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Abstract

Wireless ad hoc networks have gained a lot of attention iermegears. We consider
a game that models the creation of such a network, where reméeswned by selfish
agents. We study a novel cost sharing model in which agenyspaafor the transmission
power of the other nodes. Each agent has to satisfy some ctivityerequirement in the
final network and the goal is to minimize its payment with ngamel to the overall sys-
tem performance. We analyze two fundamental connectidtpes, namely broadcast and
convergecast. We study pure Nash equilibria and quantdydtgradation in the network

performance called the price of anarchy resulting from seliehavior. We derive tight
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bounds on the price of anarchy for these games.

We also study centralized network design. One of the mosbitapt problems in wire-
less ad hoc networks is the minimum-energy broadcast. Rgc#rere appeared many
new applications such as real-time multimedia, battlefd@ichmunications and rescue op-
erations that impose stringent end-to-end latency rexpgnt on the broadcasting time.
However, the existing algorithms that minimize the broatiog energy tend to produce
solutions with high latency. In this paper we consider thabfgm of bounded-hop broad-

cast. We present approximation and heuristic algorithmghie problem.

1 Introduction

The next generation communication networks are likely t@lmmbination of wireline and

ad hoc networks, which are expected to fulfill a critical raleere wired backbone networks
are not available or not economical to build [10, 34]. A conmication session in a wireless
network is achieved either through a single-hop transisgithe communication parties are
close enough, or through relaying by intermediate nodesratse. Depending on its power
level and on the nature of environmental interference, argach reach all nodes in a certain
range. Typically, the signal power falls &gd*, whered is the distance from the transmitter
antenna and is a constant betweehand4 depending on the environment [35]. All receivers
have the same power threshold for signal detection, whittpisally normalized to one. Under

the above assumptions, the power required to establistk &étween two nodes at distan¢e

is d*. In this paper we assume that nodes are located in a Euclgjsae and consider the



symmetric energy model. In ad hoc networks devices are lysealipped with battery that
has a limited power. Thus, among the most crucial issuesifideveloping energy-efficient
topology control algorithms, which maximize the netwoflktime [20].

Most of the existing works on wireless networks are basedhemssumption that there is a
centralized control, or the nodes run the same distribuggtithm. While this assumption may
hold for some networks, such as military or government netgjat is not valid in general for
Internet-like networks. In such a network, nodes are owneditberent commercial entities,
which are strongly driven by their economic interests. Ttaturally gives rise to many game-
theoretic issues. The stable outcomes of the interactitwada® non-cooperative selfish agents
correspond to Nash equilibria. A Nash equilibrium [32] canviewed as a solution that selfish
agents can agree upon, i.e., the agents have no incentiwyite Since Nash equilibria in
network games can be much more expensive than the bestlzsardesign, it is important
to consider the implications of selfish behavior on the nekvperformance. Recently, game-
theoretical analysis of ad hoc networks has received a desdtof attention [14, 4, 30, 19, 38,
13].

Traditionally, in Computer Science research has been &tan finding a global optimum.
With the emerging interest in computational issues rel&vegame theory, Koutsoupias and
Papadimitriou [28] introduced so callguice of anarchy. The pessimistic price of anarchy is
the ratio between the cost of the worst possible Nash equifib(the one with the maximum
social cost) and the cost of the social optimum. RoughgaaddiTardos [36] derive the price of
anarchy of selfish routing in networks. Ansheleich et al.g&jpose to consider thaptimistic

price of anarchy, which is the ratio between the cost of thet pessible Nash equilibrium (the



one with the minimum social cost) and that of the social optim

In this paper we consider the following game modeling thetioa of a wireless ad hoc
network. Each agent (node) has a specific connectivity remént, i.e., each agent has to build
a network in which this requirement is satisfied. We study\aehoost sharing model in which
the transmission power of each node can be paid by diffeganita. In the modedithout cost
sharing, each agent pays only for the transmission power of its owdend he goal of each
agent is to pay as little as possible. Note that the price afcdy measures the cost laick
of coordination between the agents. Thus, we assume that agentschisnpbete information.
We consider only pure strategies since mixed (probatm)istiash equilibria do not seem to
be suitable for network design [17]. We study broadcast amdergecast problems, which
are fundamental communication tasks in ad hoc networkshdrBroadcast Game, each agent
has to establish a directed path between a designated rdetamal its own node while in the
Convergecast Game, each agent has to establish a dire¢tetigtaeen its own node and a
designated root node.

