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Abstract

Ad-hoc networks of sensor nodes are in general semi-permanently deployed. However, the topology

of such networks continuously changes over time, due to the power of some sensors wearing out, to

new sensors being inserted into the network, or even due to designers moving sensors around during

a network re-design phase (for example, in response to a change in the requirements of the network).

In this paper, we address the problem of how to dynamically maintain two important measures on the

quality of the coverage of a sensor network: We maintain a (1 + ǫ)-approximation on the best-case

coverage distance and a (
√

2 + ǫ)-approximation on the worst-case coverage distance of the network,

for any fixed ǫ > 0. We assume that the ratio between upper and lower transmission power of sensors

is bounded by a polynomial of n, where n is the number of sensors. Our algorithms have amortized

or worst-case poly-logarithmic update costs when the motion of mobile sensors can be described as

a low-degree polynomial function of time. We are able to efficiently maintain the connectivity of the

regions on the plane with respect to the sensor network, by extending the concatenable queue data

structure to also serve as a priority queue. In addition, we present an algorithm that finds the shortest

maximum support path in time O(n log n), improving on the O(n2 log n) running time of centralized

implementation of the previously best known algorithm by Li, Wan, and Frieder.
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1 Introduction

Ad-hoc sensor networks are emerging as a new sensing paradigm and have thus received massive research

interest recently. Usually sensor nodes are semi-permanently deployed, since the sensors themselves barely

have any moving capacity. However, the topology of such networks continuously changes over time due

to a variety of reasons: For example, a sensor node may wear out due to its very limited battery power,

a new sensor node may be inserted into the network, or the layout of a sensor network may need to be

changed in order to improve the quality of the network coverage in response to a change in the network

requirements, which is accomplished by changing the placement of current (or inserting, deleting) sensors

in network.

In this paper, we address the problem of how to dynamically maintain two important measures on the

quality of the coverage of a sensor network: the best-case coverage distance and the worst-case coverage

distance of the network. We also address two related problems, namely that of finding a shortest maximum

support path, and that of covering a path in the network using a limited number of sensors, as we explain

later.

In a sensor network, each sensor bears the ability to detect objects around it. The coverage of a

sensor is limited by its energy level. Assume the sensor’s detecting ability is omnidirectional, then we can

model the coverage of a sensor as a disk (under 2-norm on the Euclidean plane1) centered at the sensor.

The radii of such disks are determined by the energy level of the sensors. The coverage area (or simply

coverage) of the sensor network is the union of all such disks.

A sensor network is often used to detect intruders. An intruder may start at a point S on the plane,

follow an arbitrary trajectory (path), and stop at some other point T on the plane. In some applications,

a sensor network may need to keep track of the intruder at all times, as it follows its trajectory; in some

other applications, the network’s function may be simply to detect the presence of an intruder, in which

case the network only needs to cover some part of the trajectory. Thus, given two points S and T , two

relevant types of trajectories are proposed [11]: the maximum breach path and the maximum support path

(In [11], these paths are called maximal breach path and maximal support path, respectively.).

The maximum breach path measures the vulnerability of a sensor network by, as the name suggests,

completely avoiding the coverage area of the sensor network: It is a trajectory between the start point

1A disk of radius r centered at (x, y) under 2-norm in R
2 is the set of points (p, q) such that

√

(p − x)2 + (q − y)2 ≤ r.
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S and the stop point T that stays “as far away” from the sensors as possible. On the other hand, the

maximum support path measures the efficiency of the network coverage: This path is a trajectory between

S and T which stays “as close to the sensors” as possible. The distance of a point P to the sensor network

is defined as the smallest Euclidean distance from P to one of the sensor nodes. A maximum breach path

from S to T is a path from S to T such that the minimum distance from a point P in the path to the

sensor network is maximized: This distance is called the worst-case coverage distance of the network.

Similarly, a maximum support path from S to T is a path such that the maximum distance of a point P

in the path to the sensor network is minimized: This distance is called the best-case coverage distance of

the network.

When the topology of a sensor network changes, the quality of its coverage most probably will be

affected. We would like to maintain an assessment on the quality of the network coverage — which, as

explained above, can be done by maintaining the worst-case and best-case coverage distances — efficiently

at all times. This would give a clear indication on how effective the network coverage is at any given

point in time, possibly calling for the insertion of new nodes in the network (e.g., when the coverage

deteriorates due to node failures) or to a network re-design phase. Whenever necessary, the actual paths

which give the best-case and worst-case coverage distances can be retrieved. As we will see later, in

Sections 4 and 5, our algorithms for maintaining the worst-case and best-case coverage distances have

poly-logarithmic update and query costs, as defined later. To the best of our knowledge, this is the first

work which formalizes and addresses this problem in a dynamic scenario.

