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Abstract

In this paper we present efficient approximate algorithms for the various distance problems.
Our technique is based on the well-separated pair decomposition proposed in [6].

1 Introduction

Let S be a set of n points in the plane and let 1 < k < ”("271). Let di < do < ... < dn be

2
the L,-distances determined by the pairs of points in S. In this paper we consider the following
optimization problems:

e Distance selection. Compute the k-th smallest distance between a pair of points of S.

e Reporting distances. Report or enumerate the k& smallest (largest) distances determined
by pairs of points of S in increasing (decreasing) order.

e Distance ranking. Determine how many pair points are closer than unit distance apart.

e Distance by query. Preprocess a set S into a data structure, so that, given a number £ as
above, one can answer efficiently what is the k-th smallest distance between a pair of points
of S.

e Reporting bichromatic distances. Given sets R and B of n red and m blue points,
respectively, in the plane and given k, 1 < k < nm report or enumerate k smallest (largest)
distances determined by (red-blue) pairs of points.

The problems above received a lot of attention during the past decade. The solution to the dis-
tance selection problem can be obtained using a parametric searching. The decision problem is
to compute, for a given real r, the sum ¥,cs|D,(p) N (S — {p})|, where D, (p) is the closed disk
of radius r centered at p. By solving the decision problem we solve our distance ranking problem
[1,11]. Agarwal et al. [1] gave an O(n? log3 n) expected-time randomized algorithm for the decision
problem, which yields an O(ng log§ n) expected-time algorithm for the distance selection problem.
Goodrich [12] derandomized this algorithm, at a cost of an additional polylogarithmic factor in
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the runtime. Katz and Sharir [13] obtained an expander-based O(n*/?1og3*® n)-time deterministic
algorithm for this problem. By applying a randomized approach Chan [7] was able to obtain an
O(nlogn + n2/3k1/3 log5/ 3n) expected time algorithm for this problem. For our best knowledge,
nothing has been done for the query version of the distance selection problem. One may find it
useful in parametric searching applications, where a set of candidate solutions is defined by the
distances between pairs of points of S, see e.g. [2].

The distance selection problem is also closely related to the reporting distances problem. The
papers of Dickerson and Shugart [10], Katoh and Iwano [14] and Segal and Kedem [20] present
several algorithms for the enumerating largest k& distances. The algorithm in [10] works for any
metric, and requires O(n + k) space with expected runtime of O(nlogn + %—n). The paper of
Katoh and Iwano [14] presents an algorithm for the Ly metric with running time O(min(n?, n logn+
E*/31ogn/(log k)'/3)) and space O(n + k*/3/(logk)'/? + klogn). Their algorithm is based on the
k nearest neighbor Voronoi diagrams. The algorithm proposed in [20] is based on posets, works
for rectilinear distances and has O(n + klogn) running time and linear space. Dickerson et al. [9]
present an algorithm for the enumeration of all the k& smallest distances in S in increasing order.
Their algorithm works in time O(nlogn + klogk) and uses O(n + k) space. Lenhof et al. [15],
Salowe [19], Dickerson and Eppstein [8] solve the same problem too but they just report the k
closest pairs of points without sorting the distances, spending O(nlogn + k) time and O(n + k)
space. An algorithm for solving the enumerating problem (for the smallest & distances) is also
presented in [8], spending O(nlogn + klogk) time and using O(n + k) space. Chan [7] presents
O(nlogn + k) expected time simple algorithm for reporting the k closest pairs of points that is
based on the Lenhof et al. [15] algorithm.

Regarding the k closest/farthest bichromatic pairs problems, Salowe [18] proposed an algo-
rithm with O(nlog®n) running time that works only for rectilinear distance metric. Katoh and
Twano [14] gave a O(min(n?,n logn + k*3logn/(log k)'/3)) runtime solution which requires O(n +
E*/3 /(log k)'/? 4 klogn) space. Both papers assumed that m = n.