The rapidly increasing capabilities and low costs of cormguand communication devices
have made it possible to use wireless networks in a wide rahgeplications such as real-time
multimedia, battlefield communications, and rescue oparat The above applications impose
stringent end-to-end latency requirement on the broaishgasime, which is the time taken
by the message to reach all the nodes in the network. Theclatdna broadcast scheduling
algorithms is at leas®( D), since the message needs to reach the furthest node fromutoes
whereD is the network diameter. Gaber and Mansour [22] show thaafigrgraph withD =

Q(log’ n), there is a centralized randomized schedule with latén@y), wheren is the number



of nodes.

Unfortunately, in the existing minimum-energy broadcdgioathms the latency of the
broadcasting tends to be quite large since the minimum grisrgttained when the number
of the relay nodes is maximized, which results in a large ngtwdiameter. We consider the
problem ofbounded-hop broadcast, introduced in [12]. In this problem, we aim to construct a
minimum-energy communication graph of bounded diameteat the source node in which
all nodes are covered. Note that there is a trade-off betwegching more nodes in a single
hop using higher power and thus decreasing the network déraad reaching fewer nodes
using lower power and thus increasing the network diamdtkee unrestricted version of this
problem is NP-hard [6]. For a line topology, this problem densolved optimally using the
dynamic programming algorithm of Clementi et al. [11].

Our results. First we consider the network creation games. For the Biastdéame with
cost sharing, we show that in contrast to the single-souwnaection game of [2], a pure Nash
equilibrium may not exist and the optimistic price of angrehbounded away from one. We
also establish that the pessimistic price of anarclty(is). We note that the Broadcast Game is
impossible without cost sharing. For the Convergecast Gaitiut cost sharing, we demon-
strate that the optimistic price of anarchyiig/hile the pessimistic price of anarchy@gn®—1).
Interestingly, the Convergecast Game has a lower pesgirpigte of anarchy compared to that
of the strong connectivity game in [15], which§n). We show that if we allow cost sharing,
the pessimistic price of anarchy is improved significantlyp{r) while the optimistic price of
anarchy remains the same.

Then we consider algorithms for centralized network dediagm the bounded-hop broadcast



problem, we present a simple algorithm that has an apprakmfactor ofmin (D=1, 12(n/D)e?),
whereD is the bound on the network diameter ahd a constant that depends anlin partic-
ular, fora = 2 we haveis < 2, and the approximation factor is at mast,/») for any D and
at mostO(logn) for D = O(logn) andD = Q(n/logn). Thereafter, we derive the bounded-
diameter minimum spanning tree (BDMST) algorithm that agbs an approximation factor
of O(f(n) - logn), wheref(n) is the worst-case ratio between the energy cost of an optimal
BDMST and that of an optimal solution for the bounded-hopaldicast problem. However, the
running time of this algorithm is rather high because of thiplexity of the BDMST problem.
In addition, we propose the decremental distance heynghich is easy to implement from the
practical point of view and has a polynomial running timetfwiut large hidden coefficients).
Finally, we show how to solve optimally in polynomial timeetfull-duplex (bi-directional) con-
nection problem and the generalized multicast and the walfecencing problems for a fixed
number of nodes.

Paper organization. Our model is presented in Section 3. Section 2 describestated
work. We analyze the networks creation games in Section gomhms for the bounded-
hop broadcast problem are presented in Section 5. Optimgatitims for some connectivity

problems are given in Section 6. We conclude with Section 7.

2 Related Work

Our paper is closely related to the work of Eidenbenz et ah],[tvhich considers topology

control problems in ad hoc networks, where nodes choosegbeier levels in order to ensure



the desired connectivity properties. Eidenbenz et al. gsygmptotically tight bounds on the
price of anarchy for the strong connectivity game and deitnatesthat for the connectivity
game it is NP-complete to decide whether a pure Nash equitibexists. In contrast to [15],
we allow cost sharing in our games. Ansheleich et al. [2] oersa network design game for
wired networks, where each agent has to connect a set offtalsniAnsheleich et al. show that
determining whether a pure Nash equilibrium exists is NPyglete and present a polynomial-
time algorithm that computes &approximate Nash equilibrium. We define a cost sharing
model similar to that of [2] for ad hoc networks. Fabricanakt[16] study a wireline network
creation game, where the cost of a node depends on the distamthe other nodes.

