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Abstract

We consider the fundamental problem of managing a bounded size queue buffer where
traffic consists of packets of varying size, each packet requires several rounds of pro-
cessing before it can be transmitted out, and the goal is to maximize the throughput,
i.e., total size of successfully transmitted packets. Our work addresses the tension be-
tween two conflicting algorithmic approaches: favoring packets with fewer processing
requirements as opposed to packets of larger size. We present a novel model for study-
ing such systems and study the performance of online algorithms that aim to maximize
throughput.

1. Introduction

Over the recent years, there has been a growing interest in understanding the ef-
fects that buffer sizing has on network performance. The main motivation for these
studies is to understand the interplay between buffer size, throughput, and queueing
delay. Broadly speaking, one can identify three main types of delay that contribute
to packet latency: transmission and propagation delay, processing delay, and queueing
delay. Recent research that advocates the usage of small buffers in core routers, aiming
to reduce queueing delay in the presence of (mostly) TCP traffic, sidesteps the issue
that as buffers get smaller, the effect of processing delay becomes much more pro-
nounced [22]. The importance of these phenomena is further emphasized by increas-
ing heterogeneity of network traffic processing. The modern network edge is required
to perform tasks with ever-increasing complexity including features such as advanced
VPNs services, deep packet inspection, firewall, intrusion detection etc. Each of these
features may require a different processing effort at the routers [28], and such features
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directly affect processing delay. As a result, the processing method of packets and the
way how these packets are processed (“run-for-completion”, processing with preemp-
tions, etc.) may have significant impact on queueing delay and throughput; increasing
the required processing per packet in some of the flows may cause increased congestion
even for traffic with relatively modest burstiness characteristics.

We should note that in the general case, processing requirements are independent
of packet lengths, thus decoupling the amount of work required for a router to pro-
cess a packet from the throughput gained upon its successful transmission. Processing
requirement and packet length are indeed two independent characteristics in the mod-
ern networks: a short packet may require complex processing policies while a long
packet may simply go through almost untouched and vice versa. This independence
lets us design processing policies better suited for different objective functions (e.g.,
by optimizing bytes transmitted per processing cycle).

This situation leads to several questions relevant to the design and implementation
of router architectures. For instance, in light of heterogeneous processing requirements
in the traffic, does one need to implement input buffering before a packet is handled
by the network processor? If so, what should the size of such a buffer be, and what
admission control policy should be applied? Another question is related to adapting
common active queue management (AQM) policies so that they account for hetero-
geneous processing required by traffic. In this respect, the main question is whether
current AQM approaches are capable of considering these characteristics; if not, what
form should new policies take? In this work, we initiate the study of these questions
and the tradeoffs they encompass. We focus on improving our understanding of effects
that processing disciplines have on throughput in cases of bounded buffers where traffic
is heterogeneous in terms of both packet processing requirements and packet length.

In what follows, we adopt the terminology used to describe queue management
within a router in a packet-switched network. We focus our attention on a general
model for the problem where we are required to manage the admission control and
scheduling units in a single bounded size queue, where arriving traffic consists of pack-
ets, such that each packet is labeled with its size (e.g., in bytes), and processing require-
ment (in processor cycles). A packet is successfully transmitted once the scheduling
unit has scheduled the packet for processing for at least its required number of cycles,
while the packet resides in the buffer. If a packet is dropped from the buffer, either
upon arrival due to admission control policies or after being admitted and possibly par-
tially, but not fully, processed (in scenarios where push-out is allowed), such a packet
is irrevocably lost. We focus our attention on maximizing the throughput of the queue,
measured by the total number of bytes of packets that are successfully transmitted by
the queue.

2. Our Contributions

In this work we provide a formal model for studying problems of online buffer
management and online scheduling in settings where packets have both varying size
and heterogeneous processing requirements, and one has a limited size buffer to store
arriving packets. Our model lets us study the interplay between potentially conflict-
ing approaches, favouring large packets and favouring packets with less required pro-
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cessing, in the situation where the goal is to maximize the total length of transmitted
packets. At least at this point, it is unclear which one is more significant: if one policy
processes longest packets first while another processes packets with minimal residual
work, which is better? The offline version of this problem is NP-hard, as it encom-
passes Knapsack as a special case. For the more natural online setting, we propose
algorithms with provable worst case performance guarantees that greedily optimize
each one of these characteristics (or a combination of the both). We focus our attention
on priority-based buffer management and scheduling in both push-out (PO) settings,
where admitted packets are allowed to be pushed out of the queue prior to having its
processing completed (in which case the packet does not contribute to the system’s
throughput), and in the non-push-out (NPO) case, where buffer management decisions
are limited to admission control.

Specifically, we consider the following priority queueing regimes: (i) Shortest-
Remaining-Processing-Time (SRPT) first, common in job scheduling environments;
(ii) Longest-Packet (LP) first; (iii) Most-Effective-Packet (MEP) first, prioritizing pack-
ets by the ratio of residual processing requirement to size. We study buffer management
algorithms for these priorities, proving bounds in terms of (i) maximum packet size
and (ii) maximum number of processing cycles per packet. In the push-out case, to
reduce the number of combinations considered, the same characteristic defines both
processing order and push-out mechanism. Our results are summarized in Table 1.

3. Related Work

In recent years, there has been a surge in the study of the effects of buffer size on
traffic queueing delays arising in networking systems. Appenzeller et al. [1] studied
this problem in the context of statistical multiplexing, focusing mostly on TCP flows.
More recently, broader aspects of these question were studied, and a comprehensive
overview of perspectives on router buffer sizing can be found in [27].

The works [7, 16, 15, 14, 2] considered buffer management and scheduling in the
context of network processors, where arriving traffic has heterogeneous processing re-
quirements for unit-sized packets. They study schedulers with various processing or-
ders in both push-out and non-push-out buffer management regimes. They focused on
the case where packets are of unit size and showed competitive algorithms, as well as
lower bounds, for such settings. In particular, an algorithm with logarithmic compet-
itiveness was introduced in [16] and, further, a 2-competitive algorithm was proposed
in [15]. Also recently, Azar and Gilon [2] have considered unit-sized packets with
heterogeneous processing requirements and proposed a different 2-competitive algo-
rithm than [15] for a single queue architecture with FIFO processing order and allowed
push-outs.

We believe that the assumption made in [7] that packets are of unit size is rather
restrictive, since in real life NPs have to deal with packets of varying size, and it is
unclear how one should design algorithms that ensure good throughput guarantees in
such highly heterogeneous scenarios.