In this paper we present fast approximation algorithms for the problems above. For a distance
d determined by some pair of points in S and for any fixed 0 < §; < 1, do > 1, the distance d’
is the (81, 62)-approzimation of d, if 6;d < d' < dad. We give an O(nlog®n) runtime solution for
the distance selection problem that computes a pair of points realizing distance d' that is either
(1,14+¢) or (1—e, 1)-approximation of the actual k-th distance, for any fixed e > 0. We also present
an O(nlogn) time algorithm for computing the (1 — £,1 + £)-approximation of k-th distance. It
compares well to the paper by Agarwal et al. [1] that considers a similar problem, where one want
to identify approximate “median” distance, that is, a pair of points p, g € S with the property that
there exist absolute constants ¢; and c9 such that 0 < ¢; < % < ¢9 < 1 and the rank of the distance
determined by p and ¢ is between c; (;) and ca (;) They [1] showed how to solve this problem in
O(nlogn) time.

We also show how to extend our solution in order to answer efficiently the queries approximating
k-th distance. We provide an O(nlog®n + k) runtime and O(nlogn) space algorithm for reporting
k distinct pairs of points whose distances d} < dy < ... < d} are (1 — ¢,1)-approximation of k
largest distances, i.e.

(1- 8)d(’;)ﬂ—k <d; < d(ny g

We achieve the same runtime performance for reporting smallest & distances with (1,1 + ¢)-
approximation and propose algorithms for the reporting and enumerating bichromatic distances
with the same running time.



We present an algorithm for the approximation version of the distance ranking problem. Let
K be the solution of the distance ranking problem. For a given € > 0, we find two numbers k1, ko,
such that 0 < k1 < K <ky < (g) and

1—6§dk1§1§dk2§1+8.

The running time of our algorithm is O(nlog®n) and it can be extended to deal with a separator
query: instead of considering distances less than one, we may consider the distances less than a
query separator s. A query time is O(logn). The distance ranking problem is closely related to the
well-known repeated unit distances problem[17], in which one wants to determine the number of
pairs of points at unit distance in the plane. The best known lower bound (supposed to be tight)
is plte/loglogn o1 some appropriate constant ¢ > 0 and the best upper bound is O(n4/ 3). We also
show that the runtime and space requirements of our approximation algorithms for the problems
above can be improved when dealing with L., metric.

Our method can be extended to deal with more general problems, that we call range distance
selection and batched distance selection. In the range distance selection we are given two numbers
ki, ko, 1 < ki < ko < (g) and we want to report all the pairs of points whose distance rank is
between k1 and k». In the batched distance selection problem we are given an increasing sequence of
numbers 1 < k; < ks,..., <k < (g), we want to report all the pairs of points realizing k{-th, ko-th,
... k;-th distance. For our best knowledge nothing has been done regarding these two problems.
We show the efficient (1 — £, 1 + ¢)-approximation algorithms for these problems.

The main contribution of this paper is by developing efficient approximating algorithms for the
several well known-optimization problems using an unifying approach that based on well separated
pairs decomposition introduced by Callahan and Kosaraju [6]. This paper is organized as follows.
In the next section we briefly describe well-separated pair decomposition. Section 3 is dedicated to
the distance selection problem, its query version and to the range and batched distance selection
problems. We consider the rest of the distance problems in Section 4.

2 Well-separated pair decomposition

In this section we shortly describe the well-separated pair decomposition proposed by Callahan and
Kosaraju [6]

Let A and B be two sets of points in d-dimensional space (d > 1) of size n and m, respectively.
Let s be some constant strictly greater than 0 and let R(A) (resp. R(B)) be the smallest axis-parallel
bounding box that encloses all the points of A (resp. B). We say that point sets A and B are well-
separated with respect to s, if R(A) and R(B) can be each contained in d-dimensional ball of some
radius r, such that the distance between these two ball is at least sr. One can easily show that for a
given two well-separated sets A and B, if p; € A, ps,p3 € B then dist(p1,p2) < (1+ %)dist(pl,pg).
(For Lo, metric the previous inequality looks dist(p1,p2) < (1 + 2—‘s/i)dist(jr)l,jr)g,). For general L,
metric the inequality may differ by some multiplicative constant.)