For a moment, let’s assume that all sensors have the same energy and thus that all disks have the

same radius r. We call such a sensor network a uniform sensor network. The radius r is referred to as

the coverage radius of the sensor network. In a uniform sensor network, all of the paths whose minimum

distance of a point in the path to a sensor is larger than the coverage radius are equivalent, in the sense

that the sensors in the network will not be able to detect an intruder using any such path. Similarly,

all of the paths whose maximum distance of a point in the path to a sensor is smaller than the coverage

radius are equivalent, in the sense that any such path is entirely contained in the coverage area of the

network. The worst coverage radius (see [11]) is defined to be the maximum coverage radius such that

there exists a trajectory P between given points S and T which does not intersect the interior region of

the area covered by the uniform sensor network (i.e., P may ”touch” the coverage area, intersecting it
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at a discrete number of points only). We can think of the worst-coverage radius as being the maximum

energy that can be assigned to the sensor nodes which still would not prevent an intruder from escaping

from S to T without being detected (for simplicity, we assume that a sensor will not be able to detect

an intruder who only touches its coverage area). Correspondingly, the best coverage radius (see [11]) is

defined to be the minimum coverage radius such that there exists a trajectory between S and T that is

totally covered by the sensor network.

We introduce uniform sensor networks as a merely conceptual tool in order to facilitate the presen-

tation of our approximation algorithms and their analyses, following a similar approach as Li et al. [10]

(The actual sensor network in consideration has nodes with arbitrary energy levels and therefore is not

assumed to be uniform.). In fact, if we think of a uniform sensor network built on top of the placement

of the sensor nodes currently deployed in the general sensor network in consideration, the worst-coverage

radius of the uniform network is indeed equal to the worst-case coverage distance of the general sensor

network, and the best-coverage radius is indeed equal to the best-case coverage distance.

In order to dynamically maintain the best- and worst-case coverage distance efficiently, we need to

maintain some information on the current topology of the sensor network; when the network topology

changes, we need to update this information. We also perform queries for the current best-case and

worst-case coverage distances, based on the information maintained. Hence, the cost (or running time)

of our algorithms are measured in terms of their respective update cost — i.e., the cost to update the

topology information, which is charged per “relevant” topology change in the network — and the query

cost, which is the cost incurred when answering a query for the current best-case or worst-case coverage

distance.

In Sections 4 and 5, we formally define a “relevant topology change” — which will henceforth be called

an event — for the problems of maintaining the best-case and worst-case coverage distances, respectively.

The remainder of the paper is organized as follows. Section 1.1 states our results. In Section 2,

we present some related work in the literature. Section 3 covers some preliminaries and sketches the

basic framework of our solutions; we present the low constant approximation algorithms for the best-

and worst-case coverage distance in Sections 4 and 5 respectively. In Section 6 we address other related

problem, namely that of efficiently finding a shortest maximum support path. Section 7 concludes the

paper with some possible lines for future work.
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1.1 Our results

In this section, we summarize the main results in this paper. One of the main contributions of this work

is to take into account the dynamic nature of sensor networks, and to propose a framework which can be

used to continuously monitor the quality of the network coverage.

In the following sections, we present two algorithms to maintain low constant approximations on the

best-case and worst-case coverage distances. Both algorithms have low update and query costs. Namely,

our algorithms achieve a (1 + ǫ)-approximation on the best-case coverage distance, and a (
√

2 + ǫ)-

approximation on the worst-case coverage distance, for any fixed ǫ > 0. The amortized update cost per

event of the best-case coverage distance algorithm is O(log3 n), and the respective query cost is worst-case

O(log n). For the worst-case coverage algorithm, the update cost per event is worst-case O(log2 n) and

the query cost is worst-case O(log n log log n). A formal definition of an event for each of the problems

considered follows in Sections 4 and 5, respectively.

As a byproduct of our algorithm for maintaining the worst-case coverage distance, we extend the

concatenable queue data structure to also serve as a priority queue. All the operations on this extended

data structure have worst-case O(log n) running time.

We also present an O(n log n) algorithm for computing an exact shortest maximum support path be-

tween two given points S and T , improving on the best-known previous results by Li et al. [10]. In [10], two

algorithms are presented for computing the maximum support path: One algorithm computes an exact

shortest maximum support path in O(n2 log n) time; the other algorithm provides a 2.5-approximation on

the shortest maximum support path in O(n log n) time. However, one should note that Li et al. present

distributed versions of their algorithms in [10], whereas our algorithms are centralized.