In the conference version of this work [13], we stated that the PO policy with
MEP-based priorities could have constant competitiveness in some cases; in particular,
this policy is

(
1 + L ln k−k−L

B

)
-competitive. Here, we will show that in general the
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PO policy with MEP-based priority is at least
(

9
16 min{k, L}

)
-competitive, so it is no

better than the two other priorities considered in [13] in the worst case.
Our current work can be viewed as part of a larger research effort that focuses on

studying competitive algorithms for buffer management and scheduling, and specifi-
cally the study of such algorithms in bounded-buffers settings (see, e.g., a recent sur-
vey by Nikolenko and Kogan [20] which provides an overview of the latest results).
Recently Chuprikov et al. [5] considered a weighted throughput optimization for unit-
sized packets with heterogeneous values and processing requirements.

The SRPT algorithm has been studied extensively in OS scheduling for multi-
threaded processors, and it is well known to be optimal for mean response [24]. How-
ever, the SRPT algorithm as it is understood in literature is not the same as we study in
this work: in the context of job scheduling [24], SRPT is assumed to have an unlimited
buffer and does not allow for push-out, while we use a limited buffer with push-out.

Additional objectives, models, and algorithms have been studied extensively in this
context; see, e.g., [17, 19, 18, 8, 10, 11, 9, 12]. A comprehensive overview of competi-
tive online scheduling for server systems can be found in [21]; however, OS scheduling
is mostly concerned with average response time and average slowdown, while we fo-
cus on providing worst-case guarantees on the throughput. Furthermore, OS scheduling
does not allow for dropping jobs, which is an inherent aspect of our model, as implied
by the fact we have a limited-size buffer, and overflowing packets must be dropped.
The model considered in our work is also closely related to Job-shop scheduling prob-
lems [4], most notably to hybrid flow-shop scheduling [23], in scenarios where ma-
chines have bounded buffers. However, while these works focus on system delay, our
main focus is system throughput.

Recently, [25] explored what should be flexible to express buffer management poli-
cies for different objectives and suggested the usage of a single queue buffering archi-
tecture.

4. Model Description and Algorithmic Framework

Consider a buffer with bounded capacity of B bytes handling the arrival of a se-
quence of packets. Each arriving packet p has a size `(p) ∈ {1, . . . , L} (in bytes)
and a number of required processing cycles r(p) ∈ {1, . . . , k}; both `(p) and r(p) are
known for every arriving p. Note that required processing characteristics on a network
processor are often highly regular and predictable for a fixed configuration of network
elements [29], so per-packet processing requirements are expected to be available and
well-defined as a function of the features associated with the flow and the network ele-
ment configuration. Our assumption that the size may be as small as one byte is made
for simplicity and can be viewed as a scaling assumption. The values of maximal re-
quired processing k and maximal size L will play a fundamental role in our analysis;
however, that none of our algorithms need to know k in advance.

The queue performs two main tasks: buffer management, i.e., admission control
of new packets and push-out of currently stored packets, and scheduling, i.e., which
of the currently stored packets are scheduled for processing. The scheduler will be
determined by the priority policy employed by the queue. We assume a multi-core en-
vironment withC processors, so that at mostC packets may be assigned for processing
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Figure 1: An outline of the model. The top subfigure shows the transmission phase, the middle subfigure
shows the arrival phase where packets might be discarded, and the bottom subfigure shows the assignment
and processing phase. The length of a packet represents its size, and the number stamped on the packet
represents the number of its (residual) required processing cycles.

in any given time. Below we assume C = 1; this setting suffices to show both the in-
trinsic difficulties of the model and our algorithmic scheme. We assume slotted time,
where each time slot t consists of 3 phases: (i) transmission, when packets with zero
remaining required processing leave the queue; (ii) arrival, when new packets arrive,
and the buffer management unit performs both admission-control and possibly push-
out; (iii) assignment and processing, when a single packet is assigned for processing
by the scheduling unit. Figure 1 depicts our general model. If a packet is dropped prior
to being transmitted (i.e., while it still has a positive number of required processing
cycles), it is lost; we can drop a packet either upon arrival or due to a push-out decision
while it is in the buffer. A packet contributes its size to the objective function only
upon being successfully transmitted. The goal of a buffer management algorithm is to
maximize the overall throughput, i.e., total number of bytes transmitted.

We define a greedy buffer management policy as a policy that accepts all arrivals
whenever there is available buffer space in the queue. We only consider work-conserving
schedulers, i.e. schedulers that never leave the processor idle unnecessarily. An arriv-
ing packet p pushes out a packet q that has already been accepted into the buffer iff q
is dropped in order to free up buffer space for p and p is admitted to the buffer instead.
A buffer management policy is called push-out (PO) if it allows packets to push out
currently stored packets and non-push-out (NPO) if it does not. For an algorithm ALG
and a time slot t, we define IBALG

t as the set of packets stored in ALG’s buffer at time
t. The number of processing cycles of a packet is key to our algorithms. For a time
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moment t and a packet p currently stored in the queue, its number of residual process-
ing cycles rt(p) is defined to be the number of processing cycles it requires before it
can be successfully transmitted.

We focus our attention on priority queueing disciplines that define both scheduling
and buffer management behaviour of the queue. Specifically, we employ three disci-
plines that prioritize the following parameters: (i) processing (SRPT): the packet with
the least number of residual cycles has top priority; (ii) length (LP): the largest packet
has top priority; (iii) processing-to-length (MEP): the packet with the least residual
cycles to size ratio has top priority.

We use competitive analysis [26, 3] to evaluate performance guarantees provided
by our online algorithms. An algorithm ALG is said to be α-competitive (for some
α ≥ 1) if for any arrival sequence σ, the total length of packets successfully transmitted
by ALG is at least 1/α times the total length of packets successfully delivered by an
optimal solution (denoted OPT), obtained by an offline clairvoyant algorithm.

Next we define the algorithms used below for all types of characteristics. The Non-
Push-Out Algorithm (NPO) is a simple greedy work-conserving policy that accepts a
packet if there is buffer space available. In the push-out case, the PO algorithm is
defined in Algorithm 2. Note that PO is somewhat conservative in its use of the buffer.
The reason for this will be clear from our results presented in Sections 7 and 9; the
B− 2L+1 position specifically was chosen to simplify analysis: it does not affect the
worst-case guarantees but leads to simpler proofs of our main results.

We will sometimes use the term value to denote the total length of a set of packets,
and our analysis will be based on comparing the mapping value obtained by an optimal
solution to that of our algorithm. Specifically, we will make use of mappings between
packets transmitted by OPT and by our algorithm such that their respective values
differ only by a multiplicative factor; this factor provides a bound on the competitive
ratio.

