
Fast Algorithms for Approximating Distan
esSergei Bespamyatnikh� and Mi
hael SegalyDepartment of Computer S
ien
eUniversity of British ColumbiaVan
ouver, B.C. Canada V6T 1Z4Abstra
tIn this paper we present eÆ
ient approximate algorithms for the various distan
e problems.Our te
hnique is based on the well-separated pair de
omposition proposed in [6℄.1 Introdu
tionLet S be a set of n points in the plane and let 1 � k � n(n�1)2 . Let d1 � d2 � : : : � d(n2) bethe Lp-distan
es determined by the pairs of points in S. In this paper we 
onsider the followingoptimization problems:� Distan
e sele
tion. Compute the k-th smallest distan
e between a pair of points of S.� Reporting distan
es. Report or enumerate the k smallest (largest) distan
es determinedby pairs of points of S in in
reasing (de
reasing) order.� Distan
e ranking. Determine how many pair points are 
loser than unit distan
e apart.� Distan
e by query. Prepro
ess a set S into a data stru
ture, so that, given a number k asabove, one 
an answer eÆ
iently what is the k-th smallest distan
e between a pair of pointsof S.� Reporting bi
hromati
 distan
es. Given sets R and B of n red and m blue points,respe
tively, in the plane and given k, 1 � k � nm report or enumerate k smallest (largest)distan
es determined by (red-blue) pairs of points.The problems above re
eived a lot of attention during the past de
ade. The solution to the dis-tan
e sele
tion problem 
an be obtained using a parametri
 sear
hing. The de
ision problem isto 
ompute, for a given real r, the sum �p2SjDr(p) \ (S � fpg)j, where Dr(p) is the 
losed diskof radius r 
entered at p. By solving the de
ision problem we solve our distan
e ranking problem[1, 11℄. Agarwal et al. [1℄ gave an O(n 43 log 43 n) expe
ted-time randomized algorithm for the de
isionproblem, whi
h yields an O(n 43 log 83 n) expe
ted-time algorithm for the distan
e sele
tion problem.Goodri
h [12℄ derandomized this algorithm, at a 
ost of an additional polylogarithmi
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the runtime. Katz and Sharir [13℄ obtained an expander-based O(n4=3 log3+" n)-time deterministi
algorithm for this problem. By applying a randomized approa
h Chan [7℄ was able to obtain anO(n log n + n2=3k1=3 log5=3 n) expe
ted time algorithm for this problem. For our best knowledge,nothing has been done for the query version of the distan
e sele
tion problem. One may �nd ituseful in parametri
 sear
hing appli
ations, where a set of 
andidate solutions is de�ned by thedistan
es between pairs of points of S, see e.g. [2℄.The distan
e sele
tion problem is also 
losely related to the reporting distan
es problem. Thepapers of Di
kerson and Shugart [10℄, Katoh and Iwano [14℄ and Segal and Kedem [20℄ presentseveral algorithms for the enumerating largest k distan
es. The algorithm in [10℄ works for anymetri
, and requires O(n+ k) spa
e with expe
ted runtime of O(n logn+ k log k log nlog log n ). The paper ofKatoh and Iwano [14℄ presents an algorithm for the L2 metri
 with running time O(min(n2; n logn+k4=3 log n=(log k)1=3)) and spa
e O(n + k4=3=(log k)1=3 + k log n). Their algorithm is based on thek nearest neighbor Voronoi diagrams. The algorithm proposed in [20℄ is based on posets, worksfor re
tilinear distan
es and has O(n+ k log n) running time and linear spa
e. Di
kerson et al. [9℄present an algorithm for the enumeration of all the k smallest distan
es in S in in
reasing order.Their algorithm works in time O(n logn + k log k) and uses O(n + k) spa
e. Lenhof et al. [15℄,Salowe [19℄, Di
kerson and Eppstein [8℄ solve the same problem too but they just report the k
losest pairs of points without sorting the distan
es, spending O(n log n + k) time and O(n + k)spa
e. An algorithm for solving the enumerating problem (for the smallest k distan
es) is alsopresented in [8℄, spending O(n log n + k log k) time and using O(n + k) spa
e. Chan [7℄ presentsO(n log n + k) expe
ted time simple algorithm for reporting the k 
