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Abstract

We consider the fundamental problem of managing a bounded size queue buffer where traffic con-
sists of packets of varying size, where each packet requires several rounds of processing before it can
be transmitted from the queue buffer. The goal in such an environment is to maximize the overall size
of packets that are successfully transmitted. This model is motivated by the ever-growing ubiquity of
network processors architectures, which must deal with heterogeneously-sized traffic, with heteroge-
neous processing requirements. Our work addresses the tension between two conflicting algorithmic
approaches in such settings: the tendency to favor packets with fewer processing requirements, thus
leading to fast contributions to the accumulated throughput, as opposed to preferring packets of larger
size, which imply a large increase in throughput at each step. We present a model for studying such
systems, and present competitive algorithms whose performance depend on the maximum size a packet
may have, and maximum amount of processing a packet may require. We further provide lower bounds
on algorithms performance in such settings.
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1 Introduction

Modern day computing faces increasingly heterogeneous tasks, varying in, e.g., importance, size, and pro-
cessing requirements. Such scenarios are encountered, for example, in OS caching environments, job-shop
scheduling, and most notably, network processors dealing with packet-switched traffic. Dealing with such
heterogeneity is usually done via prioritizing the tasks, both at the ingress of the queue where discard deci-
sions are taken (if such decisions are allowed), as well as at the egress of the queue where decisions are being
made as to which task should be scheduled for processing. The decisions made by the prioritization module
affect various Quality-of-Service (QoS) metrics, such as delay, throughput, etc. Furthermore, in many of
these environments the queue might be constrained to use a limited size buffer, which further restricts the
ability to provide adequate performance to the underlying computing tasks. Such scenarios occur, e.g., when
using a highly limited CPU cache in high-performance computing, in job-shop scheduling, and in network
processor architectures which must perform multiple tasks on incoming packets.

In what follows, we adopt the terminology used to describe queue management within a router in a
packet-switched network. We focus our attention on a general model for the problem where we are required
to manage the admission control and scheduling modules of a single bounded size queue, where arriving
traffic consists of packets, such that each packet has some size (e.g., in bytes), and a processing requirement
(in processor cycles). A packet is successfully transmitted once the scheduling module has scheduled the
packet for processing for at least its required number of cycles, while the packet resides in the buffer. If
a packet is dropped from the buffer, either upon arrival due to admission control policies, or after being
admitted and possibly partially, but not fully, processed (e.g., in scenarios where push-out is allowed), then
the packet is irrevocably lost. We focus our attention on maximizing the throughput of the queue, measured
by the overall number of bytes of packets that are successfully transmitted by the queue.

The above simple model highlights a natural tension between two (potentially) conflicting goals: on
the one hand it seems beneficial to focus on packets which require few processing cycles, since these can
contribute to the throughput relatively fast. On the other hand, one is also enticed to favor large packets
since these imply a significant boost to the throughput once they are completed. Our work addresses this
dilemma, and presents algorithms with provable performance guarantees in such settings.

The main motivation for our model follows from managing queues in Network Processor (NPs) archi-
tectures. Such NPs are responsible for performing complex packet processing tasks in modern high-speed
routers, including forwarding, classification, protocol conversion and intrusion detection, to name but a
few. Common NPs usually rely on multi-core architectures, where multiple processors (also called PPEs
– packet processing elements) perform the various processing tasks required by the arriving traffic. Such
architectures are based on a pool of identical cores [4, 9], pipeline of cores [30], hybrid pool-pipeline [12],
and multipass [10], and are very efficient for traffic that requires homogeneous processing time per packet.
However, following operator demands, packet processing needs are becoming more involved and as a con-
sequence processing time is increasingly heterogeneous, as NPs need to cope with more complex tasks (e.g.,
VPN encryption, hierarchical classification for QoS, etc.). The main concern in such settings is maximiz-
ing the throughput attainable by the NP, measured by the overall number of bytes corresponding to packets
successfully processed by the system. It should be noted that modern architectures (e.g., OpenFlow [22])
support the availability of full information on the underlying traffic, such as the amount of processing re-
quired by each packet of a flow.

In addition to NP architectures, we believe our model and results may also be applicable to other queue-
ing environments exhibiting a conflict between processing and size in settings where buffers have a bounded
size.
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1.1 Our Contributions

In this paper we provide a formal model for studying the problems of online buffer management and online
scheduling in settings where packets have both size and processing requirements, and one has a limited
size buffer to store arriving packets. Our model allows for studying the interplay between the (potentially)
conflicting approaches of favoring large packets first, as opposed to favoring packets with fewer processing
requirements, where the goal is to maximize the throughput of the queue. It should be noted that the offline
version of the problem is NP-hard, as it encompasses Knapsack as a special case. For the more natural
online settings, we provide both algorithms with provable performance guarantees as well as lower bounds
on the performance of such algorithms.

We focus our attention on priority-based buffer management and scheduling, in both push-out settings,
where admitted packets are allowed to be pushed out of the queue prior to having its processing completed
(in which case the packet does not contribute to the system’s throughput), as well as non-push-out, in which
case buffer management decisions are limited to admission control. Specifically, we consider the following
priority queueing regimes: (i) Shortest Remaining Processing Time (SRPT) first, common in job scheduling
environments, and (ii) Longest-Packet (LP) first. We present competitive buffer management algorithms for
these schemes, and further present lower bounds on the performance of algorithms for such priority queues.
We show that the competitive ratio obtained by our algorithms depends on two fundamental parameters of
the problem, namely, (i) the maximum size of a packet, and (ii) the maximum number of processing cycles
required by a packet . We note that none of our algorithms requires knowledge of the maximum number
of processing cycles in advance (although some of our algorithms need prior knowledge of the maximum
allowed packet size, e.g., specified by a bound on the network MTU). We further show that this dependence
is necessary by proving lower bounds on the performance of buffer management algorithm for the problem.