Algorithm 1 NPO(p): Buffer Management Policy
1: if there is space available in the queue then
2: accept p
3: end if

Algorithm 2 PO(p): Buffer Management Policy
1: accept p
2: while the last packet q in the buffer starts above position B − 2L+ 1 do
3: drop q
4: end while

5. Useful Properties of Ordered Multisets

To facilitate our proofs, we will make use of properties of ordered (multi-)sets.
These notions, as well as properties we show they satisfy, will enable us to compare the

6



A′

a′k = ak

a′i = a

a′j

a′k = ak−1

B′

b′k = bk

b′j = b

b′k = bk−1

k < i

i ≤ k ≤ j

k > j

no
n-i
nc
rea
sin
g

(a) Case i ≤ j

A′

a′k = ak

a′j = aj

a′i−1 = ai−1

a′i = a

a′k = ak−1

B′

b′k = bk

b′j = b

b′j+1 = bj

b′i−1 = bi−2

b′i = bi−1

b′k = bk−1

k < j

j ≤ k ≤ i

k > i

non-i
ncrea

sing

non-i
ncrea

sing

(b) Case i > j

Figure 2: Cases of Lemma 1.

performance of our proposed algorithms with the optimal policy possible, for various
priority disciplines. In the following, we consider multi-sets of real numbers, where
we assume each multi-set is ordered in non-decreasing order. We will refer to such
multi-sets as ordered sets. For every 1 ≤ i ≤ |A|, we will further refer to element
ai ∈ A or to A[i] as the i-th element in the set A, as induced by the order. Given two
ordered sets A,B, we say A ≥ B, if for every i for which both ai and bi exist, ai ≥ bi.

The following lemma, and its corollary, will be a fundamental tool used throughout
our analysis.

Lemma 1. For any two ordered setsA,B satisfyingA ≥ B, and any two real numbers
a, b such that a ≥ b, if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered setsA′ = A∪{a},
B′ = B ∪ {b} satisfy A′ ≥ B′.

Proof. We will refer to elements in A′ and B′ as a′ and b′, respectively. Assume i and
j are the positions of a ∈ A′ and b ∈ B′, respectively. I.e., a′i = a and b′j = b. We
need to show that for every k for which both a′k and b′k exist, a′k ≥ b′k. We distinguish
between 2 cases:

(a) i ≤ j (see Figure 2(a)): for all k < i, a′k = ak, and b′k = bk, hence by the
assumption that A ≥ B, a′k ≥ b′k. By the assumption that a ≥ b, and the fact A′

and B′ are ordered, for every p ≥ i and q < j we have a′p ≥ a′i ≥ b′j ≥ b′q . In
particular, for every i ≤ k < j we have a′k ≥ b′k (by taking p = q = k). For
k = j, since A′ and B′ are ordered, and since in the current case i ≤ j, we have
a′j ≥ a′i = a ≥ b = b′j . For k > j we have a′k = ak−1 ≥ bk−1 = b′k, where the
inequality follows from the assumption that A ≥ B.

(b) i > j (see Figure 2(b)): for all k < j, a′k = ak, and b′k = bk, hence by the
assumption that A ≥ B, a′k ≥ b′k. For k = j, b′k ≤ b′k+1 = bk ≤ ak = a′k,
which follows from the fact that b is inserted in slot j = k, B′ is ordered, the
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assumption that A ≥ B and b ≤ b|B| or |A| ≤ |B|. For j < k < i, b′k = bk−1 ≤
ak−1 ≤ ak = a′k, which follows from the assumption that A ≥ B. For k = i,
a = a′i ≥ ai−1 ≥ bi−1 = b′i. For k > i, a′k = ak−1 ≥ bk−1 = b′k.

We are therefore guaranteed to have A′ ≥ B′, as required.

The following corollary shows that the same result holds if we add an item to only
one of the sets.

Corollary 2. For any two ordered sets A,B satisfying A ≥ B, and any real number
b, if (i) b ≤ b|B| or (ii) |A| ≤ |B| then the ordered set B′ = B ∪ {b} satisfies A ≥ B′.

Proof. Assume b is inserted in B′ in location j. Consider a virtual item a, such that
a > max

{
a|A|, b

}
. We now virtually consider adding both a and b to sets A and

B, respectively. By Lemma 1, it follows that the resulting sets A′, B′ satisfy A′ ≥ B′.
Notice that the first |A| elements ofA′ is exactly the setA (by the choice of a), implying
that we also have A ≥ B′.

6. Non-Push-out Policies

While non-push-out algorithms may have different priorities for the admission pol-
icy (which packets to admit from a set of simultaneously arriving packets), they cannot
push already admitted packets out. As a result, the worst-case bounds are very simi-
lar for all three priorities we consider, and we simply prove a unified lower and upper
bound on NPO performance for any admission policy.

Theorem 3. NPO is at least kL-competitive and at most k(L+ 1)-competitive.

Proof. We begin with the lower bound. To show a lower bound, we need to present
a “hard” sequence of arriving packets. Consider a burst of B 1-byte packets with k
processing cycles arriving on the first time slot; NPO invariably accepts them all and
begins processing, while OPT is free to reject them. On the second time slot, there
arrive B L-byte packets with 1 processing cycle each; they are accepted by OPT, and
it begins processing. After that, every k-th time slot there arrives a 1-byte packet with k
processing cycle (to fill up NPO buffer), and on other time slots L-byte packets with 1
processing cycle arrive, filling up OPT queue. As a result, OPT transmits L bytes per
time slot while NPO transmits 1 byte per k time slots, getting the bound in question
(asymptotically, since NPO is working on the very first time slot).

To prove the upper bound, note that NPO must fill up its buffer before it drops any
packets. Moreover, so long as the NPO buffer is not empty, after at most k time steps
NPO must transmit its HOL packet. This means that NPO is transmitting at a rate
of at least 1 byte per k time steps, while OPT can transmit at most k packets of size
L each over k time slots. Hence, the number of transmitted bytes at time t for NPO
is at least t/k (we assume k divides t evenly for simplicity of exposition) while OPT
transmitted at most tL bytes for a competitive ratio of kL so long as the NPO buffer is
not empty.

If NPO empties its buffer first, this means that the NPO buffer was congested at
some point, so NPO has transmitted at least B bytes, and OPT can transmit at most B
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more bytes before more packets arrive to the NPO queue. The overall ratio is therefore
at most tL+Bt/k under the condition that t ≥ B, yielding the bound.

Thus, the simplicity of non-push-out greedy policies does have its price. In the fol-
lowing sections we explore the benefits and analyse performance of push-out policies.

7. Buffer Management with SRPT Priorities

In this section we address the buffer management problem of when the queueing
discipline gives higher priority to packets with fewer required processing cycles. We
show first a lower and then an upper bound for the PO Algorithm 2 with SRPT priori-
ties. In this and subsequent sections we focus our attention on the push-out case since
non-push-out results have already been shown in Section 6 for all considered priorities.