Let S be a set of d-dimensional points, and let s > 0. A well-separated pair decomposition
(WSPD) for S with respect to S is a set of pairs
{(Al, Bl), (AQ, Bg), ey (Ap, Bp)} such that:

(i) A;C Aand B; C B, foralli=1,...,p.

(i) A;NB; =0, foralli=1,...,p.



(iii) A; and B; are well-separated with respect to s.

(iv) each unordered pair of points (p,q),p,q € S,p # q, there is exactly one pair (4;, B;) in a set
{(A1, B1), (A2, Bz),...,(Ap, Bp)} such that either p € A; and ¢ € B; or p € B; and ¢ € A;.

The main idea of the algorithm for construction WSPD is to build a binary split tree 7" whose
leaves are points of S, with internal nodes corresponding to subsets of S. Each pair (A;, B;) in
WSPD is represented by two nodes v,u € T, such that all the leaves in the subtree rooted at by v
correspond to the points of A; and all the leaves in the subtree rooted at by u correspond to the
points of B;.

The paper of Callahan and Kosaraju [6] presents an algorithm that implicitly constructs WSPD
for a given set S and separation value s > 0 in O(n logn + s?n) time such that the number of pairs
(A;, B;) is O(s?n). Moreover, Callahan [5] showed to compute W .SPD in which at least one of the
sets A;, B; of each pair (A;, B;) contains exactly one point of S. The running time remains the
same; however, the number of pairs increases to O(nlogn + s2n).

3 Approximating k-th distance

We first describe a general scheme for obtaining (1, 1+¢) or (1—¢, 1)-approximation of k-th distance
and then show how to get an algorithm for the query version of the problem. At the end we obtain
a simpler algorithm for the (1 —e¢, 1+ €)-approximation and show how to extend it for the batched
(range) selection problem.

3.1 General approximation scheme

Our algorithm consists of several stages. At the first stage we compute a WSPD for S with
separation constant s = % As it was mentioned in the Section 2 each pair (A;, B;) in WSPD
is represented by two nodes in T" and |4;] = 1 or/and |B;| = 1. Next, for each pair (A;, B;),
1 <i<p,p=0(nlogn) we compute the following values:

e m; = minge4, pep, dist(a,b).

o M; = maXqca, pep; dist(a,b).

e (a;,b;) € (A;, B;) that realizes M;, i.e. dist(a;,b;) = M;.
o o; = |A;||Bil.

In other words, m;(M;) is the minimal (maximal) distance between points that belong to A; and
B;. The value «; is the total number of distinct pairs (a,b), a € A;, b € B;.

We sort all m;, 1 < ¢ < p in increasing order. Without loss of generality, we assume that
mp < mg < ... < my. Out task now is to find the smallest index j, such that Zgzlai > k. We
claim that M' = maxg:1 M; is the (1,1 + ¢)-approximation of k-th distance. In what follows we
prove the correctness of our algorithm and show how to implement it efficiently.

Lemma 1 The value M’ is the (1,1 + ¢)-approzimation of k-th distance.