The update costs of our algorithms for approximately maintaining the best- and worst-case coverage

distances are much cheaper than maintaining the best- or worst-case coverage distances, within the same

approximation factors using the best-known algorithms in the literature prior to this work. In fact,

the best previously known algorithm for maintaining the best-case (resp., worst-case) coverage distance

within the same approximation factor as our algorithm repeatedly re-computes the maximum support

path (resp., maximum breach path) using the O(n log n) algorithm by Li et al. [10] (resp., the O(n2 log n)

algorithm by Meguerdichian et al. [11]) each time an event occurs. To the best of our knowledge, this

is the first work that explicitly addresses the problems of dynamically maintaining (approximations of)
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these two distances.

2 Related Work

Meguerdichian et al. [11] considered the problems of finding the maximum breach path and the maximum

support path on a sensor network. They [11] present an O(n2 log ∆) runtime algorithm for the maximum

breach path problem, where n is the number of sensors in the sensor network, and ∆ is the difference

between the highest and the lowest weight of an edge in the Voronoi Diagram of the sensor network.

Their algorithm for computing the maximum support path has the same running time as their maximum

breach path algorithm. The O(log ∆) factor can be easily converted into O(log n) in the algorithm that

solves the maximum breach path problem if we perform a binary search over a sorted list of the radii

of sensors instead of using a linear search as in [11]. The algorithms presented in [11] heavily rely on

geometric structures such as the Voronoi Diagram and Delaunay triangulation of the network, which

cannot be constructed efficiently in a distributed manner.

Li et al. [10] proved the correctness of the algorithms given in [11]. They also show how to find a

maximum support path in O(n log n) time using a centralized algorithm, or with O(n log n) communi-

cation complexity bits in a distributed fashion. In addition, Li et al. [10] present two algorithms for

computing a shortest maximum support path: an algorithm that computes an exact shortest maximum

support path with O(n2 log n) worst-case communication complexity, and an algorithm that computes

a 2.5-approximation of a shortest maximum support path (i.e. the total length of the obtained path

is at most 2.5 times the length of a shortest maximum support path) with O(n log n) communication

complexity.

Meguerdichian et al. [12] proposed an exposure-based formulation for analyzing the coverage of paths

taken by polygonal objects: They define a path-dependent “integral”, which consists of the trajectories

of all the points of the polygonal object (the polygonal object is able to rotate), and not only of the

trajectory of the object’s center point. Zhang and Hou [14] prove that if the radio range is at least twice

of the sensing range, a complete coverage of a convex area implies connectivity among the working set of

nodes and derive optimality conditions under which a subset of working sensor nodes can be chosen for

full coverage. Wang et al. [13] design a Coverage Configuration Protocol (CCP) that can provide different

degrees of connected coverage and present a geometric analysis of the relationship between coverage and

connectivity. Huang and Tseng [8] present an algorithm with runtime of O(n2 log n) that decides whether
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every point in the service area is covered by at least one sensor.

3 Preliminaries

Before heading into the technical details of our algorithms, we introduce some basic concepts which will

be used in both Section 4 and 5. The first concept we introduce is that of growing disks, which will help

us translate our problems into graph connectivity problems.

The growing disks concept was previously proposed in [10]. We restate it in terms of the coverage

radius of a uniform sensor network as defined in Section 1. Assume we have a uniform sensor network

with coverage disks centered at the sensors. Define U(r) to be the region on the plane composed of the

union of all of the coverage disks when the coverage radius is r. Let U(r) be the complement of the

region U(r). At the very beginning, we set the coverage radius to be equal to 0. Then U(r) is the union

of discrete singletons. As the coverage radius grows, the disks centered at the sensors become larger and

might get connected into larger regions. Therefore, U(r) might get disconnected into separate regions.

For any given two points S and T , the best coverage radius is the minimum r such that S and T are

in the same connected region of U(r), while the worst coverage radius is the minimum r such that S

and T belong to two disconnected regions in U(r). Hence, the best and worst coverage radius problems

translate to connectivity problems on U(r) and U(r), respectively. Figure 1 illustrates these ideas. We

will further translate the best and worst coverage radii problem into graph connectivity problems.

In this paragraph, we show how to translate the best coverage radius problem into a graph connectivity

problem. A uniform disk graph is the intersection graph of disks with uniform radius r (see [4]). In this

graph, disks are vertices and there is an edge between two vertices if and only if the corresponding disks

intersect.2 The connectivity of U(r) is naturally modeled by that of a uniform disk graph of radius r,

denoted by G(U(r)). The best coverage radius is the minimum r such that the vertex corresponding to

S is connected to that corresponding to T in G(U(r)).

