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Abstract The buffered crossbar switch architecture has recently gained considerable

research attention. In such a switch, besides normal input and output queues, a small

buffer is associated with each crosspoint. Due to the introduction of crossbar buffers,

output and input dependency is eliminated, and the scheduling process is greatly sim-

plified. We analyze the performance of switch policies by means of competitive analysis,

where a uniform guarantee is provided for all traffic patterns. We assume that each

packet has an intrinsic value designating its priority and the goal of the switch policy

is to maximize the weighted throughput of the switch. We consider FIFO queueing

buffering policies, which are deployed by the majority of today’s Internet routers. In

packet-mode scheduling, a packet is divided into a number of unit length cells and

the scheduling policy is constrained to schedule all the cells contiguously, which re-

moves reassembly overhead and improves Quality-of-Service (QoS). For the case of

variable length packets with uniform value density (Best Effort model), where the

packet value is proportional to its size, we present a packet-mode greedy switch policy

that is 7-competitive. For the case of unit size packets with variable values (Differen-

tiated Services model), we propose a β-preemptive (β is a preemption factor) greedy

switch policy that achieves a competitive ratio of 6+4β+β2+3/(β−1). In particular,

its competitive ratio is at most 19.95 for the preemption factor of β = 1.67. As far as

we know, this is the first constant-competitive FIFO policy for this architecture in the

case of variable value packets. In addition, we evaluate performance of β-preemptive

The preliminary version of this paper has been appeared in ACM Symposium on Principles
of Distributed Computing, PODC 2008 where a preemption factor of 2 is considered. Here, we
express the competitive ratio as function of the preemption factor β, thus improving upon the
PODC result from 21 to 19.95 when beta is optimized.
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greedy switch policy by simulations and show that it outperforms other natural switch

policies. The presented policies are simple and thus can be efficiently implemented

at high speeds. Moreover, our results hold for any value of the internal switch fabric

speedup.

Keywords Buffer Management · Competitive Analysis · Switch

1 Introduction

The main tasks of a router are to receive a packet from the input port, to find its

destination port using a routing table, to transfer the packet to that output port, and

finally to transmit it on the output link. The switching fabric in a router is responsible

for transferring packets from the input ports to the output ports. If a burst of packets

destined to the same output port arrives, it is impossible to transmit all the packets

immediately in case of contention, and some of them must be buffered inside the switch

(or dropped).

In this paper we focus on buffered crossbar switch architecture. Essentially, this is

well-studied Combined-Input-Output-Queued (CIOQ) switch [8,12,14,15,27] with ad-

ditional buffers at the crosspoints. In a nutshell, a packet arriving at input-port i and

destined for output-port j is first buffered at input-port i’s buffer, then it is sent to an

(i, j) crosspoint buffer and finally, it is forwarded from the crosspoint buffer to output-

port j’s buffer. An important characteristic of the switch fabric is its speedup. A switch

has a speedup S, if the switching fabric runs S times faster than each of the input or

the output lines. The switch policy obtains the value of the packet if it is transmitted

out of the output port and gains no value otherwise (if the packet is dropped).

Buffered crossbar switches recently received significant research attention [11,18,30,

32,34]. The overall performance of the switch can be significantly improved by using

of internal buffers at crosspoints. It allows each input and output port to schedule

packets independently and in parallel fashion. As a result, the scheduler for a buffered

crossbar is much simpler than that for a traditional unbuffered crossbar [11]. Note that

the number of buffers is proportional to the number of crosspoints, that is O(N2).

In many network protocols traffic is comprised of variable length packets. A prime

example is provided by IP datagrams whose sizes typically vary from 40 to 1500 bytes

[1]. Real-life switches, however, operate with fixed-size cells, which are easier to buffer

and schedule synchronously in an electronic domain. Transmitting packets over cell-

based switches requires the use of packet segmentation and reassembly modules, result-

ing in a significant computation and communication overhead [20]. Cell-based schedul-

ing has a number of drawbacks. First, one must keep a packet-reassembly buffer at each

output port. Second, traditional cell-based schedulers are typically unaware of the ex-

istence of packets, and thus different cells of the same packet may experience different

delays. This may badly affect Quality-of-Service (QoS) because the actual delay of a

packet is the delay of the last cell.

Katevenis et al. [21] proposed the use of buffered crossbars for variable length

packets. Kanizo et al. [19] discussed the design of buffered crossbar switch, where each

crosspoint buffer can hold multiple cells. The crosspoint buffer size is expected to keep

growing with SRAM density, roughly doubling every 2.5 years [36]. Turner [34] studied

the performance of asynchronous work-conserving schedulers that preserve the packet

arrival order (while forwarding). Turner showed that for a speedup of two and the
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crosspoint buffer size of at least twice the maximum packet size a buffered crossbar

scheduler can provide work conservation guarantees. These schedulers can also emulate

an OQ switch within a class of restricted queueing disciplines.

The first problem that we investigate in this work is related to packet-mode schedul-

ing, where the whole packet rather than a single cell becomes the switching unit [29].

Packet mode scheduling has received a lot of research attention in recent time [5,34].

A packet is divided into a number of unit length cells and the scheduling policy is

constrained to schedule all cells of a given packet contiguously. The value of a packet

equals the number of cells it is comprised of. This is so called uniform value density case

corresponding to the Best Effort model [13]. The main advantage of this architecture is

that the reassembly overhead is reduced. In addition, a packet-based scheduler, which

is aware of the packet entity, may use this information to provide better performance

through scheduling.

The second problem that we explore in this work is related to QoS guarantees.

We assume that all packets have equal size and each packet has an intrinsic value

designating its priority, which corresponds to the DiffServ model [9]. We study switch

policies that maintain the First-In-First-Out (FIFO) order between the packets. FIFO

buffering policies are deployed by most of the state-of-the-art Internet routers. Fur-

thermore, such policies are beneficial for the dominant TCP transport protocol, whose

performance degrades if packet re-ordering occurs.

