
Energy Efficient Communication in Ad Hoc Networks

from User’s and Designer’s Perspective∗

Alex Kesselman†

akessel@mpi-sb.mpg.de

Dariusz Kowalski‡

darek@mpi-sb.mpg.de

Michael Segal§

segal@cse.bgu.ac.il

June 17, 2004

Abstract

Wireless ad hoc networks have gained a lot of attention in recent years. We consider

a game that models the creation of such a network, where nodesare owned by selfish

agents. We study a novel cost sharing model in which agents may pay for the transmission

power of the other nodes. Each agent has to satisfy some connectivity requirement in the

final network and the goal is to minimize its payment with no regard to the overall sys-

tem performance. We analyze two fundamental connectivity games, namely broadcast and

convergecast. We study pure Nash equilibria and quantify the degradation in the network

performance called the price of anarchy resulting from selfish behavior. We derive tight
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bounds on the price of anarchy for these games.

We also study centralized network design. One of the most important problems in wire-

less ad hoc networks is the minimum-energy broadcast. Recently, there appeared many

new applications such as real-time multimedia, battlefieldcommunications and rescue op-

erations that impose stringent end-to-end latency requirement on the broadcasting time.

However, the existing algorithms that minimize the broadcasting energy tend to produce

solutions with high latency. In this paper we consider the problem of bounded-hop broad-

cast. We present approximation and heuristic algorithms for this problem.

1 Introduction

The next generation communication networks are likely to bea combination of wireline and

ad hoc networks, which are expected to fulfill a critical rolewhere wired backbone networks

are not available or not economical to build [10, 34]. A communication session in a wireless

network is achieved either through a single-hop transmission if the communication parties are

close enough, or through relaying by intermediate nodes otherwise. Depending on its power

level and on the nature of environmental interference, a node can reach all nodes in a certain

range. Typically, the signal power falls as1/dα, whered is the distance from the transmitter

antenna andα is a constant between2 and4 depending on the environment [35]. All receivers

have the same power threshold for signal detection, which istypically normalized to one. Under

the above assumptions, the power required to establish a link between two nodes at distanced

is dα. In this paper we assume that nodes are located in a Euclideanspace and consider the
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symmetric energy model. In ad hoc networks devices are usually equipped with battery that

has a limited power. Thus, among the most crucial issues is that of developing energy-efficient

topology control algorithms, which maximize the network lifetime [20].

Most of the existing works on wireless networks are based on the assumption that there is a

centralized control, or the nodes run the same distributed algorithm. While this assumption may

hold for some networks, such as military or government networks, it is not valid in general for

Internet-like networks. In such a network, nodes are owned by different commercial entities,

which are strongly driven by their economic interests. Thisnaturally gives rise to many game-

theoretic issues. The stable outcomes of the interaction between non-cooperative selfish agents

correspond to Nash equilibria. A Nash equilibrium [32] can be viewed as a solution that selfish

agents can agree upon, i.e., the agents have no incentive to deviate. Since Nash equilibria in

network games can be much more expensive than the best centralized design, it is important

to consider the implications of selfish behavior on the network performance. Recently, game-

theoretical analysis of ad hoc networks has received a greatdeal of attention [14, 4, 30, 19, 38,

13].

Traditionally, in Computer Science research has been focused on finding a global optimum.

With the emerging interest in computational issues relatedto game theory, Koutsoupias and

Papadimitriou [28] introduced so calledprice of anarchy. Thepessimistic price of anarchy is

the ratio between the cost of the worst possible Nash equilibrium (the one with the maximum

social cost) and the cost of the social optimum. Roughgardenand Tardos [36] derive the price of

anarchy of selfish routing in networks. Ansheleich et al. [2]propose to consider theoptimistic

price of anarchy, which is the ratio between the cost of the best possible Nash equilibrium (the
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one with the minimum social cost) and that of the social optimum.

In this paper we consider the following game modeling the creation of a wireless ad hoc

network. Each agent (node) has a specific connectivity requirement, i.e., each agent has to build

a network in which this requirement is satisfied. We study a novel cost sharing model in which

the transmission power of each node can be paid by different agents. In the modelwithout cost

sharing, each agent pays only for the transmission power of its own node. The goal of each

agent is to pay as little as possible. Note that the price of anarchy measures the cost oflack

of coordination between the agents. Thus, we assume that agents havecomplete information.

We consider only pure strategies since mixed (probabilistic) Nash equilibria do not seem to

be suitable for network design [17]. We study broadcast and convergecast problems, which

are fundamental communication tasks in ad hoc networks. In the Broadcast Game, each agent

has to establish a directed path between a designated root node and its own node while in the

Convergecast Game, each agent has to establish a directed path between its own node and a

designated root node.