losest pairs of points that isbased on the Lenhof et al. [15℄ algorithm.Regarding the k 
losest/farthest bi
hromati
 pairs problems, Salowe [18℄ proposed an algo-rithm with O(n log2 n) running time that works only for re
tilinear distan
e metri
. Katoh andIwano [14℄ gave a O(min(n2; n log n+ k4=3 log n=(log k)1=3)) runtime solution whi
h requires O(n+k4=3=(log k)1=3 + k logn) spa
e. Both papers assumed that m = n.In this paper we present fast approximation algorithms for the problems above. For a distan
ed determined by some pair of points in S and for any �xed 0 < Æ1 � 1, Æ2 � 1, the distan
e d0is the (Æ1; Æ2)-approximation of d, if Æ1d � d0 � Æ2d. We give an O(n log3 n) runtime solution forthe distan
e sele
tion problem that 
omputes a pair of points realizing distan
e d0 that is either(1; 1+") or (1�"; 1)-approximation of the a
tual k-th distan
e, for any �xed " > 0. We also presentan O(n logn) time algorithm for 
omputing the (1 � "; 1 + ")-approximation of k-th distan
e. It
ompares well to the paper by Agarwal et al. [1℄ that 
onsiders a similar problem, where one wantto identify approximate \median" distan
e, that is, a pair of points p; q 2 S with the property thatthere exist absolute 
onstants 
1 and 
2 su
h that 0 < 
1 < 12 < 
2 < 1 and the rank of the distan
edetermined by p and q is between 
1�n2� and 
2�n2�. They [1℄ showed how to solve this problem inO(n log n) time.We also show how to extend our solution in order to answer eÆ
iently the queries approximatingk-th distan
e. We provide an O(n log3 n+ k) runtime and O(n logn) spa
e algorithm for reportingk distin
t pairs of points whose distan
es d01 � d02 � : : : � d0k are (1 � "; 1)-approximation of klargest distan
es, i.e. (1� ")d(n2)+i�k � d0i � d(n2)+i�k:We a
hieve the same runtime performan
e for reporting smallest k distan
es with (1; 1 + ")-approximation and propose algorithms for the reporting and enumerating bi
hromati
 distan
eswith the same running time. 2



We present an algorithm for the approximation version of the distan
e ranking problem. LetK be the solution of the distan
e ranking problem. For a given " > 0, we �nd two numbers k1; k2,su
h that 0 � k1 � K � k2 � �n2� and1� " � dk1 � 1 � dk2 � 1 + ":The running time of our algorithm is O(n log3 n) and it 
an be extended to deal with a separatorquery: instead of 
onsidering distan
es less than one, we may 
onsider the distan
es less than aquery separator s. A query time is O(log n). The distan
e ranking problem is 
losely related to thewell-known repeated unit distan
es problem[17℄, in whi
h one wants to determine the number ofpairs of points at unit distan
e in the plane. The best known lower bound (supposed to be tight)is n1+
= log log n for some appropriate 
onstant 
 > 0 and the best upper bound is O(n4=3). We alsoshow that the runtime and spa
e requirements of our approximation algorithms for the problemsabove 
an be improved when dealing with L1 metri
.Our method 
an be extended to deal with more general problems, that we 
all range distan
esele
tion and bat
hed distan
e sele
tion. In the range distan
e sele
tion we are given two numbersk1, k2, 1 � k1 � k2 � �n2� and we want to report all the pairs of points whose distan
e rank isbetween k1 and k2. In the bat
hed distan
e sele
tion problem we are given an in
reasing sequen
e ofnumbers 1 � k1 � k2; : : : ;� kl � �n2�, we want to report all the pairs of points realizing k1-th, k2-th,: : : kl-th distan
e. For our best knowledge nothing has been done regarding these two problems.We show the eÆ
ient (1� "; 1 + ")-approximation algorithms for these problems.The main 
ontribution of this paper is by developing eÆ
ient approximating algorithms for theseveral well known-optimization problems using an unifying approa
h that based on well separatedpairs de
omposition introdu
ed by Callahan and Kosaraju [6℄. This paper is organized as follows.In the next se
tion we brie
y des
ribe well-separated pair de
omposition. Se
tion 3 is dedi
