
Fast Algorithms for Approximating DistanesSergei Bespamyatnikh� and Mihael SegalyDepartment of Computer SieneUniversity of British ColumbiaVanouver, B.C. Canada V6T 1Z4AbstratIn this paper we present eÆient approximate algorithms for the various distane problems.Our tehnique is based on the well-separated pair deomposition proposed in [6℄.1 IntrodutionLet S be a set of n points in the plane and let 1 � k � n(n�1)2 . Let d1 � d2 � : : : � d(n2) bethe Lp-distanes determined by the pairs of points in S. In this paper we onsider the followingoptimization problems:� Distane seletion. Compute the k-th smallest distane between a pair of points of S.� Reporting distanes. Report or enumerate the k smallest (largest) distanes determinedby pairs of points of S in inreasing (dereasing) order.� Distane ranking. Determine how many pair points are loser than unit distane apart.� Distane by query. Preproess a set S into a data struture, so that, given a number k asabove, one an answer eÆiently what is the k-th smallest distane between a pair of pointsof S.� Reporting bihromati distanes. Given sets R and B of n red and m blue points,respetively, in the plane and given k, 1 � k � nm report or enumerate k smallest (largest)distanes determined by (red-blue) pairs of points.The problems above reeived a lot of attention during the past deade. The solution to the dis-tane seletion problem an be obtained using a parametri searhing. The deision problem isto ompute, for a given real r, the sum �p2SjDr(p) \ (S � fpg)j, where Dr(p) is the losed diskof radius r entered at p. By solving the deision problem we solve our distane ranking problem[1, 11℄. Agarwal et al. [1℄ gave an O(n 43 log 43 n) expeted-time randomized algorithm for the deisionproblem, whih yields an O(n 43 log 83 n) expeted-time algorithm for the distane seletion problem.Goodrih [12℄ derandomized this algorithm, at a ost of an additional polylogarithmi fator in�Work by Sergei Bespamyatnikh has been supported by a NSERC grant. E-mail: besp�s.ub.ayWork by Mihael Segal has been supported by the Pai� Institute for Mathematial Studies and by a NSERCgrant. Email: msegal�s.ub.a 1



the runtime. Katz and Sharir [13℄ obtained an expander-based O(n4=3 log3+" n)-time deterministialgorithm for this problem. By applying a randomized approah Chan [7℄ was able to obtain anO(n log n + n2=3k1=3 log5=3 n) expeted time algorithm for this problem. For our best knowledge,nothing has been done for the query version of the distane seletion problem. One may �nd ituseful in parametri searhing appliations, where a set of andidate solutions is de�ned by thedistanes between pairs of points of S, see e.g. [2℄.The distane seletion problem is also losely related to the reporting distanes problem. Thepapers of Dikerson and Shugart [10℄, Katoh and Iwano [14℄ and Segal and Kedem [20℄ presentseveral algorithms for the enumerating largest k distanes. The algorithm in [10℄ works for anymetri, and requires O(n+ k) spae with expeted runtime of O(n logn+ k log k log nlog log n ). The paper ofKatoh and Iwano [14℄ presents an algorithm for the L2 metri with running time O(min(n2; n logn+k4=3 log n=(log k)1=3)) and spae O(n + k4=3=(log k)1=3 + k log n). Their algorithm is based on thek nearest neighbor Voronoi diagrams. The algorithm proposed in [20℄ is based on posets, worksfor retilinear distanes and has O(n+ k log n) running time and linear spae. Dikerson et al. [9℄present an algorithm for the enumeration of all the k smallest distanes in S in inreasing order.Their algorithm works in time O(n logn + k log k) and uses O(n + k) spae. Lenhof et al. [15℄,Salowe [19℄, Dikerson and Eppstein [8℄ solve the same problem too but they just report the klosest pairs of points without sorting the distanes, spending O(n log n + k) time and O(n + k)spae. An algorithm for solving the enumerating problem (for the smallest k distanes) is alsopresented in [8℄, spending O(n log n + k log k) time and using O(n + k) spae. Chan [7℄ presentsO(n log n + k) expeted time