The rapidly increasing capabilities and low costs of computing and communication devices

have made it possible to use wireless networks in a wide rangeof applications such as real-time

multimedia, battlefield communications, and rescue operations. The above applications impose

stringent end-to-end latency requirement on the broadcasting time, which is the time taken

by the message to reach all the nodes in the network. The latency of a broadcast scheduling

algorithms is at leastΩ(D), since the message needs to reach the furthest node from the source,

whereD is the network diameter. Gaber and Mansour [22] show that forany graph withD =

Ω(log5 n), there is a centralized randomized schedule with latencyO(D), wheren is the number
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of nodes.

Unfortunately, in the existing minimum-energy broadcast algorithms the latency of the

broadcasting tends to be quite large since the minimum energy is attained when the number

of the relay nodes is maximized, which results in a large network diameter. We consider the

problem ofbounded-hop broadcast, introduced in [12]. In this problem, we aim to construct a

minimum-energy communication graph of bounded diameter rooted at the source node in which

all nodes are covered. Note that there is a trade-off betweenreaching more nodes in a single

hop using higher power and thus decreasing the network diameter and reaching fewer nodes

using lower power and thus increasing the network diameter.The unrestricted version of this

problem is NP-hard [6]. For a line topology, this problem canbe solved optimally using the

dynamic programming algorithm of Clementi et al. [11].

Our results. First we consider the network creation games. For the Broadcast Game with

cost sharing, we show that in contrast to the single-source connection game of [2], a pure Nash

equilibrium may not exist and the optimistic price of anarchy is bounded away from one. We

also establish that the pessimistic price of anarchy isΘ(n). We note that the Broadcast Game is

impossible without cost sharing. For the Convergecast Gamewithout cost sharing, we demon-

strate that the optimistic price of anarchy is1 while the pessimistic price of anarchy isΘ(nα−1).

Interestingly, the Convergecast Game has a lower pessimistic price of anarchy compared to that

of the strong connectivity game in [15], which isΩ(nα). We show that if we allow cost sharing,

the pessimistic price of anarchy is improved significantly to Θ(n) while the optimistic price of

anarchy remains the same.

Then we consider algorithms for centralized network design. For the bounded-hop broadcast
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problem, we present a simple algorithm that has an approximation factor ofmin(Dα−1, 12(n/D)log β),

whereD is the bound on the network diameter andβ is a constant that depends onα. In partic-

ular, forα = 2 we haveβ ≤ 2, and the approximation factor is at mostO(
√

n) for anyD and

at mostO(log n) for D = O(log n) andD = Ω(n/ log n). Thereafter, we derive the bounded-

diameter minimum spanning tree (BDMST) algorithm that achieves an approximation factor

of O(f(n) · log n), wheref(n) is the worst-case ratio between the energy cost of an optimal

BDMST and that of an optimal solution for the bounded-hop broadcast problem. However, the

running time of this algorithm is rather high because of the complexity of the BDMST problem.

In addition, we propose the decremental distance heuristic, which is easy to implement from the

practical point of view and has a polynomial running time (without large hidden coefficients).

Finally, we show how to solve optimally in polynomial time the full-duplex (bi-directional) con-

nection problem and the generalized multicast and the web-conferencing problems for a fixed

number of nodes.

Paper organization. Our model is presented in Section 3. Section 2 describes the related

work. We analyze the networks creation games in Section 4. Algorithms for the bounded-

hop broadcast problem are presented in Section 5. Optimal algorithms for some connectivity

problems are given in Section 6. We conclude with Section 7.

2 Related Work

Our paper is closely related to the work of Eidenbenz et al. [15], which considers topology

control problems in ad hoc networks, where nodes choose their power levels in order to ensure
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the desired connectivity properties. Eidenbenz et al. giveasymptotically tight bounds on the

price of anarchy for the strong connectivity game and demonstrate that for the connectivity

game it is NP-complete to decide whether a pure Nash equilibrium exists. In contrast to [15],

we allow cost sharing in our games. Ansheleich et al. [2] consider a network design game for

wired networks, where each agent has to connect a set of terminals. Ansheleich et al. show that

determining whether a pure Nash equilibrium exists is NP-complete and present a polynomial-

time algorithm that computes a3-approximate Nash equilibrium. We define a cost sharing

model similar to that of [2] for ad hoc networks. Fabricant etal. [16] study a wireline network

creation game, where the cost of a node depends on the distances to the other nodes.