ated tothe distan
e sele
tion problem, its query version and to the range and bat
hed distan
e sele
tionproblems. We 
onsider the rest of the distan
e problems in Se
tion 4.2 Well-separated pair de
ompositionIn this se
tion we shortly des
ribe the well-separated pair de
omposition proposed by Callahan andKosaraju [6℄Let A and B be two sets of points in d-dimensional spa
e (d � 1) of size n and m, respe
tively.Let s be some 
onstant stri
tly greater than 0 and letR(A) (resp. R(B)) be the smallest axis-parallelbounding box that en
loses all the points of A (resp. B). We say that point sets A and B are well-separated with respe
t to s, if R(A) and R(B) 
an be ea
h 
ontained in d-dimensional ball of someradius r, su
h that the distan
e between these two ball is at least sr. One 
an easily show that for agiven two well-separated sets A and B, if p1 2 A, p2; p3 2 B then dist(p1; p2) � (1 + 2s )dist(p1; p3).(For L1 metri
 the previous inequality looks dist(p1; p2) � (1 + 2p2s )dist(p1; p3). For general Lpmetri
 the inequality may di�er by some multipli
ative 
onstant.)Let S be a set of d-dimensional points, and let s > 0. A well-separated pair de
omposition(WSPD) for S with respe
t to S is a set of pairsf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g su
h that:(i) Ai � A and Bi � B, for all i = 1; : : : ; p.(ii) Ai \Bi = ;, for all i = 1; : : : ; p. 3



(iii) Ai and Bi are well-separated with respe
t to s.(iv) ea
h unordered pair of points (p; q); p; q 2 S; p 6= q, there is exa
tly one pair (Ai; Bi) in a setf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g su
h that either p 2 Ai and q 2 Bi or p 2 Bi and q 2 Ai.The main idea of the algorithm for 
onstru
tion WSPD is to build a binary split tree T whoseleaves are points of S, with internal nodes 
orresponding to subsets of S. Ea
h pair (Ai; Bi) inWSPD is represented by two nodes v; u 2 T , su
h that all the leaves in the subtree rooted at by v
orrespond to the points of Ai and all the leaves in the subtree rooted at by u 
orrespond to thepoints of Bi.The paper of Callahan and Kosaraju [6℄ presents an algorithm that impli
itly 
onstru
ts WSPDfor a given set S and separation value s > 0 in O(n logn+ s2n) time su
h that the number of pairs(Ai; Bi) is O(s2n). Moreover, Callahan [5℄ showed to 
ompute WSPD in whi
h at least one of thesets Ai; Bi of ea
h pair (Ai; Bi) 
ontains exa
tly one point of S. The running time remains thesame; however, the number of pairs in
reases to O(n log n+ s2n).3 Approximating k-th distan
eWe �rst des
ribe a general s
heme for obtaining (1; 1+") or (1�"; 1)-approximation of k-th distan
eand then show how to get an algorithm for the query version of the problem. At the end we obtaina simpler algorithm for the (1� "; 1+ ")-approximation and show how to extend it for the bat
hed(range) sele
tion problem.3.1 General approximation s
hemeOur algorithm 
onsists of several stages. At the �rst stage we 
ompute a WSPD for S withseparation 
onstant s = 2" . As it was mentioned in the Se
tion 2 ea
h pair (Ai; Bi) in WSPDis represented by two nodes in T and jAij = 1 or/and jBij = 1. Next, for ea
h pair (Ai; Bi),1 � i � p; p = O(n log n) we 
ompute the following values:� mi = mina2Ai;b2Bi dist(a; b).� Mi = maxa2Ai;b2Bi dist(a; b).� (ai; bi) 2 (Ai; Bi) that realizes Mi, i.e. dist(ai; bi) =Mi.� �i = jAijjBij.In other words, mi(Mi) is the minimal (maximal) distan
e between points that belong to Ai andBi. The value �i is the total number of distin
t pairs (a; b), a 2 Ai, b 2 Bi.We sort all mi, 1 � i � p in in
reasing order. Without loss of generality, we assume thatm1 � m2 � : : : � mp. Out task now is to �nd the smallest index j, su
h that �ji=1�i � k. We
laim that M 0 = maxji=1Mi is the (1; 1 + ")-approximation of k-th distan
e. In what follows weprove the 
orre
tness of our algorithm and show how to implement it eÆ
iently.Lemma 1 The value M 0 is the (1; 1 + ")-approximation of k-th distan