simple algorithm for reporting the k losest pairs of points that isbased on the Lenhof et al. [15℄ algorithm.Regarding the k losest/farthest bihromati pairs problems, Salowe [18℄ proposed an algo-rithm with O(n log2 n) running time that works only for retilinear distane metri. Katoh andIwano [14℄ gave a O(min(n2; n log n+ k4=3 log n=(log k)1=3)) runtime solution whih requires O(n+k4=3=(log k)1=3 + k logn) spae. Both papers assumed that m = n.In this paper we present fast approximation algorithms for the problems above. For a distaned determined by some pair of points in S and for any �xed 0 < Æ1 � 1, Æ2 � 1, the distane d0is the (Æ1; Æ2)-approximation of d, if Æ1d � d0 � Æ2d. We give an O(n log3 n) runtime solution forthe distane seletion problem that omputes a pair of points realizing distane d0 that is either(1; 1+") or (1�"; 1)-approximation of the atual k-th distane, for any �xed " > 0. We also presentan O(n logn) time algorithm for omputing the (1 � "; 1 + ")-approximation of k-th distane. Itompares well to the paper by Agarwal et al. [1℄ that onsiders a similar problem, where one wantto identify approximate \median" distane, that is, a pair of points p; q 2 S with the property thatthere exist absolute onstants 1 and 2 suh that 0 < 1 < 12 < 2 < 1 and the rank of the distanedetermined by p and q is between 1�n2� and 2�n2�. They [1℄ showed how to solve this problem inO(n log n) time.We also show how to extend our solution in order to answer eÆiently the queries approximatingk-th distane. We provide an O(n log3 n+ k) runtime and O(n logn) spae algorithm for reportingk distint pairs of points whose distanes d01 � d02 � : : : � d0k are (1 � "; 1)-approximation of klargest distanes, i.e. (1� ")d(n2)+i�k � d0i � d(n2)+i�k:We ahieve the same runtime performane for reporting smallest k distanes with (1; 1 + ")-approximation and propose algorithms for the reporting and enumerating bihromati distaneswith the same running time. 2



We present an algorithm for the approximation version of the distane ranking problem. LetK be the solution of the distane ranking problem. For a given " > 0, we �nd two numbers k1; k2,suh that 0 � k1 � K � k2 � �n2� and1� " � dk1 � 1 � dk2 � 1 + ":The running time of our algorithm is O(n log3 n) and it an be extended to deal with a separatorquery: instead of onsidering distanes less than one, we may onsider the distanes less than aquery separator s. A query time is O(log n). The distane ranking problem is losely related to thewell-known repeated unit distanes problem[17℄, in whih one wants to determine the number ofpairs of points at unit distane in the plane. The best known lower bound (supposed to be tight)is n1+= log log n for some appropriate onstant  > 0 and the best upper bound is O(n4=3). We alsoshow that the runtime and spae requirements of our approximation algorithms for the problemsabove an be improved when dealing with L1 metri.Our method an be extended to deal with more general problems, that we all range distaneseletion and bathed distane seletion. In the range distane seletion we are given two numbersk1, k2, 1 � k1 � k2 � �n2� and we want to report all the pairs of points whose distane rank isbetween k1 and k2. In the bathed distane seletion problem we are given an inreasing sequene ofnumbers 1 � k1 � k2; : : : ;� kl � �n2�, we want to report all the pairs of points realizing k1-th, k2-th,: : : kl-th distane. For our best knowledge nothing has been done regarding these two problems.We show the eÆient (1� "; 1 + ")-approximation algorithms for these problems.The main ontribution of this paper is by developing eÆient approximating algorithms for theseveral well known-optimization problems using an unifying approah that based on well separatedpairs deomposition introdued by Callahan and Kosaraju [6℄. This paper is organized as follows.In the next setion we briey desribe well-separated pair deomposition. Setion 3 is dediated tothe distane seletion problem, its query version and to the range and bathed distane