Proof.  We need to show that dy < M’ < (1 + €)dj. In order to show the left inequality we
observe that the total number of distances defined by pairs (4;, B;), 1 < i < j is at least k because
¥!_,a; > k. Since M’ is the maximum of these distances M’ > dj, follows.
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We recall that all possible pairs of points of S are uniquely represented by pairs (A4;, B;) in
WSPD. Consider the set of pairs D = {(a,b)|a € A;,b € B;,i > j}. By definition of j, m; is the
smallest distance defined by pairs of D. The total number of pairs in D is at least (’21) — k. Thus,
the pair of points (p,q) that defines dj, belongs to D. Therefore, dj, > m;. Let t, 1 <t < j be
the index such that M’ = M;. ;From the observation in previous section it follows that M; <
(14 2)m; = (1 4 €)my. Thus,

M <(1+e)m <(L+e)mj < (1+e)dy

It remains to show how to implement this algorithm efficiently, i.e. how to compute the values
mg, M;,a;, 1 <1 < p. First we show how to compute «;. In other words we need to compute the
cardinalities of A; and B;, 1 <14 < p. Recall that each pair (A;, B;) in WSPD is represented by
two nodes v;, u; of the split tree T'. The cardinality of A;(B;) equals to the number of leaves in
the subtree of T rooted at v;(u;). Thus, by postorder traversal of T we are able to compute all the
required cardinalities.

Next, we describe how to compute the values m;, 1 < i < p (the similar algorithm works for
M; as well). Without loss of generality, we assume the singleton set of each pair (A;, B;) in WSPD
is A; = {a;}. Our problem, thus, for each a;, 1 < i < p to compute the nearest neighbor in
corresponding B;. The naive approach would lead to an O(n?) algorithm since the total complexity
of all B;’s is O(n?). In order to find the neighbor for each a; we use Voronoi Diagrams for B; with
corresponding point location data structures. We cannot compute explicitly all Voronoi Diagrams
because of total complexity of all B;. Fortunately, we can maintain dynamically Voronoi Diagrams
while traversing a split tree T in a bottom-up fashion. We proceed as follows. For each node v
of the split tree T that corresponds to we create a associate list L, containing all a;’s such that
({a;}, B;) belongs to WSPD and B; is represented by v. Note that some lists contain at least
O(logn) elements since the total number of pairs in WSPD is O(nlogn) but the number of nodes
in T is linear. We traverse a tree T' in a postorder fashion starting from leaves. At any time we have
a front that is a set of not processed yet nodes such that all the nodes below them are processed
already. Recall that S, is a subset of S associated with a node v in T. The maintenance of the
Voronoi Diagram of S, leads to quadratic runtime for biased trees. Instead we use a partition R,
of S, into disjoint sets S}, ..., S and maintain the Voronoi Diagram V' D with corresponding point
location data structure PL for each set S;, 1 < j < ¢ in R,. The sizes of the sets in R, are different
and restricted to be the powers of two. As the consequence the number of such sets is at most
logn, i.e. ¢ <logn.

We describe how to process a node v in T. In v is a leaf we build a corresponding Voronoi
Diagram V D with a structure PL. To process the internal node we use the Voronoi Diagrams with
a associated PL structures of its sons. In order to obtain a partition S, we merge data structures
V' D and PL of equal sizes. It can be done, for example, by simple rebuilding a new data structures
for the merged set of points. After merging all data structures, for each a; € L,, we find a nearest
neighbor in S, using the point location data structures of v.

Considering time and space complexity. All steps in our algorithm excluding computing m;, M;,
1 < i < p can be carried out in O(nlogn) time using O(nlogn) space. The maintenance of the
Voronoi Diagrams with a point location data structures takes O(nlog?n) time since only logn
merges are possible. Determining the nearest neighbor for each a;, 1 < ¢ < p consumes in total
O(nlog®n) time because p = O(nlogn), S, is represented by log n data structures and an additional
log n comes from the point location query (the same holds for computing farthest neighbor for each



a;, 1 < i < p). The space requirements remain O(nlogn) since one can easily observe that each
point of S appears in front exactly one, providing only O(n) additional space. Notice that at the
same time and space we can find a pair of points in S that realizes (1,1 + ¢)-approximation of dj.
Theorem 2 Given a set S be a set of n points in the plane, number k, 1 < k < n(n2—1) and
e > 0 in time O(nlog®n) we can compute a pair of point realizing distance d' that is an (1,1 + ¢)-
approximation of the actual k-th distance.