We also translate the worst coverage radius problem into a graph connectivity problem. However this

case is rather more involved and we delay its presentation to Section 5.

When r is fixed, suppose that we have a poly-logarithmic running time query to check whether the

region in either U(r) or U(r) containing S is connected to that containing T . Then we can build an

α-approximation algorithm, α > 1, for either the best or the worst coverage radius problem, as we show

2If we rescale one unit to be 2r, then a uniform disk graph is a unit-disk graph.
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in the next paragraph.

For the best coverage radius, consider the sequence of U(ri), such that ri = αri−1. We use a binary

search on the sequence U(ri) to find the i such that S and T are connected in U(ri) but not in U(ri−1).

Since the best coverage radius falls in the interval [ri−1, ri] and since ri is at most αri−1, we know that

ri is an α-approximation on the best coverage radius. A similar argument on the sequence of U(ri) gives

an α-approximation of the worst coverage radius.

Assume sensors occupy some space and cannot overlap. Then there is a constant lower bound on

the coverage radius, denoted by rmin. Due to the limited battery power, we assume that there is a

constant upper bound on the coverage radius, denoted by rmax. Let R = rmax/rmin. We need to maintain

logα(R) copies of U(ri) or U(ri). If updating the relevant connectivity information for each U(ri) or

U(ri) takes time g(n), and querying on each U(ri) or U(ri) takes time h(n), then the overall update time

is logα(R) · g(n) and the overall query time is log logα(R) · h(n). Both of them are poly-logarithmic on n

provided that g(n) and h(n) are both poly-logarithmic on n, and that R is bounded by a polynomial on

n.

4 Dynamic Best-Case Coverage Distance

In this section, we present our (1+ǫ)-approximation algorithm to maintain the best-case coverage distance

following the framework presented in Section 3. Recall that, as shown in Section 3, finding the best-case

coverage distance for given points S and T is equivalent to finding the minimum r such that S and T are

connected in G(U(r)). Thus our main goal is to devise an approach to maintain the connectivity of the

uniform disk graph G(U(r)) such that both the update cost and the query cost are poly-logarithmic on

n, which is the number of sensors in the network.

Holm, Lichtenberg and Thorup [7] showed that the connectivity of a graph can be maintained in

amortized poly-logarithmic update cost, and each query takes time O(log n/ log log n). Guibas et al. [5]

used Holm et al.’s algorithm to maintain connectivity on a unit-disk graph. The update cost in [5, 7] is

charged per edge insertion or deletion. In order to be able to detect when uniform disks meet or separate

on the plane (corresponding to an edge insertion or deletion on a unit-disk graph, respectively), Guibas

et al. [5] introduced a kinetic data structure specially tailored to handle this scenario.

The kinetic data structure framework was first proposed by Basch et al. [2, 3] to deal with dynamics.

Their main contribution is a method to maintain an invariant of a set of moving objects in a discrete
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manner. They introduce the idea of keeping certificates as triggers for updates. When an object moves and

a certificate fails, the consistency of the kinetic data structure is invalidated and an update is mandatory.

The advantage of the kinetic data structure is that each failure of a certificate incurs a setup of up to a

constant number of new certificates. Hence we are allowed to monitor the dynamics of a set of objects

discretely and efficiently. The kinetic data structure requires that we know the flight plan (a specification

of the future motion [2, 5]) of all disks and that the trajectory of each disk can be described by some

low-degree algebraic curve. We have the freedom to change the flight plan at any time. The details of

the kinetic data structure are beyond the scope of this paper. Please refer to [3, 5] for more information.

We just mention here that in our case the kinetic data structure should also be dynamic, i.e. we would

like to be able to insert and delete items dynamically from time to time. Basch [2] shows that kinetic

data structures support these operations.

The kinetic data structure utilized in [5] can be viewed as a discrete event monitor. The events we

need to monitor in order to maintain accurate connectivity information on G(U(r)) are when two disks

meet or separate. In [5], two types of certificates are set up and the data structure allows us to determine

a priori the time when an event will occur. When an event occurs, the topology of the uniform disk graph

G(U(r)) changes and an update on the connectivity information is triggered. Hence the update cost is

the cost to update the connectivity information of G(U(r)) per event. When a certificate fails and an

event occurs, it takes constant time for the kinetic data structure to process the failure (due to the setup

of at most a constant number of new certificates). We do not take this cost into account when computing

the update cost of the maintenance of the connectivity information of G(U(r)), since it would not change

the asymptotic bound on the update cost.

We adapt the main Theorem in [5], Theorem 5.4, to better serve our purposes. The uniform disk

graph G(U(r)) corresponds to a unit-disk graph if we rescale one unit to be equal to 2r.