The problem of bounded-hop connectivity has been studied extensively. Optimal algorithms

based on dynamic programming for the problem of bounded-hopstrong connectivity and the

problem of bounded-hop broadcast on a line are presented by Kirousis et al. [26] and Clementi

at al. [11], respectively. Beier et al. [3] and Funke et al. [21] give efficient algorithms for finding

a minimum-energy route between two given nodes that uses a bounded number of hops. The

problem of bounded-hop broadcast is studied in a recent paper by Ambuhl et al. [1]. Ambuhl

et al. give a polynomial-time algorithm based on dynamic programming for finding an optimal

solution for2-hop broadcast with running timeO(n7) and derive a PTAS for the case in which

the bound on the number of hops is fixed. Contrary to [1], in this paper we consider the whole

range of possible values ofD.

The problem of minimum-energy broadcasting in which the transmission power of each

node has to be determined so that the total power is minimizedhas received recently a great deal

of attention. Cagalj et al. [6] give a proof of NP-hardness ofthe minimum-energy broadcast
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problem in Euclidean space. Wieselthier et al. [40] proposethree greedy heuristics, namely the

minimum spanning tree (MST), the shortest path tree (SPT) and the broadcasting incremental

power (BIP), and evaluate them through simulations. Wan et al. [39] present the first analytical

results for this problem. In particular, they prove that theapproximation ratio of MST is between

6 and12 while the approximation ratio of SPT is at leastn/2. Several approximation methods

with analytical bounds for the asymmetric model are proposed by Liang [29]. Some of these

results have been improved by Caragiannis at al. [8] for the symmetric model. Calinescu et

al. [7] consider the problem of maximizing network lifetimeas well as different energy efficient

network connectivity problems. Cartigny et al. [9] developlocalized algorithms for minimum-

energy broadcasting.

3 Model and Notation

We assume that there aren nodes, which are located on a Euclidean space. We denote byP

the placement of nodes. A wireless network is represented bya directedcommunication graph

G = (V, E), whereV is the set of nodes andE is the set of edges. The neighbors of a node

u are determined by itstransmission power Pu. Namely, nodeu can reach all nodes within its

transmission range Ru = P
1/α
u , where2 ≤ α ≤ 4 is the the distance-power gradient.∗ Thus,

edge(u, v) belongs toE if the distance betweenu andv, d(u, v), is at mostRu. We consider

the symmetric model in which the energy cost of an edge(u, v) is the same as that of(v, u).

In a minimum-energy network design problem, the goal is to assign transmission powers to

∗For simplicity, we assume that the maximum transmission range of a node is unbounded.
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the nodes in order to establish the desired connectivity requirement while minimizing the total

energy of the nodes. Note that it is always sufficient to consider at mostn different transmission

ranges for each node, which are the distances to the other nodes and zero transmission range.

We denote byOPT an optimal solution. We say that an algorithmA has the approximation

factor of c, if the total power of the solution produced byA, P (A), is at mostc times that of

OPT , P (OPT ), for any instance of the problem.

3.1 Broadcast and Convergecast Games

We assume that each node is an agent. A strategy of nodeu is a payment functionP u
v , that

is how much energyu is willing to contribute to the transmission power of nodev. The actual

transmission power of nodeu is defined asPu =
∑

v∈V P v
u . The goal of nodeu is to minimize its

total payment, that is
∑

v∈V P u
v . We assume that nodes have complete information. The game is

said to be in aNash equilibrium if the connectivity requirement of each agent is satisfied and no

agent can find a better (with lower cost) alternative strategy with respect to the current strategies

of the other agents (i.e., assuming that the strategies of the other agents are fixed).

The social cost of the outcome of a game is the total power of the nodes. For a placement of

nodesP, we denote the cost of a Nash equilibrium byCP =
∑

u∈V Pu and the cost ofOPT by

C∗
P =

∑
u∈V P ∗

u , whereP ∗
u is the transmission power ofu underOPT . Thepessimistic price

of anarchy is maxP CP/C∗
P while theoptimistic price of anarchy is minP CP/C∗

P .

We study theBroadcast Game: there is a designated root noder that has a message that must

be delivered to all nodes, i.e., each nodeu has to establish a directed pathr → u. In this game,

the transmission power of each node can be paid by different nodes. This model is inspired by
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the model of [2] for wired networks. We assume that each node,once it is connected, forwards

data packets of the other nodes. Observe that the Broadcast Game requires cost sharing, since a

node cannot establish a path from the root by controlling only its own power.

We also consider theConvergecast Game: each node has a message that must be delivered

to a designated root noder, i.e., each nodeu has to establish a directed pathu → r. In this

game, each agentu contributes only to the transmission power of its own node, i.e.,P u
v = 0

for v 6= u. This model has been introduced in [15]. We assume that multiple messages can be

aggregated into a single packet and thus we count the energy cost of each edge only once. We

will also extend the analysis of the Convergecast Game to thecost sharing model.