1.2 Related Work

Keslassy et al. [14] where the first to consider buffer management and scheduling in the context of network
processors, where arriving traffic has heterogeneous processing requirements. They study both FIFO and
SRPT priority schedulers, in both push-out and non-push-out buffer management regimes. They focused
on the case where packets are of unit size, and showed competitive algorithms, as well as lower bounds,
for such settings. They further introduced the notion of push-out costs which serves to balance the aggres-
siveness demonstrated by the the buffer management module. We believe the assumption made in [14] that
packets are of unit size is very restrictive, since in real life NPs have to deal with packets of varying size,
and it is unclear how should one design algorithms that ensure good throughput guarantees in such highly
heterogeneous scenarios. The work of Keslassy et al. [14], as well as our current work, can be viewed as a
part of the larger research effort of studying competitive algorithms for buffer management and scheduling,
and specifically the study of such algorithms in bounded-buffers settings (see, e.g., a recent survey by Gold-
wasser [13] which provides an excellent overview of this field). This line of research, initiated in [18, 20],
has received tremendous attention in the past decade, where various models where studied including QoS-
oriented models where packets have weights (e.g., [1,11,18,20]), models where packets have dependencies
(e.g., [15, 21]), among others. It should be noted that most of these models focused on FIFO scheduling
disciplines, which seem ill-suited for dealing with traffic where packets have heterogeneous processing re-
quirements (as suggested by the results of [14]). A related field that has received much attention in recent
years focuses on various switch architectures and aims at designing competitive algorithms for such multi-
queue scenarios (e.g., [3, 5, 6, 16, 17]). Some works also provide experimental studies of these algorithms
and further validate their performance [2].

There is a long history of OS scheduling for multithreaded processors which is germane to our research.
For instance, the SRPT algorithm has been studied extensively in such systems, and it is well known to be
optimal for mean response [27]. Additional objectives, models, and algorithms have been studied exten-
sively in this context (e.g., [19, 23, 24]). For a comprehensive overview of competitive online scheduling
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for server systems see the survey of Pruhs [25]. When comparing this body of research with our proposed
framework one should note that OS scheduling is mostly concerned with average response time and aver-
age slowdown, while we focus on providing (worst-case) guarantees on the throughput. Furthermore, OS
scheduling does not allow dropping of jobs, which is an inherent aspect of our proposed model, as implied
the the fact we have a limited-size buffer, and overflowing packets must be dropped.

The model considered in our work is also closely related to Job-shop scheduling problems [8], and most
notably to hybrid flow-shop scheduling [26], in scenarios where machines have bounded buffers. These
models apply to a multitude of production-floor shop problems, where a pipeline of machines should perform
a set of operations on a sequence of tasks, where each machine can only accumulate a bounded number of
tasks awaiting execution at the current machine. Upon terminating the processing of a task at a given
machine, it can be forwarded to the next machine only if the buffer at this subsequent machine is not full.
Similarly to the case of OS scheduling, the main concern in these problems is designing algorithms whose
main objective is optimizing aspects of delay (either minimizing average delay, minimizing tardiness in
cases where tasks have deadlines, etc.). This line of research differs significantly from our work in that our
main focus is maximizing throughput, and our model allows for dropping of packets (or tasks, if one uses
the machine scheduling terminology), which is prohibited in job-shop problems.

1.3 Model Description and Algorithmic Framework

We consider a buffer with a bounded capacity of B bytes, handling the arrival of a sequence of packets.
Each arriving packet p has some size `(p) ∈ {1, . . . , L} (in bytes), and some number of required processing
cycles r(p) ∈ {1, . . . , k}. Both of these quantities are known for every arriving packet.1 The values of k and
L will play a fundamental role in our analysis. We note, however, that none of our algorithms needs to know
k in advance. The queue performs two main tasks, namely, buffer management, which handles admission
control of newly arrived packets and push-out of currently stored packets, and scheduling, which decides
which of the currently stored packets will be scheduled for processing. The scheduler will be determined
by the priority policy employed by the queue. Our framework assumes a multi-core environment, where we
have C processors, and at most C packets may be assigned for processing in any given time. However, for
simplicity, in the remainder of this paper we assume the system may assign a single packet for processing at
any given time (i.e., C = 1). This simple setting suffices to show both the intrinsic difficulties of the model,
as well as our algorithmic scheme. We assume slotted time, where each time slot t consists of 3 phases:
(i) transmission: in which packets with zero remaining required processing leave the queue, (ii) arrival: in
which new packets arrive, and the buffer management module performs both admission-control and possibly
push-out, and (iii) assignment and processing: in which a single packet is assigned for processing by the
scheduling module. Figure 1 provides a graphic depiction of our general model (disregarding at this point
the specific priority scheme employed by the system).

If a packet is dropped prior to being transmitted (i.e., while it still has a positive number of required
processing cycles), then it is lost. Note that dropping a packet may occur either upon its arrival, or due to a
push-out decision while it is stored in the buffer. A packet contributes its size to the objective function only
upon being successfully transmitted. The goal is to devise buffer management algorithms for each of the
considered priority regimes that aim at maximizing the overall throughput, i.e., the overall number of bytes
transmitted from the queue.