Internet traffic is difficult to model and it does not seem to follow the traditional

Poisson arrival model [31,35]. In this work we do not assume any specific traffic model

and rather analyze our switch policies against arbitrary traffic using competitive anal-

ysis [33,10], which provides a uniform throughput guarantee for all traffic patterns.

In competitive analysis, the online switch policy A is compared to the optimal offline

policy OPT , which knows the entire input sequence in advance. The competitive ratio

of a policy A is the maximum, over all sequences of packet arrivals σ, of the ratio

between the the value of packets sent by OPT out of σ, and the value of packets sent

by A out of σ.

We consider a buffered crossbar switch with crosspoint buffers of arbitrary ca-

pacity. The switch policy controlling the switch consists of two components: a buffer

management policy that controls admission to buffers, and a scheduling policy that

is responsible for the transfer of packets from input to crosspoint buffers and from

crosspoint buffers to output buffers. The goal of the switch policy is to maximize the

weighted throughput of the switch.

1.1 Our Results

First, we consider packet-mode policies for the case of variable length packets with

uniform value density (Best Effort model) assuming that each internal buffer (virtual

output, crosspoint or output) has capacity of at least two packets of maximal size.

We present a simple greedy policy that is 7-competitive. Then we study the case

of unit size packets with variable values (Differentiated Services model). Our main

result is a preemptive greedy switch policy β-PGV with preemption factor β that

achieves a competitive ratio of 6 + 4β + β2 + 3/(β − 1). In particular, the competitive

ratio of the β-PGV policy is at most 19.95 for the preemption factor of β = 1.67

Remarkably, our results hold for any value of the fabric speedup. To the best of our

knowledge, this is the first constant-competitive FIFO policy for buffered crossbar
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switches in the general case of variable value packets and arbitrary speedup. In addition,

we estimate the throughput of β-PGV by means of simulations. On average β-PGV

outperforms some other natural switch policies and performs much better than its

worst-case performance guarantee. The proposed policies are simple and thus amenable

to efficient implementation at high speeds.

1.2 Related Work

This paper is mostly related to the work of Kesselman et al. [23], which studies

buffered crossbar. For the case of unit size and unit value packets the authors pro-

vide 4-competitive policy. Kesselman et al. [23] also propose a 18-competitive policy

for the case of variable value packets with Priority Queuing (PQ) buffers, where pack-

ets of the highest value are sent first. Guez et al. [16] consider packet-mode scheduling

for CIOQ switches.

Kesselman et al. [26] studied preemptive policies for FIFO buffers in OQ switches

and introduce a new bounded-delay model. Competitive analysis of preemptive and

non-preemptive scheduling policies for shared memory OQ switches was given by Hahne

et al. [17] and Kesselman and Mansour[24], respectively. Aiello et al. [2] considered the

throughput of various protocols in a setting of a network of OQ switches with limited

buffer space. Kesselman et al. [25] studied the throughput of local buffer management

policies in a system of merge buffers.

Azar and Richter [7] presented a 4-competitive algorithm for a weighted multi-

queue switch problem with FIFO buffers. An improved 3-competitive algorithm was

given by Azar and Richter [8]. Albers and Schmidt [4] proposed a deterministic 1.89-

competitive algorithm for the case of unit-value packets. In a recent paper, Azar and

Litichevskey [6] derived a 1.58-competitive algorithm for switches with large buffers.

Albers and Jacobs [3] gave an experimental study of new and known online packet

buffering algorithms.

Kesselman and Rosén [27] studied CIOQ switches with FIFO buffers. For the case

of packets with unit values, they presented a switch policy that is 3-competitive for any

speedup. For the case of packets with variable values, they proposed two switch policies

achieving a competitive ratio of 4S and 8min(k, 2 log β), where S is the speedup of the

switch, k is the number of distinct packet values and β is the ratio between the largest

and the smallest value. Azar and Richter [8] obtained a 8-competitive policy for CIOQ

switches with FIFO buffers for the latter case. Kesselman and Rosén [28] considered

the case of CIOQ switches with PQ buffers and proposed a policy that is 6-competitive

for any speedup.

1.3 Paper Organization

The rest of the paper is organized as follows. The model description appears in Section

2. Section 3 describes the switch policies, which are analyzed in Section 4 and simulated

in Section 5. We conclude with Section 6.
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Fig. 1 An example of a buffered crossbar switch.

2 Model Description

We consider an N ×N buffered crossbar switch (see Figure 1). Packets arrive at input

ports, and each packet is labeled with the output port on which it has to leave the

switch. A packet is divided into a number of unit length cells that must be transmitted

contiguously out of the switch. For a packet p, we denote by l(p) the length of p

measured in cells and by V (p) the value of p. We denote by lmax the maximum packet

length. We study the case of variable length packets, where the value of a packet equals

its length and the case of variable value packets, where all packets have a unit length.

Packets must be transmitted out of each queue in the First In First Out (FIFO) order.

The switch has three levels of buffering: each input i maintains for each output j a

separate queue V OQi,j of capacity BIi,j ; each crosspoint corresponding to input i and

output j maintains a queue CQi,j of capacity BCi,j ; each output j maintains a queue

OQj of capacity BOj . The capacity of a queue is measured in cells. In this paper we

consider a case when any virtual output, crosspoint or output queue has capacity at

least two longest packets. We denote the length of queue q by |q|. We also define the

position of a cell d in a queue q as the number of cells preceding d in q with respect to

the FIFO order. Sometimes we use ”*” to refer to all queue indices in range [1, N ].

We divide time into discrete steps, where a step is the arrival time between two cells

at an input port. We further divide each time step into three phases. The first phase is

the transmission phase during which the first cell from each non-empty output queue is

sent on the output link. The second phase is the arrival phase. During arrival phase at

most one cell arrives at each input port. The third phase is the scheduling phase which

consists of so called input and output subphases. During the input scheduling subphase

each input port may transfer one cell from virtual output queue to the corresponding

crosspoint queue. During the output scheduling subphase each output port can fetch

one cell from a crosspoint queue. Notice that a packet arriving at the input port i and

destined to the output port j passes through three buffers before it leaves the switch,

namely, V OQi,j , CQi,j and OQi,j . In the packet-mode scheduling, a packet p must be
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contiguously transmitted out of each queue in the switch as a whole block. W.l.o.g., we

assume that an optimal offline algorithm OPT never preempts packets.