3.2 Bounded-Hop Broadcast

For each nodeu, we consider a shortest path inG between a designated root noder andu.

Thediameter of the communication graph is the maximal length of such a path. Thebounded-

hop broadcast problem is to find the energy assignment for broadcast that minimizes the total

energy, that is
∑

u Pu, subject to the constraint that the diameter of the resulting communication

graph is bounded byD.

Note that ifD = n, the problem is just the classical minimum-energy broadcast problem,

which is NP-hard [6]. On the other hand, ifD = 1, there exists only a trivial solution in which

r has the transmission range equal to the distance to the furthest node. We denote this distance

by L, i.e.,L = maxu d(r, u).
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4 Network Creation Games

In this section we consider the network creation games.

4.1 Broadcast Game

We show that in contrast to the single-source connection game of [2], a pure Nash equilibrium

for the Broadcast Game may not exist and the optimistic priceof anarchy is bounded away from

one. We also demonstrate that the pessimistic price of anarchy isΘ(n).

Definition 4.1 We say that node u covers node v if there exists a directed simple path in the

underlying communication graph G from r to v such that u precedes v on this path.

The following observation characterizes the cost sharing in a Nash equilibrium.

Observation 1 Consider a Nash equilibrium. We have that for each node v covered by u such

that d(u, v) < Ru, P v
u = 0, i.e., v does not contribute anything to the transmission power of u.

If it is not the case,v would always have incentive to decreaseP v
u because it would still

remain covered byu.

First we give an example of the Broadcast Game for which a pureNash equilibrium does

not exist.

Theorem 4.1 The Broadcast Game may possess no pure Nash equilibrium.

Proof: Consider the following scenario (see Figure 1). Nodeu is at distanced from the root in

one direction and two other nodesv andw are at distanced/2 andd+ǫ in the opposite direction,
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respectively. Obviously, in a Nash equilibrium the transmission rangeRr of r is eitherd/2, d,

or d + ǫ. We will show that all these situations are unstable.

d d/2 d/2+eps

root wu v

Figure 1:An example of the Broadcast Game without a pure Nash equilibrium.

If Rr = d/2, thenu would always increase its payment tor to assureRr = d because it is

the cheapest way foru to get covered.

If Rr = d, then by Observation 1,v does not pay anything tor. We argue that the payment

of w to r is also zero because it would only to pay tov for a transmission range ofd/2 + ǫ.

Therefore,u fully pays to the root for a transmission range ofd. In this casew has incentive

to increase its payment to the root from0 to (d + ǫ)α − (d)α to make its transmission range be

d + ǫ and decrease its payment tov to zero.

If Rr = d+ǫ, Observation 1 implies thatw fully pays for the energy of the rootPr = (d+ǫ)α.

However,w can benefit from decreasing its payment to the root to(d/2)α and increasing its

payment tov to (d/2 + ǫ)α.

The next theorem shows that the optimistic price of anarchy is greater than1.

Theorem 4.2 The optimistic price of anarchy for the Broadcast Game is bounded away from 1.

Proof: Consider the following scenario (see Figure 2). There are three rays emanating from

the root and the the angle between two adjacent rays is120 degrees. On the first two rays there
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are two nodes at distanced − x andd + x from the root, respectively. On the third ray there is

a node at distanced from the root.

root

d

d−x

2x

Figure 2:An example of the Broadcast Game in which the optimistic price of anarchy is
bounded away from 1.

Consider a situation in which the node on the last ray pays to the root for a transmission

range ofd and the furthest node on each of the first two rays pays to the first node on its ray for

a transmission range of2x. It is a unique Nash equilibrium provided that no furthest node can

benefit from increasing the transmission range of the root, i.e.,

(d + x)α − dα > (2x)α. (1)

We have that the price of anarchy is bounded away from1 if

dα + 2(2x)α > (d + x)α. (2)
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Note thatOPT just assigns a transmission range ofd + x to the root. In caseα = 2, the

inequalities (1, 2) hold for2
7
d < x < 2

3
d.

Now we proceed to study the pessimistic price of anarchy. Thefollowing theorem estab-

lishes a simple upper bound ofn on the price of anarchy, which turns out to be asymptotically

tight.

Theorem 4.3 The pessimistic price of anarchy for the Broadcast Game is at most n.

The theorem holds due to the fact that no agent spends more energy thanOPT does, other-

wise it can connect to the root by paying at mostC∗.

The following theorem derives a lower bound ofΩ(n) on the pessimistic price of anarchy.