Lemma 1 (Adapted from Theorem 5.4 in [5]) In [5], an algorithm to dynamically maintain the con-

nectivity of G(U(r)) is presented. The update cost is amortized O(log2 n) per event. The query cost is

worst-case O(log n/ log log n).

We still need to show how to determine which disks contain the given points S and T , at any point

in time. We sort all sensors according to their distances to the fixed point S. We maintain a binary heap

on this ordering. Once the ordering changes, we update the heap in O(log n) time. This introduces a
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new type of event — namely when two sensors swap their positions in the ordering — besides the two

events defined earlier. The update cost for this event is O(log n). To check which disk contains S, we

find the closest sensor to S. We check if the distance is larger than the coverage radius. If so, then S is

not contained in any disk. Otherwise, we know that the closest sensor contains the point S. This query

takes constant time. We maintain the ordering of the sensors with respect to T in a similar way.

Combining the result in this section with the algorithmic framework presented in Section 3, we have

our (1 + ǫ)-approximation algorithm (for any ǫ > 0) for the best-case coverage distance by maintaining

log1+ǫ R copies of G(U(r)), for r = 1, (1 + ǫ), (1 + ǫ)2, . . .. The log log1+ǫ R factor in the query cost is due

to a binary search on the log1+ǫ R copies of G(U(r)).

Theorem 1 Our algorithm dynamically maintains a (1 + ǫ)-approximation, for any ǫ > 0, of the best-

case coverage distance. The update cost of this algorithm is amortized O(log2 n · log1+ǫ R) per event and

the query cost is worst-case O((log n/ log log n) · log log1+ǫ R).

Corollary 1 If ǫ > 0 is fixed, then our algorithm has amortized O(log3 n) update cost per event, and

worst-case O(log n) query cost.

5 Dynamic Worst-Case Coverage Distance

In this section, we present our (
√

2+ ǫ)-approximation algorithm, for any ǫ > 0, to dynamically maintain

the worst-case coverage distance. We first present a (1 + ǫ)-approximation algorithm (for any ǫ > 0)

for a simplified sensor network model, where the coverage disks are considered under infinity-norm.

Since there is only a
√

2 gap between infinity-norm and 2-norm, a (1 + ǫ/
√

2)-approximation factor

for infinity-norm dilates into a (
√

2 + ǫ)-approximation factor when applied to the 2-norm scenario, for

any fixed ǫ > 0. The infinity-norm of a vector v = (x1, · · · , xd) in a d-dimensional space is defined as

||v||∞ = max(|x1|, · · · , |xd|). Under infinity-norm, the distance between two points on the plane is the

maximum of the difference of their x coordinates and the difference of their y coordinates. Hence the

coverage region of a sensor is square shaped and its boundary is composed of four line segments. As we

will see later, this simple boundary shape allows for an efficient maintenance scheme.

Recall the solution framework presented in Section 3. The core of our algorithm is to check, for

any two given points S and T , whether the region in U(r) containing S is connected to that containing

T . If we can maintain some information such that each query on connectivity of regions takes only
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poly-logarithmic time, and the cost of update against mobility is also poly-logarithmic, then the overall

poly-logarithmic maintenance cost follows.

In our algorithm, regions in U(r) are represented by their boundaries. Only one region in U(r) may

be infinite in area. We call such an unbounded region the outer face. All of the other (bounded) regions

are called inner faces. Since we consider the infinity-norm, each disk is represented by a square on the

plane. Thus the boundary of any inner face is a simple cycle composed of a sequence of line segments,

while the boundary of the outer face comprises several simple cycles. To differentiate these cycles, we call

a cycle that is the boundary of an inner face an inner cycle, and a cycle on the boundary of the outer

face an outer cycle. Figure 3 illustrates some of these concepts. The shaded areas in the figure define

U(r), and the unshaded areas define U(r). In (b), U(r) is divided into two regions, the unbounded region

is the outer face, the bounded region is the inner face. The boundary of the inner face is an inner cycle

and that of the outer face is an outer cycle. In (c), the boundary of the outer face consists of two disjoint

outer cycles.

Below we describe a method which translates the connectivity of regions in U(r) into a graph con-

nectivity problem. The first step is to represent outer cycles and inner cycles by a graph. There are only

vertical line segments and horizontal line segments in both outer and inner cycles, and those line segments

only meet at their endpoints. Hence we can draw a graph such that the vertices are the endpoints and

the edges are the line segments. We call this graph the connectivity graph G(U(r)). (For convenience, the

connectivity graph will actually be implemented in a slightly different way, as we explain in Section 5.1.)