Theorem 4. For B > 2L, PO is at least L-competitive for SRPT-based priorities.

Proof. Assume that B/L is an integer. All packets received will have a single residual
pass. Consider the following sequence of arrivals. At the beginning B− 2L+1 1-byte
packets arrive. PO accepts all of them. OPT drops all of them. Later on during the
same time slot B/L packets of length L arrive, each with a single residual pass. PO
drops all of them since their value is no better than the value of packets in its buffer,
but OPT accepts all of them and thus OPT buffer is full. During each following time
slot one 1-byte packet arrives, each requiring a single processing cycle, followed by
one packet of size L bytes, requiring a single processing cycle. PO accepts all 1-byte
packets but it does not accept any of the L-bytes packets. Thus, for each time slot when
there are arrivals, OPT transmits a packet of size L, and at the same time PO transmits
a 1-byte packet. At the end, OPT transmits B bytes while PO transmits B − 2L + 1
additional bytes. Therefore, B+nL andB−2L+1+n bytes are transmitted by OPT
and PO, respectively, where n is a number of time slots with non-empty arrivals. We
obtain that for n� B, PO cannot have a competitive ratio better than L.

Next, we show one of our main results, an upper bound for PO with SRPT priori-
ties.

Theorem 5. ForB > 2L, PO is at most 4L−2-competitive for SRPT-based priorities.

In what follows we assume that OPT never pushes out packets. Such an optimal
solution exists since one can consider the whole input being available to OPT a priori.
Thus, all packets accepted by OPT are transmitted. Our analysis will be based on
describing a mapping of packets in OPT’s buffer to packets transmitted by PO, such
that every packet q transmitted by PO has at most 4L − 2 bytes of OPT associated
with it. To facilitate the exposition we describe packet processing as if packets arrive
individually and sequentially one at a time, although in reality more than one packet
might arrive at a single time step t. The mapping will be dynamically updated for each
packet arrival and for each packet transmission, in both OPT and PO.
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Mapping routine.. During the transmission phase we distinguish between three cases:
T0 If both OPT and PO do not transmit then the mapping remains unchanged.
T1 If PO transmits a packet q then we remove its mapped image in OPT’s buffer

from future consideration in the mapping. The subset of these OPT packets or
bytes that stay in OPT buffer at the end of transmission phase are called of type
1.

T2 If OPT transmits a packet p but its mapped packet q in PO is not transmitted
then p is termed a packet of type 2. (We will show next that this case never
occurs).

At time t, denote by MO
t the ordered set of residual pass values for all non-type

1 OPT packets. All MO
t values are grouped into blocks in the following way. A

block is a minimal subset of consecutive MO
t values starting from the lowest position

that is not covered by any previous block, such that the overall length of the packets
associated with the block is at leastL. The minimal value in each block is called a block
representative. Denote by Rt an ordered set of representatives at time t. In addition we
denote by MP

t an ordered set of processing cycles values of packets in PO’s buffer at
time t.

After the arrival at time t of a packet p we distinguish between the following cases:
A0 If p is not accepted by both OPT and PO, then the mapping remains unchanged.
A1 If after acceptance of p some PO packets were dropped then clear the mappings

by step A1 between these PO packets and its mapped OPT mates. If p remains
in PO’s buffer and p is an i-th packet in it perform a (P, i)-mapping-shift (see
Figure 3(a)): for each non-empty j-th block b and j-th PO packet q, with j ≥
i clear the mapping to q by step A1 and map all packets of block b to q. If
p is accepted by OPT to the j-th block, perform an (O, j)-mapping-shift (see
Figure 3(b)): clear all mappings by step A1 between packets of the old l-th
block and l-th PO packet (if both exist), l ≥ j, recompute blocks starting from
the j-th and map packets of l-th block to l-th PO packet if both exist, l ≥ j.

A2 Clear all mappings assigned by step A2. Map packets of all unmapped blocks to
the HOL PO packet.

Lemma 6. (1) The mapping is feasible.

(2) The total length of packets of the same block is at most 2L− 1.

Proof. 1. By definition PO accepts the arriving packet and all the packets with packet
start above B − 2L + 1 are dropped. Hence, if after applying step A1 of the mapping
routine there are still unmapped OPT packets then the PO buffer must contain at least
one packet. Therefore, all OPT packets unmapped by step A1 are mapped by step A2.

2. In the worst case an total length of all packets in the block except the last one is
L− 1 and the last packet of the same block has length L, so the claim follows.

Lemma 7. After the t-th packet arrives, if an OPT packet p is mapped to a (possibly
transmitted) PO packet q then rt(p) ≥ rt(q). Moreover, all OPT packets are mapped,
and at most 2L − 1 bytes are mapped to each PO packet by step A1, and possibly at
most 2L− 1 more bytes are mapped to the HOL packet by step A2 at any time t.
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Figure 3: Example of the mapping used in the proof of Lemma 7, and the mapping shifts performed by the
analysis. The white OPT packets should be mapped and white PO packets are available for mapping. The
blue OPT packets are of type 1.

Proof. We prove the lemma by induction on the number of arrived packets. For the
base, consider the first arriving packet p; by definition PO always accepts it. If p is
dropped by OPT then the claim trivially holds. If p is accepted by OPT, it creates a
new block with representative p. Clearly, r1(p) ≥ r1(p), all OPT packets are mapped,
and at most L bytes are mapped to the PO packet p, and the base holds.

Assume by induction that for any time t′ < t, after the arrival of the t′-th packet it
holds that for any OPT packet p that is mapped to a (possibly transmitted) PO packet
q, rt′(p) ≥ rt′(q). Moreover, all OPT packets are mapped and at most 2L − 1 OPT
bytes are mapped to each PO packet by step A1. In addition at most 2L − 1 OPT
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bytes are mapped to the HOL packet in PO buffer at time t′ by step A2.
Clearly, if a representative of a block p′ mapped to a PO packet q by step A1

satisfies rt′(p′) ≥ rt′(q) at time t′, then for any packet p′′ of the same block rt′(p′′) ≥
rt′(q). To show that this holds after the t-th packet arrives, it suffices to consider
the ordered set of representatives Rt−1 and its update after this arrival and show that
Rt ≥ MP

t . By the induction hypothesis the remaining number of processing cycles
of any OPT packet is at least the number of processing cycles of its PO counterpart,
i.e., Rt−1 ≥ MP

t−1, and there are no OPT packets of type 2 formed while the first
t− 1 packets were accepted. Denote by R1

t′ a set of representatives of blocks mapped
by step A1. Since all packets of the same block are mapped to the same PO packet,∣∣R1

t−1
∣∣ ≤ ∣∣MP

t−1
∣∣.