We define a greedy buffer management policy as a policy that accepts all arrivals whenever there is
available buffer space in the queue. Throughout this paper we only consider work-conserving schedulers,
i.e. schedulers that never leave the processor idle unnecessarily.

We say that an arriving packet p preempts a packet q that has already been accepted into the buffer
iff q is dropped in order to accommodate buffer space for p and p is admitted to the buffer instead. A

1The availability of this information is motivated by [29]. We note that assuming the size may be as small as 1 Byte is merely
for simplicity, and can be viewed as merely a scaling assumption.
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Algorithm 1 PO(p): Buffer Management Policy
1: accept p
2: while the last packet q in IB starts above position B − 2L+ 1 do
3: drop q
4: end while

buffer management policy is called a push-out policy whenever it allows packets to preempt currently stored
packets. For any algorithm ALG and any time-slot t, we define IBALG

t as the set of packets stored in the
buffer of algorithm ALG at time t.

The number of processing cycles of a packet is key to our algorithms. Formally, for every time t, and
every packet p currently stored in the queue, its number of residual processing cycles, denoted rt(p), is
defined to be the number of processing cycles it requires before it can be successfully transmitted.

We consider both push-out and non-push-out policies. which are identified by the subscripts PO and
NPO respectively. Furthermore, we will focus our attention on priority-queueing disciplines, which deter-
mine both the scheduling as well as the buffer management behaviour of the queue. Specifically, we will
focus our attention on the following priorities, which differ by the parameter determining the priority. The
parameters we consider are: (i) processing: in which the packet with the least amount of residual cycles has
the top priority (referred to as SRPT), and (ii) length: in which the largest packet receives the top priority
(referred to as LP).

Our goal is to provide performance guarantees for various buffer management algorithms working in
various priority queueing disciplines. We use competitive analysis [7, 28] when evaluating the performance
guarantees provided by our online algorithms. An algorithm ALG is said to be α-competitive (for some
α ≥ 1) if for any arrival sequence σ, the overall length of packets successfully transmitted by ALG is at
least 1/α times the overall length of packets successfully delivered by an optimal solution (denoted OPT),
obtained by a possibly offline clairvoyant algorithm.

Next we define both non-push-out (non-preemptive) and push-out (preemptive) algorithms that are used
for all types of characteristics. The type of characteristic will be clear from the context of description. The
Non-Push-Out Algorithm (NPO) is a simple greedy work-conserving policy that accepts a packet if there is
enough available buffer space.

In the push-out case the generic algorithmic setting for the buffer management policy is defined in
Algorithm 1. Note that algorithm PO is somewhat conservative in its use of the buffer, as can be seen from
line 2. The reason for this will be clear from our results presented in Sections 3.2, 4.1.

We will sometimes use the term value to denote the overall length of a set of packets, and our analysis
will be based on comparing the mapping value obtained by an optimal solution OPT , to that obtained by
our algorithm. Specifically, we will make use of mappings between packets transmitted by OPT and those
transmitted by our algorithm, such that their respective values differ by a mere multiplicative factor, which
in turn will serve as the bound on the competitive ratio of our algorithm.

2 Useful Properties of Ordered Multiset

To facilitate our proofs, we will make use of properties of ordered (multi-)sets. These notions, as well as
properties we show they satisfy, will enable us to compare the performance of our proposed algorithms with
the optimal policy possible, for various priority disciplines. In the following, we consider multi-sets of real
numbers, where we assume each multi-set is ordered in non-decreasing order. We will refer to such multi-
sets as ordered sets. For every 1 ≤ i ≤ |A|, we will further refer to element ai ∈ A or to A[i] as the i-th
element in the set A, as induced by the order. Given two ordered sets A,B, we say A ≥ B, if for every i for
which both ai and bi exist, ai ≥ bi.
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The following lemma, and its corollary, will be a fundamental tool used throughout our analysis. The
proofs can be found in the appendix.

Lemma 1. For any two ordered sets A,B satisfying A ≥ B, and any two real numbers a, b such that a ≥ b,
if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered sets A′ = A ∪ {a}, B′ = B ∪ {b} satisfy A′ ≥ B′.

The following corollary shows that the same result holds if we add an item to only one of the sets.

Corollary 2. For any two ordered sets A,B satisfying A ≥ B, and any real number b, if (i) b ≤ b|B| or
(ii) |A| ≤ |B| then the ordered set B′ = B ∪ {b} satisfies A ≥ B′.

3 Buffer Management with SRPT-based Priorities

In this section we address the problem of buffer management when the queueing discipline gives higher
priority to packets with fewer required processing cycles.

3.1 Non-preemptive Policy

In this part we consider the performance of NPO greedy algorithm. The following theorem provides a lower
bound on its performance and its proof can be found in Appendix.

Theorem 3. NPO has competitive ratio at least kL for SRPT-based priorities.

Next, we demonstrate an upper bound of the competitiveness for the NPO policy (the proof in Ap-
pendix).

Theorem 4. NPO is at most kL B
B−L -competitive for SRPT-based priorities.

As demonstrated by the above results, the simplicity of non-preemptive greedy policies does have its
price. In the following sections we explore the benefits of introducing preemptive policies, and provide an
analysis of their performance.

3.2 Preemptive Policy

In this part we consider an upper bound of PO Algorithm 1. We first turn to provide a lower bound on the
performance of PO for required-processing-based priorities (the proof can be found in Appendix).