Every outer cycle or inner cycle is a cycle in the graph and any two of them are disjoint, i.e., discon-

nected in the graph. This coincides with the fact that any two distinct inner faces are disconnected, and

any inner face is disconnected from the outer face.

The connectivity of G(U(r)) is thus analogous to that of U(r): Two regions are connected in U(r)

if and only if their boundary cycles are connected in the graph, or they are both part of the outer face

boundary. Thus we could apply the algorithm proposed by Holm et al. [7], which dynamically maintains

graph connectivity, to maintain the connectivity of the regions in U(r). The update cost per edge insertion

or deletion in [7] is amortized O(log2 n) and the query cost is O(log n/ log log n). However, G(U(r)) is the

union of simple disjoint cycles, and thus its simple structure permits a more efficient update scheme. As

we will show later, we can maintain the connectivity in worst-case update cost O(log n), with worst-case
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query cost O(log n). Although the query cost is slightly higher than that of the algorithm in [7], we shrug

off a logarithmic factor from the update cost.

In the remainder of this section, we first describe the dynamics of the connectivity graph. Then we

define three types of events which mandate updates and our update cost is charged per event. Following

that, we present a data structure, which is an extension of concatenable queues [1], to maintain the

connectivity of the graph efficiently. Finally we present our major result on the worst-case coverage

distance.

5.1 Dynamics of Cycles

In this section, we first formally define the representation we use for the connectivity graph G(U(r)).

Second, we address the dynamics of the connectivity graph. And finally, we present an algorithm for

maintaining the connectivity information on the regions of U(r).

The boundary of a standalone square is the simplest cycle in G(U(r)). We represent a square by eight

vertices and eight edges as shown in Figure 2. For every corner X of a square, we introduce two vertices

X and X ′. Hence we have O(n) vertices and edges in G(U(r)). The extra vertices help us to efficiently

maintain the graph when squares start to move and overlap on the plane. In the following, we will show

that the dynamics of sensors will not change the O(n) bound on the number of vertices and edges.

When two squares meet, at most two pairs of line segments of their boundaries intersect. Without

loss of generality, suppose a vertical edge B′C intersects with a horizontal edge E′F at point Z, and the

new boundary comprises edges B′Z and ZF . Then we just relocate vertices C and E′ to Z, insert an

edge CE′ and remove edges CC ′ and EE′ in G(U(r)). Figure 2 illustrates this operation. Note that we

do not introduce any new vertex or remove any old vertex. In fact, since G(U(r)) contains no information

of the vertex’s location, we do not need to do any “relocation” of a vertex when we operate on G(U(r)).

The cases of a vertical edge intersecting with a vertical edge, and of a horizontal edge intersecting with a

horizontal edge are analogous, and can thus be also handled by at most two edge insertions and at most

two edge deletions. Since we never change the number of vertices in the graph, and since each vertex has

degree at most 2, the O(n) upper bound on number of vertices and edges in G(U(r)) always hold. The

following fact follows:

Fact 1 When two squares meet or separate, up to four edge insertions and deletions are needed to update

the connectivity graph G(U(r)).
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When the topology of the network changes, cycles in G(U(r)) may also undergo changes. A cycle

may break into two smaller cycles; or two cycles may merge into a longer cycle. Both these operations

impose changes on the connectivity of G(U(r)). Cycles break or merge only when two coverage disks of

sensors meet or separate. Hence we need to detect the time when those happen in order to trigger an

update.

When a cycle breaks, it could break into an outer cycle and an inner cycle (as shown in Figure 3). We

need to differentiate outer cycles and inner cycles since all outer cycles define the same region, namely

the outer face. In order to determine whether a cycle is an outer cycle, one only needs to identify the

topmost edge of the cycle: If the topmost edge of the cycle is the top boundary of a square, then the

cycle is an outer cycle; otherwise, the topmost edge of a cycle is the bottom boundary of a square, and

the cycle is an inner cycle. Hence we need to maintain the topmost edge of each cycle as sensors move.

The topmost edge of a cycle may change only when two horizontal line segments swap their y position.

Therefore we also need to monitor these line segment swaps.

Recall that the original problem we aim to solve is to check whether the region containing a given

point S is connected to that containing T . We need to determine which region contains a given point

and also to update this information as sensors move. Similar to what we have done in Section 4, we sort

all sensors according to the distance from the fixed point S and maintain a binary heap on this ordering,

with update cost O(log n) on the heap. To check which region S belongs to, we need to find the cycle

representing the region. Again we find the closest sensor to S and check if the distance is larger than the

radius of the coverage disk of the sensor. If not, then the point S not in any region of U(r). Otherwise,

we check the eight vertices of the square representing the closest sensor to S, find the closest one of these

vertices to S, and the cycle containing this closest vertex represents the region containing S. This query

takes constant time. We maintain a similar data structure for T . Thus we also need to monitor and

detect the time when two sensors swap their position in these orderings.