seletionproblems. We onsider the rest of the distane problems in Setion 4.2 Well-separated pair deompositionIn this setion we shortly desribe the well-separated pair deomposition proposed by Callahan andKosaraju [6℄Let A and B be two sets of points in d-dimensional spae (d � 1) of size n and m, respetively.Let s be some onstant stritly greater than 0 and letR(A) (resp. R(B)) be the smallest axis-parallelbounding box that enloses all the points of A (resp. B). We say that point sets A and B are well-separated with respet to s, if R(A) and R(B) an be eah ontained in d-dimensional ball of someradius r, suh that the distane between these two ball is at least sr. One an easily show that for agiven two well-separated sets A and B, if p1 2 A, p2; p3 2 B then dist(p1; p2) � (1 + 2s )dist(p1; p3).(For L1 metri the previous inequality looks dist(p1; p2) � (1 + 2p2s )dist(p1; p3). For general Lpmetri the inequality may di�er by some multipliative onstant.)Let S be a set of d-dimensional points, and let s > 0. A well-separated pair deomposition(WSPD) for S with respet to S is a set of pairsf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g suh that:(i) Ai � A and Bi � B, for all i = 1; : : : ; p.(ii) Ai \Bi = ;, for all i = 1; : : : ; p. 3



(iii) Ai and Bi are well-separated with respet to s.(iv) eah unordered pair of points (p; q); p; q 2 S; p 6= q, there is exatly one pair (Ai; Bi) in a setf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g suh that either p 2 Ai and q 2 Bi or p 2 Bi and q 2 Ai.The main idea of the algorithm for onstrution WSPD is to build a binary split tree T whoseleaves are points of S, with internal nodes orresponding to subsets of S. Eah pair (Ai; Bi) inWSPD is represented by two nodes v; u 2 T , suh that all the leaves in the subtree rooted at by vorrespond to the points of Ai and all the leaves in the subtree rooted at by u orrespond to thepoints of Bi.The paper of Callahan and Kosaraju [6℄ presents an algorithm that impliitly onstruts WSPDfor a given set S and separation value s > 0 in O(n logn+ s2n) time suh that the number of pairs(Ai; Bi) is O(s2n). Moreover, Callahan [5℄ showed to ompute WSPD in whih at least one of thesets Ai; Bi of eah pair (Ai; Bi) ontains exatly one point of S. The running time remains thesame; however, the number of pairs inreases to O(n log n+ s2n).3 Approximating k-th distaneWe �rst desribe a general sheme for obtaining (1; 1+") or (1�"; 1)-approximation of k-th distaneand then show how to get an algorithm for the query version of the problem. At the end we obtaina simpler algorithm for the (1� "; 1+ ")-approximation and show how to extend it for the bathed(range) seletion problem.3.1 General approximation shemeOur algorithm onsists of several stages. At the �rst stage we ompute a WSPD for S withseparation onstant s = 2" . As it was mentioned in the Setion 2 eah pair (Ai; Bi) in WSPDis represented by two nodes in T and jAij = 1 or/and jBij = 1. Next, for eah pair (Ai; Bi),1 � i � p; p = O(n log n) we ompute the following values:� mi = mina2Ai;b2Bi dist(a; b).� Mi = maxa2Ai;b2Bi dist(a; b).� (ai; bi) 2 (Ai; Bi) that realizes Mi, i.e. dist(ai; bi) =Mi.� �i = jAijjBij.In other words, mi(Mi) is the minimal (maximal) distane between points that belong to Ai andBi. The value �i is the total number of distint pairs (a; b), a 2 Ai, b 2 Bi.We sort all mi, 1 � i � p in inreasing order. Without loss of generality, we assume thatm1 � m2 � : : : � mp. Out task now is to �nd the smallest index j, suh that �ji=1�i � k. Welaim that M 0 = maxji=1Mi is the (1; 1 + ")-approximation of k-th distane. In what follows weprove the orretness of our algorithm and show how to implement it eÆiently.Lemma 1 The value M 0 is the (1; 1 + ")-approximation of k-th distane.Proof. We need to show that dk � M 0 � (1 + ")dk. In order to show the left inequality weobserve that the total number of distanes de�ned by pairs (Ai; Bi), 1 � i � j is at least k beause�ji=1�i � k. Sine M 0 is the maximum of these distanes M 0 � dk follows.4