The problem of bounded-hop connectivity has been studithsively. Optimal algorithms
based on dynamic programming for the problem of boundedstimmg connectivity and the
problem of bounded-hop broadcast on a line are presentedrbydfs et al. [26] and Clementi
atal. [11], respectively. Beier et al. [3] and Funke et all][@ive efficient algorithms for finding
a minimum-energy route between two given nodes that usesiaded number of hops. The
problem of bounded-hop broadcast is studied in a recentrfiiypA&mbuhl et al. [1]. Ambuhl
et al. give a polynomial-time algorithm based on dynamigpaoming for finding an optimal
solution for2-hop broadcast with running tim@(n") and derive a PTAS for the case in which
the bound on the number of hops is fixed. Contrary to [1], is gaper we consider the whole
range of possible values af.

The problem of minimum-energy broadcasting in which th@graission power of each
node has to be determined so that the total power is mininfiasdeceived recently a great deal

of attention. Cagalj et al. [6] give a proof of NP-hardnessh& minimum-energy broadcast



problem in Euclidean space. Wieselthier et al. [40] proghsee greedy heuristics, namely the
minimum spanning tree (MST), the shortest path tree (SPd)tla@ broadcasting incremental
power (BIP), and evaluate them through simulations. Wah ¢B8] present the first analytical
results for this problem. In particular, they prove thatabproximation ratio of MST is between
6 and12 while the approximation ratio of SPT is at least2. Several approximation methods
with analytical bounds for the asymmetric model are progdseLiang [29]. Some of these
results have been improved by Caragiannis at al. [8] for ytmensetric model. Calinescu et
al. [7] consider the problem of maximizing network lifetirag well as different energy efficient
network connectivity problems. Cartigny et al. [9] developalized algorithms for minimum-

energy broadcasting.

3 Model and Notation

We assume that there arenodes, which are located on a Euclidean space. We dendke by
the placement of nodes. A wireless network is representeddigectedcommunication graph

G = (V, E), whereV is the set of nodes anfl is the set of edges. The neighbors of a node
u are determined by itsansmission power P,. Namely, node; can reach all nodes within its
transmission range R, = Pi/®, where2 < a < 4 is the the distance-power gradiént hus,
edge(u, v) belongs toF if the distance between andv, d(u,v), is at mostR,. We consider
the symmetric model in which the energy cost of an edge) is the same as that 06, u).

In a minimum-energy network design problem, the goal is sagmstransmission powers to

*For simplicity, we assume that the maximum transmissiogeasf a node is unbounded.



the nodes in order to establish the desired connectivityirempent while minimizing the total
energy of the nodes. Note that it is always sufficient to abersat most: different transmission
ranges for each node, which are the distances to the othesraodl zero transmission range.
We denote byO PT an optimal solution. We say that an algorittdnhas the approximation
factor of ¢, if the total power of the solution produced by P(A), is at most times that of

OPT, P(OPT), for any instance of the problem.

3.1 Broadcast and Convergecast Games

We assume that each node is an agent. A strategy of nasl@ payment functio?, that
is how much energy is willing to contribute to the transmission power of nadeThe actual
transmission power of nodeis defined ag’, = > .., P. The goal of node is to minimize its
total payment, that iy _,, P;'. We assume that nodes have complete information. The game is
said to be in &ash equilibriumif the connectivity requirement of each agent is satisfietiram
agent can find a better (with lower cost) alternative strateith respect to the current strategies
of the other agents (i.e., assuming that the strategiesddttier agents are fixed).

The social cost of the outcome of a game is the total powereohtiues. For a placement of

nodesP, we denote the cost of a Nash equilibrium®@y = > _,, P, and the cost 0® PT" by

ueV
Cp = > .ev Py, whereP; is the transmission power afunderOPT'. Thepessimistic price
of anarchy is maxp Cp /C} while theoptimistic price of anarchy is minp Cp/C5.

We study théBroadcast Game: there is a designated root nodthat has a message that must

be delivered to all nodes, i.e., each nedeas to establish a directed path- «. In this game,

the transmission power of each node can be paid by diffe@hés This model is inspired by



the model of [2] for wired networks. We assume that each nodeg it is connected, forwards
data packets of the other nodes. Observe that the Broadaast &quires cost sharing, since a
node cannot establish a path from the root by controlling @alown power.