We denote by t− the time slot just before the arrival of the t-th packet. First suppose
that a transmission occurs before the t-th packet arrives, i.e., between the t-th and
(t − 1)-th packet arrivals at least one packet is transmitted by OPT or PO. By the
induction hypothesis, it is impossible for OPT to transmit a packet corresponding to
the first value inMP

t−1 before the packet whose value is the first inMP
t−1, and this holds

for any sequence of transmissions prior to the t-th arrival. Therefore, if PO transmits
between the t−1-th and t-th arrival,

∣∣MP
t−
∣∣ is reduced by one. On the other hand,

∣∣MO
t−
∣∣

is reduced by the number of packets in the first block (if any) mapped by step A1 to
the packet sent by PO. Hence,

∣∣R1
t−
∣∣ ≤ ∣∣MP

t−
∣∣. Moreover, any value mapped by step

A2 to a packet transmitted by PO is removed from MO
t− upon this transmission (by the

definition of MO
t which consists of non-type 1 packets only). Thus, Rt− = R1

t− and
|Rt−| ≤

∣∣MP
t−
∣∣ in this case, and the claim holds at time t−, in particular Rt− ≥MP

t−.
Consider now the arrival of the t-th packet p. We distinguish the following cases.

Case 0 OPT does not accept p and PO accepts and immediately drops p. We are done.
Case 1 PO does not drop p, OPT does not accept p. In this case, Rt = Rt− and it

suffices to show that Rt− ≥MP
t .

Case 1.1 |Rt−| ≥
∣∣MP

t−
∣∣. Since

∣∣R1
t−
∣∣ ≤ ∣∣MP

t−
∣∣, some OPT packets represented

in Rt− are mapped by step A2. In this case, the last packet in PO buffer
occupies the (B − 2L+1)-th byte (each block has length ≥ L, each block
is mapped to a single PO packet, and all bytes in PO buffer are available
for mapping). PO does not drop p, so the value of rt(p) is at most the last
value in MP

t . Since OPT does not accept p, by Corollary 2(i), Rt− ≥
MP
t− ∪ {rt(p)} =MP

t .
Case 1.2

∣∣R1
t−
∣∣ ≤ ∣∣MP

t−
∣∣. Again, since in this case OPT does not accept p, by

Corollary 2(ii), Rt− ≥MP
t− ∪ {rt(p)} =MP

t .
Case 2 OPT accepts p, PO drops p. In this case MP

t = MP
t−, and rt(p) is larger than

any value in MP
t . Let l be the position of p in OPT buffer. For any m ≥ l the

m-th OPT packet has more residual cycles than any value in MP
t , so for any

OPT packet p′ mapped to PO packet q by step A1 rt(p′) ≥ rt(q), and we have
Rt ≥MP

t .
Case 3 OPT accepts p, PO does not drop p. If |Rt−| ≤

∣∣MP
t−
∣∣ or |Rt−| ≥

∣∣MP
t−
∣∣,

then similarly to the Cases 1.1 and 1.2, by Lemma 1 we have that R′ = Rt− ∪
{rt(p)} ≥ MP

t− ∪ {rt(p)} = MP
t . Therefore, in this case it suffices to show

that Rt ≥ R′, which in turn implies Rt ≥ MP
t . Let j denote the index of the

block where p is inserted in OPT. We have to consider two possibilities for the
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position of p’s number of processing cycles in R′, which could be either the j-th
or (j + 1)-st.

Case 3.1 R′[j] = rt(p). In this case p now serves as the representative of block j,
i.e., Rt[j] = rt(p). If `(p) = L then p forms a full block and Rt[m] =
R1
t−[m − 1] for all m > j. Therefore, Rt ≥ R′ (actually, in this case we

have strict equality). Otherwise, `(p) < L, and at least as many residual
processing cycles as the (l + 1)-th element will join the j-th block after
recomputation (since such a block must add at least L to total length). We
therefore haveRt[m] ≥ R1

t−[m] for allm > j. SinceR′[m] = Rt−[m−1],
m > j, this case follows.

Case 3.2 R′[j + 1] = rt(p). In this case the representative of block j remains
unchanged, i.e., R′[j] = Rt[j] = Rt−[j] and R′[m] = Rt−[m − 1],
m > j + 1. Since p belongs to the j-th block after acceptance and rt(p)
is not a representative of the block, then Rt[j + 1] ≥ rt(p). Since after re-
computation representatives will move up for no more than one block inRt
compared to Rt−1, Rt[m] ≥ Rt−[m− 1], m > j +1. Therefore, Rt ≥ R′
and this case follows.

Now let us show that there are sufficiently many PO packets to map all of OPT
packets such that at most 2L − 1 bytes are assigned by step A1 to each transmitted
packet of PO and additionally at most 2L− 1 bytes are assigned to the HOL packet of
PO by step A2. Recall that the claim holds for time t−. Consider the arrival of the t-th
packet p. If PO accepts p, then the claim holds, since this new packet can support the
block changes (and possible addition) that may potentially occur if OPT also accepts
p. If PO does not accept p then by the definition of PO this can only happen if the
buffer occupancy of PO is at least B − 2L + 1. Clearly, the total length of a block
mapped by step A1 to any PO packet is at most 2L − 1 (by definition). Furthermore,
since we have shown that Rt ≥ MP

t , and by definition the blocks are of total length
at least L, it must follow that the total length of packets in PO covers at least this
amount of total length of packets in OPT mapped to PO by step A1. It follows that
the remaining total length of packets in the buffer of OPT that are not mapped by step
A1 can be at most 2L − 1 (the possibly unused space in PO). It follows that the total
length of packets mapped to the HOL packet of PO by step A2 is at most 2L − 1, as
required.

Theorem 5 now follows immediately from Lemma 7. Next we generalize the pre-
vious mapping and show how to improve the upper bound of PO for sufficiently large
buffers.

Theorem 8. PO is at most (2L−1)(N+1)
N -competitive for SRPT-based priorities, where

N = dB−2L+1
2L−1 e.

The idea is to redistribute bytes mapped by step A2 between different PO packets.
Let N = dB−2L+1

2L−1 e. We consider an updated version of step A2 that maps at most
2L−1
N value to each PO packet. The mapping routine is unchanged during the trans-

mission phase and now it operates on MO
t as follows. Denote by MO

t at time t the
ordered set of values of processing cycles of type 1 OPT packets that are not mapped
by the step A2 as defined below. We now exclude from future consideration by step A1
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all OPT packets mapped by step A2 even before their PO mates are transmitted. The
definition of block, representative, Rt, and MP

t remain unchanged. When a packet p
arrives at time t, steps A0 and A1 remain unchanged. Next we define the steps that do
change.