In a switch with a speedup of S, up to S cells can be removed from any input

and up to S cells can be added to each output port during the scheduling phase. This

is done in (up to) S scheduling cycles, where each cycle comprises input and output

scheduling subphases.

Suppose that the switch is managed by a policy A. We estimate the effectiveness

of a switch policy by means of competitive analysis. The aim of a switch policy is to

maximize the total value of the packets sent out of the switch. The system accrues the

value of a packet if the packet is successfully transmitted and gains no value otherwise.

Let σ be a sequence of packets arriving at the input ports of the switch. We denote by

V A(σ) the total value of packets transmitted by A under the input sequence σ. The

competitive ratio is defined as follows.

Definition 1 An online switch policy A is said to be c-competitive if for every input

sequence of packets σ,

V OPT (σ) = cV A(σ) + a

where c and a are constants independent of σ.

3 Switch Policies

In this section we describe the switch policies that we consider in this paper.

In Figure 2 we define a simple Gready Unit switch policy for the case of variable

length packets. Intuitively, GU accepts at the input-port each packet as long as there

is room for it in the buffer. As for the scheduling phase, GU forwards contiguously an

arbitrary-chosen head-of-line packet, if there is a space to store it entirely in the buffer

on the receiving side. Moreover, GU assumes that a size of queue at any buffering level

is at least twice maximal packet size, 2lmax. Such property is crucial to demonstrate a

constant competitive ratio. Note that GU never drops accepted packets implementing

back pressure at all buffering levels inside the switch (i.e. packets are not transferred to

crosspoint and output queues whose buffers are full). Moreover, GU does not assume

that a full packet is received in V OQ prior to its scheduling.

Since GU does not define explicitly how to fetch the next packet during input and

output scheduling sub-phases we define RR-GU switch policy that runs Round-Robin

on input and output ports after processing of a full packet according to GU ’s con-

straints. In addition, we define cell-based CRR policy that runs round robin on inputs

and outputs. During arrival phase CRR mimics GU ’s behaviour and later during input

scheduling sub-phase a packet is fragmented to cells. During output scheduling sub-

phase CRR is not packet aware already. We use it as a reference system for comparison

with RR-GU in Section 5 for simulations.

In Figure 3 we define the Preemptive Greedy Variable Switch Policy for the case of

variable value packets. The input ports always greedily accept more valuable packets

in time of overflow since all these packets share the same buffer and we can only gain

more value by preempting packets of lower value. However, inside the switch we have

a preemption factor of beta since packets reside in different buffers and preemption

takes place when a packet is transferred to a buffer at the next stage. That allows us to

avoid pathological scenarios in which we have a sequence of packets preempting each

other, where the next packet in the sequence has the value that is only by epsilon larger
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Greedy Unit Switch Policy (GU)

Transmission Phase:
Transmit the head-of-line cell from each non-empty output queue.

Arrival Phase:
Accept the first cell of a packet p if the free space in the corresponding virtual output
queue V OQi,j is at least l(p), i.e., V OQi,j has enough capacity to hold p.
If the first cell of p is accepted, accept each subsequent arriving cell of p.
Otherwise, reject all cells comprising p.

Scheduling Phase:
Input Sub-Phase:

For each idle input i (no packet in transfer) choose an arbitrary head-of-line packet
p in V OQGU

i,j
(1 ≤ j ≤ N) such that the free space in CQGU

i,j
is at least l(p) and

transfer the first cell of p.
For each busy input i (there is a packet in transfer in V OQGU

i,j
), transfer the first

remaining cell of p.
Output Sub-Phase:

For each idle output j (no packet in transfer) choose an arbitrary head-of-line
packet p in CQGU

i,j
(1 ≤ i ≤ N) such that the free space in OQGU

j
is at least l(p)

and transfer the first cell of p.
For each busy output j (there is a packet in transfer in CQGU

i,j
), transfer the first

remaining cell of p.

Fig. 2 GU switch policy for Best Effort model.

than the previous one. An optimal policy could have transmitted all these packets by

delaying them in the buffers they resided at before preemption. Obviously, no policy can

achieve a constant competitive ratio without having a reasonable preemption factor.

Next, we define two natural switch polices HV F -HV F and LQF -RR that will be

used in Section 5 for simulations. Both of them mimic β-PGV during arrival phase.

The HV F -HV F switch policy transmits highest value first during input and output

scheduling sub-phases.

The LQF -RR switch policy treats longest queue first during input scheduling sub-

phase and runs round robin during output scheduling subphase.

4 Analysis of the Switch Policies

In this section we analyze the performance of our switch policies.

4.1 Variable Length Packets

In this section we consider the case of variable length packets. We assume that the

length of each queue is at least 2lmax, which is a reasonable requirement as far as the

overall switch memory is concerned. Remember that the value of a packet equals its

length, i.e., each cell has a unit value (uniform value density). We show that the GU

policy is 7-competitive for any speedup. To analyze the throughput of the GU policy

we introduce some helpful definitions. The next definition deals with packets that OPT

may deliver during a time step while GU does not.

Definition 2 For a given switch policy A, a cell sent by OPT from output port j at

time t is said to be extra if A does not transmit a cell from output port j at this time.
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β-Preemptive Greedy Variable Switch Policy (β-PGV)

transmission Phase:
For each non-empty output queue, transmit the head-of-line packet.

Arrival Phase:
Accept an arriving packet p if there is a free space in the corresponding virtual output
queue V OQPGV

i,j
.

Drop p if V OQPGV
i,j

is full and V (p) is less than the minimal value among the packets

currently in V OQPGV
i,j

.