Theorem 5. PO has competitive ratio at least L for SRPT-based priorities, for B ≥ 2L.

3.2.1 Upper Bound of PO when B > 2L

In this section we provide a first upper bound of PO. Specifically, we prove the following

Theorem 6. If B > 2L, then PO is at most 4L−2
La

-competitive for SRPT-based priorities, where La is an
average length of packets transmitted by PO.

In a later section we show how our bounds can be refined to show a better upper bound on the competitive
ratio for the case of sufficiently large buffers.

In what follows we assume that OPT never preempts packets. Surely, such an optimal solution exists
since one can consider the whole input being available to OPT a priori. Thus, any packets accepted by
OPT are transmitted. Our analysis will be based on describing a mapping of packets in OPT ’s buffer to
packets transmitted by PO, such that every packet q transmitted by PO has at most 4L − 2 bytes of OPT
associated with it. To facilitate the exposition we describe packet processing as if packets arrive individually
and sequentially one at a time, though more than one packet might arrive at a single time step t. The mapping
will be dynamically updated for each packet arrival and for each packet transmission, in bothOPT and PO.
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Mapping routine. During the transmission phase we distinguish between the three following cases:

T0 If both OPT and PO do not transmit then the mapping remains unchanged.

T1 If PO transmits a packet q then we remove its mapped image in OPT ’s buffer from future consider-
ation in the mapping. The subset of these OPT packets or bytes that stays in OPT buffer at the end
of transmission phase are called of type 1.

T2 If OPT transmits a packet p but its mapped packet q in PO is not transmitted then p is termed a
packet of type 2. (We will show next that this case never occurs).

At time t, denote by MO
t the ordered set of residual pass values for all non-type 1 OPT packets. All

MO
t values are grouped into blocks in the following way. A block is a minimal subset of consecutive MO

t

values starting from the lowest position that is not covered by any previous block, such that the overall
length of the packets associated with the block is at least L. A minimal value in each block is called a block
representative. Denote by Rt an ordered set of representatives at time t. In addition we denote by MP

t an
ordered set of processing cycles values of packets in PO’s buffer at time t.

After the arrival at time t of a packet p we distinguish between the following cases:

A0 If p is not accepted by both OPT and PO, then the mapping remains unchanged.

A1 If after acceptance of p some PO packets were dropped then clear the mappings by step A1 between
these PO packets and its mapped OPT mates. If p remains in PO’s buffer and p is an i-th packet in it
perform a (P, i)-mapping-shift (see Figure 3(a)): for each non-empty j-th block b and j-th PO packet
q, with j ≥ i clear the mapping to q by step A1 and map all packets of block b to q. If p is accepted
by OPT to the j-th block, perform an (O, j)-mapping-shift (see Figure 3(b)): clear all mappings by
step A1 between packets of the old l-th block and l-th PO packet (if both exist), l ≥ j, recompute
blocks starting from the j-th and map packets of l-th block to l-th PO packet if both exist, l ≥ j.

A2 Clear all mappings assigned by step A2. Map packets of all unmapped blocks to the HOL PO packet.

Claim 7. The mapping is feasible.

Proof. By definition PO accepts the arriving packet and all the packets with packet start above B − 2L+ 1
are dropped. Hence, if after the application of step A1 of the mapping routine there are still unmappedOPT
packets then it must be the case that PO buffer contains at least one packet. Therefore, all unmapped by
Step A1 OPT packets are mapped by step A2.

Claim 8. The overall length of packets of the same block is at most 2L− 1.

Proof. Essentially, in the worst case an overall length of all packets in the block except the last one is L− 1
and the last packet of the same block has L length. Henceforth, the claim follows.

Lemma 9. After the arrival of the t-th packet, if an OPT packet p is mapped to a (possibly transmitted)
PO packet q then rt(p) ≥ rt(q). Moreover, all OPT packets are mapped and at most 2L − 1 bytes are
mapped to each PO packet by step A1, and possibly at most an additional 2L − 1 bytes are mapped to the
HOL packet by step A2, at any time t.

Proof. We prove the lemma by induction on the number of arrived packets. For the base case, consider the
first arriving packet. By definition PO always accepts an arriving packet p. If p is dropped byOPT then the
claim trivially holds. If p is accepted by OPT , it creates a new block where p becomes its representative.
Clearly, r1(p) ≥ r1(p), all OPT packets are mapped, and at most L bytes are mapped to the PO packet p.
Thus, the base case holds.

Assume by induction that for any time t′ < t, after the arrival of the t′-th packet it holds that for any
OPT packet p that is mapped to a (possibly transmitted) PO packet q, rt′(p) ≥ rt′(q). Moreover, all OPT
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packets are mapped and at most 2L− 1 OPT bytes are mapped to each PO packet by step A1. In addition
at most 2L− 1 OPT bytes are mapped to the HOL packet in PO buffer at time t′ by step A2.

Clearly, if for a representative of a block p′ that is mapped to a PO packet q by step A1 it holds that
rt′(p

′) ≥ rt′(q) at time t′, then for any packet p′′ of the same block rt′(p′′) ≥ rt′(q). In order to show
this inequality after the arrival of the t-th packet, it suffices to focus our attention on the ordered set of
representatives Rt−1 and its update after the arrival of the t-th packet. Specifically, it suffices to show that
Rt ≥ MP

t . By the induction hypothesis the remaining number of processing cycles of any OPT packet is
at least the number of processing cycles of its PO mapped mate, i.e., Rt−1 ≥MP

t−1, and there are no OPT
packets of type 2 formed during acceptance of the first t− 1 packets. Denote by R1

t′ a set of representatives
whose blocks are mapped by step A1. Since all packets of the same block are mapped to the same PO
packet then

∣∣R1
t−1
∣∣ ≤ ∣∣MP

t−1
∣∣.