A2 If prior to t there are no bytes mapped by step A2 and after the t-th A1 step there
are still Y unmapped OPT bytes then a j-th portion of Y

N bytes unmapped by
step A1 map to PO packet whose mapped block contains the ((j−1)(2L−1)+
1)-st byte x, 1 ≤ j ≤ N . We say that x “defines” a mapping of this portion of
still unmapped bytes. Let Y be the overall length mapped by step A2 prior to
time t and still there are Y0 unmapped bytes after applying step A1 during time
t. Let the mapping of the Y -th byte assigned by step A2 be the l-th byte in the
OPT buffer. Map each j-th portion of Y0

N still unmapped by step A1 byte to PO
packet whose mapped block contains the (j(2L−1)+ l+1)-st byte, 1 ≤ j ≤ N .
Observe that both these bytes can be remapped to the other PO packet during the
(O, j)-mapping-shift .

A3 Values unmapped by steps A1 and A2 are assigned to the HOL PO packet. We
will show that step A3 is never applied and is required only for completeness.

The mapping is feasible since during arrivals the PO buffer contains at least one
packet and any value that is unmapped by Steps A1 and A2 is assigned by step A3
to the HOL PO packet. Lemma 6(2) remains the same. The next lemma is very
similar to Lemma 7. Namely, if an OPT packet p is mapped by step A1 to a (possibly
transmitted) PO packet q then rt(p) ≥ rt(q). The fact that the total value assigned
to each PO packet is at most (2L−1)(N+1)

N follows from the fact that for each OPT
packet p that is mapped by step A1 to a PO packet q at any time t, rt(p) ≥ rt(q), the
maximal block size is 2L− 1 bytes. Theorem 8 follows immediately from Lemma 9.

Lemma 9. After arrival of the t-th packet, if an OPT packet p is mapped to a (possibly
transmitted) PO packet q then rt(p) ≥ rt(q). Moreover, all OPT packets are mapped
and at most (2L−1)(N+1)

N value is mapped to each PO packet at time t, where N =

dB−2L+1
2L−1 e.

Corollary 10. If B > 4L2 − 2L then PO is at most 2L-competitive for SRPT-based
priorities.

8. Buffer Management with LP Priorities

We begin with a lower bound for the PO algorithm with LP-based priorities and
then proceed to an upper bound of PO with LP-based priorities.

Theorem 11. PO is at least k-competitive for LP-based priorities on a sufficiently
long sequence.

Proof. Here, we will consider a push-out version of OPT for simplicity of description.
Assume B

L be an integer value. Consider a cycle of L iterations of the first type and
later sequence of n > 0 iterations of the second type (defined below). Each iteration
of the first type contains k − 1 time slots. At the beginning of the i-th iteration of the
first type dBi e packets of i bytes with k processing cycles arrive and later during the
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same time slot dBi e packets of i bytes with 1 processing cycles arrive. OPT drops
the first subsequence and accepts the second. On the other hand, PO accepts the first
subsequence and drops the second. So during each iteration of the first type OPT
transmits i(k − 1) bytes but PO transmits zero bytes. At the beginning of the next
iteration of the first type both algorithms push out already admitted packets that still
remain in their buffers.

After the L-th iteration, both buffers are nearly full with packets of size L, but with
k processing cycles in the case of PO and one residual pass in the case of OPT. Now
a sequence of the second type starts. After the last transmission by PO, k + 1 packets
arrive in the following order: first one L-byte packet with k passes and thereafter k
packets of length L with a single residual pass. The first packet is accepted by PO
and dropped by OPT. The latter k − 1 packets are dropped by PO and accepted by
OPT. Each buffer is completely full again. So during each iteration of the second type
OPT transmits kL bytes but PO only L bytes. After n iterations of the second type the
overall transmission of OPT is L(1+L)(k−1)

2 + knL+B while PO transmits Ln+B

bytes. Thus, the lower bound on competitive ratio of PO is L(1+L)(k−1)+2kLn+2B
2(Ln+B) .

Theorem 12. PO is at most (k + 3)-competitive for LP-based priorities with suffi-
ciently big buffers.

Sketch. The mapping routine during the transmission phase remains the same as in
Section 7.

Mapping routine φ: During the transmission phase we distinguish between the
three following cases:

T0 If neither OPT and PO transmit then the mapping remains unchanged.
T1 If PO transmits a packet q then we remove its mapped image in OPT’s buffer

from future consideration in the mapping. A subset of these OPT packets or
bytes that stays in the OPT buffer at the end of transmission are called of type
1.

T2 If OPT transmits a packet p but its mapped packet q in PO is not transmitted
then p is termed a packet of type 2.

During the arrival of a packet p at time t Steps A0, A2 and A3 are the same as in
Theorem 8. At time t, denote by MO

t a set of non-type 1 packets sojourns in OPT
buffer and not mapped by step A2. In addition MO

t is ordered in non-increasing order
of packet length. All MO

t packets are grouped into blocks in the following way. Let
q be an i-th packet in PO buffer at time t. An i-th block is defined in the following
way. Consider a minimal set B0 of packets starting from the lowest position that are
represented in MO

t and not covered by any other block whose overall required work is
at least rt(q). If the overall length of all packets in B0 is at least `(q) then B0 forms a
block. Otherwise, add to B0 a minimal set of packets B1 starting from the first packet
that is represented inMO

t and not covered byB0 such that the overall length of packets
in B0 ∪B1 will be at least `(q). In this case a set of packets that is covered by B0 ∪B1

defines a block. Denote by `(X) the overall length of packets and by rt(X) the overall
required work in a set of packetsX at time t. A block b that is mapped to a PO packet q
is called fully mapped to a packet q at time t if `(b) ≥ `(q) and rt(b) ≥ rt(q). Observe
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that it is possible that `(B0) will be less than its PO counterpart. In this case OPT
may later accept packets that will not be accepted by PO.

We define a new step A1 where the blocks are recomputed after a (P, i)-mapping-
shift.

A1 If after p is accepted some PO packets were dropped then clear the mappings by
step A1 between these PO packets and its OPT counterparts. If p remains in
PO buffer and p is the i-th packet in PO buffer, perform a (P, i)-mapping-shift:
clear all mappings by step A1 between packets of the old l-th block in OPT
buffer and l-th packet in PO buffer, l ≥ j, recompute blocks from j-th and map
packets of l-th block to the l-th PO packet if both exist, l ≥ j. If p is accepted
by OPT to the j-th block, perform an (O, j)-mapping-shift: clear all mappings
by step A1 between packets in OPT buffer of the old l-th block and l-th packet
in PO buffer (if both exist), l ≥ j, recompute blocks from j-th and map packets
of l-th block to l-th PO packet if both exist, l ≥ j.