Theorem 4.4 The pessimistic price of anarchy for the Broadcast Game is at least Ω(n).

Proof: Consider the following scenario (see Figure 3). There is a circle c1 with radiusd

whose center is the root and a circlec2 with a smaller radius. A setS1 of nodes is located on the

external part ofc2 w.r.t. c1 such that the first and the last nodes are located at the intersection

of c1 andc2. Another setS2 of nodes is located on the radius connecting the last point inS1 to

the root and the distance between the last point ofS1 and the first point ofS2 is x. We assume

that |S1| = |S2| = n/2 and the distance between any two adjacent nodes inS1 and inS2 is

δ = 2(d − x)/n.

Suppose that each node inS1 pays to the rootdα/|S1| and all but the first and the last nodes

pay to the succeeding node inS1 for the energy worthδα. Nodes inS2 do not pay anything.

The only alternative strategy for a node inS1 is to decrease its payment to the root to zero and
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S2

d

x

root

S1

c1 c2

Figure 3:An example of the Broadcast Game in which the price of anarchy is Ω(n).

pay xα to the first node inS2 to connect the last node inS1. Thus, the system is in a Nash

equilibrium if xα ≥ dα/|S1|. We have thatC = dα + n−4
2

δα.

Note thatOPT sets the transmission ranges of all but the first nodes inS1 and S2 to δ

and assigns a transmission range of0 andx to the first node inS1 and to the first node inS2,

respectively. Thus,C∗ = xα + (n− 2)δα. Therefore, the pessimistic price of anarchy is at least

n

2
· dα + n−4

2
δα

dα + n(n−2)
2

δα
= Ω(n),

whenn tends to infinity.
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4.2 Convergecast Game

We show that for the Convergecast Game, the optimistic priceof anarchy is1 while the pes-

simistic price of anarchy isΘ(nα−1). Then we extend our results to the cost sharing model. We

demonstrate that the pessimistic price of anarchy becomesΘ(n) while the optimistic price of

anarchy remains1. We note that the MST algorithm for strong connectivity by Kirousis et al.

[26] implicitly finds an optimal solution for the minimum-energy convergecast in polynomial

time.

The following theorem shows that the optimistic price of anarchy is one.

Theorem 4.5 The optimistic price of anarchy for the Convergecast Game is 1.

Clearly,OPT is a Nash equilibrium since no node can decrease its transmission range and

still stay connected to the root.

Corollary 4.6 There always exists a pure Nash equilibrium for the Convergecast Game.

Next we derive an upper bound on the pessimistic price of anarchy.

Theorem 4.7 The pessimistic price of anarchy for the Convergecast Game is at most O(nα−1).

Proof: Consider a Nash equilibrium. Enumerate the nodes in order ofnon-increasing trans-

mission range:R1 ≥ R2 · · · ≥ Rn. Let Z be the sum of the transmission ranges of the nodes

underOPT . We claim thatRi ≤ Z/i. Consider a set of nodesSi containing the firsti nodes

and the root. We claim that the distance between any two nodesin Si at leastRi. If it is not the

case, at least one node can decrease its transmission power without losing connectivity to the
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root, which contradicts the stability of a Nash equilibrium. We obtain thatZ ≥ iRi sinceOPT

must connect all these nodes to the root. Hence, the cost of the Nash equilibrium is at most

C ≤
n∑

i=1

(Z/i)α = Zα
n∑

i=1

1/iα ≤ Zα · const(α),

whereconst(α) is a positive constant which depends onα > 1. For example, forα = 2 we

haveconst(α) ≤ π2/6. On the other hand,C∗ ≥ n(Z/n)α, since the transmission power is

minimized when all nodes are evenly spaced. Dividing the bound forC by the bound forC∗ we

conclude the proof of the theorem.

In the next theorem we establish a lower bound ofΩ(nα−1) on the pessimistic price of

anarchy, which matches our upper bound.

Theorem 4.8 The pessimistic price of anarchy for the Convergecast Game is at least Ω(nα−1).

Proof: Let ǫ be a small positive constant. Consider the following scenario (see Figure 4). All

nodes are located on the line and the root is the first node. Thedistance between the root and

the first regular (other than root) node is1+ǫ and the distance between any two adjacent regular

nodes is1. The transmission range of the regular nodes but the last oneis 1 and the transmission

range of the last node isn − 1 + ǫ.

Clearly, it is a Nash equilibrium since all nodes are connected to the root and no node can

decrease its transmission power. The cost of this Nash equilibrium is

C = n − 2 + (n − 1 + ǫ)α,

17



root
1+eps 1

Figure 4:A bad example for the Convergecast Game.

while

C∗ = n − 2 + (1 + ǫ)α,

sinceOPT sets the transmission range of all regular nodes but the firstone to1 and the trans-

mission range of the first node to1 + ǫ.