We summarize all of the above in the following three types of events, which we need to monitor in

order to trigger mandatory updates, as sensors move on the plane:

(I) Two vertical line segments swap their x position,

(II) Two horizontal line segments swap their y position, and

(III) Two sensor swap their position in the orderings of the sensor’s distance to the given points S
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and T .

When events (I) or (II) occurs, we can check in constant time whether two coverage disks meet or

separate. If so, we check whether the event leads to a cycle break or merge, and update the data

structure accordingly. When event (II) occurs, we can check whether the two horizontal line segments

belong to the same cycle. If so, we may also need to update the topmost edge of the cycle. When event

(III) occurs, we update the orderings with respect to distances to S and T .

We use the kinetic data structure as defined in [3] as our event monitor (unlike G(U(r)), G(U(r))

is not a unit-disk graph and therefore the results in [5] do not apply). Each event can be detected and

processed in constant time.

In the following, we present our update scheme. We will also show that the update cost per event

is O(log n). We store a cycle as a sequence of consecutive edges. In Section 5.2 we introduce a data

structure which supports the following operations for sequences of edges:

INSERT - insert an edge into a sequence

DELETE - delete an edge from a sequence

CONCATENATE - concatenate a sequence to the end of another sequence

SPLIT - split a sequence into two sequences

SWAP - swap the y position of two edges

MAX - return the topmost edge of a sequence

MEMBER - return the representative edge of a sequence

Each of these operations can be executed in worst-case running time O(log n), as stated in Lemma 4.

The update per type (I) or (II) event is as follows. When squares move and the shape of a cycle

changes, up to a constant number of INSERT and DELETE operations are needed to update the cycle

per event. When two edges in a cycle exchanges their y position, we execute SWAP to update the y

position per event. We can execute MAX to know whether a cycle is an outer cycle or not. Recall that

a cycle is an outer cycle if and only if the topmost edge of the cycle is the top boundary line segment

of a square. Cycle merges or breaks can be carried out by a constant number of CONCATENATE
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and SPLIT operations. Since only a constant number of INSERT, DELETE, CONCATENATE,

SPLIT, SWAP and MAX operations are executed per event, the update cost per event is worst-case

O(log n). As we have explained earlier, the update cost per type (III) event is also O(log n).

A data structure that supports the operations above can also be used for efficiently performing a

connectivity check. First we can find the closest vertices u and v to points S and T respectively, which

takes constant time. Then we check if u and v belong to the same cycle by performing two MEMBER

operations. If so, then S and T belong to the same region. If not, we need to perform an additional check

to see whether the two cycles are outer cycles or not by two executions of the MAX operation. If both

of them are outer cycles, then both S and T belong to the outer face, and hence are in the same region.

Otherwise, S and T belong to two disconnected regions. Thus we also have an O(log n) query cost.

We summarize all of the above in Lemma 2.

Lemma 2 For any two given points S and T , we maintain a data structure with O(log n) update cost per

event such that the query to check whether the region in U(r) containing S is connected to that containing

T takes O(log n) time.

Combining Lemma 2 with the algorithmic framework presented in Section 3, we have our (1 + ǫ)-

approximation algorithm, for any ǫ > 0, for the worst-case coverage distance under infinity-norm, as

stated in the lemma below.

Lemma 3 Under infinity-norm, our algorithm dynamically maintains a (1 + ǫ)-approximation of the

worst-case coverage distance for any ǫ > 0. The update cost is worst-case O(log n · log1+ǫ R) per event,

and the query cost is worst-case O(log n · log log1+ǫ R).

Hence the (
√

2+ǫ)-approximation algorithm for the worst-case coverage distance under 2-norm follows:

Theorem 2 Our algorithm dynamically maintains a (
√

2 + ǫ)-approximation of the worst-case coverage

distance, for any ǫ > 0. The update cost is worst-case O(log n · log1+
ǫ√
2

R) per event, and the query cost

is worst-case O(log n · log log1+
ǫ√
2

R).

Corollary 2 If ǫ > 0 is fixed, then our algorithm has worst-case O(log2 n) update cost per event, and

worst-case O(log n log log n) query cost.
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5.2 Extended Concatenable Queue

In this subsection we introduce a data structure that supports the operations INSERT, DELETE,

CONCATENATE, SPLIT, SWAP, MAX and MEMBER efficiently. The data structure is an

extension of the concatenable queue data structure [1]. In [1], a concatenable queue is implemented by

a 2-3 tree (a Red-Black tree would also work, for example), and all the data is stored at the leaf nodes.