Clearly, the mapping is feasible since if OPT accepts some packet that is not ac-
cepted by PO, PO buffer contains at least one packet. Since affected blocks are recom-
puted after each (P, i)-mapping-shift and (O, j)- mapping-shift and by definition of
a block b that is mapped to a PO packet q at time t, `(b) ≥ `(q) and rt(b) ≥ rt(q).
Thus, we will consider sufficiently big buffers where 2L−1

B tends to zero and because of
the above properties of the block step A2 will introduce at most additional ε value for
each PO packet. Hence, for each packet q transmitted by PO, OPT transmits at most
(k+1)l(q)+ ε by Steps A1 and A2. Denote by T the total number of bytes transmitted
by PO and by P the total number of bytes transmitted by OPT during processing of
pushed-out PO packets. Thus, the competitive ratio is at most (k+1+e)T+P

T . Now let us
estimate P and substitute it into the previous expression. For each pushed-out by PO
packet p denote by T (p) a number of time slots when p was HOL before it was pushed-
out. Clearly, that the process of push-outs of packets that have positive T (p) will be
stopped once all packets will have a maximal packet length L or it can continue during
each time slot when there is at least one packet in PO buffer of length smaller than L.
Moreover, if push-out happens the buffer occupancy is at leastB−2L+1. Denote byP
a set of PO packets pushed-out during this interval of time. So for eachB−2L+1 bytes
transmitted by PO, P is bounded by

∑
p∈P T (p)l(p) ≤

∑
p∈P kl(p)] ≤ kL(L+1)/2.

Thus, PO is at most 2(k+1+ε)B+kL(L+1)
2(B−2L+1) -competitive. For the buffers that are signifi-

cantly bigger than kL(L+ 1), PO is at most k + 3-competitive.

9. Buffer Management with MEP Priorities

In this section we study the performance of a BM implementing PQ, where priori-
ties are set in accordance with the non increasing order of processing cycles divided by
packet length. This priority is dubbed the Most Effective Packet first priority (MEP), or
the effective-ratio priority. Recall that our objective here is to maximize the number of
bytes transmitted in total. Non-push-out results are similar to Section 6.

The following theorem provides a lower bound on the performance of the push-
out MEP policy. Note that it is significantly larger (worse) than the lower bound of(
1 + L ln k−k−L

B

)
previously proven in [13] (Theorem 13); while we had hoped that
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MEP priorities might have good competitiveness guarantees, the following result shows
a linear lower bound, making MEP basically no better than the other policies in the
worst case.

Theorem 13. PO with MEP-based priorities is at least
(

9
16 min{k, L}

)
-competitive.

Proof. We show the bound for the case ofB = k = L = n. On the first time slot, there
arrives an n

2 -byte packet with n processing cycles followed by a 1-byte packet with 2
processing cycles. PO begins processing the larger packet, while OPT drops it and
begins processing the 2-byte packet. On the second time slot, there arrives an n+2

2 -
byte packet with n processing cycles followed by a 1-byte packet with 2 processing
cycles. Since n+2

2n > n
2(n−1) , it pushes out the previous large packet, and PO begins

processing the large packet. This is repeated until on then4 -th time slot, there arrives an
n-byte packet with n processing cycles. By this point, PO has not processed a single
packet, and its buffer contains only the last n-byte packet, while OPT has already
processed n

8 1-byte packets and has n
8 more of them in the queue. In a time slot, there

arrive n, 1-byte packets with 1 processing cycle each; PO does not accept them since
their ratio is worse than n

n−1 ; OPT buffer is now full of these 1-byte packets. For the
next n2 − 1 steps, PO keeps processing the large packet while OPT keeps processing
the 1-byte packets. Finally, when PO has a packet with n bytes and n

2 − 1 processing
cycles, a packet with 2 bytes and 1 processing cycle arrives, replacing it in PO buffer,
and then both algorithms finish their packets. As a result of this sequence, OPT has
processed n+ n

8 bytes in total while PO has processed 2 bytes, getting the bound.

10. Simulation study

10.1. General remarks

In order to obtain a better understanding of the differences between our proposed
solutions, we conducted a simulation study where we evaluate the performance of each
policy in terms of throughput and address the effect of variable processing requirements
on the average delay in the system.

Publicly available traffic traces (such as CAIDA [6]) do not contain, to the best of
our knowledge, information on the processing requirements of packets. Furthermore,
these requirements are difficult to extract since they depend on the specific hardware
and NP configuration of the network elements. Another handicap of such traces is
that they provide no information about time-scale, and specifically, how long should
a time-slot last. This information is essential in our model in order to determine both
the number of processing cycles per time-slot, as well as traffic burstiness. We there-
fore perform our simulations on synthetic traces. Our simulation results are based on
traffic composed of the interleaving of 100 independent sources, with each source gen-
erated by an on-off bursty process modeled by a Markov-modulated Poisson process
(MMPP). During every time slot, each source has probability 0.05 to be switched on,
and once switched on, probability 0.2 to be switched back off. When a source is on,
it emits packets with intensity λon, which represents one of the parameters governing
traffic generation. Each generated packet is assigned two parameters: (i) required pro-
cessing chosen uniformly at random from {1, . . . , k} (k being the maximum amount of
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processing required by any packet), and (ii) packet length, chosen uniformly at random
from {1, . . . , L} (L being the maximum length of a packet in the system). Each of our
results follows from simulating the system for 5,000,000 time slots; we allowed differ-
ent parameters to vary in each set of simulations in order to better understand the effect
each parameter has on system performance and further validate our analytic results and
algorithmic insights.

We simulated the throughput performance of our three proposed policies, all based
on the greedy algorithm depicted in Algorithm 2: (i) SRPT, (ii) LP, and (iii) MEP.
In order to obtain a better qualitative differentiation between the policies, we com-
pared their throughput performance with that of a “virtual” policy, which serves as
an approximate upper bound on the optimal throughput possible. This virtual policy
essentially transforms each arriving packet requiring k′ ≤ k processing cycles, and
having length `′ ≤ K, into k′ distinct packets, each requiring one processing cycle,
and having length `′/k′, using the LP/MEP as the scheduling and admission criteria
(they are equivalent for such virtual inputs). Clearly the performance of this virtual
policy serves as an approximate upper bound on the performance of the optimal policy,
since this policy profits from any partial processing of a packet. We use this approxima-
tion since finding the actual optimal algorithm would be computationally prohibitive:
even identifying the best set of packets to store in a single time step is equivalent to
the knapsack problem which is NP-hard. In Figures 4(a), 5(a), and 6(a), which demon-
strate the throughput performance of the system, the y-axis represents the ratio between
the throughput obtained by a policy and the throughput obtained by the virtual policy
(which serves as an approximate upper bound on the optimal policy).

