is an edge (a, b) ∈ E1 such that a ∈ A, b ∈ B and
|ab| ≤ |pq|. Since, |pa|, |bq| ≤ α/

√
2 < 1, w′(δG′(p, a)) = w′(δG′(b, q)) = 0, and therefore

w′(δG′(p, q)) ≤ w′(δG′(p, a)) + b|ab|c+ w′(δG′(b, q)) ≤ b|pq|c .
Assume now that |pq| > β = t

(γt−1) cos θ
2

, and assume that our claim is true for all distances of

rank less than that of |pq|. Let Cp,i be the cone (with apex at p) containing q. Notice that, since
|pq| > t

(γt−1) cos θ
2

, the distance between p and the orthogonal projection of q onto lp,i, denoted dq, is

greater than t
γt−1 . Hence, the point q was considered during the construction of E2. If (p, q) ∈ E2,

then we are done, otherwise, there is a point q′ in Cp,i such that (p, q′) ∈ E2 and t
γt−1 < dq′ ≤ dq.

Therefore,

w′(δG′(p, q)) ≤
⌊
|pq′|

⌋
+ w′(δG′(q

′, q)) .

By Lemma 4.1.4 in [26], we have |q′q| ≤ |pq| − (cos θ− sin θ) · |pq′| = |pq| − γ · |pq′|. Since γ > 0,
we conclude that |q′q| < |pq| and, therefore, we may apply the induction hypothesis to |q′q|, that
is,

w′(δG′(p, q)) ≤
⌊
|pq′|

⌋
+ t ·

⌊
|q′q|

⌋
≤
⌊
|pq′|

⌋
+ t ·

⌊
|pq| − γ · |pq′|

⌋
≤ |pq′|+ t · |pq| − tγ · |pq′|
≤ t · |pq| − (tγ − 1) · |pq′| .

Finally, since γ > 1
t and |pq′| > t

γt−1 , we obtain

w′(δG′(p, q)) ≤ t · |pq| − (tγ − 1) · t

γt− 1

≤ t · (|pq| − 1) ≤ t · b|pq|c .
This completes the proof of the lemma.
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Lemma 5.3. Let t = 1 + ε, where 0 < ε ≤ 1/2. Then, for θ = ε/4, G′ is a floor t-spanner of P
with O(n/ε2) edges. Moreover, G′ can be constructed in O((1/ε2)n log2 n) time.

Proof: Since 0 < θ ≤ 1/8, we have sin θ < θ and 1− cos θ < θ. Hence,

γ = cos θ − sin θ > 1− 2θ = 1− ε

2
>

1

t
,

and, by Lemma 5.2, G′ is a floor t-spanner of P . We now bound the size of G′.
The size of E2 is O(n/θ) = O(n/ε). As for E1, MST (P ) is of size O(n) and E∗∗ is of size

O((β/α)2n). Hence, E1 is of size O((β/α)2n). Since α = 1 and

β =
t

(γt− 1) cos θ2
<

2

((1− ε
2)(1 + ε)− 1) cos ε8

<
4

cos 1
16

· 1

ε(1− ε) <
8

cos 1
16

· 1

ε
,

the size of E1 is O(n/ε2).
Finally, according to the proof of Lemma 4.5, E∗∗ can be constructed in O((β/α)2n log n) =

O((1/ε2)n log n) time. Moreover, a minimum spanning tree of P can be constructed in O(n log n)
time [5]. The set E2 can be constructed in O((1/ε)n log2 n) time, by a slight modification of
the O((1/θ)n log n)-time algorithm for computing the Θ-graph (see [26]). Therefore, G′ can be
constructed in O((1/ε2)n log2 n) time, as claimed.

By combining Lemma 5.2 and Lemma 5.3, we obtain the following theorem.

Theorem 5.4. For any set P of n points in the plane and for any ε > 0, a floor (1 + ε)-spanner
of P with O(n/ε2) edges can be constructed in O((1/ε2)n log2 n) time.

Remark. Notice that sparse ceiling (1 + ε)-spanners do not exist. For example, take n points in
a disk of diameter 1. Then, for any 0 < ε < 1, any (1 + ε)-spanner will have Ω(n2) edges. However,
for the function w, defined as w(p, q) = d|pq|e − 1, one can adapt our proof above to show that
there exists a sparse (1 + ε)-spanner of P , even though w(p, q) 6= w′(p, q).