We reall that all possible pairs of points of S are uniquely represented by pairs (Ai; Bi) inWSPD. Consider the set of pairs D = f(a; b)ja 2 Ai; b 2 Bi; i � jg. By de�nition of j, mj is thesmallest distane de�ned by pairs of D. The total number of pairs in D is at least �n2�� k. Thus,the pair of points (p; q) that de�nes dk belongs to D. Therefore, dk � mj. Let t, 1 � t � j bethe index suh that M 0 = Mt. >From the observation in previous setion it follows that Mt �(1 + 2s )mt = (1 + ")mt. Thus,M 0 � (1 + ")mt � (1 + ")mj � (1 + ")dkIt remains to show how to implement this algorithm eÆiently, i.e. how to ompute the valuesmi;Mi; �i, 1 � i � p. First we show how to ompute �i. In other words we need to ompute theardinalities of Ai and Bi, 1 � i � p. Reall that eah pair (Ai; Bi) in WSPD is represented bytwo nodes vi, ui of the split tree T . The ardinality of Ai(Bi) equals to the number of leaves inthe subtree of T rooted at vi(ui). Thus, by postorder traversal of T we are able to ompute all therequired ardinalities.Next, we desribe how to ompute the values mi, 1 � i � p (the similar algorithm works forMi as well). Without loss of generality, we assume the singleton set of eah pair (Ai; Bi) in WSPDis Ai = faig. Our problem, thus, for eah ai, 1 � i � p to ompute the nearest neighbor inorresponding Bi. The naive approah would lead to an O(n2) algorithm sine the total omplexityof all Bi's is O(n2). In order to �nd the neighbor for eah ai we use Voronoi Diagrams for Bi withorresponding point loation data strutures. We annot ompute expliitly all Voronoi Diagramsbeause of total omplexity of all Bi. Fortunately, we an maintain dynamially Voronoi Diagramswhile traversing a split tree T in a bottom-up fashion. We proeed as follows. For eah node vof the split tree T that orresponds to we reate a assoiate list Lv ontaining all ai's suh that(faig; Bi) belongs to WSPD and Bi is represented by v. Note that some lists ontain at leastO(log n) elements sine the total number of pairs in WSPD is O(n logn) but the number of nodesin T is linear. We traverse a tree T in a postorder fashion starting from leaves. At any time we havea front that is a set of not proessed yet nodes suh that all the nodes below them are proessedalready. Reall that Sv is a subset of S assoiated with a node v in T . The maintenane of theVoronoi Diagram of Sv leads to quadrati runtime for biased trees. Instead we use a partition Rvof Sv into disjoint sets S1v ; : : : ; Sqv and maintain the Voronoi Diagram V D with orresponding pointloation data struture PL for eah set Sj, 1 � j � q in Rv. The sizes of the sets in Rv are di�erentand restrited to be the powers of two. As the onsequene the number of suh sets is at mostlog n, i.e. q � log n.We desribe how to proess a node v in T . In v is a leaf we build a orresponding VoronoiDiagram V D with a struture PL. To proess the internal node we use the Voronoi Diagrams witha assoiated PL strutures of its sons. In order to obtain a partition Sv we merge data struturesV D and PL of equal sizes. It an be done, for example, by simple rebuilding a new data struturesfor the merged set of points. After merging all data strutures, for eah ai 2 Lv, we �nd a nearestneighbor in Sv using the point loation data strutures of v.Considering time and spae omplexity. All steps in our algorithm exluding omputing mi;Mi,1 � i � p an be arried out in O(n logn) time using O(n logn) spae. The maintenane of theVoronoi Diagrams with a point loation data strutures takes O(n log2 n) time sine only lognmerges are possible. Determining the nearest neighbor for eah ai, 1 � i � p onsumes in totalO(n log3 n) time beause p = O(n logn), Sv is represented by logn data strutures and an additionallog n omes from the point loation query (the same holds for omputing farthest neighbor for eah5