Remark. The same scheme works for (1 — ¢, 1)-approximation. The difference is that instead of
considering m;, 1 < ¢ < p, we sort M;. The index j is defined to be the largest index such that
Ef:jozi > (g) — k. Choose the m' = minf:j m; as (1 — g, 1)-approximation of dj.

3.2 Distance by query

Using the approximation algorithm above we show how to solve distance by query problem. Indeed,
we can build a binary tree T;, with the leaves corresponding to a1, ..., a,. Each internal node v € Ty,
will keep three values: Zﬁillai, E?:Q-uaiv where ay,,..., o, (Q,41,...,04,) are the values that
correspond to the leaves of the left subtree (resp. right subtree) of a tree rooted by v, and the
third value M, = max?zl1 M;. Clearly, the construction of this tree T, with the augmented values
can be computed in linear time. We associate with each node v € T, an index j,, such that o,
corresponds to the rightmost leaf in the subtree rooted at v. Given a value k, we traverse Ty,
starting from the root towards its children. We need to find a node u, with the smallest j, such
that Egilai > k. It can be done in O(logn) time, by simple keeping the total number of nodes to

the left of the current searching path. At each node where the path goes right, we collect the value
M, stored in the left subtree. At the end, we report the maximal of the collected M, values.

Lemma 3 Given ¢ >0, WSPD can be preprocessed in O(n log® n) time, such that given a number
k we can answer two types of approximate distance queries ((1 —e, 1), (1,1+¢)) in O(logn) time.

3.3 (1—-¢,1+ ¢)-approximation

We can simplify our algorithm for (1, 1+ ¢)-approximation of the k-th distance. Using WSPD for S
with separation constant s = % we compute only «; and take any pair (a;,b;) € (A, Bi),1 <i <p,
p = O(n). The (1 —¢,1 + ¢)-approximations of k-th distances for all 1 < k < (}) can be taken
among p pairs (a;, b;). To show it first we sort the distances d; between a; and b;, 1 < i < p. We
assume that the pairs (4;, B;) are in order of increasing d;. Let M) be the maximal distance defined
by pairs of points in (A;, B;). For a particular k we compute the smallest j such that 7 ; a; > k.

The points a; and b; are at distance at most M "= maxj<i<;j M;. Similarly to Lemma 1 we have

d;- < M' < (1 +¢€)dy. (1)
From other hand,
1 ! At
(1+e)d; = lrglang(l +e)d; > lrg%xj M; = M > dj. (2)

Thus, dj > (1 — €)dy, and (aj,b;) is (1 — €, 1 + ¢)-approximation of the k-th distance.

Theorem 4 The (1—¢,1+¢)-approzimation of the k-th distance among a given n points in R%, d >
1 can be computed in O(nlogn) time and O(n) space. Moreover, we can answer (1 —e, 1+ €))-
approzimate distance queries in O(logn) time in any d > 1. The preprocessing time is O(nlogn).



Proof. ~ We sort the linear number of distances d, 1 < i < p in O(nlogn) time. We perform
a binary search over the sorted list of values. In O(1) time we can compute the median distance
d;,,1 < m < p. We partition the set of indices I = {1 < i < p} into C< = {i|d; < d},} and
Cs =1\ C<. Compute o/ =37, - «;. If o’ <k then we replace all pairs (a;,b;),i € C< by a
pair with largest distance and assign o/ for it. If o/ < k then we replace all pairs (a;, b;),i € Cs
by a pair with the smallest distance and assign o’ for it. It reduces the number candidate pairs by
half. The total time to find the (1 —¢,1 + ¢)-approximation of the k-th distance (after sorting d;
distances) is O(logn) using. a tree T, as in Section 3.2 for efficient computation sums of a;. B

Remark. From the previous theorem it follows that we can approximate the diameter of the points
(i.e. the largest pairwise distance between points) in O(nlogn) time as well as the smallest pairwise
distance between the points.