Denote by t− the time that is just before the arrival of t-th packet. We first consider the possibility that
a transmission occurs prior to the arrival of the t-th packet. Assume that between t-th and t − 1-th packet
arrivals at least one packet is transmitted by OPT or PO. By the induction hypothesis, it is impossible for
OPT to transmit a packet corresponding to the first value in MP

t−1 before the packet whose value is the
first in MP

t−1. Note that this will hold for any sequence of transmission occurring prior to the t-th arrival.
Therefore, if PO transmits between t− 1-th and t-th packets arrival, then

∣∣MP
t−
∣∣ is reduced by one. On the

other hand,
∣∣MO

t−
∣∣ is reduced by the number of packets in the first block (if existed) that is mapped by step

A1 to the packet sent by PO. Hence,
∣∣R1

t−
∣∣ ≤ ∣∣MP

t−
∣∣. In addition if some value is mapped by step A2 to

a packet transmitted by PO then this value is removed from MO
t− upon this transmission (by the definition

of MO
t which consists solely of non-type 1 packets). Thus, in this case Rt− = R1

t− and |Rt−| ≤
∣∣MP

t−
∣∣. It

follows that the claim is satisfied at time t−, in particular Rt− ≥MP
t−.

Consider now the arrival of the t-th packet p. We distinguish between several cases.

Case 0 OPT does not accept p and PO accepts and immediately drops p. We are done.

Case 1 PO does not drop p and OPT does not accept p. Note that in this case Rt = Rt− and it therefore
suffices to show that Rt− ≥MP

t .

Case 1.1 Assume first that |Rt−| ≥
∣∣MP

t−
∣∣. Since

∣∣R1
t−
∣∣ ≤ ∣∣MP

t−
∣∣, some OPT packets that are

represented in Rt− are mapped by step A2. In this case the last packet in the buffer of PO
occupies the (B−2L+1)-th byte (since each block is of length at least L, each block is mapped
to a single PO packet and all bytes in PO buffer are available for mapping). Since PO does
not drop p, the value of rt(p) is at most the last value in MP

t . Since in this case OPT does not
accept p, by Corollary 2 case (i), Rt− ≥MP

t− ∪ {rt(p)} =MP
t .

Case 1.2 Consider next the case where
∣∣R1

t−
∣∣ ≤ ∣∣MP

t−
∣∣. Again, since in this case OPT does not

accept p, by Corollary 2 case (ii), Rt− ≥MP
t− ∪ {rt(p)} =MP

t .

Case 2 OPT accepts p and PO drops p. In this case MP
t =MP

t− and rt(p) is larger than any value in MP
t .

Let l be the position of p in the buffer of OPT . Thus, for any m ≥ l the m-th OPT packet has a
number of residual processing cycles larger than any value in MP

t . Therefore, for any OPT packet
p′ that is mapped to PO packet q by step A1, rt(p′) ≥ rt(q), and we have Rt ≥MP

t .

Case 3 OPT accepts p and PO does not drop p. If |Rt−| ≤
∣∣MP

t−
∣∣ or |Rt−| ≥

∣∣MP
t−
∣∣, then similarly to the

Cases 1.1 and 1.2, by Lemma 1 we have that

R′ = Rt− ∪ {rt(p)} ≥MP
t− ∪ {rt(p)} =MP

t .

Therefore, in this case it suffices to show that Rt ≥ R′, which in turn implies Rt ≥ MP
t . Let j

denote the index of the block where p is inserted in OPT . We have to consider two possibilities for
the position of p’s number of processing cycles in R′, which could be either the j-th or the (j + 1)-th
position.
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Case 3.1 R′[j] = rt(p). In this case p now serves as the representative of block j, i.e., Rt[j] = rt(p).
If `(p) = L then p forms a full block and Rt[m] = R1

t−[m − 1] for all m > j. Therefore,
Rt ≥ R′ (as a matter of fact, in this case we have strict equality). Otherwise we have `(p) < L.
It follows that a number of residual processing cycles of at least the (l + 1)-th element will join
the j-th block after recomputation (since such a block must add to overall length at least L). We
therefore have Rt[m] ≥ R1

t−[m] for all m > j. Since R′[m] = Rt−[m − 1], m > j, this case
follows.

Case 3.2 R′[j + 1] = rt(p). In this case the representative of block j remains unchanged, i.e.,
R′[j] = Rt[j] = Rt−[j] and R′[m] = Rt−[m−1], m > j+1. Since p belongs to the j-th block
after acceptance and rt(p) is not a representative of the block, then Rt[j + 1] ≥ rt(p). Since
after recomputation representatives will move up for no more than one block in Rt compared to
Rt−1, Rt[m] ≥ Rt−[m− 1], m > j + 1. Therefore, Rt ≥ R′ and this case follows.

