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Abstract A key component for safety applications in 

Vehicular ad-hoc network (VANET) is the use of periodic 

beacon messages which provide vehicles with a real-time 

vehicle proximity map of their surroundings. Based on 

this map, safety applications can be used for accident 

prevention by informing drivers about evolving hazardous 

situations. In order to allow synchronized and cooperative 

reactions, the target of this work is to design a beacon 

dissemination process that provides a real-time, broad and 

coordinated map under the challenging VANET 

conditions. To this end, we propose an aggregation-

dissemination based scheme for a beacon dissemination 

process based on inter vehicle communication. We present 

our proposed scheme in a set of two papers. In this first 

one, we propose the Distributed Construct Underlying 

Topology (D-CUT) algorithm tailed specifically to 

provide an optimized topology for such beacon 

dissemination process. To deal with the heavy load of 

beacon messages required for an accurate and broad map, 

we propose a topology that allows the execution of 

extensive but reliable spatial bandwidth reuse. Our D-

CUT algorithm exploits the real-time and coordinated map 

for constructing an adaptive and robust topology to deal 

with the dynamic nature of the VANET environment. We 

present theoretically provable bounds demonstrating the 

ability of the algorithm to deal with the dynamic nature of 

the VANET environment supported by simulation results. 

In our second paper, we present a communication system 

design that uses this optimized topology as the 

infrastructure for efficient and reliable beacon 

dissemination process.  

Keywords Beacon dissemination  distributed algorithm  

optimal clustering assignment  self-organizing topology 

1 Introduction 

Vehicular ad-hoc network (VANET) is a promising 

branch of traditional MANET. VANET is designed to 

provide wireless communication between vehicles and 

between vehicles and nearby roadside equipment. This 

communication intends to improve both safety and 

comfort on the road. VANET has a number of difficulties 

regarding the traditional MANET. Due to the dynamic 

nature of VANET environments, configuration is always 

changing, where links may appear and disappear very 

quickly and vehicle density is constantly changing. On the 

other hand, VANET has some inherent advantages over 

the traditional MANET. It is generally assumed that 

vehicles will be aware of their own geographical position. 

In addition, vehicles in a VANET environment move in an 

organized fashion within the constraints of traffic flow. 

A key component in safety applications are the periodic 

beacon messages which provide vehicles with a broad and 

accurate vehicle proximity map of their surroundings. 

Based on this map, safety applications – usually referred 

to as Cooperative Awareness applications – can be used 

for accident prevention by informing drivers about 

evolving hazardous situations. In addition, an accurate 

vehicle proximity map can facilitate other essential multi-

layer objectives such as optimized geographic oriented 

forwarding [1] and addressing methodologies. From a 

routing point of view, high levels of awareness can be 

very beneficial in terms of route discovery, end-to-end 

delay, and number of retransmissions [2]. Torrent-Moreno 

et al. [3] propose a transmit power control method, based 

on the vehicles’ location proximity, to control the load of 

beacon messages.  

In order to be used as a reliable infrastructure for safety 

applications, the surrounding vehicle proximity map 

should be as accurate as possible. Hence, while 

considering a fully deployed high-density vehicular 

scenario combined with the dynamic topology of the 

vehicular environment (e.g., a free highway), creating a 

broad and accurate vehicle proximity map becomes 

challenging. Such an accurate estimation in a dynamic 

environment requires a high transmission frequency of 

beacon messages, in broadcast fashion, from numerous 

nearby vehicles; which, in turn, results in a high data load 

on the channel. Thus, beacon dissemination methodology 

is measured according to its ability to provide an accurate 

map under such a high load on the channel. 

In this paper we suggest a self-organizing cluster-based 

topology to serve as the infrastructure for a beacon 

dissemination process. This process is designed to replace 

the traditional multipoint-to-multipoint transmission of 

beacon messages by a cluster-based aggregation-

dissemination process. For this purpose, the network is 

partitioned into clusters of adjacent vehicles (see Fig. 1). 

Each cluster contains a designated vehicle referred to as 

the clusterhead, connected by one-hop intra-cluster links 

to its cluster members. The second level of the topology 
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consists of multi-hop, inter-cluster links that connect 

adjacent clusterheads. 

On top of this topology, we consider the following three-

phase beacon dissemination process. In the first phase, 

beacons in the same cluster are aggregated by 

clusterheads. In the second phase, clusterheads 

disseminate the compressed aggregated beacon to their 

adjacent clusters. In the final phase, clusterheads 

broadcast the aggregated information to all their cluster 

members, providing each vehicle with a local vehicle 

proximity map. As the map is disseminated from a single 

source and in one broadcast transmission, each cluster 

member successfully receiving this broadcast transmission 

receives the same vehicle proximity map as its 

surroundings. Later we will show how this coordination is 

exploited by our algorithm. 