Otherwise, drop from V OQPGV
i,j

a packet p′ with the minimal value and accept p. We

say that p preempts p′.
Scheduling Phase:

Input Subphase:
For each input port i, consider virtual output queues V OQPGV

i,∗
and for each

V OQPGV
i,j

choose the head-of-line packet p. If CQPGV
i,j

is not full, mark the packet

p as eligible.
Otherwise, consider a packet p′ with the smallest value in CQPGV

i,j
. If V (p) ≥

βV (p′) then mark p as eligible (p will preempt p′ if it is selected for transmission).
Among all the eligible packets in V OQPGV

i,∗
, select an arbitrary packet with the

largest value and transfer it to the corresponding crosspoint queue preempting a
packet with the smallest value from that queue if necessary.

Output Subphase:
For each output port j, consider crosspoint queues CQPGV

∗,j
. Let p be the packet

with the largest value among all head-of-line packets in CQPGV
∗,j

. if OQPGV
j

is

not full, then transfer p to OQPGV
j

.

Otherwise, consider a packet p′ with the smallest value in OQPGV
j

. If V (p) ≥

βV (p′), then preempt p′ and transfer p to OQPGV
j

.

Fig. 3 β-PGV switch policy for Differentiated Services model.

Next, we define a wider class of so called potentially extra cells that will encompass

extra cells, similarly to [17].

Definition 3 For a given policy A, a cell d located at buffer B of OPT is called

potentially extra if the position of d in B is greater than the length of the corresponding

queue of A (see Figure 4).

Clearly, each extra cell should eventually become potentially extra prior to trans-

mission. We will map each potentially extra cell to a cell sent by GU , in a such way

that each GU cell is mapped to at most three potentially extra cells. We need some

auxiliary claims. First, we will show that no potentially extra cell is formed during the

transmission phase.

Claim 1 No new potentially extra cell is formed during a transmission phase.

Proof Consider an OPT output queue OQOPT
j . If OQOPT

j is empty at the beginning

of the transmission phase, then we are done. Otherwise, OPT transmits a cell out

of OQOPT
j and thus the difference between |OQOPT

j | and |OQGU
j | cannot increase.

Hence, there is no new potentially extra cell in OQOPT
j whose position is greater than

the length of |OQGU
j |. The claim follows.

We will show that if a OPT accepts the first cell of a packet that is rejected by

GU , then the corresponding queue of GU is more than half full.
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Fig. 4 Example of a potentially extra cell.

Claim 2 Consider an arrival phase. For any virtual output queue, V OQOPT
i,j , if OPT

accepts the first cell of a packet that is rejected by GU , then V OQGU
i,j is more than half

full.

Proof Consider a virtual output queue V OQOPT
i,j . If OPT accepts the first cell of a

packet p rejected by GU then BIi,j−|V OQGU
i,j | < l(p) ≤ lmax. Since by our assumption

BIi,j ≥ 2lmax, it follows that |V OQGU
i,j | > BIi,j/2.

In the following claim we bound from above the number of new potentially extra

cells that are formed during an input scheduling subphase.

Claim 3 For any input port i, the number of new potentially extra cells in virtual

output queues V OQOPT
i,∗ and crosspoint queues CQOPT

i,∗ that are formed at the end of

input scheduling subphase is at most two.

Proof Consider an input scheduling subphase for an input port i. New potentially extra

cells may be formed only in V OQOPT
i,j if GU transfers a packet from V OQGU

i,j and in

CQOPT
i,k if OPT transfers a cell to this queue, j 6= k. That establishes the claim.

The next claim limits the number of new potentially extra cells that may occur

during an output scheduling subphase.

Claim 4 For any output port j, the number of new potentially extra cells in the cross-

point queues CQOPT
∗,j and output queue OQOPT

j that are formed at the end of output

scheduling subphase is at most one.

Proof Consider an output scheduling subphase t for an output port j. One new poten-

tially extra cell may be formed in CQOPT
i,j if GU transfers a cell from this queue. At

the same time, if a new potential extra cell is formed in OQOPT
j , then GU does not

transfer a cell during output scheduling subphase t, which establishes the claim.

The following routine in Figure 5 maps all potentially extra cells to the cells sent

by GU (we will show in the sequel that the routine is feasible). The routine runs at

each (sub)phase, and adds some mappings according to the actions of GU and OPT .

First we make the following observation concerning potentially extra cells.

Observation 1 All potentially extra cells are mapped by the mapping routine.

The observation is due to the fact that the routine runs during all but the transmis-

sion phase. Notice that by Claim 1 no new potentially extra cell is formed during a

transmission phase.
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Mapping Routine: During each phase or subphase do:

Step 1 Arrival Phase: For each V OQOPT
i,j

, map each new potentially extra cell to a cell

in V OQGU
i,j

unmapped by this step of the mapping routine (local mapping).

Step 2 Scheduling Phase: (The next sub-steps are repeated S times for each scheduling
cycle.)

Step 2.1 Input Scheduling Subphase: For each input port i:
Map a new potentially extra cell (if any) in a queue V OQOPT

i,j
to the cell trans-

ferred by GU from this queue. If OPT transfers a cell d to CQOPT
i,j

, which becomes

a new potentially extra cell, then proceed as follows: If CQGU
i,j

is less than half

full, then map d to the cell transferred by GU from input port i. Otherwise, if
CQGU

i,j
is more than half full, map d to a GU cell unmapped by this step of the

mapping routine in CQGU
i,j

(local mapping).

Step 2.2 Output Scheduling Subphase: For each output port j:
Map a new potentially extra cell (if any) in a queue CQOPT

i,j
to the cell transferred

by GU from this queue. If OPT transfers a cell d to OQOPT
j

, which becomes a

new potentially extra cell, map d to a GU cell unmapped by this step of the
mapping routine in OQGU

j
(local mapping).

Step 2.3: Unmap all OPT cells that ceased to be potentially extra in all OPT queues.