e.Proof. We need to show that dk � M 0 � (1 + ")dk. In order to show the left inequality weobserve that the total number of distan
es de�ned by pairs (Ai; Bi), 1 � i � j is at least k be
ause�ji=1�i � k. Sin
e M 0 is the maximum of these distan
es M 0 � dk follows.4



We re
all that all possible pairs of points of S are uniquely represented by pairs (Ai; Bi) inWSPD. Consider the set of pairs D = f(a; b)ja 2 Ai; b 2 Bi; i � jg. By de�nition of j, mj is thesmallest distan
e de�ned by pairs of D. The total number of pairs in D is at least �n2�� k. Thus,the pair of points (p; q) that de�nes dk belongs to D. Therefore, dk � mj. Let t, 1 � t � j bethe index su
h that M 0 = Mt. >From the observation in previous se
tion it follows that Mt �(1 + 2s )mt = (1 + ")mt. Thus,M 0 � (1 + ")mt � (1 + ")mj � (1 + ")dkIt remains to show how to implement this algorithm eÆ
iently, i.e. how to 
ompute the valuesmi;Mi; �i, 1 � i � p. First we show how to 
ompute �i. In other words we need to 
ompute the
ardinalities of Ai and Bi, 1 � i � p. Re
all that ea
h pair (Ai; Bi) in WSPD is represented bytwo nodes vi, ui of the split tree T . The 
ardinality of Ai(Bi) equals to the number of leaves inthe subtree of T rooted at vi(ui). Thus, by postorder traversal of T we are able to 
ompute all therequired 
ardinalities.Next, we des
ribe how to 
ompute the values mi, 1 � i � p (the similar algorithm works forMi as well). Without loss of generality, we assume the singleton set of ea
h pair (Ai; Bi) in WSPDis Ai = faig. Our problem, thus, for ea
h ai, 1 � i � p to 
ompute the nearest neighbor in
orresponding Bi. The naive approa
h would lead to an O(n2) algorithm sin
e the total 
omplexityof all Bi's is O(n2). In order to �nd the neighbor for ea
h ai we use Voronoi Diagrams for Bi with
orresponding point lo
ation data stru
tures. We 
annot 
ompute expli
itly all Voronoi Diagramsbe
ause of total 
omplexity of all Bi. Fortunately, we 
an maintain dynami
ally Voronoi Diagramswhile traversing a split tree T in a bottom-up fashion. We pro
eed as follows. For ea
h node vof the split tree T that 
orresponds to we 
reate a asso
iate list Lv 
ontaining all ai's su
h that(faig; Bi) belongs to WSPD and Bi is represented by v. Note that some lists 
ontain at leastO(log n) elements sin
e the total number of pairs in WSPD is O(n logn) but the number of nodesin T is linear. We traverse a tree T in a postorder fashion starting from leaves. At any time we havea front that is a set of not pro
essed yet nodes su
h that all the nodes below them are pro
essedalready. Re
all that Sv is a subset of S asso
iated with a node v in T . The maintenan
e of theVoronoi Diagram of Sv leads to quadrati
 runtime for biased trees. Instead we use a partition Rvof Sv into disjoint sets S1v ; : : : ; Sqv and maintain the Voronoi Diagram V D with 
orresponding pointlo
ation data stru
ture PL for ea
h set Sj, 1 � j � q in Rv. The sizes of the sets in Rv are di�erentand restri
ted to be the powers of two. As the 
onsequen
e the number of su
h sets is at mostlog n, i.e. q � log n.We des
ribe how to pro
ess a node v in T . In v is a leaf we build a 
orresponding VoronoiDiagram V D with a stru
ture PL. To pro
ess the internal node we use the Voronoi Diagrams witha asso
iated PL stru
tures of its sons. In order to obtain a partition Sv we merge data stru
turesV D and PL of equal sizes. It 
an be done, for example, by simple rebuilding a new data stru
turesfor the merged set of points. After merging all data stru
tures, for ea
h ai 2 Lv, we �nd a nearestneighbor in Sv using the point lo
ation data stru
tures of v.Considering time and spa
e 
omplexity. All steps in our algorithm ex
luding 
omputing mi;Mi,1 � i � p 
an be 
arried out in O(n logn) time using O(n logn) spa
e. The maintenan
e of theVoronoi Diagrams with a point lo
ation data stru
tures takes O(n log2 n) time sin
e only lognmerges are possible. Determining the nearest neighbor for ea
h ai, 1 � i � p 
onsumes in totalO(n log3 n) time be