We also consider th€onvergecast Game: each node has a message that must be delivered
to a designated root node i.e., each node has to establish a directed path— r. In this
game, each agent contributes only to the transmission power of its own node, P} = 0
for v # w. This model has been introduced in [15]. We assume that pheithessages can be
aggregated into a single packet and thus we count the enesgjpteach edge only once. We

will also extend the analysis of the Convergecast Game todkesharing model.

3.2 Bounded-Hop Broadcast

For each node:, we consider a shortest path @ between a designated root nodand w.
Thediameter of the communication graph is the maximal length of such &.p&hebounded-
hop broadcast problem is to find the energy assignment for broadcast thainmezes the total
energy, thatis _, P,, subject to the constraint that the diameter of the regptommunication
graph is bounded by.

Note that if D = n, the problem is just the classical minimum-energy broadgesblem,
which is NP-hard [6]. On the other hand,/if = 1, there exists only a trivial solution in which
r has the transmission range equal to the distance to thefiniode. We denote this distance

by L, i.e.,L = max, d(r,u).
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4 Network Creation Games

In this section we consider the network creation games.

4.1 Broadcast Game

We show that in contrast to the single-source connectioregai], a pure Nash equilibrium
for the Broadcast Game may not exist and the optimistic mi@marchy is bounded away from

one. We also demonstrate that the pessimistic price of apa&s®© ().

Definition 4.1 We say that node « covers node v if there exists a directed simple path in the

underlying communication graph G from to v such that « precedes v on this path.

The following observation characterizes the cost shanrggiNash equilibrium.

Observation 1 Consider a Nash equilibrium. We have that for each node v covered by « such

that d(u,v) < R,, P’ = 0, i.e., v does not contribute anything to the transmission power of w.

If it is not the caseyp would always have incentive to decreasg because it would still
remain covered by.
First we give an example of the Broadcast Game for which a Nash equilibrium does

not exist.

Theorem 4.1 The Broadcast Game may possess no pure Nash equilibrium.

Proof. Consider the following scenario (see Figure 1). Nadgat distance from the root in

one direction and two other nodeandw are at distancé/2 andd+e in the opposite direction,

11



respectively. Obviously, in a Nash equilibrium the transsion ranger, of r is eitherd/2, d,

or d + . We will show that all these situations are unstable.

u@ root@ v@® w@

d di2  di2+eps

Figure 1:An example of the Broadcast Game without a pure Nash equilibrium.

If R. = d/2,thenu would always increase its paymentitéo assurek, = d because it is
the cheapest way far to get covered.

If R, = d, then by Observation 1, does not pay anything ta We argue that the payment
of w to r is also zero because it would only to payutdor a transmission range @f/2 + .
Therefore,u fully pays to the root for a transmission rangedofin this casew has incentive
to increase its payment to the root fréno (d + €)* — (d) to make its transmission range be
d + ¢ and decrease its paymentit@o zero.

If R, = d+¢, Observation 1 implies thait fully pays for the energy of the ro@t. = (d+¢).
However,w can benefit from decreasing its payment to the rodid§@)“ and increasing its

paymentto to (d/2+¢)*. 1
The next theorem shows that the optimistic price of anarslyeater thar.
Theorem 4.2 The optimistic price of anarchy for the Broadcast Game is bounded away from 1.

Proof. Consider the following scenario (see Figure 2). There amethays emanating from

the root and the the angle between two adjacent raylislegrees. On the first two rays there

12



are two nodes at distande— = andd + x from the root, respectively. On the third ray there is

a node at distancéfrom the root.

Figure 2:An example of the Broadcast Game in which the optimistic price of anarchy is
bounded away from 1.

Consider a situation in which the node on the last ray paybaadot for a transmission
range ofd and the furthest node on each of the first two rays pays to stenfade on its ray for
a transmission range @fc. It is a unique Nash equilibrium provided that no furthesi@can

benefit from increasing the transmission range of the ramt, i

(d+z)* —d* > (2x)*. 1)

We have that the price of anarchy is bounded away ftafn

4o +2(22)* > (d + 2)° )
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Note thatO PT just assigns a transmission rangedof- = to the root. In casex = 2, the

inequalities (1, 2) hold foBd < =z < 2d. 1

Now we proceed to study the pessimistic price of anarchy. fohewing theorem estab-
lishes a simple upper bound nfon the price of anarchy, which turns out to be asymptotically

tight.
Theorem 4.3 The pessimistic price of anarchy for the Broadcast Game is at most .