Now let us to show that there are sufficiently many PO packets in order to map all of OPT packets
such that at most 2L− 1 bytes are assigned by step A1 to each transmitted packet of PO and additionally at
most 2L − 1 bytes are assigned to the HOL packet of PO by step A2. Recall that the claim holds for time
t−. Consider the arrival of the t-th packet p. If PO accepts p, then the claim holds, since this new packet
can support the block changes (and possible addition) that may potentially occur if OPT also accepts p. If
PO does not accept p then by the definition of PO this can only happen if the buffer occupancy of PO is
at least B − 2L + 1. Clearly, the overall length of a block mapped by step A1 to any PO packet is at most
2L− 1 (by definition). Furthermore, since we have shown that Rt ≥ MP

t , and by definition the blocks are
of overall length at least L, it must follow that the overall length of packets in PO covers at least this amount
of overall length of packets in OPT mapped to PO by step A1. It follows that the remaining overall length
of packets in the buffer of OPT that are not mapped by step A1 can be at most 2L− 1 (the possibly unused
space in PO). It follows that the overall length of packets mapped to the HOL packet of PO by step A2 is
at most 2L− 1, as required.

The proof of Theorem 6 now follows immediately from Lemma 9.

3.2.2 Upper Bound of PO for Sufficiently Large Buffers

In this section we will generalize the previous mapping and show how to improve the upper bound of PO
for sufficiently large buffers.

Theorem 10. PO is at most PO is at most (2L−1)(N+1)
NLa

-competitive for SRPT-based priorities, where La is
an average length between all transmitted packets by PO and N = dB−2L+1

2L−1 e.

The idea is to redistribute mapped bytes by step A2 between different PO packets. Let N = dB−2L+1
2L−1 e.

We consider an updated version of step A2 and now to each PO packet can be mapped at most 2L−1
N value

by step A2.
The mapping routine is unchanged during the transmission phase and now it operates on MO

t in the
following way. Denote by MO

t at time t an ordered set of values of processing cycles of no-type 1 OPT
packets that are not mapped by the step A2 as defined below. Observe that now we exclude from the
future consideration by step A1 all OPT packets that are mapped by step A2 even before its PO mates are
transmitted. The definition of block, representative, Rt and MP

t remain unchanged.
During the arrival of a packet p at time t, steps A0 and A1 remain unchanged. Next, we define the

changed or new steps.

A2 If prior to time t there are no bytes mapped by step A2 and after the application of t-th step A1 there
are still Y unmapped OPT bytes then each j-th portion of Y

N unmapped bytes by step A1 map to PO

8



packet whose mapped block contains (j−1)(2L−1)+1-th byte x, 1 ≤ j ≤ N . We say that such byte
x “defines” a mapping of this portion of still unmapped bytes. Let Y be the overall length mapped
by step A2 prior to time t and still there are Y0 unmapped bytes after applying step A1 during time t.
Let the mapping of the Y -th byte that is assigned by step A2 be the l-th byte in the OPT buffer. Map
each j-th portion of Y0

N still unmapped by step A1 byte to PO packet whose mapped block contains
j(2L − 1) + l + 1-th byte, 1 ≤ j ≤ N . Observe that both these bytes can be remapped to the other
PO packet during the (O, j)-mapping-shift .

A3 Any unmapped value by Steps A1 and A2 are assigned to the HOL PO packet. We are to show that
step A3 is never applied and is required only for completeness.

The mapping is feasible since during arrivals the PO buffer contains at least one packet and any value
that is unmapped by Steps A1 and A2 is assigned by step A3 to the HOL PO packet. The Claim 8 remains
the same.

The next lemma is very similar to Lemma 9. Namely, if an OPT packet p is mapped by step A1 to a
(possibly transmitted) PO packet q then rt(p) ≥ rt(q). The fact that the overall assigned value to each PO

packet is at most (2L−1)(N+1)
N follows from the fact that for each OPT packet p that is mapped by step A1

to a PO packet q at any time t, rt(p) ≥ rt(q), the maximal block size is 2L− 1 bytes.

Lemma 11. After arrival of the t-th packet, if an OPT packet p is mapped to a (possibly transmitted) PO
packet q then rt(p) ≥ rt(q). Moreover, all OPT packets are mapped and at most (2L−1)(N+1)

N value is
mapped to each PO packet at time t, where N = dB−2L+1

2L−1 e.

The proof of Theorem 10 follows immediately from Lemma 11.

Corollary 12. If B > 4L2− 2L, then PO is at most 2L
La

-competitive for SRPT-based priorities, where La is
an average length of packets transmitted by PO.

4 Buffer Management with LP-based Priorities

In this section we concentrate our attention to the preemptive case since non-preemptive results are very
similar to Section 3.

4.1 Preemptive Policy

Now we will show the lower bound of the PO algorithm (the proof in Appendix).

Theorem 13. PO is more than k-competitive for LP-based priorities on a sufficiently long sequence.

Next we consider an upper bound of PO and show the following result.

Theorem 14. PO is at most k + 3-competitive for LP-based priorities on sufficiently big buffers.

The mapping routine is unchanged during the transmission phase as in Section 3. At time t, denote by
MO
t a set of non-type 1 packets sojourns in OPT buffer and not mapped by step A2. In addition MO

t is
ordered in non increasing order of packet length. All MO

t packets are grouped into blocks in the following
way. Let q be an i-th packet in PO buffer at time t. An i-th block is defined in the following way. Consider
a minimal set B0 of packets starting from the lowest position that are represented in MO

t and not covered
by any other block whose overall required work is at least rt(q). If the overall length of all packets in B0 is
at least `(q) then B0 forms a block. Otherwise, add to B0 a minimal set of packets B1 starting from the first
packet that is represented in MO

t and not covered by B0 such that the overall length of packets in B0 ∪ B1

will be at least `(q). In this case a set of packets that is covered by B0 ∪ B1 defines a block. Denote by

9



`(X) the overall length of packets and by rt(X) the overall required work in a set of packets X at time t.
A block b that is mapped to a PO packet q is called fully mapped to a packet q at time t if `(b) ≥ `(q) and
rt(b) ≥ rt(q). Observe that it is possible that `(B0) will be less than its mapped PO mate. In this caseOPT
may later accept packets that will not be accepted by PO.