Note that if we allow cost sharing, the optimistic price of anarchy remains the same. That is

due to the fact thatOPT is still a Nash equilibrium if each node pays for its own transmission

energy. However, the pessimistic price of anarchy drops toΘ(n), which shows the benefit of

cost sharing. The proof of the upper bound is trivial. The proof of the lower bound is almost

identical to that of Theorem 4.8 and is omitted from this abstract.
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5 Bounded-hop Broadcast

In this section we present approximation algorithms for thebounded-hop broadcast problem.

5.1 Simple Algorithm

In this section we give a simplemin(Dα−1, 12(n/D)log β)-approximation algorithm, whereβ is

a constant that depends onα. First we derive two obvious lower bounds onP (OPT ). The next

lower bound will be useful for small values ofD. Recall thatL = maxu d(r, u).

Lemma 5.1 For a given D, P (OPT ) ≥ D (L/D)α.

Proof: The energy ofOPT is at leastD (L/D)α since it must establish a path betweenr and

the furthest node and the transmission power is minimized when nodes are evenly spaced and

the number of relay nodes is maximized.

The following lower bound will be useful for large values ofD.

Theorem 5.2 ([39]) For any value of D, P (OPT ) ≥ P (MST )/12.

Now we present two basic algorithms. The first algorithm called root cover (RC) is a trivial

approach in which the root covers all the nodes. Note that this algorithm has a good performance

for small values ofD. A similar claim has been made in [1] without a proof.

Theorem 5.3 The approximation factor of the RC algorithm is at most Dα−1.

Proof: Note that the total energy of the root cover algorithm isLα. On the other hand, Lemma

5.1 implies that the total energy ofOPT is at leastD (L/D)α. We obtain thatP (RC)/P (OPT ) ≤

Dα−1.
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In the second algorithm, we start from a shortest path treeT corresponding to the communi-

cation graph produced by the MST algorithm. Thel-th layer ofT contains all nodes at distance

l from the root. We will contract the odd layers ofT until the diameter drops belowD. The

layer contraction algorithm is presented in Figure 5. Observe that this algorithm would perform

better for large values ofD.

1. Apply the MST algorithm [39] and set the transmission range of each node accord-
ingly.

2. If the diameter of the communication graph is smaller thanD, return the current solu-
tion.

3. Construct a shortest path treeT of G rooted atr.

4. Contract all odd layers ofT in the following way:

(a) For each layerl s.t. l is even and each nodeu in layerl set the transmission range
of u to maxv,w:(u,v)∈T,(v,w)∈T (d(u, v) + d(v, w)). (Note thatv is a child ofu at
layer l + 1 andw is a child ofv at layerl + 2 andu now will be able to reachw
directly.)

(b) For each layerl s.t. l is odd and each nodeu in layerl set the transmission range
of u to zero.

5. Goto Step2.

Figure 5: The layer contraction (LC) algorithm.

Theorem 5.4 The approximation factor of the LC algorithm is at most 12(n/D)log β, where β

is a constant that depends on α.

Proof: From Theorem 5.2 it follows thatP (OPT ) ≥ P (MST )/12. If Step4 is never exe-

cuted, we are done. Otherwise, during each iteration we decrease the diameter (the number of

layers) by half. We argue that Step4 incurs at most a constant blowup in the energy. Letβ be
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the smallest constant s.t. for any positivex, y the following holds

xα + yα ≥ ((x + y)α − yα)/β. (3)

Note that forα = 2, we haveβ ≤ 2. Consider a nodeu at an odd layer ofT whose power is

increased by Step4 and letv andw be the nodes for which the maximum ofd(u, v)+d(v, w) is

achieved. The transmission range ofu is increased tod(u, v) + d(v, w) while the transmission

range ofv is decreased to zero. Thus, the overall increase in energy isbounded by

d(u, w)α − d(v, w)α

d(u, v)α + d(v, w)α
≤ β (by inequality (3)).

Summing over all nodes, we get the total energy is increased by at most a factor ofβ. Observe

that we count the decrease in the energy of even-layer nodes exactly once since each node has

a unique parent inT .

Obviously, after at mostlog(n/D) iterations the diameter is at mostD. Therefore,P (LC) ≤

β log(n/D) · P (MST ). The theorem follows.

It follows from the proof thatβ ≤ 2 for α = 2. Finally, we consider thecombined algorithm

that selects the best solution among the root cover and the layer contraction algorithms.