The theorem holds due to the fact that no agent spends maigyehanO PT" does, other-
wise it can connect to the root by paying at mo'$t

The following theorem derives a lower bound(afr) on the pessimistic price of anarchy.
Theorem 4.4 The pessimistic price of anarchy for the Broadcast Game is at least 2(n).

Proof: Consider the following scenario (see Figure 3). There isrdeci; with radiusd
whose center is the root and a cirelewith a smaller radius. A séf; of nodes is located on the
external part of:; w.r.t. ¢; such that the first and the last nodes are located at the ecters

of ¢; andc,. Another setS; of nodes is located on the radius connecting the last poi6t o
the root and the distance between the last poirff;aind the first point of, is . We assume
that|S;| = |S2| = n/2 and the distance between any two adjacent nodes and in S, is
d=2(d—x)/n.

Suppose that each nodeSih pays to the rooi*/|.S;| and all but the first and the last nodes

pay to the succeeding node ffj for the energy wortld*. Nodes inS; do not pay anything.

The only alternative strategy for a nodeSnis to decrease its payment to the root to zero and

14



Figure 3:An example of the Broadcast Game in which the price of anarchy is Q(n).

pay z“ to the first node inS; to connect the last node if}. Thus, the system is in a Nash
equilibrium if 2 > d*/|S;|. We have that' = d* + 254§,

Note thatOPT sets the transmission ranges of all but the first nodeS,; iand S, to &
and assigns a transmission rangé) @nd x to the first node inS; and to the first node i%,,
respectively. Thusy* = z* + (n — 2)6*. Therefore, the pessimistic price of anarchy is at least

do + 224e

— 2 —Q(n),
da+ ”(n2_2)5a ( )

n
2

whenn tends to infinity. 1
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4.2 Convergecast Game

We show that for the Convergecast Game, the optimistic rianarchy isl while the pes-
simistic price of anarchy i®(n*~'). Then we extend our results to the cost sharing model. We
demonstrate that the pessimistic price of anarchy bec@nies while the optimistic price of
anarchy remain$. We note that the MST algorithm for strong connectivity bydisis et al.
[26] implicitly finds an optimal solution for the minimum-ergy convergecast in polynomial
time.

The following theorem shows that the optimistic price ofr@hg is one.

Theorem 4.5 The optimistic price of anarchy for the Convergecast Gameis 1.

Clearly, O PT is a Nash equilibrium since no node can decrease its trasEmisange and

still stay connected to the root.

Corollary 4.6 There always exists a pure Nash equilibrium for the Convergecast Game.

Next we derive an upper bound on the pessimistic price ofcéuyar

Theorem 4.7 The pessimistic price of anarchy for the Convergecast Gameisat most O(n®1).

Proof: Consider a Nash equilibrium. Enumerate the nodes in ordappfincreasing trans-
mission rangeR; > R,--- > R,. Let Z be the sum of the transmission ranges of the nodes
underOPT. We claim thatR; < Z/i. Consider a set of node% containing the first nodes
and the root. We claim that the distance between any two nadgsat leastR;. If it is not the

case, at least one node can decrease its transmission paweuttosing connectivity to the

16



root, which contradicts the stability of a Nash equilibriuvide obtain thatZ > ¢ R; sinceO PT

must connect all these nodes to the root. Hence, the cost dfakh equilibrium is at most

C< Z(Z/z)a =27 Z 1/i* < Z% - const(a),
i=1

i=1

whereconst(«) is a positive constant which depends®en> 1. For example, forx = 2 we
haveconst(a) < 72/6. On the other handy* > n(Z/n)*, since the transmission power is
minimized when all nodes are evenly spaced. Dividing thenkddar C' by the bound foC* we

conclude the proof of the theorem.ll

In the next theorem we establish a lower boundXf,*~!) on the pessimistic price of

anarchy, which matches our upper bound.
Theorem 4.8 The pessimistic price of anarchy for the Convergecast Gameis at least Q(n>1).

Proof.: Lete be a small positive constant. Consider the following sdenaee Figure 4). All
nodes are located on the line and the root is the first node.diBt@nce between the root and
the first regular (other than root) nodelis ¢ and the distance between any two adjacent regular
nodes isl. The transmission range of the regular nodes but the lagsdrend the transmission
range of the last node is— 1 + e.