ai, 1 � i � p). The spae requirements remain O(n logn) sine one an easily observe that eahpoint of S appears in front exatly one, providing only O(n) additional spae. Notie that at thesame time and spae we an �nd a pair of points in S that realizes (1; 1 + ")-approximation of dk.Theorem 2 Given a set S be a set of n points in the plane, number k, 1 � k � n(n�1)2 and" > 0 in time O(n log3 n) we an ompute a pair of point realizing distane d0 that is an (1; 1 + ")-approximation of the atual k-th distane.Remark. The same sheme works for (1 � "; 1)-approximation. The di�erene is that instead ofonsidering mi, 1 � i � p, we sort Mi. The index j is de�ned to be the largest index suh that�pi=j�i � �n2�� k. Choose the m0 = minpi=jmi as (1� "; 1)-approximation of dk.3.2 Distane by queryUsing the approximation algorithm above we show how to solve distane by query problem. Indeed,we an build a binary tree T� with the leaves orresponding to �1; : : : ; �p. Eah internal node v 2 T�will keep three values: �l2i=l1�i, �l3i=l2+1�i, where �l1 ; : : : ; �l2 (�l2+1; : : : ; �l3) are the values thatorrespond to the leaves of the left subtree (resp. right subtree) of a tree rooted by v, and thethird value Mv = maxl3i=l1 Mi. Clearly, the onstrution of this tree T� with the augmented valuesan be omputed in linear time. We assoiate with eah node v 2 T� an index jv, suh that �jvorresponds to the rightmost leaf in the subtree rooted at v. Given a value k, we traverse T�starting from the root towards its hildren. We need to �nd a node u, with the smallest ju suhthat �jui=1�i � k. It an be done in O(log n) time, by simple keeping the total number of nodes tothe left of the urrent searhing path. At eah node where the path goes right, we ollet the valueMv stored in the left subtree. At the end, we report the maximal of the olleted Mv values.Lemma 3 Given " > 0, WSPD an be preproessed in O(n log3 n) time, suh that given a numberk we an answer two types of approximate distane queries ((1� "; 1), (1; 1 + ")) in O(log n) time.3.3 (1� "; 1 + ")-approximationWe an simplify our algorithm for (1; 1+")-approximation of the k-th distane. Using WSPD for Swith separation onstant s = 2" we ompute only �i and take any pair (ai; bi) 2 (Ai; Bi); 1 � i � p,p = O(n). The (1 � "; 1 + ")-approximations of k-th distanes for all 1 � k � �n2� an be takenamong p pairs (ai; bi). To show it �rst we sort the distanes d0i between ai and bi, 1 � i � p. Weassume that the pairs (Ai; Bi) are in order of inreasing d0i. Let Ml be the maximal distane de�nedby pairs of points in (Al; Bl). For a partiular k we ompute the smallest j suh that Pji=1 �i � k.The points aj and bj are at distane at most M 0 = max1�i�jMi. Similarly to Lemma 1 we haved0j �M 0 � (1 + ")dk: (1)From other hand, (1 + ")d0j = max1�i�j(1 + ")d0i � max1�i�jMi =M 0 � dk: (2)Thus, d0j � (1� ")dk and (aj ; bj) is (1� "; 1 + ")-approximation of the k-th distane.Theorem 4 The (1�"; 1+")-approximation of the k-th distane among a given n points in Rd; d �1 an be omputed in O(n logn) time and O(n) spae. Moreover, we an answer (1 � "; 1 + "))-approximate distane queries in O(log n) time in any d � 1. The preproessing time is O(n logn).6



Proof. We sort the linear number of distanes d0i, 1 � i � p in O(n log n) time. We performa binary searh over the sorted list of values. In O(1) time we an ompute the median distaned0m; 1 � m � p. We partition the set of indies I = f1 � i � pg into C� = fijd0i � d0mg andC> = I n C�. Compute �0 = Pi2C� �i. If �0 � k then we replae all pairs (ai; bi); i 2 C� by apair with largest distane and assign �0 for it. If �0 < k then we replae all pairs (ai; bi); i 2 C>by a pair with the smallest distane and assign �0 for it. It redues the number andidate pairs byhalf. The total time to �nd the (1 � "; 1 + ")-approximation of the k-th distane (after sorting d0idistanes) is O(logn) using. a tree T� as in Setion 3.2 for eÆient omputation sums of �i.Remark. From the previous theorem it follows that we an approximate the diameter of the points(i.e. the largest pairwise distane between points) in O(n logn) time as well as the smallest pairwisedistane between the points.3.4 Range and bathed distane seletionWe note that these two problems