Corollary 5.5 The approximation factor of the combined algorithm is at most

min(Dα−1, 12(n/D)logβ).

In particular, forα = 2 we haveβ ≤ 2, and the approximation factor is at mostO(
√

n) for

anyD and at mostO(log n) for D = O(log n) andD = Ω(n/ log n).
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5.2 Bounded-Diameter MST Algorithm

In this section we describe an algorithm, which reduces our problem to the BDMST problem. In

the BDMST problem, we are given a connected, undirected graph Gr = (Vr, Er) on nr = |Vr|

vertices and an integer boundK. The goal is to find a spanning treeT of Gr whose diameter

does not exceedK so as to minimize the weight ofT . The BDMST problem is NP-hard for4 ≤

K < nr [23]. Kortsarz and Peleg [27] show a lower bound ofΩ(log nr) on the approximation

ratio and describe aO(K log nr) approximation algorithm that combines a greedy heuristic and

exhaustive search. Naor and Schieber [31] give a polynomialtime O(lognr)-approximation

algorithm for directed graphs that uses linear programming, where the path lengths from the

root to the rest of the vertices are at most twice the given bound.

We construct a complete weighted graph in which the weight ofan edge is the energy re-

quired to establish it. Then we apply the algorithm of [31] tothis graph and obtain an arbores-

cence, which is used to specify the energy assignment. The BDMST algorithm is described in

Figure 6.

1. Construct a complete weighted graphG′ with the set of nodesV , where the weight of
an edge(u, v) is d(u, v)α (the energy required to establish this edge).

2. Compute a BDMST ofG′, T , using the algorithm of [31] withK = D.

3. Set the transmission power of each node to be equal to the weight of the heaviest
incident edge inT directed outward the root.

4. If the diameter ofG is greater thanD, apply Steps3, 4 of the layer contraction algo-
rithm. (We may need to decrease the diameter ofG by half since the diameter ofT is
bounded by2D.)

Figure 6: The BDMST algorithm.
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Note that Step4 of the BDMST algorithm incurs only a constant blowup in the total energy

(see the proof of Theorem 5.4). Suppose that the energy cost of an optimal BDMST with

diameterD (we count only the heaviest incident edge to each node) is at mostf(n) times larger

than the energy cost of an optimal solution for the bounded-hop broadcast problem. We obtain

that the BDMST algorithm achieves an approximation factor of O(f(n) · log n). We note that

in [39] thecomplete cost (all edges are counted) of a minimum spanning tree with unbounded

diameter is shown to be a constant factor larger than the energy cost of an optimal broadcast

with unbounded latency. That is not true in our model since for a star topology andD = 1, the

complete cost of an optimal BDMST isn − 1 times larger than the cost of an optimal solution

for the bounded-hop broadcast problem. However, in this case theenergy cost is exactly the

same for both solutions and it may still turn out thatf(n) is a constant.

5.3 Decremental Distance Heuristic for Bounded-Hop Broadcast

In this section we describe the decremental distance heuristic. In a nutshell, we begin with

the solution of the MST algorithm. Then we greedily find either the maximal absolute power

decrease or the minimal average power increase that decreases the distance of some nodes

that are more thanD hops apart from the root. This process terminates when the diameter

constraint is satisfied. The decremental distance heuristic is presented in Figure 7. Intuitively,

this algorithm will tend to increase the power of the nodes that are closer to the root, which

allows us to simultaneously decrease the distance from the root for many nodes.

The following theorem considers the running time of the decremental distance algorithm.

Theorem 5.6 The decremental distance algorithm terminates after at most n2 − nD iterations
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1. Apply the MST algorithm [39] and set the transmission power of each node accord-
ingly.

2. If the diameter of the communication graph is smaller thanD, return the current solu-
tion.

3. For each nodeu and for each possible level of the transmission powerP > Pu Do:

(a) Letm be the number of nodes at distance more thanD from the root for which
this distance is decreased if the transmission power ofu is increased toP .

(b) Assume that the transmission power ofu becomesP . Go over all nodesw 6= u
and find the the minimal transmission power ofw, P ′′ < Pw (if any) so that
(i) the distance from the root to any node does not increase beyond D and (ii)
the coverage is maintained. LetP ′ be the total power decrease over all consid-
eredw. (When the transmission range ofu is increased, the transmission ranges
of the other nodes may be decreased without affecting feasibility of the current
solution.)

4. Select a pairu, P with m > 0 with the maximum negative value of(P − Pu − P ′)
(the absolute energy decrease); otherwise select a pairu, P with the minimum positive
value of(P − Pu − P ′)/m (the average energy increase).