Clearly, it is a Nash equilibrium since all nodes are coneg¢d the root and no node can

decrease its transmission power. The cost of this Nashilequih is
C=n-24+(n—-1+¢€",

17



i

Figure 4:A bad example for the Convergecast Game.

while

C*=n—-24+(1+¢°,

sinceO PT sets the transmission range of all regular nodes but theofiesto1 and the trans-

mission range of the first node to+-¢. 1

Note that if we allow cost sharing, the optimistic price odeshy remains the same. That is
due to the fact tha® PT is still a Nash equilibrium if each node pays for its own tramnssion
energy. However, the pessimistic price of anarchy drop3(te), which shows the benefit of
cost sharing. The proof of the upper bound is trivial. Theoprf the lower bound is almost

identical to that of Theorem 4.8 and is omitted from this edatt
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5 Bounded-hop Broadcast

In this section we present approximation algorithms forltbended-hop broadcast problem.

5.1 Simple Algorithm

In this section we give a simplain(D*~*, 12(n/D)"°¢#)-approximation algorithm, where is
a constant that depends anFirst we derive two obvious lower bounds &8O PT'). The next

lower bound will be useful for small values &f. Recall that, = max, d(r, u).
Lemma 5.1 For agiven D, P(OPT) > D (L/D)".

Proof: The energy oD PT is at leastD (L/D)“ since it must establish a path betweeand
the furthest node and the transmission power is minimizeelwiodes are evenly spaced and

the number of relay nodes is maximized }
The following lower bound will be useful for large valuesiof
Theorem 5.2 ([39]) For any value of D, P(OPT) > P(MST)/12.

Now we present two basic algorithms. The first algorithmezhhoot cover (RC) is a trivial
approach in which the root covers all the nodes. Note thagiligiorithm has a good performance

for small values ofD. A similar claim has been made in [1] without a proof.
Theorem 5.3 The approximation factor of the RC algorithmisat most D!,

Proof. Note that the total energy of the root cover algorithmts On the other hand, Lemma
5.1 implies that the total energy 6fPT is atleastD (L/D)". We obtain thal’(RC')/ P(OPT) <

Doc—l. I
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In the second algorithm, we start from a shortest pathfreerresponding to the communi-
cation graph produced by the MST algorithm. Tké layer of 7" contains all nodes at distance
[ from the root. We will contract the odd layers ©ofuntil the diameter drops below. The
layer contraction algorithm is presented in Figure 5. Olisénat this algorithm would perform

better for large values ab.

1. Apply the MST algorithm [39] and set the transmission e each node accord
ingly.

2. If the diameter of the communication graph is smaller tPameturn the current solu
tion.

3. Construct a shortest path tréeof GG rooted at-.
4. Contract all odd layers df in the following way:

() For each layers.t.l is even and each noden layer!/ set the transmission range
of u t0 max, w:(uv)er,(v,wer(d(u, v) + d(v,w)). (Note thatv is a child ofu at
layer/ 4+ 1 andw is a child ofv at layerl + 2 andu now will be able to reachw
directly.)

(b) For each layets.t.l is odd and each nodein layer! set the transmission range
of u to zero.

5. Goto Step.

Figure 5: The layer contraction (LC) algorithm.

Theorem 5.4 The approximation factor of the LC algorithmis at most 12(n/D)"#, where 3

isa constant that depends on «.

Proof: From Theorem 5.2 it follows thaP(OPT) > P(MST)/12. If Step4 is never exe-
cuted, we are done. Otherwise, during each iteration weedserthe diameter (the number of

layers) by half. We argue that Stdpncurs at most a constant blowup in the energy. [ &
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the smallest constant s.t. for any positive, the following holds

% +y* = ((r+y)* —y*)/8. (3)

Note that fora = 2, we have3 < 2. Consider a node at an odd layer of’ whose power is
increased by Stepand letv andw be the nodes for which the maximumdifu, v) + d(v, w) is
achieved. The transmission rangeudf increased t@(u, v) + d(v, w) while the transmission

range ofv is decreased to zero. Thus, the overall increase in enelgyuisded by

90" 3 (by inequality (3))
w)

Summing over all nodes, we get the total energy is increaged imost a factor of;. Observe
that we count the decrease in the energy of even-layer nodesiyeonce since each node has
a unique parent iff".

Obviously, after at mosbg(n/ D) iterations the diameter is at mast Therefore P(LC') <

ploe/D) . p(MST). The theorem follows. [

It follows from the proof that? < 2 for o = 2. Finally, we consider theombined algorithm

that selects the best solution among the root cover and yke ¢antraction algorithms.