ause p = O(n logn), Sv is represented by logn data stru
tures and an additionallog n 
omes from the point lo
ation query (the same holds for 
omputing farthest neighbor for ea
h5



ai, 1 � i � p). The spa
e requirements remain O(n logn) sin
e one 
an easily observe that ea
hpoint of S appears in front exa
tly one, providing only O(n) additional spa
e. Noti
e that at thesame time and spa
e we 
an �nd a pair of points in S that realizes (1; 1 + ")-approximation of dk.Theorem 2 Given a set S be a set of n points in the plane, number k, 1 � k � n(n�1)2 and" > 0 in time O(n log3 n) we 
an 
ompute a pair of point realizing distan
e d0 that is an (1; 1 + ")-approximation of the a
tual k-th distan
e.Remark. The same s
heme works for (1 � "; 1)-approximation. The di�eren
e is that instead of
onsidering mi, 1 � i � p, we sort Mi. The index j is de�ned to be the largest index su
h that�pi=j�i � �n2�� k. Choose the m0 = minpi=jmi as (1� "; 1)-approximation of dk.3.2 Distan
e by queryUsing the approximation algorithm above we show how to solve distan
e by query problem. Indeed,we 
an build a binary tree T� with the leaves 
orresponding to �1; : : : ; �p. Ea
h internal node v 2 T�will keep three values: �l2i=l1�i, �l3i=l2+1�i, where �l1 ; : : : ; �l2 (�l2+1; : : : ; �l3) are the values that
orrespond to the leaves of the left subtree (resp. right subtree) of a tree rooted by v, and thethird value Mv = maxl3i=l1 Mi. Clearly, the 
onstru
tion of this tree T� with the augmented values
an be 
omputed in linear time. We asso
iate with ea
h node v 2 T� an index jv, su
h that �jv
orresponds to the rightmost leaf in the subtree rooted at v. Given a value k, we traverse T�starting from the root towards its 
hildren. We need to �nd a node u, with the smallest ju su
hthat �jui=1�i � k. It 
an be done in O(log n) time, by simple keeping the total number of nodes tothe left of the 
urrent sear
hing path. At ea
h node where the path goes right, we 
olle
t the valueMv stored in the left subtree. At the end, we report the maximal of the 
olle
ted Mv values.Lemma 3 Given " > 0, WSPD 
an be prepro
essed in O(n log3 n) time, su
h that given a numberk we 
an answer two types of approximate distan
e queries ((1� "; 1), (1; 1 + ")) in O(log n) time.3.3 (1� "; 1 + ")-approximationWe 
an simplify our algorithm for (1; 1+")-approximation of the k-th distan
e. Using WSPD for Swith separation 
onstant s = 2" we 
ompute only �i and take any pair (ai; bi) 2 (Ai; Bi); 1 � i � p,p = O(n). The (1 � "; 1 + ")-approximations of k-th distan
es for all 1 � k � �n2� 
an be takenamong p pairs (ai; bi). To show it �rst we sort the distan
es d0i between ai and bi, 1 � i � p. Weassume that the pairs (Ai; Bi) are in order of in
reasing d0i. Let Ml be the maximal distan
e de�nedby pairs of points in (Al; Bl). For a parti
ular k we 
ompute the smallest j su
h that Pji=1 �i � k.The points aj and bj are at distan
e at most M 0 = max1�i�jMi. Similarly to Lemma 1 we haved0j �M 0 � (1 + ")dk: (1)From other hand, (1 + ")d0j = max1�i�j(1 + ")d0i � max1�i�jMi =M 0 � dk: (2)Thus, d0j � (1� ")dk and (aj ; bj) is (1� "; 1 + ")-approximation of the k-th distan
e.Theorem 4 The (1�"; 1+")-approximation of the k-th distan
e among a given n points in Rd; d �1 
an be 
omputed in O(n logn) time and O(n) spa
e. Moreover, we 
an answer (1 � "; 1 + "))-approximate distan
e queries in O(log n) time in any d � 1. The prepro
essing time is O(n logn).6



Proof. We sort the linear number of distan
es d0i, 1 � i � p in O(n log n) time. We performa binary sear
h over the sorted list of values. In O(1) time we 
an 
ompute the median distan
ed0m; 1 � m � p. We partition the set of indi
es I = f1 � i � pg into C� = fijd0i � d0mg andC> = I n C�. Compute �0 = Pi2C� �i. If �0 � k then we repla
e all pairs (ai; bi); i 2 C� by apair with largest distan
e and assign �0 for it. If �0 < k then we repla
e all pairs (ai; bi); i 2 C>by a pair with the smallest distan
e and assign �0 for it. It redu
es the number 