5. Set the transmission power ofu to beP .

6. Decrease the transmission power of all nodes that contribute toP ′ on Step3(b).

7. Goto Step2.

Figure 7: The decremental distance (DD) heuristic.

and has running time of at most O(n8).

Proof: Clearly, during each iteration we decrease the distance from the root to at least one

node that is more thanD hops apart and condition (i) guarantees that we do not increase the

distance from the root to any node beyondD. Therefore, the algorithm terminates after at most

n2 − nD iterations.

We argue that Step3, which dominates the running time of each iteration, takes at most

O(n6) time. Note that we have to consider at mostn possible transmission for each node
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u, w. Thus, there can be at mostn4 possible quadruplesu, P, w, P ′′. Clearly, we can check the

conditions (i) and (ii) inO(n2) time. The theorem follows.

6 Communication Problems

In this section we consider different minimum-energy communication problems in ad hoc net-

works and reduce them to connectivity problems in a directedweighted graph. A similar reduc-

tion has been used in [29, 8].†

Given the placement of nodesP, we construct a directed graphG′ = (V ′, E ′) as follows.

For each nodevi ∈ V , we createn − 1 new nodesvj
i : j = 1, . . . , n, j 6= i. Then for each pair

of nodes(vi, v
j
i ), we add a directed edge betweenvi andvj

i of weightd(vi, vj)
α. We also add a

directed edge of weight zero betweenvj
i andvm if d(vi, vj) ≥ d(vi, vm). Note thatG′ contains

n2 vertices andO(n3) edges.

Full-Duplex Connection. We are a given two endpointss, d ∈ V . We wish to establish a

full-duplex connection betweens andd. We use an algorithm proposed by Natu and Fang [33]

in order to solve the following problem. Given a directed weighted graphGr and a pair of nodes

s, d, our goal is to find a minimum-weight subgraphH of Gr that contains paths froms to d

and fromd to s. Natu and Fang propose an algorithm with running timeO(mrnr + n2
r log nr),

wherenr is the number of nodes andmr is the number of edges inGr. We apply the algorithm

of [33] with G′ as the input graph to obtain an optimal solution inO(n5) time.

Generalized Multicast. We are a given a subsetP = {v1, . . . , vq} ⊂ V of senders and a

†We note that our reduction works also for the asymmetric energy model, where the energy cost of an edge
(u, v) may differ from that of(v, u).
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subsetP ′ = {u1, . . . , uq′} ⊂ V of receivers that have fixed cardinalityq, q′. We wish the trans-

mission from each sender to reach all the receivers, i.e., toestablish directed paths from every

node ofP to every node ofP ′. We assume that different transmissions can be aggregated if

they pass through the same edge. We can use the algorithm provided by Feldman and Ruhl [18]

for thep-Directed Steiner Network problem. In this problem, we are given a directed weighted

graphGr andp pairs of nodes{(s1, d1), . . . , (sp, dp)} and our goal is to find a minimum-weight

subgraphH of Gr that contains all pathssi → di. Feldman and Ruhl propose an algorithm

with running timeO(mrn
4p−2
r + n4p−1

r log nr), wheren (resp.m) is the number of nodes (resp.

edges) inGr. We apply the algorithm of [18] toG′ with qq′ input pairs of nodes{(vi, uj)}. In

this way, we get an optimal solution inO(n8qq′−1) time.

Web-Conferencing. We are a given a subsetP = {v1, . . . , vq} ⊂ V of fixed cardinalityp

that contains nodes participating in a conference. We wish that all nodes inP would be able

to communicate with each other. We can use another algorithmprovided by Feldman and Ruhl

[18], where they solve thep-Strongly Connected Steiner Subgraph problem. In this problem,

we are given a directed weighted graphGr andp verticesw1, . . . , wp and we need to find a

minimum-weight strongly connected subgraphH of Gr, that containsw1, . . . , wp. Feldman

and Ruhl give an algorithm with running timeO(mrn
2p−3
r + n2p−2

r log nr), wherenr (resp.mr)

is the number of nodes (resp. edges) inGr. We can apply this algorithm toG′ obtaining an

optimal solution inO(n4q−3) time.
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7 Conclusion and Open Problems

We have presented tight analysis of the broadcast and the convergecast games in ad-hoc net-

works under a novel model of energy cost sharing. We show thatcost sharing significantly

improves the price of anarchy. Unfortunately, the price of anarchy still remains quite high,

which suggests a need for some sort of coordination mechanism. An interesting future research

direction is to study the case of mobile nodes.

We have also proposed approximation and heuristic algorithms for the bounded-hop broad-

cast problem. There is an open question of whether the BDMST algorithm achieves an approx-

imation factor ofO(log n).
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