Corollary 5.5 The approximation factor of the combined algorithmis at most

min(D*"!, 12(n/D)es),

In particular, fora = 2 we haves < 2, and the approximation factor is at m@st./n) for
any D and at most(logn) for D = O(logn) andD = Q(n/logn).
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5.2 Bounded-Diameter MST Algorithm

In this section we describe an algorithm, which reduces oalslpm to the BDMST problem. In
the BDMST problem, we are given a connected, undirectedgtap= (V,, E,.) onn, = |V,|
vertices and an integer bourdd. The goal is to find a spanning tr&eof GG, whose diameter
does not exceefl’ so as to minimize the weight @f. The BDMST problem is NP-hard fadr <
K < n, [23]. Kortsarz and Peleg [27] show a lower bound Xifog n,.) on the approximation
ratio and describe @( K log n,.) approximation algorithm that combines a greedy heuristét a
exhaustive search. Naor and Schieber [31] give a polynotinied O (log n,.)-approximation
algorithm for directed graphs that uses linear programmivitere the path lengths from the
root to the rest of the vertices are at most twice the givemtou

We construct a complete weighted graph in which the weiglanoédge is the energy re-
quired to establish it. Then we apply the algorithm of [31{hs graph and obtain an arbores-
cence, which is used to specify the energy assignment. Ti3BDalgorithm is described in

Figure 6.

1. Construct a complete weighted graghwith the set of node%’, where the weight of
an edg€u, v) isd(u,v)® (the energy required to establish this edge).

2. Compute a BDMST ofy, T', using the algorithm of [31] withk' = D.

3. Set the transmission power of each node to be equal to tightvef the heaviest
incident edge ir¥" directed outward the root.

4. If the diameter of~ is greater tharD, apply Steps, 4 of the layer contraction algg
rithm. (We may need to decrease the diameter dly half since the diameter @f is
bounded by D.)

Figure 6: The BDMST algorithm.
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Note that Steg of the BDMST algorithm incurs only a constant blowup in the@at@nergy
(see the proof of Theorem 5.4). Suppose that the energy €@st optimal BDMST with
diameterD (we count only the heaviest incident edge to each node) i®at fin) times larger
than the energy cost of an optimal solution for the boundgadroadcast problem. We obtain
that the BDMST algorithm achieves an approximation factoD¢f (n) - logn). We note that
in [39] the complete cost (all edges are counted) of a minimum spanning tree wiblounded
diameter is shown to be a constant factor larger than theggrmast of an optimal broadcast
with unbounded latency. That is not true in our model sincafstar topology and = 1, the
complete cost of an optimal BDMST is — 1 times larger than the cost of an optimal solution
for the bounded-hop broadcast problem. However, in this tasenergy cost is exactly the

same for both solutions and it may still turn out tifét) is a constant.

5.3 Decremental Distance Heuristic for Bounded-Hop Broadast

In this section we describe the decremental distance heuriy a nutshell, we begin with
the solution of the MST algorithm. Then we greedily find eitttee maximal absolute power
decrease or the minimal average power increase that desréas distance of some nodes
that are more tha® hops apart from the root. This process terminates when traeter
constraint is satisfied. The decremental distance heursspresented in Figure 7. Intuitively,
this algorithm will tend to increase the power of the nodes tire closer to the root, which
allows us to simultaneously decrease the distance fronotitder many nodes.

The following theorem considers the running time of the dewntal distance algorithm.

Theorem 5.6 The decremental distance algorithmterminates after at most n? — n.D iterations

23



1. Apply the MST algorithm [39] and set the transmission poafeeach node accord
ingly.

2. If the diameter of the communication graph is smaller tbameturn the current solu
tion.

3. For each node and for each possible level of the transmission pofver P, Do:

(a) Letm be the number of nodes at distance more tbafnom the root for which
this distance is decreased if the transmission powerisincreased td’.

(b) Assume that the transmission powerdbecomesP. Go over all nodes # u
and find the the minimal transmission powerwf P” < P, (if any) so that
() the distance from the root to any node does not increagertokD and (ii)
the coverage is maintained. L&t be the total power decrease over all consid-
eredw. (When the transmission range®fs increased, the transmission ranges
of the other nodes may be decreased without affecting filiasit¥f the current
solution.)

4. Select a pait, P with m > 0 with the maximum negative value ¢f — P, — P')
(the absolute energy decrease); otherwise select a p&iwith the minimum positive
value of(P — P, — P’)/m (the average energy increase).