During the arrival of a packet p at time t Steps A0, A2 and A3 are the same as in Subsection 3.2.2. Next
we define a new Step A1 where the blocks are recomputed after (P, i)-mapping-shift .

A1 If after acceptance of p some PO packets were dropped then clear the mappings by step A1 between
these PO packets and its mapped OPT mates. If p remains in PO buffer and p is an i-th packet in the
PO buffer perform a (P, i)-mapping-shift : clear all mappings by step A1 between packets of the old
l-th block in OPT buffer and l-th packet in PO buffer, l ≥ j, recompute blocks from j-th and map
packets of l-th block to the l-th PO packet if both exist, l ≥ j. If p is accepted by OPT to j-th block,
perform an (O, j)-mapping-shift: clear all mappings by step A1 between packets in OPT buffer of
the old l-th block and l-th packet in PO buffer (if both exist), l ≥ j, recompute blocks from j-th and
map packets of l-th block to l-th PO packet if both exist, l ≥ j.

Next, we will explain the the intuition of the proof of Theorem 14. Clearly, the mapping is feasible since
if OPT accepts some packet that is not accepted by PO, PO buffer contains at least one packet in its buffer.
Since affected blocks are recomputed after each (P, i)-mapping-shift and (O, j)- mapping-shift and by
definition of a block b that is mapped to a PO packet q at time t, `(b) ≥ `(q) and rt(b) ≥ rt(q). Thus, we
will consider sufficiently big buffers where 2L−1

B tends to zero and because of the above properties of the
block step A2 will introduce at most additional ε value for each PO packet. Hence, for each transmitted by
PO packet q, OPT transmits at most (k+1)l(q) + ε by Steps A1 and A2. Denote by T the overall number
of transmitted bytes by PO and by P the total number of transmitted bytes by OPT during processing of
preempted PO packets. Thus, the competitive ratio is at most (k+1+e)T+P

T . Now let us estimate P and
substitute to the previous expression. For each preempted by PO packet p denote by T (p) a number of time
slots when p was HOL before it was preempted. Clearly, that the process of preemptions of packets that
have positive T (p) will be stopped once all packets will have a maximal packet length L or it can continue
during each time slot when there is at least one packet in PO buffer of length smaller than L. Moreover,
if preemption happens the buffer occupancy is at least B − 2L + 1. Denote by P a set of PO packets
preempted during this interval of time. So for each B − 2L + 1 bytes transmitted by PO, P is bounded
by
∑

p∈P T (p)l(p) ≤
∑

p∈P kl(p)] ≤ kL(L+ 1)/2. Thus, PO is at most 2(k+1+ε)B+kL(L+1)
2(B−2L+1) -competitive.

For the buffers that are significantly bigger than kL(L+ 1), PO is at most k + 3-competitive.

5 Discussion

The increasingly-heterogeneous packet-processing needs of NP traffic pose novel design challenges to NP
architects. In this paper we provide performance guarantees for various NP buffer scheduling algorithms
for packets with heterogeneous lengths. The objective is to maximize the amount of transmitted bytes under
various settings such as push-out and non-push-out buffers and various packet ordering strategies. As future
work, it remains to extend these results to a strategy which prioritizes packets by their residual processing
requirement to size ratio.
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Figure 1: An outline of the model. The top subfigure shows the transmission phase, the middle subfigure
shows the arrival phase where packets might be discarded, and the bottom subfigure shows the assignment
and processing phase. The length of a packet represents its size, and the number stamped on the packet
represents the number of its (residual) required processing cycles.
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Figure 2: Cases of Lemma 1.

A Appendix
Proof of Lemma 1. We will refer to elements in A′ and B′ as a′ and b′, respectively. Assume i and j are the positions
of a ∈ A′ and b ∈ B′, respectively. I.e., a′i = a and b′j = b. We need to show that for every k for which both a′k and
b′k exist, a′k ≥ b′k. We distinguish between 2 cases:

(a) i ≤ j (see Figure 2(a)): for all k < i, a′k = ak, and b′k = bk, hence by the assumption that A ≥ B, a′k ≥ b′k.
By the assumption that a ≥ b, and the fact A′ and B′ are ordered, for every p ≥ i and q < j we have
a′p ≥ a′i ≥ b′j ≥ b′q . In particular, for every i ≤ k < j we have a′k ≥ b′k (by taking p = q = k). For k = j,
since A′ and B′ are ordered, and since in the current case i ≤ j, we have a′j ≥ a′i = a ≥ b = b′j . For k > j we
have a′k = ak−1 ≥ bk−1 = b′k, where the inequality follows from the assumption that A ≥ B.
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Figure 3: Example of the mapping used in the proof of Theorem 6, and the mapping shifts performed by the
analysis. The white OPT packets should be mapped and white PO packets are available for mapping. The
blue OPT packets are of type 1.