Fig. 5 Mapping routine for GU policy

We say that a mapping is local if an OPT cell is mapped to a GU cell in the same

queue and a GU cell is available for local mapping if currently it is not locally mapped

at the queue it sojourns in (see Figure 6). Now we will derive a bound on the number

of local mappings that each GU cell may receive while sojourning in a queue at one of

the three levels of buffering and establish the feasibility of the local mapping.

Lemma 1 Each GU cell sojourning in a queue at any buffering level can be mapped at

most once to an OPT cell in the same queue and there always exist GU cells available

for local mapping when the mapping routine is executed.

Proof Consider a queue Q at any of the three buffering levels and let B be the capacity

of Q. We argue that as long as an OPT cell d is locally mapped to a GU cell in Q, d

cannot leave Q earlier than its GU mate. It follows from the fact that we remove the

mapping of all OPT cells that cease to be potentially extra at Step 2.3 while an OPT

cell transferred from a non-empty GU queue is clearly not a potential extra one.

Consider a step of the mapping routine when a local mapping in Q is done and let

x be the number of potentially extra OPT cells in Q that are currently locally mapped.

By Claim 2 and the construction of the mapping, Q is more than half full in GU . We

have that x + 1 ≤ B/2 and the number of locally mapped GU cells in Q is at most

x since locally mapped GU cells leave earlier than their OPT mates. Therefore, there

always exists a GU cell available for mapping and a GU cell sojourning in a queue can

be mapped at most once. The lemma follows.

The next theorem shows that the mapping routine is feasible and at most three

potentially extra cells are mapped to a packet transmitted out of the switch by GU .

Theorem 1 The mapping routine is feasible and no GU cell is mapped more than 6

times by the mapping routine prior to transmission out of the switch for any value of

the speedup S.
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Fig. 6 Example of local mapping. GU drops the arriving packet due to lack of space, while
the packet is accepted by OPT . Thus, the last cell of the packet (in OPT ) is potentially extra
and is the mapped to the first cell of the packet at the head of GU ’s buffer.

Proof According to Lemma 1, the total number of local mappings received by each

GU cell is at most 3 and the local mapping is feasible. Note that the arrival phase is

completely covered by the local mapping.

By Claim 3, the number of new potentially extra cells in virtual output queues and

crosspoint queues corresponding to an input port i that are formed at the end of input

scheduling subphase is at most two. If OPT transfers a cell to a crossbar queue that is

more than half full in GU and this cell becomes a new potentially extra cell, then this

cell is locally mapped. We argue that no new potentially extra cell that is not locally

mapped may be formed in CQOPT
i,∗ if GU does not transfer a cell from input port i.

In this case, the potentially extra cell appearing in a crosspoint queue CQOPT
i,j must

have already been potential extra at the beginning of the input scheduling subphase

under consideration. Note that by our assumption, a queue that is at most half full

always has enough free space to accept a packet of maximum length and thus V OQGU
i,j

is empty. Otherwise, GU should have transferred a cell to CQGU
i,j . Thus, Step 2.1 of the

mapping routine is feasible and no GU cell is mapped by a non-local mapping more

than twice.

Claim 4 implies that the number of new potentially extra cells in crosspoint queues

and the output queue corresponding to an output port j that are formed at the end of

an output scheduling subphase is at most one. We will show that a new potentially extra

cell that may be formed in OQOPT
j must be locally mapped if GU does not transfer a

cell to OQGU
j . In this case, the potentially extra cell appearing in OQOPT

j transfered

by OPT from CQOPT
i,j must have already been potential extra at the beginning of the

output scheduling subphase under consideration. Again, a queue that is less than half

full always has enough free space to accept a packet of maximum length and hence

CQGU
i,j is empty. Therefore, Step 2.2 of the mapping routine is feasible and no GU cell

is mapped more than once.

The GU policy does not drop packets that have been admitted to the switch. Thus,

the mapping is persistent and all mapped GU packets are eventually sent out of the

switch. Moreover, no GU cell is mapped more than 6 times in total.

Now we are ready to show that GU achieves a competitive ratio of 7.

Theorem 2 The competitive ratio of GU is at most 7 for any speedup value.

Proof Fix an input sequence σ. Clearly, the number of cells sent by OPT is bounded

by the number of cells sent by GU plus the number of extra cells. Observe that every

extra cell at first becomes a potential extra cell prior to transmission. By Lemma 1,

the number of extra cells is bounded by six times the number of cells transmitted by

GU . Therefore, V OPT (σ) ≤ 7V GU (σ).
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4.2 Variable Value Packets

In this section we study the case of variable value packets where all packets have a unit

length. The goal is to maximize the total value of packets that cross the switch. We will

demonstrate that β-PGV achieves a competitive ratio of 6+4β+β2+3/(β−1) for any

value of speedup. To prove the competitive ratio of β-PGV we will assign value to the

packets sent by β-PGV so that no packet is assigned more than 6+4β+β2+3/(β−1)

times its value and then show that the value assigned is indeed at least V OPT (σ).

For the analysis, we assume that OPT maintains FIFO order and never preempts

packets.

The assignment routine presented on Figure 7 specifies how to assign value to the

packets sent by β-PGV . Observe that the routine assigns some value only to packets

that are scheduled out of the virtual output queues and crosspoint queues. Furthermore,

if a packet is preempted, then the total value assigned to it is re-assigned to the packet

that preempts it. Intuitively, when the matching routine considers a packet p scheduled

by OPT it either matches p to itself if it is transmitted by β-PGV or finds another

packet q at least as valuable as p sent by β-PGV if p has been dropped. Observe

that when p is dropped by β-PGV , its buffer is full of packets that have the same or

larger value. Furthermore, these packets can be later preempted by yet more valuable

packets. Careful case analysis allows us to show that we can always find at least one

packet available for mapping.

The following claim bounds the total value that can be assigned to a β-PGV packet

before it leaves a virtual output queue.

Claim 5 A β-PGV packet is assigned at most once its own value before it leaves a

virtual output queue.