an not be solved using our approximation distane seletionquery algorithm, sine it an report the same pair of points few times. As a matter of fat thebathed distane seletion problem is more general than the range seletion (exept for the lengthof input). We explain an algorithm for the bathed version of the problem that works as well forthe range version. We proeed as in Setion 3.3, by taking arbitrary pairs of points (ai; bi) from(A;Bi), 1 � i � p of WSPD and sorting them aording to the distanes. We �nd smallest j suhthat K = Pji=1 �i � k1. We �nd the number t1 of all the indies in the sequene k1; k2; : : : ; klthat are less or equal to K. We take any t1 pairs of points from (Aj ; Bj) as a part of our solutionapproximating k1-th, : : :, kt1 -th distanes. For the remaining indies kt1+1, : : :, kl we apply thesame sheme. The orretness of this algorithm follows from the disussion in Setion 3.3.Theorem 5 The (1 � "; 1 + "))-approximation of the bathed (range) distane seletion problemwith points in Rd; d � 1 an be found in O(n logn) time and O(n) spae.4 Other distane problemsIn this setion we show how to solve the rest of the distane problems desribed at Introdution.We �rst present algorithm for reporting k distanes (smallest or largest) and then extend it for thebihromati ase. Next we show how to solve the distane ranking problem and its query version.Finally, we observe how we an speed up our algorithms for L1 metri and generalize them ford-dimensional spae.4.1 Reporting k largest distanesNotie that we annot apply k times k-th distane seletion query algorithms sine we are interestedin the solution with k distint pair of points. We ompute WSPD for S with separation onstants = 2" . Let mi, Mi and �i, 1 � i � p be as desribed in Setion 3. We sort all Mi, 1 � i � p ininreasing order. Let us assume that M1 �M2 � : : : �Mp. We �nd the largest index j suh that�pi=j�i � k. Suppose that �pi=j+1�i = k0 (k0 < k). Denote by A set of k � k0 any distint pairsof points de�ned by (Aj ; Bj). Next, we show that the set R of all distint pairs points de�ned by(Aj+1; Bj+1); : : : ; (Ap; Bp) and by A is a required solution. Assume, that that we all the distanesde�ned by pairs of points in R are sorted, i.e. d01 � d02 � : : : � d0k.7



Lemma 6 (1� ")d(n2)+i�k � d0i � d(n2)+i�k; 1 � i � k:Proof. Fix i. Sine there are at least k � i distanes d0i+1; : : : ; d0k that are larger than d0i, weonlude that d0i � d(n2)+i�k. From the other hand, assume that d0i is realized by some pair ofpoints de�ned by (Al; Bl), for some 1 � l � p. Obviously, Ml � (1 + ")d0i by observation fromSetion 2. However, as one an see the valueMl is larger (or equal) than at least �n2�+i�k di�erentdistanes. Hene, Ml � d(n2)+i�k and we have d(n2)+i�k � (1 + ")d0i. It remains to point out that11+" > 1� " and, therefore, (1� ")d(n2)+i�k � d0i.In order to implement the above algorithm eÆiently we use the same data strutures as weused for k-th distane seletion algorithm. The rest is straightforward.Theorem 7 Given a set S be a set of n points in the plane, number k, 1 � k � n(n�1)2 and " > 0 intime O(n log3 n+k) we an �nd k distint pairs of points whose distanes are (1�"; 1)-approximationof the atual k largest distanes.Remark. The same sheme works for the reporting (1; 1 + ")-approximate k smallest distanes.4.2 Reporting bihromati distanesBasially, the idea is similar to the one used in Setion 4.1. We onsider a set S = A [ B andperform almost the same operations as before. We ompute a WSPD for S with s = 2" . As before,without loss of generality we assume that for eah pair (Ai; Bi), 1 � i � p, jAij = 1. Thus, Aimay ontain exatly one red or exatly one blue point. Next, for eah pair (Ai; Bi) we ompute thevalues mi, Mi and �i, but now onsidering only bihromati distanes, that is, the distanes thatde�ned by a point from Ai and by points with di�erent olor from Bi. We proeed as in Setion 4.1.We only need to explain how to ompute the values mi, Mi and �i, 1 � i � p. By a traversal ofa tree T whih represents a WSPD