(b) i > j (see Figure 2(b)): for all k < j, a′k = ak, and b′k = bk, hence by the assumption that A ≥ B, a′k ≥ b′k.
For k = j, b′k ≤ b′k+1 = bk ≤ ak = a′k, which follows from the fact that b is inserted in slot j = k, B′ is
ordered, the assumption that A ≥ B and b ≤ b|B| or |A| ≤ |B|. For j < k < i, b′k = bk−1 ≤ ak−1 ≤ ak = a′k,
which follows from the assumption that A ≥ B. For k = i, a = a′i ≥ ai−1 ≥ bi−1 = b′i. For k > i,
a′k = ak−1 ≥ bk−1 = b′k.

We are therefore guaranteed to have A′ ≥ B′, as required.

Proof of Corollary 2. Assume b is inserted inB′ in location j. Consider a virtual item a, such that a > max
{
a|A|, b

}
.

We now virtually consider adding both a and b to sets A and B, respectively. By Lemma 1, it follows that the resulting
sets A′, B′ satisfy A′ ≥ B′. Notice that the first |A| elements of A′ is exactly the set A (by the choice of a), implying
that we also have A ≥ B′.

Proof of Theorem 3. During the first time slot a burst of B − L + 1 1-byte packets with k processing cycles arrives
followed by B/L packets of L length with a single residual pass. NPO accepts all 1-byte packets and rejects all
L packets. On the other hand OPT drops all 1-byte packets and fills up its buffer with L-bytes packets. At each
subsequent time slot one 1-byte packet with k processing cycles and one L-bytes packet with one residual pass arrive.
Clearly, no L packet is accepted by NPO. Moreover, after the first time slot OPT buffer is full. Later, while there are
non-empty arrivals for each accepted and transmitted by NPO 1-byte packet, OPT accepts and transmits kL bytes. At
the last time slot with non-empty arrivals, the NPO buffer contains less than B bytes but the OPT buffer is full. Thus,
the competitiveness of NPO is more than kL for a long enough sequence of arrivals.

Proof of Theorem 4. Observe that NPO must fill up its buffer before it drops any packets. Moreover, so long as the
NPO buffer is not empty then after at most k time steps NPO must transmit its HOL packet. This means that NPO
is transmitting at a rate of at least 1-byte every k time steps, while OPT in the same time interval transmitted at most
k packets each of size L. Hence, the number of transmitted bytes at time t for NPO is at least t/k 2 while OPT
transmitted at most tL bytes for a competitive ratio of kL so long as the NPO buffer did not become empty before
OPT ’s did.

If, on the other hand, NPO empties its buffer first, this means there were no packet arrivals since the NPO buffer
went below the B − L + 1 threshold at a time t. From that moment on NPO empties its buffer transmitting thus at
least B − L bytes, while OPT transmitted at most B bytes.

2We assume k divides t evenly for simplicity of exposition.
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So in total the number of bytes transmitted by NPO is at least t
k+B−Lwhile the total number of bytes transmitted

by OPT is tL+B with competitive ratio

tL+B

t/k +B − L ≤
tL+ kLB

t/k +B − L = kL
t+ kB

t+ k(B − L) ≤ kL
B

B − L

.

Proof of Theorem 6. Assume that B/L is an integer. All packets received will have a single residual pass. Consider
the following sequence of arrivals. At the beginning B − 2L+ 1 1-byte packets arrive. PO accepts all of them. OPT
drops all of them. Later on during the same time slot B/L packets of length L arrive, each with a single residual
pass. PO drops all of them since their value is no better than the value of packets in its buffer, but OPT accepts
all of them and thus OPT buffer is full. During each following time slot one 1-byte packet arrives, each requiring a
single processing cycle, followed by one packet of size L bytes, requiring a single processing cycle. PO accepts all
1-byte packets but it does not accept any of the L-bytes packets. Thus, for each time slot when there are arrivals, OPT
transmits a packet of size L, and at the same time PO transmits a 1-byte packet. At the end, OPT transmits B bytes
while PO transmits B − 2L + 1 additional bytes. Therefore, B + nL and B − 2L + 1 + n bytes are transmitted by
OPT and PO, respectively, where n is a number of time slots with non-empty arrivals. We obtain that for n >> B,
PO cannot have a competitive ratio better than L.

Proof of Theorem 13. Here, we will consider preemptive version of OPT for simplicity of description. Assume B
L be

an integer value. Consider a cycle of L iterations of the first type and later sequence of n > 0 iterations of the second
type (defined below). Each iteration of the first type contains k− 1 time slots. At the beginning of the i-th iteration of
the first type dBi e packets of i bytes with k processing cycles arrive and later during the same time slot dBi e packets
of i bytes with 1 processing cycles arrive. OPT drops the first subsequence and accepts the second. On the other
hand PO accepts the first subsequence and drops the second. So during each iteration of the first type OPT transmits
i(k − 1) bytes but PO transmits zero bytes. At the beginning of the next iteration of the first type both algorithms
preempt already admitted packets that still remain in the buffers.

After the L-th iteration both buffers are nearly full with packets of size L, but with k processing cycles in the case
of PO and one residual pass in the case ofOPT . Now a sequence of the second type starts. After the last transmission
by PO, k + 1 packets arrive in the following order: first one L-byte packet with k passes and thereafter k packets of
length L with a single residual pass. The first packet is accepted by PO and dropped byOPT . The latter k−1 packets
are dropped by PO and accepted byOPT . Each buffer is completely full again. So during each iteration of the second
type OPT transmits kL bytes but PO only L bytes. After n iterations of the second type the overall transmission of
OPT is L(1+L)(k−1)

2 + knL + B while PO transmits Ln + B bytes. Thus, the lower bound on competitive ratio of
PO is L(1+L)(k−1)+2kLn+2B

2(Ln+B) .
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