Proof Initially, a β-PGV packet q′ in a virtual output queue can be assigned its own

value by Sub-Step 3.3. If q′ is later preempted by a packet q, then q is re-assigned

the value that was assigned to q′ by Step 4. Obviously, q is assigned at most its own

value as V (q) > V (q′). Note that if q will be later assigned its own value by Sub-Step

3.3, then the value assigned to q by Step 4 is going to be re-assigned by Step 2 since

condition (ii) must be true. The claim follows.

The next claim shows that when Step 2 re-assigns the value assigned to a β-PGV

packet located at an virtual output queue, the value of the head-of-line packet in this

queue is at least equal to the value that needs to be re-assigned.

Claim 6 If condition (ii) of Step 2 is true and we re-assign the value assigned to the

packet p′ in V OQPGV
i,j by Step 4, then we have that V (p) is at least the value to be

re-assigned, where p is the head-of-line packet in V OQPGV
i,j .

Proof Consider the time step at which p′ arrived and was accepted by both β-PGV and

OPT . If condition (ii) of Step 2 is true, p′ must have preempted another packet q′ in

V OQPG
i,j and was re-assigned the value that had been previously assigned to q′ by Step

4. Since β-PGV always preempts the least valuable packet from a virtual output queue,

all packets in V OQPGV
i,j preceding p′ must have a value of at least V (q′). Moreover,

according to Claim 5, q′ had been assigned at most its own value. That establishes the

claim.
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Step 1: Assign to each packet scheduled by β-PGV during the input scheduling subphases
of ts once its own value. Assign to each packet scheduled by β-PGV during the output
scheduling subphases of ts twice its own value.

For each input port i, let p′ be the packet scheduled by OPT from V OQOPT
i,j

(if any) during

the input scheduling subphase of ts.
Let p be the head-of-line packet in V OQPGV

i,j
(if any) or a dummy packet with zero value

otherwise.

Step 2: If p is not eligible for transmission and either
i V (p′) ≤ V (p) or
ii V (p′) > V (p), p′ is present in V OQPGV

i,j
, and p′ has been assigned some value by Step

4,
then proceed as follows. Consider the output scheduling subphase that takes place during
a scheduling cycle t′s when OPT schedules p′ from CQOPT

i,j
and let p′′ be the head-of-line

packet in CQPGV
i,j

(if any) or a dummy packet with zero value otherwise.

Sub-Step 2.1: If V (p′′) ≥ V (p)/β and p′′ is not eligible for transmission at the begin-
ning of the output scheduling subphase of t′s, let p̂ be the packet that will be sent out
of OQPGV

j
at the same time at which OPT will send p′ from OQOPT

j
(we will later

show that p̂ exists and its value is at least V (p)/β2)). If (i), assign the value of p′ to
p̂; if (ii), re-assign the value assigned to p by Step 4 to p̂.
Sub-Step 2.2: If V (p′′) < V (p)/β, consider the set of packets with value at least
V (p)/β that are scheduled by β-PGV from CQPGV

i,j
prior to t′s. Find a packet q̂ in

this set that has not previously been assigned any value by Sub-Step 2.2 (we will later
show that such a packet exists). If (i), assign the value of V (p′) to q̂; if (ii), re-assign
the value assigned to p by Step 4 to q̂.
Sub-Step 2.3: Otherwise, if (ii), V (p′′) ≥ V (p)/β and p′′ is eligible for transmission,
remove the value assigned by Step 4 to p′ (this value is re-assigned by Step 1 to p′′).

Step 3: If V (p′) > V (p) then proceed as follows:
Sub-Step 3.1: If p′ was already scheduled by β-PGV , assign the value of V (p′) to p′.
Sub-Step 3.2: Else if p′ is not present in V OQPGV

i,j
, consider the set of packets with

value at least V (p′) that are scheduled by β-PGV from V OQPGV
i,j

prior to the schedul-

ing cycle ts. Assign the value of V (p′) to a packet in this set that is not in V OQOPT
i,j

at the beginning of this subphase, and has not previously been assigned any value by
either Sub-Step 3.1 or Sub-Step 3.2 (we will later show that such a packet exists).
Sub-Step 3.3: Else if p′ is present in V OQPGV

i,j
, assign the value of V (p′) to p′.

Step 4: If a packet q preempts a packet q′ at a virtual output, crosspoint or output queue
of β-PGV , re-assign to q the value that was or will be assigned to q′.

Fig. 7 Assignment routine for β-PGV policy - executed each scheduling cycle ts.

Now we demonstrate that the routine is feasible and establish an upper bound on

the value assigned to a single β-PGV packet.

Lemma 2 The assignment routine is feasible and the value of each packet scheduled

by OPT is assigned to a β-PGV packet so that no β-PGV packet is assigned more

than 6 + 4β + β2 + 3/(β − 1) times its value. The result holds for any value of the

speedup.

Proof First we show that the assignment routine as defined is feasible. Step 1, Sub-Step

3.1, Sub-Step 3.3, Step 4 is clearly feasible. Consider Sub-Steps 2.1, 2.2 and 3.2.

Sub-Step 2.1(see Figure 8). Let p′′ be the first packet with the largest value in

CQPGV
i,j at the beginning of t′s and suppose that p′′ is not eligible for transmission.

If V (p′′) ≥ V (p)/β then, by the definition of β-PGV , the minimal value among the

packets in OQj is at least V (p′′)/β ≤ V (p)/β2 and OQj is full. Thus, during the

following BOj time steps β-PGV will send packets with value of at least V (p/β2) out
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Fig. 8 Mapping on Sub-Step 2.1.

of OQj . Packet p
′ scheduled by OPT from V OQOPT

i,j will be sent from OQOPT
j in one

of these time steps (recall that by our assumption OPT maintains FIFO order). Since

V (p′) ≤ V (p), we have that packet p̂ of β-PGV as specified in Step 2.1 indeed exists,

and its value is at least V (p)/β2.

Sub-Step 2.2. If V (p′′) < V (p)/β, then evidently β-PGV scheduled at least BCi,j

packets with value at least V (p)/β out of CQPGV
i,j during [ts, t

′

s). By the construction,

at most BCi,j − 1 of these packets have been assigned some value by Sub-Step 2.2.