3.4 Range and batched distance selection

We note that these two problems can not be solved using our approximation distance selection
query algorithm, since it can report the same pair of points few times. As a matter of fact the
batched distance selection problem is more general than the range selection (except for the length
of input). We explain an algorithm for the batched version of the problem that works as well for
the range version. We proceed as in Section 3.3, by taking arbitrary pairs of points (a;, b;) from
(A B;), 1 <i<pof WSPD and sorting them according to the distances. We find smallest j such
that K = Zg:1 a; > k1. We find the number #; of all the indices in the sequence ki, ko,..., kK
that are less or equal to K. We take any ¢ pairs of points from (A;, B;) as a part of our solution
approximating ki-th, ..., ki -th distances. For the remaining indices k¢ 41, ..., k; we apply the
same scheme. The correctness of this algorithm follows from the discussion in Section 3.3.

Theorem 5 The (1 —e,1 + ¢))-approzimation of the batched (range) distance selection problem
with points in R, d > 1 can be found in O(nlogn) time and O(n) space.

4 Other distance problems

In this section we show how to solve the rest of the distance problems described at Introduction.
We first present algorithm for reporting k distances (smallest or largest) and then extend it for the
bichromatic case. Next we show how to solve the distance ranking problem and its query version.
Finally, we observe how we can speed up our algorithms for L., metric and generalize them for
d-dimensional space.

4.1 Reporting k largest distances

Notice that we cannot apply &k times k-th distance selection query algorithms since we are interested
in the solution with k& distinct pair of points. We compute WSPD for S with separation constant
s = % Let m;, M; and «a;, 1 <1 < p be as described in Section 3. We sort all M;, 1 <47 < p in
increasing order. Let us assume that M; < M, < ... < M,. We find the largest index j such that
¥}_jai > k. Suppose that X7_, jo; = k' (k' < k). Denote by A set of k — k' any distinct pairs
of points defined by (A;, Bj). Next, we show that the set R of all distinct pairs points defined by
(Aj41,Bjt1),-..,(Ap, Bp) and by A is a required solution. Assume, that that we all the distances

defined by pairs of points in R are sorted, i.e. df <d5y < ... <d].



Lemma 6 (1 — 5)d(’;)+i—k <d < d(g)_H._k, 1<i<k.
Proof.  Fix i. Since there are at least k — i distances dj_,,...,d) that are larger than dj, we

conclude that d < d(n)+i7k.
2

points defined by (4;, B;), for some 1 < [ < p. Obviously, M; < (1 + €)d} by observation from

Section 2. However, as one can see the value M; is larger (or equal) than at least (g) +1—k different

distances. Hence, M; > d(;‘)+i—k and we have d(g)-m'—k < (14 ¢e)d}. It remains to point out that

1_41re > 1 — ¢ and, therefore, (1 — e)d(g)ﬂ.% <d. B

From the other hand, assume that d; is realized by some pair of

In order to implement the above algorithm efficiently we use the same data structures as we
used for k-th distance selection algorithm. The rest is straightforward.

Theorem 7 Given a set S be a set of n points in the plane, number k, 1 < k < n(n2—1) and e > 0 in

time O(nlog® n+k) we can find k distinct pairs of points whose distances are (1—¢, 1)-approzimation
of the actual k largest distances.

Remark. The same scheme works for the reporting (1,1 + ¢)-approximate k smallest distances.