andidate pairs byhalf. The total time to �nd the (1 � "; 1 + ")-approximation of the k-th distan
e (after sorting d0idistan
es) is O(logn) using. a tree T� as in Se
tion 3.2 for eÆ
ient 
omputation sums of �i.Remark. From the previous theorem it follows that we 
an approximate the diameter of the points(i.e. the largest pairwise distan
e between points) in O(n logn) time as well as the smallest pairwisedistan
e between the points.3.4 Range and bat
hed distan
e sele
tionWe note that these two problems 
an not be solved using our approximation distan
e sele
tionquery algorithm, sin
e it 
an report the same pair of points few times. As a matter of fa
t thebat
hed distan
e sele
tion problem is more general than the range sele
tion (ex
ept for the lengthof input). We explain an algorithm for the bat
hed version of the problem that works as well forthe range version. We pro
eed as in Se
tion 3.3, by taking arbitrary pairs of points (ai; bi) from(A;Bi), 1 � i � p of WSPD and sorting them a

ording to the distan
es. We �nd smallest j su
hthat K = Pji=1 �i � k1. We �nd the number t1 of all the indi
es in the sequen
e k1; k2; : : : ; klthat are less or equal to K. We take any t1 pairs of points from (Aj ; Bj) as a part of our solutionapproximating k1-th, : : :, kt1 -th distan
es. For the remaining indi
es kt1+1, : : :, kl we apply thesame s
heme. The 
orre
tness of this algorithm follows from the dis
ussion in Se
tion 3.3.Theorem 5 The (1 � "; 1 + "))-approximation of the bat
hed (range) distan
e sele
tion problemwith points in Rd; d � 1 
an be found in O(n logn) time and O(n) spa
e.4 Other distan
e problemsIn this se
tion we show how to solve the rest of the distan
e problems des
ribed at Introdu
tion.We �rst present algorithm for reporting k distan
es (smallest or largest) and then extend it for thebi
hromati
 
ase. Next we show how to solve the distan
e ranking problem and its query version.Finally, we observe how we 
an speed up our algorithms for L1 metri
 and generalize them ford-dimensional spa
e.4.1 Reporting k largest distan
esNoti
e that we 
annot apply k times k-th distan
e sele
tion query algorithms sin
e we are interestedin the solution with k distin
t pair of points. We 
ompute WSPD for S with separation 
onstants = 2" . Let mi, Mi and �i, 1 � i � p be as des
ribed in Se
tion 3. We sort all Mi, 1 � i � p inin
reasing order. Let us assume that M1 �M2 � : : : �Mp. We �nd the largest index j su
h that�pi=j�i � k. Suppose that �pi=j+1�i = k0 (k0 < k). Denote by A set of k � k0 any distin
t pairsof points de�ned by (Aj ; Bj). Next, we show that the set R of all distin
t pairs points de�ned by(Aj+1; Bj+1); : : : ; (Ap; Bp) and by A is a required solution. Assume, that that we all the distan
esde�ned by pairs of points in R are sorted, i.e. d01 � d02 � : : : � d0k.7



Lemma 6 (1� ")d(n2)+i�k � d0i � d(n2)+i�k; 1 � i � k:Proof. Fix i. Sin
e there are at least k � i distan
es d0i+1; : : : ; d0k that are larger than d0i, we
on
lude that d0i � d(n2)+i�k. From the other hand, assume that d0i is realized by some pair ofpoints de�ned by (Al; Bl), for some 1 � l � p. Obviously, Ml � (1 + ")d0i by observation fromSe
tion 2. However, as one 
an see the valueMl is larger (or equal) than at least �n2�+i�k di�erentdistan
es. Hen
e, Ml � d(n2)+i�k and we have d(n2)+i�k � (1 + ")d0i. It remains to point out that11+" > 1� " and, therefore, (1� ")d(n2)+i�k � d0i.In order to implement the above algorithm eÆ
iently we use the same data stru
tures as weused for k-th distan
e sele
tion algorithm. The rest is straightforward.Theorem 7 Given a set S be a set of n points in the plane, number k, 1 � k � n(n�1)2 and " > 0 intime O(n log3 n+k) we 
an �nd k distin
t pairs of points whose distan
es are (1�"; 1)-approximationof the a
tual k largest distan
es.Remark. The same s
heme works for the reporting (1; 1 + ")-approximate k smallest distan
es.4.2 Reporting bi
hromati
 distan
esBasi
ally, the idea is similar to the one used in Se