Another set of results produced by our simulation study deals with the average
queuing delay of packets for each of the policies considered. As mentioned in the in-
troduction, queueing delay has long been known to be directly related to the buffer size
available for the queue. Our work tries to shed light on the role of variable processing
requirements as a major factor affecting queueing delay in such heterogeneous envi-
ronments and relate this latency performance to that of the attainable throughput. In
Figures 4(b), 5(b), and 6(b), which demonstrate the average latency in the system, the
y-axis represents the average latency (in time slots) over all packets delivered.

We present here only a small sample of our results, aiming to explore the effect
of various parameters examined in our study. Specifically, we consider the effect of
offered-load, average number of processing required by a packet, buffer size, and av-
erage packet length. For each of the first three parameters here mentioned, we present
a cross section of the effect of average packet length by providing three plots corre-
sponding to maximum allowed packet length values L = 10, 15, 25.

10.2. Varying traffic intensity
Figure 4 shows the system performance as a function of increased average load,

where we increase the rate of each independent source by increasing the parameter λon
which governs packet intensity during a burst period. Figure 4(a) shows that, in gen-
eral, MEP is the best policy (this will always be the case throughout our simulations).
However, when examining the other two policies, although as traffic intensity increases
SRPT significantly outperforms LP, under low load conditions and small values of L,
LP outperforms SRPT; This indicates that under moderate load conditions, and when
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fOPT MEP SRPT LP
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Figure 4: Throughput performance (a) and latency (b) as a function of incoming stream intensity λon for
three different values of maximal packet length L.

packet length variability is small, it is best to prioritize longer packets rather than by
their processing requirements. When either as traffic intensity increases (or packet
length variability grows), the system will be prone to increased congestion, whose al-
leviation is possibly by preferring packets which take a shorter time to process. As for
the latency, Figure 4(b) shows that average latency increases up to a certain point, and
then steadily decreases. This increase occurs in moderate load conditions, where all
algorithms are “forced” to accept non-favorable packets. However, as traffic intensity
increases, all algorithms have a better selection of packet to accept, and each will focus
on its more preferable packets, thus resulting in decreasing packet latency.

10.3. Increasingly heterogeneous processing requirements
Figure 5 shows the system performance as we allow packet processing requirement

to increase, both in value and in variability. As demonstrated in Figure 5(a), while
the MEP policy outperforms both other policies, for relatively small L we observe a
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fOPT MEP SRPT LP
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Figure 5: Throughput performance (a) and latency (b) as a function of maximal required work k for three
different values of maximal packet length L.

transition from LP to SRPT as the second best policy. One can see that while the
average number of processing cycles is relatively low, the LP policy outperforms the
SRPT policy, while as the average number of required processing increases beyond
some threshold, SRPT becomes superior to LP. This behavior is similar to that observed
in the study of the effect of traffic-intensity on the performance in Section 10.2. This
coincides with the intuition that the actual notion of load in the system is actually the
product of the average required processing and packet arrival rate. The simulation
results presenting the effect of increasing load and increasing required processing on
the system’s throughput are in accordance with the results obtained in our analytic
study, which show that the ratio between the parameters k and L indeed corresponds to
which of the policies is expected to be superior. The latency graphs here (Figure 5(b))
are mostly strictly increasing, with latency becoming pronounced as the overall arrival
load (in the sense just described) topping the system’s processing service rate (this
occurs at around k = 5). When examining the differences in latency as average packet
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fOPT MEP SRPT LP
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Figure 6: Throughput performance (a) and latency (b) as a function of buffer sizeB for three different values
of maximal packet length L.

length increases, once can see that the average latency (for the same values of k) is
inversely proportional to the average packet length. This is due to the fact that every
successful transmission when packets are larger leaves reduces the delay of packets
remaining in the queue.

10.4. The effect of buffer size

Figure 6 shows the effect buffer size has on system performance. Fig. 6(a) shows
that buffer size has relatively little effect on the differences in throughput: all three
policies relatively quickly achieve their corresponding maximal performance and stay
there as buffer size grows further; This is due to the fact that an beyond a certain point,
packet arrival rate is smoothed by the availability of buffer space. In terms of latency,
Figure 6(b) shows a steady increase in latency, which should be ascribed to queueing
delay. However, the LP policy exhibits the best performance in these scenarios since
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Algorithm Lower bound Upper bound
NPO, any priority kL k(L+ 1)
PO, SRPT priority L 2L
PO, LP priority k k + 3
PO, MEP priority 9

16
min{k, L} −

Table 1: Results summary: lower and upper bounds on the competitive ratio.

it favors the transmission of longer packets first, which alleviate the latency sensed by
the remaining packets in the buffer.

In general, our results clearly show that the MEP policy is better than both other
policies with respect to throughput. Note that in terms of latency the best policy (MEP)
does not necessarily outperform other policies: since it processes more packets, some
of them must wait for their turn longer.

Our simulation results and the insights they provide can serve as a rule of thumb in
choosing the best policy for a specific network scenario, depending on expected traffic
characteristics.

11. Conclusion

Increasingly heterogeneous packet processing requirements in modern networks
pose novel design challenges to NP architects. In this work we study the impact of
two important characteristics, maximal required processing k and maximal packet size
L, and show the significance of the relationship between k and L. We introduce three
different priority regimes for processing: SRPT, LP, and MEP, and study their perfor-
mance in queues with bounded buffers. We present results for both non-push-out, as
well as push-out buffer management algorithms, which give guarantees on the worst-
case performance of such algorithms, without resorting to any assumptions on the pro-
cess generating the traffic. Due to this approach, are results can be globally applicable,
in various networking environments which may deal with highly heterogenous traffic
patterns.

Our results show that implementing a push-out mechanism, although potentially
costly in terms of vendor implementation, has a significant impact on the system’s per-
formance, primarily in terms of throughput. In general, in this case two characteristics
(size and processing requirements) introduce a natural tradeoff between “large prof-
its” from processing large packets and “fast gains” from processing packets with small
processing requirements. Interestingly, our results indicate that from the point of view
of worst case guarantees, it suffices to optimize only one of these characteristics, and
MEP priorities do not bring any significant improvements.

Straightforward remaining open questions include closing the gaps between the
upper and lower bounds shown in Table 1. Another interesting direction would be to
consider weighted throughput where each packet also has an intrinsic value; this will
cover some other practical cases such as differentiation of service frameworks.
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