4.2 Reporting bichromatic distances

Basically, the idea is similar to the one used in Section 4.1. We consider a set S = AU B and
2

perform almost the same operations as before. We compute a WSPD for S with s = . As before,
without loss of generality we assume that for each pair (A4;,B;), 1 < i < p, |A;| = 1. Thus, 4;
may contain exactly one red or exactly one blue point. Next, for each pair (4;, B;) we compute the
values m;, M; and «;, but now considering only bichromatic distances, that is, the distances that
defined by a point from A; and by points with different color from B;. We proceed as in Section 4.1.
We only need to explain how to compute the values m;, M; and o;, 1 < i < p. By a traversal of
a tree T' which represents a WSPD we can count for each node v € T the number of blue and red
leaves in the subtree rooted at v. It will define our oy, 1 < 4 < p. In order to deal with m;, M;

instead of maintaining two Voronoi Diagrams for each node v € T": closest and farthest neighbor,
we will maintain four Voronoi Diagrams: closest and farthest neighbor for each color of points. The

rest follows immediately.

Theorem 8 Given two sets of points R and B in the plane, with cardinalities n and m, respectively,
a number k, 1 < k < @ and € > 0 in time O(max (m,n) log® max (m,n) + k) we can find k
distinct pairs of red-blue points whose bichromatic distances are (1 —e¢,1)-approzimation ((1,1+¢)-
approzimation) of the actual k largest (smallest) bichromatic distances.

4.3 Approximate distance ranking

The approach to approximate the rank of unit distance is similar to approximating the k-th distance.
We again use a WSPD for S with separation constant s = % For each pair {4;,B;}, 1 <i <p we
compute m;, M;, (a;, b;), and «; as in Section 3. The set of indices I = {1 < i < p} is partitioned
into 3 subsets Cc = {1 € I|M; <1}, Cs ={i € Il/m; > 1}, and C— = I\ C.UCs. If C_ is
empty then the distances formed by the pairs (A;, B;),i € C< are closer than 1 and the remaining
distances are larger than 1. Hence the number of pairs of points in S at distance less than 1 is
Ziec< a;. Otherwise we set by =1+ Ziec< o; and kg = (’21) — Ziec> a;. The numbers k; and k-

can be computed in linear time.



Lemma 9 The numbers ki and ko approximate the rank of unit distance.

Proof. 1t is clear that 0 < k1 < K < kg < (g), where K is the exact solution. The definition of
k1 and kg implies d,, <1 < dj,. It remains to show the ki-th and k»-th distances are close to 1.
Let (ai,,bi,) € (Aiy, Biy) and (ai,, bi,) € (Aiy, Bi,) be the pairs of points defined these distances.
Note that 41,79 € C— by choice of k1 and ks. Recall that, for any ¢, the sets A; and B; are

well-separated with the separation constant s = % Hence d, < M;, < (1 +¢&)m;, < 1+ ¢ and

M; M;
dg, > mj, > 7= > 7= > 1 —¢e. The lemma follows. B

(T+e) = +e)

4.3.1 Approximate rank query

In the rank query, for a separator s, we find two numbers k1, ks, such that 0 < k1 < K < ks < (g)
and (1 —e)s < di, <s <dk, <(1+¢€)s where K is exact rank of the distance s. Notice that we
can apply a result from Section 3 for a distance by query problem and obtain an O(log?n) query
time for this problem. We show how to do better. Let ¢! be the permutation of M; values, such
that Mg% < MU% <...< Mg}). Similarly, o? is the permutation for the sorted m; values. The
possible approximate lower ranks are stored in the array M RAN K. The i-th element of M RANK

is E;'-:lagl. The array MRANK can be computed in O(p) = O(nlogn) time. We also use an
J
array mRAN K, whose i-th element is ZJ?:Z. +1%2- The approximate rank query can be answered

as follows. We locate the separator s among the sorted M;,1 < ¢ < p values and find the largest
index [ such that M1 <s. It can be done in O(logp) = O(logn) time. We also find the smallest

index t with m,2 > s. The condition C— = () implies MRANK[l] + mRANK[t] = (5) and the
exact solution is equal to MRANK]l] in this case. Otherwise, set ky = 1 + MRANK]I] and

ko = mRANK[t]

Lemma 10 The WSPD can be preprocessed in O(n log® n) time to answer approximate rank queries
in O(logn) time.