A concatenable queue supports the operations INSERT, DELETE, CONCATENATE, SPLIT and

MEMBER, and each operation takes time O(log n) in the worst case. Thus we only need to show how

to implement the SWAP and MAX operations on a concatenable queue in O(log n) time.

We associate each edge’s y coordinate to the corresponding leaf node in the 2-3 tree. To each internal

node t, we associate the maximum y coordinate of a leaf node in the subtree rooted at t. This is done by

comparing all the y coordinates associated to t’s children in the tree, taking constant time per internal

node. When the y coordinate of an edge changes, and a SWAP operation is invoked, it takes at most

O(log n) time to climb up the tree and update all the internal nodes on the way up. Starting from any

given edge on a cycle, it takes O(log n) time to reach the root of the 2-3 tree where we can find the

topmost edge of the cycle. Thereupon the O(log n) running time of MAX follows.

We need also to justify that the above modification does not increase the running time of all other

operations. Per each INSERT or DELETE, it takes an additional O(log n) time to update the y

coordinate of all internal nodes due to the edge insertion or deletion. Both CONCATENATE and

SPLIT are implemented by up to O(log n) times join or break of trees at the root node. Since updating

the y coordinate at the root node takes constant time (by comparing all the children of the root), we incur

at most an additional O(log n) time per CONCATENATE or SPLIT. Thus an additional O(log n)

does not change the asymptotic bound of the running time of INSERT, DELETE, CONCATENATE,

and SPLIT. The running time of MEMBER is not affected.

Lemma 4 The extension of the concatenable queue data structure supports the operations of INSERT,

DELETE, CONCATENATE, SPLIT, SWAP, MAX and MEMBER. Each operation has worst-

case running time of O(log n).

6 Exact Shortest Maximum Support Path

In this problem we need to find a maximum support path between S and T which has minimum total

length. The length of a path is given by the sum of the Euclidean length of the edges on the path. Below
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we present an O(n log n) runtime solution, thus improving on the best-known previous results by Li et

al. [10].

We proceed as follows. First we compute the best coverage radius rbest using the algorithm of Li et

al. [10] in O(n log n) time. Next, we obtain a collection of uniform disks by setting the radius of each

sensor to be rbest. We construct the arrangement of n disks corresponding to the given sensors. The

cardinality of the total number of vertices defining boundary of the union of these disks is O(n) as has

been noticed by Kedem et al [9] and they can be computed in O(n log n) time. Let us denote the union

of all disks by U . We observe that vertices of the optimal shortest path either belong to the set of

intersection points of disks (except maybe source S and destination points T ) or are located inside of the

union of disks.

Define the complement region of the union C = R
2 \ U . In fact, our problem is now to find a path

in R
2 avoiding C, since we are seeking for a maximum support path and rbest is the best coverage radius

(Since rbest is the best coverage radius, any maximum support path is contained in U ; in fact any path

from S to T in U is a maximum support path.). A shortest maximum support path can only contain

straight line segments as edges, otherwise the path would not be shortest. Therefore, we can replace each

arc in C by a straight line segment. In such fashion we obtain a new set of obstacles C ′ as a collection of

polygonal objects with possible holes that have total O(n) number of vertices. We can remove holes and

obtain slightly larger number of disjoint polygonal objects by cutting the existing objects with segments

that connect vertices of holes and external boundary in an arbitrary fashion. Note that the number

of total vertices of disjoint polygonal objects has not changed, i.e. it is still O(n). Thus, our problem

translates to finding a shortest path in R
2 that avoids the polygonal obstacles in C ′.

The idea now is to use an algorithm by Hershberger and Suri [6], which finds a shortest path between

S and T that avoids polygonal obstacles in O(n log n) time. The total time of our algorithm is, therefore,

O(n log n). It beats a bound of 2.5-approximation ratio with the same running time provided by Li et

al. [10], and also their exact algorithm with O(n2 log n) runtime.

7 Future Work

In this paper, we present poly-logarithmic dynamic algorithms to maintain approximations of two relevant

measures — namely, the best- and worst-case coverage distances — of the quality of the network coverage

in wireless sensor networks. An interesting open question is whether we can maintain exact best-case and
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worst-case coverage distances for Euclidean metric with poly-logarithmic update time.
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Figure 1: Best and worst coverage radii.
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Figure 2: Representation in G(U(r)).
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Figure 3: Outer- and inner-cycles.
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