6 Distance Selection

In this section we consider the distance selection problem. Given a set P of n points and an integer
parameter k, 1 ≤ k ≤

(
n
2

)
, we wish to compute the k-th smallest Euclidean distance among the(

n
2

)
distances determined by pairs of points in P . Let d1 ≤ d2 ≤ . . . ≤ d(n2)

be the distances

determined by the points in P . The best deterministic algorithm to date for finding dk runs in
time O(n4/3 log2+ε n) (see Katz and Sharir [19]), and the currently best deterministic algorithm for
computing a one-sided approximation of dk (i.e., a value x such that dk ≤ x ≤ (1 + ε)dk) runs in
time O(n log3 n + n/ε2) (see Bespamyatnikh and Segal [6]). The latter authors also presented an
algorithm for computing a two-sided approximation of dk (i.e., a value x such that (1− ε)dk ≤ x ≤
(1+ε)dk) that runs in O(n log n+n/ε2) time. In what follows we show how to improve the running
time of the algorithm for computing a one-sided approximation of dk, using a weak (α, β)-pair
decomposition.
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We proceed as follows. First, we compute a weak (α, β)-pair decompositionW = {(A1, B1), . . . , (Al, Bl)}
of P , for appropriate values of α and β (see below). Then, for each pair (Ai, Bi) ∈ W, we compute
i) the maximal distance Mi defined by a point from Ai and a point from Bi, ii) the minimal distance
mi defined by a point from Ai and a point from Bi, and iii) the number of distances δi defined by
the pair (Ai, Bi), which is δi = |Ai| · |Bi|. Observe that the values mi and Mi, i = 1, . . . , l, can
be computed in total time O(n log n), using the nearest and farthest Voronoi diagrams of Ai, as
described in Lemma 4.5. In order to guarantee that the distances defined by a pair (Ai, Bi) are
roughly the same, i.e., up to a factor of 1 + ε of each other, we need to set the values of α and β

such that
√
2α+β
β ≤ 1+ε. We also want to ensure that all the distances defined by the points within

a single grid cell of the decomposition are strictly smaller than dk, so we require that α/
√

2 < dk.
Ideally, we would set β = dk, however dk is not known. Instead, let x be a two-sided approxima-
tion of dk, obtained in O(n log n+ nε2) time, by applying the algorithm mentioned above. We set

β = x
1−ε ≥ dk and α = ε√

2
· x
1−ε . Notice that Mi/mi ≤

√
2α+β
β = 1 + ε, and that α/

√
2 < x

1+ε ≤ dk,
assuming ε ≤ 1/2. Moreover, β/α =

√
2/ε.

Let r be the number of distances defined by pairs of points residing in the same grid cell, over
all cells of the decomposition. Our choice of α ensures that k > r. Let us assume, without loss of
generality, that m1 ≤ m2 ≤ · · · ≤ ml. We find the smallest integer j such that r+ Σj

i=1δi ≥ k, and

set M = maxji=1Mi. We claim that M is a one-sided approximation of dk, i.e., dk ≤M ≤ (1+ε)dk.
Clearly dk ≤ M , since M is the maximum distance among the distances defined by the pairs
(A1, B1), . . . , (Aj , Bj) and each of the additional r distances is strictly less than dk, and the total
number of all these distances is at least k. On the other hand, let δl+1 be the number of distances
defined by pairs of points residing in different grid cells that are not represented in W. Then, by
definition, all these distances are greater than β and therefore strictly greater than dk. Consider
the sum of δl+1 and the number of distances defined by the pairs (Aj , Bj), . . . , (Al, Bl). This sum

is equal to
(
n
2

)
− Σj−1

i=1 δi − r, and therefore is strictly greater than
(
n
2

)
− k. We now establish

that mj ≤ dk. Clearly, mj is the minimum distance among the distances defined by the pairs
(Aj , Bj), . . . , (Al, Bl). Also, mj < ml+1, where ml+1 is the minimum distance among the distances
counted by δl+1, since otherwise there are more than

(
n
2

)
−k distances that are strictly greater than

dk, which is impossible. Now, since mj is the minimum distance among a set of more than
(
n
2

)
− k

distances, it follows that mj ≤ dk. To conclude, let t, 1 ≤ t ≤ j, be an index such that M = Mt,
then, by our choice of α and β, we get that M = Mt ≤ (1 + ε)mt ≤ (1 + ε)mj ≤ (1 + ε)dk. The
following theorem summarizes the result of this section.

Theorem 6.1. For any set P of n points in the plane, for any integer parameter k, 1 ≤ k ≤
(
n
2

)
, and

for any 0 < ε ≤ 1/2, one can compute a one-sided approximation of dk (i.e., of the k’th smallest
Euclidean distance among the distances determined by pairs of points in P ) in O((1/ε2)n log n)
time.

7 Concluding Remarks

In this paper, we studied the Euclidean bottleneck Steiner path problem and its dual version, and
presented efficient solutions for both problems. Our solutions are based on two new geometric
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structures, namely, a (weak) (α, β)-pair decomposition of a planar point set P and a floor (1 + ε)-
spanner of P (where the former is used in the construction of the latter). We also used an (α, β)-
pair decomposition of P to obtain a strong hop-sensitive spanner and to improve the running
time of the algorithm of Bespamyatnikh and Segal [6] for computing a one-sided approximation
for planar distance selection. It would be interesting to see additional applications of (α, β)-pair
decomposition.

Acknowledgment. We wish to thank an anonymous reviewer who pointed out that the weak
version of an (α, β)-pair decomposition of P is sufficient for some of our applications.
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