we an ount for eah node v 2 T the number of blue and redleaves in the subtree rooted at v. It will de�ne our �i, 1 � i � p. In order to deal with mi, Mi,instead of maintaining two Voronoi Diagrams for eah node v 2 T : losest and farthest neighbor,we will maintain four Voronoi Diagrams: losest and farthest neighbor for eah olor of points. Therest follows immediately.Theorem 8 Given two sets of points R and B in the plane, with ardinalities n and m, respetively,a number k, 1 � k � n(n�1)2 and " > 0 in time O(max (m;n) log3max (m;n) + k) we an �nd kdistint pairs of red-blue points whose bihromati distanes are (1�"; 1)-approximation ((1; 1+")-approximation) of the atual k largest (smallest) bihromati distanes.4.3 Approximate distane rankingThe approah to approximate the rank of unit distane is similar to approximating the k-th distane.We again use a WSPD for S with separation onstant s = 2" . For eah pair fAi; Big, 1 � i � p weompute mi;Mi; (ai; bi); and �i as in Setion 3. The set of indies I = f1 � i � pg is partitionedinto 3 subsets C< = fi 2 IjMi < 1g, C> = fi 2 Ijmi > 1g, and C= = I n C< [ C>. If C= isempty then the distanes formed by the pairs (Ai; Bi); i 2 C< are loser than 1 and the remainingdistanes are larger than 1. Hene the number of pairs of points in S at distane less than 1 isPi2C< �i. Otherwise we set k1 = 1+Pi2C< �i and k2 = �n2��Pi2C> �i. The numbers k1 and k2an be omputed in linear time. 8



Lemma 9 The numbers k1 and k2 approximate the rank of unit distane.Proof. It is lear that 0 � k1 � K � k2 � �n2�, where K is the exat solution. The de�nition ofk1 and k2 implies dk1 � 1 � dk2 . It remains to show the k1-th and k2-th distanes are lose to 1.Let (ai1 ; bi1) 2 (Ai1 ; Bi1) and (ai2 ; bi2) 2 (Ai2 ; Bi2) be the pairs of points de�ned these distanes.Note that i1; i2 2 C= by hoie of k1 and k2. Reall that, for any i, the sets Ai and Bi arewell-separated with the separation onstant s = 2" . Hene dk2 � Mi2 � (1 + ")mi2 � 1 + " anddk1 � mi1 � Mi1(1+") � Mi1(1+") � 1� ". The lemma follows.4.3.1 Approximate rank queryIn the rank query, for a separator s, we �nd two numbers k1; k2, suh that 0 � k1 � K � k2 � �n2�and (1 � ")s � dk1 � s � dk2 � (1 + ")s where K is exat rank of the distane s. Notie that wean apply a result from Setion 3 for a distane by query problem and obtain an O(log2 n) querytime for this problem. We show how to do better. Let �1 be the permutation of Mi values, suhthat M�11 � M�12 � : : : � M�1p . Similarly, �2 is the permutation for the sorted mi values. Thepossible approximate lower ranks are stored in the array MRANK. The i-th element of MRANKis �ij=1��1j . The array MRANK an be omputed in O(p) = O(n log n) time. We also use anarray mRANK, whose i-th element is �pj=i+1��2j . The approximate rank query an be answeredas follows. We loate the separator s among the sorted Mi; 1 � i � p values and �nd the largestindex l suh that M�1l < s. It an be done in O(log p) = O(logn) time. We also �nd the smallestindex t with m�2t > s. The ondition C= = ; implies MRANK[l℄ +mRANK[t℄ = �n2� and theexat solution is equal to MRANK[l℄ in this ase. Otherwise, set k1 = 1 + MRANK[l℄ andk2 = mRANK[t℄.Lemma 10 The WSPD an be preproessed in O(n log3 n) time to answer approximate rank queriesin O(logn) time.4.4 L1 aseWe �rst onsider the problems of omputing the (1; 1 + ")-approximation of distanes under L1metri. We take s = 2p2" . Notie, that we avoid the omputation of mi; 1 � i � p values by takingarbitrary pairs of points (ai; bi) from eah (Ai; Bi); 1 � i � p (see equation 1). As in Setion 3.3we sort these pairs of points by distanes (we assume that index i of (ai; bi) orresponds to therank of dist(ai; bi) in the sorted order). The value M 0 omputed in Setion 3.3 is the (1; 1 + ")-approximation of k-th distane. Still, we need to ompute Mi values, 1 � i � p. In d-dimensionalspae (d � 1) under L1 the valuesMi an be omputed eÆiently without using Voronoi Diagrams.The points de�ning Mi should lye on the boundary of the smallest axis-parallel bounding