tion 4.1. We 
onsider a set S = A [ B andperform almost the same operations as before. We 
ompute a WSPD for S with s = 2" . As before,without loss of generality we assume that for ea
h pair (Ai; Bi), 1 � i � p, jAij = 1. Thus, Aimay 
ontain exa
tly one red or exa
tly one blue point. Next, for ea
h pair (Ai; Bi) we 
ompute thevalues mi, Mi and �i, but now 
onsidering only bi
hromati
 distan
es, that is, the distan
es thatde�ned by a point from Ai and by points with di�erent 
olor from Bi. We pro
eed as in Se
tion 4.1.We only need to explain how to 
ompute the values mi, Mi and �i, 1 � i � p. By a traversal ofa tree T whi
h represents a WSPD we 
an 
ount for ea
h node v 2 T the number of blue and redleaves in the subtree rooted at v. It will de�ne our �i, 1 � i � p. In order to deal with mi, Mi,instead of maintaining two Voronoi Diagrams for ea
h node v 2 T : 
losest and farthest neighbor,we will maintain four Voronoi Diagrams: 
losest and farthest neighbor for ea
h 
olor of points. Therest follows immediately.Theorem 8 Given two sets of points R and B in the plane, with 
ardinalities n and m, respe
tively,a number k, 1 � k � n(n�1)2 and " > 0 in time O(max (m;n) log3max (m;n) + k) we 
an �nd kdistin
t pairs of red-blue points whose bi
hromati
 distan
es are (1�"; 1)-approximation ((1; 1+")-approximation) of the a
tual k largest (smallest) bi
hromati
 distan
es.4.3 Approximate distan
e rankingThe approa
h to approximate the rank of unit distan
e is similar to approximating the k-th distan
e.We again use a WSPD for S with separation 
onstant s = 2" . For ea
h pair fAi; Big, 1 � i � p we
ompute mi;Mi; (ai; bi); and �i as in Se
tion 3. The set of indi
es I = f1 � i � pg is partitionedinto 3 subsets C< = fi 2 IjMi < 1g, C> = fi 2 Ijmi > 1g, and C= = I n C< [ C>. If C= isempty then the distan
es formed by the pairs (Ai; Bi); i 2 C< are 
loser than 1 and the remainingdistan
es are larger than 1. Hen
e the number of pairs of points in S at distan
e less than 1 isPi2C< �i. Otherwise we set k1 = 1+Pi2C< �i and k2 = �n2��Pi2C> �i. The numbers k1 and k2
an be 
omputed in linear time. 8



Lemma 9 The numbers k1 and k2 approximate the rank of unit distan
e.Proof. It is 
lear that 0 � k1 � K � k2 � �n2�, where K is the exa
t solution. The de�nition ofk1 and k2 implies dk1 � 1 � dk2 . It remains to show the k1-th and k2-th distan
es are 
lose to 1.Let (ai1 ; bi1) 2 (Ai1 ; Bi1) and (ai2 ; bi2) 2 (Ai2 ; Bi2) be the pairs of points de�ned these distan
es.Note that i1; i2 2 C= by 
hoi
e of k1 and k2. Re
all that, for any i, the sets Ai and Bi arewell-separated with the separation 
onstant s = 2" . Hen
e dk2 � Mi2 � (1 + ")mi2 � 1 + " anddk1 � mi1 � Mi1(1+") � Mi1(1+") � 1� ". The lemma follows.4.3.1 Approximate rank queryIn the rank query, for a separator s, we �nd two numbers k1; k2, su
h that 0 � k1 � K � k2 � �n2�and (1 � ")s � dk1 � s � dk2 � (1 + ")s where K is exa
t rank of the distan
e s. Noti
e that we
an apply a result from Se
tion 3 for a distan
e by query problem and obtain an O(log2 n) querytime for this problem. We show how to do better. Let �1 be the permutation of Mi values, su
hthat M�11 � M�12 � : : : � M�1p . Similarly, �2 is the permutation for the sorted mi values. Thepossible approximate lower ranks are stored in the array MRANK. The i-th element of MRANKis �ij=1��1j . The array MRANK 
an be 
omputed in O(p) = O(n log n) time. We also use anarray mRANK, whose i-th element is �pj=i+1��2j . The approximate rank query 
an be answeredas follows. We lo
ate the separator s among the sorted Mi; 1 � i � p values and �nd the largestindex l su
h that M�1l < s. It 
an be done in O(log p) = O(logn) time. We also �nd the smallestindex t with m�2t > s. The 
ondition C= = ; implies MRANK[l℄ +mRANK[t℄ = �n2� and theexa
t solution is equal to MRANK[l℄ in this 
ase. Otherwise, set k1 = 1 + MRANK[l℄ andk2 = mRANK[t℄.Lemma 10 The WSPD 
an be prepro
essed in O(n log3 n) time to answer approximate rank queriesin O(logn) time.4.4 L1 