4.4 L, case

We first consider the problems of computing the (1,1 + ¢)-approximation of distances under L,
metric. We take s = ¥ Notice, that we avoid the computation of m;,1 < i < p values by taking
arbitrary pairs of points (a;, b;) from each (4;,B;),1 < i < p (see equation 1). As in Section 3.3
we sort these pairs of points by distances (we assume that index i of (a;,b;) corresponds to the
rank of dist(a;,b;) in the sorted order). The value M’ computed in Section 3.3 is the (1,1 + ¢)-
approximation of k-th distance. Still, we need to compute M; values, 1 < ¢ < p. In d-dimensional
space (d > 1) under Lo, the values M; can be computed efficiently without using Voronoi Diagrams.
The points defining M; should lye on the boundary of the smallest axis-parallel bounding box of
set A; U B;. Recall that A; and B; are well separated and, thus, the L., diameter of A; U B; is
defined by a pair (p,q) such that p € A; and ¢ € B;. Instead of maintaining Voronoi Diagram in
bottom-up traversal of tree T' we maintain the bounding boxes for sets of points corresponding to
the nodes of T'. The new bounding box can be computed in O(1) time using the information from
the previous steps. Moreover, we can use a WSPD with p = O(n).
Thus, we conclude by

Theorem 11 The running time of (1,1 + €)-approzimation scheme applied to distance selection,
reporting distances (monochromatic or bichromatic), distance ranking problems under Lo, metric in



any d-dimensional space (d > 1) is improved to O(nlogn), O(nlogn+ k), O(nlogn), respectively,
using only linear space.

Regarding (1 — €,1) algorithms we notice that the computation of M; can be avoided using
the equation 2. As above we sort dist(a;,b;),1 < i < p. The index j is defined to be the largest

index such that Ef:jozi > (3) — k. Similarly, to the (1,1 +¢) case we choose m' = min?_.m; as

i=
(1 — g, 1)-approximation of c2lk. ’

The computation of m;,1 < i < p can be done similarly to the approach described in [4]. We
use a WSPD with p = O(n) and assume A; = {a;}, 1 < i < p. For each point a; we need to
find the closest neighbor in corresponding B;. Let [ be a line whose slope is 45° passing through
the a; and lo a a line whose slope is 135° passing through the a;. These lines define four wedges:
Qtopa Qbottom Qlefta Qright- For any point p lying in Qleft U Qright(Qbottam U Qtop) the L-distance
to a; is defined by the z-distance (y-distance, resp.) to a;. We perform four range queries, using
orthogonal range tree [3] data structure (in coordinate system defined by lines [y, l2), each of them
corresponding to the appropriate wedge. For each node in a secondary data structure we keep four
values Tmin, Tmazs Ymins Ymaz (computed in the initial coordinate system) of points in corresponding
range. Consider for a example wedge Qrighs. Our query corresponding to (Qrigns marks O(log2 n)
nodes. The minimum of z,,in values stored in these nodes define the closest neighbor point to a;
lying in Qr;gn;. We proceed similarly with the other wedges. We maintain orthogonal range tree
data structures dynamically in a bottom-up fashion while traversing split tree T'. In order to merge
two data structures we simply insert all the points stored in the smaller range tree into the larger
one. Notice, that each point can be inserted at most O(logn) time. Each insertion takes O(log? n)
time. The total time for maintaining the range trees and computing m;, 1 < i < p is O(nlog®n).
It can generalized to d-dimensional space, d > 2 (in contrast to other metrics).

Theorem 12 The running time of (1 — e,1)-approzimation scheme applied to distance selection,
reporting distances (monochromatic or bichromatic), distance ranking problems under Lo, metric
in any d, d > 1 dimensional space is O(nlog? ' n), O(nlog™ ! n + k), O(nlog?* ' n), respectively.

Remark. The running times in the theorem above can be improved slightly by O(Flgolgog—n) factor

using dynamic fractional cascading technique [16].
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