box ofset Ai [ Bi. Reall that Ai and Bi are well separated and, thus, the L1 diameter of Ai [ Bi isde�ned by a pair (p; q) suh that p 2 Ai and q 2 Bi. Instead of maintaining Voronoi Diagram inbottom-up traversal of tree T we maintain the bounding boxes for sets of points orresponding tothe nodes of T . The new bounding box an be omputed in O(1) time using the information fromthe previous steps. Moreover, we an use a WSPD with p = O(n).Thus, we onlude byTheorem 11 The running time of (1; 1 + ")-approximation sheme applied to distane seletion,reporting distanes (monohromati or bihromati), distane ranking problems under L1 metri in9



any d-dimensional spae (d � 1) is improved to O(n log n), O(n logn+ k), O(n log n), respetively,using only linear spae.Regarding (1 � "; 1) algorithms we notie that the omputation of Mi an be avoided usingthe equation 2. As above we sort dist(ai; bi); 1 � i � p. The index j is de�ned to be the largestindex suh that �pi=j�i � �n2� � k. Similarly, to the (1; 1 + ") ase we hoose m0 = minpi=jmi as(1� "; 1)-approximation of dk.The omputation of mi; 1 � i � p an be done similarly to the approah desribed in [4℄. Weuse a WSPD with p = O(n) and assume Ai = faig, 1 � i � p. For eah point ai we need to�nd the losest neighbor in orresponding Bi. Let l1 be a line whose slope is 45Æ passing throughthe ai and l2 a a line whose slope is 135Æ passing through the ai. These lines de�ne four wedges:Qtop; Qbottom; Qleft; Qright. For any point p lying in Qleft [Qright(Qbottom [Qtop) the L1-distaneto ai is de�ned by the x-distane (y-distane, resp.) to ai. We perform four range queries, usingorthogonal range tree [3℄ data struture (in oordinate system de�ned by lines l1, l2), eah of themorresponding to the appropriate wedge. For eah node in a seondary data struture we keep fourvalues xmin; xmax; ymin; ymax (omputed in the initial oordinate system) of points in orrespondingrange. Consider for a example wedge Qright. Our query orresponding to Qright marks O(log2 n)nodes. The minimum of xmin values stored in these nodes de�ne the losest neighbor point to ailying in Qright. We proeed similarly with the other wedges. We maintain orthogonal range treedata strutures dynamially in a bottom-up fashion while traversing split tree T . In order to mergetwo data strutures we simply insert all the points stored in the smaller range tree into the largerone. Notie, that eah point an be inserted at most O(log n) time. Eah insertion takes O(log2 n)time. The total time for maintaining the range trees and omputing mi, 1 � i � p is O(n log3 n).It an generalized to d-dimensional spae, d > 2 (in ontrast to other metris).Theorem 12 The running time of (1 � "; 1)-approximation sheme applied to distane seletion,reporting distanes (monohromati or bihromati), distane ranking problems under L1 metriin any d, d � 1 dimensional spae is O(n logd+1 n), O(n logd+1 n+ k), O(n logd+1 n), respetively.Remark. The running times in the theorem above an be improved slightly by O( log nlog log n) fatorusing dynami frational asading tehnique [16℄.Referenes[1℄ P. Agarwal, B. Aronov, M. Sharir, S. Suri, \Seleting distanes in the plane", Algorithmia, 9, pp.495{514, 1993.[2℄ P. Agarwal, M. Sharir, E. Welzl \The disrete 2-enter problem", Pro. 13th ACM Symp. on Compu-tational Geometry, pp. 147{155, 1997.[3℄ M. de Berg, M. van Kreveld, M. Overmars, O. Shwarzkopf \Computational Geometry: Algorithmsand Appliations", Springer-Verlag, 1997.[4℄ S. Bespamyatnikh, K. Kedem, M. Segal \Optimal Faility Loation under Various Distane Funtion",in Workshop on Algorithms and Data Strutures'99, pp. 318{329, 1999.[5℄ P. Calahan \Dealing with higher dimensions: the well-separated pair deomposition and its applia-tions", Ph.D thesis, Johns Hopkins University, USA, 1995.[6℄ P. Callahan and R. Kosaraju \A deomposition of multidimensional point sets with appliations tok-nearest neighbors and n-body potential �elds", Journal of ACM, 42(1), pp. 67{90, 1995.10
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