That is due to the fact that p′ is still present in CQOPT
i,j at the beginning of t′s and by

our assumption OPT maintains FIFO order. Henceforth, one of these packets must be

available for assignment, i.e., it has not been assigned any value by Sub-Step 2.2 prior

to ts.

Sub-Step 3.2. First note that if this case applies, then packet p′ (scheduled by

OPT from V OQOPT
i,j during the input scheduling subphase of ts) is dropped by β-

PGV from V OQPGV
i,j during the arrival phase tq < ts. Let tr ≥ tq be the last arrival

phase before ts at which a packet of value at least V (p′) is dropped from V OQPGV
i,j .

Since the greedy buffer management policy is applied to V OQPGV
i,j , V OQPGV

i,j contains

BIi,j packets with value of at least V (p′) at the end of this arrival phase. Let P be the

set of these packets. Note that p′ /∈ P because it has been already dropped by β-PGV

by this time. We have that in [tr, ts), β-PGV has actually scheduled all packets from

P , since in [tr, ts) no packet of value at least V (p′) has been dropped, and at time ts
all packets in V OQPGV

i,j have value less than V (p′). We show that at least one packet

from P is available for assignment, i.e., it has not been assigned any value by Step 3

prior to ts and is not currently present in V OQOPT
i,j . Let x be the number of packets

from P that are currently present in V OQOPT
i,j . By the construction, these x packets

are unavailable for assignment.

From the rest of the packets in P , a packet is considered available for assignment

unless it has been already assigned a value by Step 3. Observe that a packet from P can

be assigned a value by Step 3 only during [tr, ts) (when it is scheduled). We now argue

that OPT has scheduled at most BIi,j − 1 − x packets out of V OQi,j in [tr, ts), and

thus P contains at least one available packet. To see this observe that the x packets

from P that are present in V OQOPT
i,j at the beginning of the scheduling cycle ts, were

already present in V OQOPT
i,j at the end of the arrival phase tr. The same applies to

packet p′ (recall that p′ /∈ P ). Since OPT maintains FIFO order, all the packets that

OPT scheduled out of V OQOPT
i,j in [tr, ts) were also present in V OQOPT

i,j at the end
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of the arrival phase tr. Therefore, the number of such packets is at most BIi,j − 1− x

(recall that the capacity of V OQi,j is BIi,j). We obtain that at least one packet from P

is available for assignment at Sub-Step 3.2 since |P | = BIi,j , x packets are unavailable

for assignment because they are present in V OQOPT
i,j and at most BIi,j−1−x packets

are unavailable because they have been already assigned some value by Step 3.

The value of each packet scheduled by OPT is assigned to a β-PGV packet. Note

that the assignment routine handles all packets scheduled by OPT out of the virtual

output queues. The only two cases left uncovered by Step 2 and Step 3 of the assignment

routine are (1) V (p′) ≤ V (p) and p is eligible for transmission and (2) V (p′) ≤ V (p),

p is not eligible for transmission, V (p′′) ≥ V (p)/β and p′′ is eligible for transmission.

We show that these cases are covered by Step 1: in case (1), the value of p′ is assigned

during the input scheduling subphase when p is scheduled since V (p) ≥ V (p′); in

case (2), the value of p′ is assigned during the output scheduling subphase when p′′

is scheduled since V (p′′) ≥ V (p)/β. In addition, the value assigned by Step 4 and

removed by Sub-Step 2.3 is re-assigned by Step 1 as Claim 6 implies. Observe that

this assignment and cases (1) and (2) are mutually exclusive. If a β-PGV packet is

preempted, the value assigned to it is re-assigned to the preempting packet by Step 4.

Finally, we demonstrate that no packet is assigned more than 6+4β+β2+3/(β−1)

times its own value. Consider a packet p sent by β-PGV . From Claim 5 it follows that p

can be assigned at most once its own value by Sub-Step 3.3 and Step 4, before it leaves

the virtual output queue. Evidently, p can be assigned at most 1 + β times its own

value by Step 1 and at most β + β2 times its own value by Step 2. Note that cases (i)

and (ii) of Step 2 are mutually exclusive. By the specification of Sub-Step 3.2, it does

not assign any value to p if it is assigned a value by either Sub-Step 3.1 or Sub-Step

3.2. We also show that Sub-Step 3.1 does not assign any value to p if it is assigned a

value by Sub-Step 3.2. That is due to the fact that by the specification of Sub-Step

3.2, if p is assigned a value by Sub-Step 3.2 at time ts, then p is not present in the

input buffer of OPT at this time. Therefore, Sub-Step 3.1 cannot be later applied to

it. We obtain that p can be assigned at most once its own value by Sub-Step 3.1 and

Sub-Step 3.2. Therefore, a packet that does not perform preemptions can be assigned

at most 3 + 2β + β2 times its value.

Next we analyze Step 4 for crosspoint and output queues (we have already analyzed

the value that can be assigned by Step 4 to a packet before it leaves the virtual output

queue). Note that this assignment is done only to packets that are actually transmitted

out of the switch (i.e. they are not dropped). We say that p transitively preempts a

packet q if either p directly preempts q or p preempts another packet that transitively

preempts q. Firstly, p can preempt another packet q′ in a crosspoint queue such that

V (q′) ≤ V (p)/β. Observe that any preempted packet in a crosspoint queue is assigned

at most once its own value by Sub-Step 3.3 and Step 4, once its own value by Step 1,

once its own value by Step 3 and no value by Step 2. Hence, the total value that can

be assigned to p by Step 4 due to transitively preempted packets when p preempts q′

is bounded by three times its own value. Secondly, p can preempt another packet q′′

in an output queue such that V (q′′) ≤ V (p)/β. Observe that any preempted packet in

an output queue is assigned at most once its own value by Sub-Step 3.3 and Step 4

in the virtual output queue, 1 + β times its value by Step 1, β its own value by Step

2, once its own value by Sub-Step 3.1 and Sub-Step 3.2, and 3/(β − 1) times its own

value by Step 4 in the crosspoint queue.
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Fig. 9 Throughput of switch policies as a function of input loads for uniform distribution of
output ports.