5. Set the transmission powerwoto be P.

6. Decrease the transmission power of all nodes that coiterio P’ on Step3(b).

7. Goto Step.

Figure 7: The decremental distance (DD) heuristic.

and has running time of at most O(n?®).

Proof: Clearly, during each iteration we decrease the distanae fiee root to at least one
node that is more thaf hops apart and condition (i) guarantees that we do not iserdee
distance from the root to any node beyandTherefore, the algorithm terminates after at most
n? — nD iterations.

We argue that Step, which dominates the running time of each iteration, takesast

O(n®) time. Note that we have to consider at maspossible transmission for each node
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u,w. Thus, there can be at most possible quadruples, P, w, P”. Clearly, we can check the

conditions (i) and (ii) inO(n?) time. The theorem follows. |

6 Communication Problems

In this section we consider different minimum-energy comioation problems in ad hoc net-
works and reduce them to connectivity problems in a direateighted graph. A similar reduc-
tion has been used in [29, 8].

Given the placement of nodég3, we construct a directed gragh = (/, E’) as follows.
For each node; € V, we createx — 1 new nodes)f :j=1,...,n,j # i. Then for each pair
of nodes(v;, v!), we add a directed edge betwegrandv? of weightd(v;, v;)*. We also add a
directed edge of weight zero betweghandv,, if d(v;,v;) > d(v;, v,,). Note thatG’ contains
n? vertices and)(n?) edges.

Full-Duplex Connection. We are a given two endpointsd € V. We wish to establish a
full-duplex connection betweenandd. We use an algorithm proposed by Natu and Fang [33]
in order to solve the following problem. Given a directedgieed grapltz,. and a pair of nodes
s, d, our goal is to find a minimum-weight subgraphof G, that contains paths fromto d
and fromd to s. Natu and Fang propose an algorithm with running tit{ez,n, + n?logn,),
wheren,. is the number of nodes and, is the number of edges i@d,.. We apply the algorithm
of [33] with G’ as the input graph to obtain an optimal solutiorfifr.®) time.

Generalized Multicast. We are a given a subsé&t = {v;,...,v,} C V of senders and a

fWe note that our reduction works also for the asymmetricggnarodel, where the energy cost of an edge
(u,v) may differ from that of(v, u).
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subsetP’ = {uy,...,uy} C V of receivers that have fixed cardinalityq’. We wish the trans-
mission from each sender to reach all the receivers, i.estblish directed paths from every
node of P to every node ofP’. We assume that different transmissions can be aggredated i
they pass through the same edge. We can use the algorithidguddyy Feldman and Ruhl [18]
for the p-Directed Steiner Network problem. In this problem, we are given a directed weighted
graphG, andp pairs of nodeg(sy,d;), . .., (s, d,) } and our goal is to find a minimum-weight
subgraphH of G, that contains all paths; — d;. Feldman and Ruhl propose an algorithm
with running timeO (m,n =2 + n*~1logn,), wheren (resp.m) is the number of nodes (resp.
edges) inG,. We apply the algorithm of [18] t6’ with ¢¢’ input pairs of node$(v;, u;)}. In
this way, we get an optimal solution @(n%%'~1) time.

Web-Conferencing. We are a given a subsét = {v,,...,v,} C V of fixed cardinalityp
that contains nodes participating in a conference. We wiahdll nodes inP would be able
to communicate with each other. We can use another algoptorided by Feldman and Ruhl
[18], where they solve thp-Strongly Connected Seiner Subgraph problem. In this problem,
we are given a directed weighted gragh andp verticesws, ..., w, and we need to find a
minimum-weight strongly connected subgrafghof G,, that containsu, ..., w,. Feldman
and Ruhl give an algorithm with running tint&(m,n* =3 + n*-2logn,.), wheren,. (resp.m,.)
is the number of nodes (resp. edges)Yin We can apply this algorithm t6” obtaining an

optimal solution inO(n*~3) time.
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7 Conclusion and Open Problems

We have presented tight analysis of the broadcast and theig@tast games in ad-hoc net-
works under a novel model of energy cost sharing. We showdbstt sharing significantly
improves the price of anarchy. Unfortunately, the price wérahy still remains quite high,
which suggests a need for some sort of coordination meatawia interesting future research
direction is to study the case of mobile nodes.

We have also proposed approximation and heuristic algosttor the bounded-hop broad-
cast problem. There is an open question of whether the BDMEIrithm achieves an approx-

imation factor ofO(logn).
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