aseWe �rst 
onsider the problems of 
omputing the (1; 1 + ")-approximation of distan
es under L1metri
. We take s = 2p2" . Noti
e, that we avoid the 
omputation of mi; 1 � i � p values by takingarbitrary pairs of points (ai; bi) from ea
h (Ai; Bi); 1 � i � p (see equation 1). As in Se
tion 3.3we sort these pairs of points by distan
es (we assume that index i of (ai; bi) 
orresponds to therank of dist(ai; bi) in the sorted order). The value M 0 
omputed in Se
tion 3.3 is the (1; 1 + ")-approximation of k-th distan
e. Still, we need to 
ompute Mi values, 1 � i � p. In d-dimensionalspa
e (d � 1) under L1 the valuesMi 
an be 
omputed eÆ
iently without using Voronoi Diagrams.The points de�ning Mi should lye on the boundary of the smallest axis-parallel bounding box ofset Ai [ Bi. Re
all that Ai and Bi are well separated and, thus, the L1 diameter of Ai [ Bi isde�ned by a pair (p; q) su
h that p 2 Ai and q 2 Bi. Instead of maintaining Voronoi Diagram inbottom-up traversal of tree T we maintain the bounding boxes for sets of points 
orresponding tothe nodes of T . The new bounding box 
an be 
omputed in O(1) time using the information fromthe previous steps. Moreover, we 
an use a WSPD with p = O(n).Thus, we 
on
lude byTheorem 11 The running time of (1; 1 + ")-approximation s
heme applied to distan
e sele
tion,reporting distan
es (mono
hromati
 or bi
hromati
), distan
e ranking problems under L1 metri
 in9



any d-dimensional spa
e (d � 1) is improved to O(n log n), O(n logn+ k), O(n log n), respe
tively,using only linear spa
e.Regarding (1 � "; 1) algorithms we noti
e that the 
omputation of Mi 
an be avoided usingthe equation 2. As above we sort dist(ai; bi); 1 � i � p. The index j is de�ned to be the largestindex su
h that �pi=j�i � �n2� � k. Similarly, to the (1; 1 + ") 
ase we 
hoose m0 = minpi=jmi as(1� "; 1)-approximation of dk.The 
omputation of mi; 1 � i � p 
an be done similarly to the approa
h des
ribed in [4℄. Weuse a WSPD with p = O(n) and assume Ai = faig, 1 � i � p. For ea
h point ai we need to�nd the 
losest neighbor in 
orresponding Bi. Let l1 be a line whose slope is 45Æ passing throughthe ai and l2 a a line whose slope is 135Æ passing through the ai. These lines de�ne four wedges:Qtop; Qbottom; Qleft; Qright. For any point p lying in Qleft [Qright(Qbottom [Qtop) the L1-distan
eto ai is de�ned by the x-distan
e (y-distan
e, resp.) to ai. We perform four range queries, usingorthogonal range tree [3℄ data stru
ture (in 
oordinate system de�ned by lines l1, l2), ea
h of them
orresponding to the appropriate wedge. For ea
h node in a se
ondary data stru
ture we keep fourvalues xmin; xmax; ymin; ymax (
omputed in the initial 
oordinate system) of points in 
orrespondingrange. Consider for a example wedge Qright. Our query 
orresponding to Qright marks O(log2 n)nodes. The minimum of xmin values stored in these nodes de�ne the 
losest neighbor point to ailying in Qright. We pro
eed similarly with the other wedges. We maintain orthogonal range treedata stru
tures dynami
ally in a bottom-up fashion while traversing split tree T . In order to mergetwo data stru
tures we simply insert all the points stored in the smaller range tree into the largerone. Noti
e, that ea
h point 
an be inserted at most O(log n) time. Ea
h insertion takes O(log2 n)time. The total time for maintaining the range trees and 
omputing mi, 1 � i � p is O(n log3 n).It 
an generalized to d-dimensional spa
e, d > 2 (in 
ontrast to other metri
s).Theorem 12 The running time of (1 � "; 1)-approximation s
heme applied to distan
e sele
tion,reporting distan
es (mono
hromati
 or bi
hromati
), distan
e ranking problems under L1 metri
in any d, d � 1 dimensional spa
e is O(n logd+1 n), O(n logd+1 n+ k), O(n logd+1 n), respe
tively.Remark. The running times in the theorem above 
an be improved slightly by O( log nlog log n) fa
torusing dynami
 fra
tional 
as
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