Hence, the total value that can be assigned to p by Step 4 in the crosspoint and

output queues due to transitively preempted packets when p preempts q′′ is bounded

by 3 + 2β + 3/(β − 1) times its own value.

We obtain that in total no β-PGV packet is assigned more than 6 + 4β + β2 +

3/(β − 1) times its own value.

At this point we are ready to prove the main theorem.

Theorem 3 The competitive ratio of the β-PGV policy is at most 6+4β+β2+3/(β−1)

for any speedup.

The theorem follows from Lemma 2.

Corollary 1 The competitive ratio of the β-PGV policy is at most 19.95 for preemp-

tion factor β = 1.67 and any value of speedup.

5 Simulations

In this section we evaluate the throughput of β-PGV by means of simulation. We

compare the performance of β-PGV with two natural switch policies, namely HV F -

HV F and LQF -RR that are defined in Section 3. Note that LQF -RR disregards the

values of packets. We consider a 32× 32 switch with BI = 4, BC = 2, BO = 8.

We first examine the dependency of throughput on the input load during arrivals

with a fixed speedup of 1. For each input port we generate a packet with a probability

L, which determines the switch load. Then we choose an output port for the generated

packet according to one of the distributions that we specify below. We also select weight

for the generated packet uniformly at random from a range of [1, 30]. Each experiment

runs for 1000 iterations.

Figure 9 demonstrates dependency of throughput on the input load, where an

output port is chosen according to the uniform distribution. As can be seen a value of

preemption factor β is not significant for this type of traffic distribution. Moreover, all

considered policies perform close to the optimal way.

Figure 10 demonstrates dependency of throughput on the input load, where an

output port is chosen according to Pareto distribution of order 1 and shape 1.6. The
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Fig. 10 Throughput of switch policies as a function of input loads for Pareto distribution

Fig. 11 Throughput of switch policies as a function of input loads for Gaussian distribution
for each one of the potentially overloaded/underloaded groups of output ports.

simulation results demonstrate that β-PGV outperforms any other considered poli-

cies. Moreover, the value of preemption factor is more crucial than for the uniform

distribution and 1.67-PGV outperforms β-PGV for β = 2 and β = 3.

Next, we fix a group of the first 8 output ports as potentially ”overloaded”. During

arrival a packet p will be destined to the overloaded group with a fixed probability

of 0.5. The output port in each group overloaded(underloaded) is chosen according to

Gaussian distribution with mean of 4(20) and standard deviation of 4(12), respectively.

Figure 11 depicts the simulation results for this type of traffic distribution. At least two

observations follow from these simulations. Firstly, 1.67-PGV switch policy achieves

better throughput than 2-PGV and 3-PGV . Secondly, β-PGV outperforms HV F -

HV F and LQF -RR switch policies.

In addition, we evaluate throughput of switch policies as a function of speedup for

a fixed moderate load of L = 0.8 and similar to the previous case traffic distribution.

The results demonstrate that the increase of speedup has no significant impact on the

throughput of the compared switch polices. The results are presented on Figure 12.

The performed simulations demonstrate that β-PGV performs much better than

its theoretical worst-case bounds shown in Theorem 3 as well as outperforms the other

evaluated policies.

In addition we simulate the throughput of one of the flavors of GU switch policy for

packet mode scheduling RR-GU that is defined in Section 3. Recall that GU forwards
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Fig. 12 Throughput of switch policies as a function of speedup for input load L = 0.8 and
Gaussian distribution for each one of the potentially overloaded/underloaded groups of output
ports.

Fig. 13 Throughput of RR-GU switch policy for packet mode scheduling as a function of
input loads for uniform distribution of output ports.

contiguously head-of-line packet, if there is a space to store it entirely in the buffer on

the receiving side. We evaluate such property of GU by comparing with cell-based CRR

policy (CRR is defined in Section 3) that is used as reference system. We do not perform

reassembly for cells transmitted out of switch that is managed by CRR. Clearly, that

CRR is superior to RR-GU . We consider a 32×32 switch with BI = 4∗10, BC = 2∗10,

BO = 8 ∗ 10 cells and a maximal packet size of 10 cells. Figure 13 demonstrates the

result of such simulations for uniformly distributed traffic that is defined similarly to

the weighted case, but now a weight corresponds to a length of packet.

The performed simulations demonstrate that RR-GU performs much better than

its theoretical worst-case bounds shown in Theorem 2. In addition the property of GU

that forwards contiguously head-of-line packet, if there is a space to store it entirely in

the receiving buffer, does not affect significantly its performance even in comparison

with superior a priory cell-based CRR policy.

6 Conclusions

As the switch speeds constantly grow, the development of distributed scheduling algo-

rithms that are amenable to efficient hardware implementation becomes crucial for the
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performance of the next generation high-speed switches. In this paper we consider com-

petitive switch policies for buffered crossbars switches with FIFO buffers. The major

advantage of the buffered crossbar switch architecture is that the need for centralized

arbitration is eliminated and scheduling decisions can be made independently by the

input and output ports. We propose preemptive greedy switch policy β-PGV with

preemption factor β for the general case of unit size and variable value packets and

arbitrary value of the switch fabric speedup. Our main result is an expression of compet-

itive ratio of β-PGV as function on preemption factor β. In particular, the competitive

ratio of the β-PGV policy is at most 19.95 for the preemption factor of β = 1.67. In

addition, we demonstrate that performance of β-PGV outperforms some other natural

switch policies and performs much better than its worst-case performance guarantee.

We also propose a greedy switch policy operating in the packet-mode for the case of

variable length packets with uniform value density that achieves a competitive ratio

of 7. We believe that this work advances the design of practical switch policies with

provable worst-case performance guarantees for state-of-the-art switch architectures. It

is interesting open question to compare throughput performance guarantees of packet-

and cell-based schedulers for buffered crossbars.
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