Into the aforementioned process, we suggest integrating 

contention-free medium access control (MAC) protocols. 

This notion has been suggested in the past [4,5] because of 

the following twofold benefits: First, intra-cluster channel 

access synchronization provides contention-free access 

between cluster members. Second, bandwidth efficiency is 

achieved by bandwidth reuse among clusters. However, to 

date, this bandwidth reuse has not yet been utilized 

properly due to interference from adjacent clusters. 

The target of this work is to design a clustering scheme 

that provides an optimized topology for an efficient and 

reliable beacon dissemination process. To provide this, we 

want a process that executes extensive but reliable spatial 

bandwidth reuse. To this end, the inter-cluster interference 

must be addressed. This work aims to reduce this 

interference by geographically optimizing the topology, 

and in this way, creating reliable bandwidth reuse. So to 

geographically optimize the topology, we require that the 

clusters be as dense and as far apart from each other as 

possible. Furthermore, we require limiting cluster size in 

order to guarantee that each vehicle has contention-free 

channel access on which to send its message. Once 

limited, our objective is to increase the cluster to its 

maximal size; thereby allowing the most efficient 

utilization of the allocated bandwidth. Later, we define an 

optimization problem according to the above objectives. 

Requiring that the clusters be as far apart from each other 

as possible comes at the expense of less-efficient inter-

cluster links. However, since the beacon dissemination 

process is measured by its ability to cope with a high data 

load carried by intra-cluster links, reliable spatial 

bandwidth reuse is of the essence. 

In this paper we introduce the Distributed Construct 

Underlying Topology (D-CUT) algorithm, which aims to 

provide the desired topology under the challenging 

VANET conditions. On top of this topology, our beacon 

dissemination process provides each vehicle a real-time 

and coordinate vehicle proximity map to be used by safety 

applications. In order to cope with the challenging 

VANET conditions, the algorithm uses this available real-

time and coordinated map as the building block for 

maintaining the topology. By using the coordinated map 

as its input, the D-CUT algorithm creates a synergetic 

relationship with the beacon dissemination process. On 

one hand, the more coordinates and the greater the 

accuracy of the vehicle proximity map, the better the 

algorithm’s performance. On the other hand, better 

algorithm performance leads to a better beacon 

dissemination process, which results in a more accurate 

and coordinated proximity map. 

In more detail, for a clustering strategy to be feasible for 

VANET, it must promptly react to the highly dynamic 

behaviors of vehicular networks. To obtain adaptivity, the 

D-CUT algorithm logically partitions the local vehicle 

proximity map into road sections where each section 

contains geographically optimized clusters. Given the 

real-time location of the nearby vehicles, the algorithm 

updates the partitioning according to the most recent 

topological changes while aiming to maintain 

geographically optimized clusters. The algorithm 

coordinates its operation by exploiting the coordinated 

map. Later, we will present theoretical and simulation 

studies to demonstrate the ability of the D-CUT algorithm 

to self-start and maintain the geographically optimized 

clusters under the dynamic nature of VANET 

environments. 

Though hierarchical topology has many advantages, the 

downside is its over-sensitivity to clusterhead failures. In 

order to ease this effect, the algorithm grants clusterheads 

a temporary, easy-replaceable leadership position rather 

than a stable one. So instead of following the common 

approach, which begins with clusterhead selection and the 

consequent formation of a cluster, this algorithm reverses 

the process by starting with cluster formation and only 

then chooses the temporary clusterhead. To deal with the 

frequent clusterhead replacement, the algorithm provides a 

straightforward and robust clusterhead election procedure 

that is based on the available coordinated vehicle 

proximity map. 

This paper is organized as follows: In Section 2, we 

summarize other approaches for building a hierarchical 

topology in VANET. In Section 3 we give a formal 

definition of the clustering optimization problem 

 

Fig. 1. The hierarchical network topology described in this paper 
created by grouping sets of sequential vehicles into clusters. At the 

intra-cluster level, the members of each cluster are linked to a 

designated clusterhead (CH). At the inter-cluster level, CHs are 
linked, if needed, via gateways (GWs), to their adjacent clusters. 
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considered in this paper. Then, in Section 4, we describe 

the D-CUT algorithm and in Section 5, we show 

theoretically provable bounds for the algorithm’s 

performance. In Section 6, we show a simulation study 

that supports our analytical results. This paper concludes 

with section 7. 

2 Related Works 

There has been extensive research on the multi-layered 

benefits of cluster-based protocols in Vehicular Ad Hoc 

Networks. The focus has been on developing cluster-based 

MAC protocols, as in [4,5]; cluster-based routing 

protocols, as in [6,7]; cluster-based broadcasting 

protocols, as in [8,9]; and security protocols, as in [10]. 

Generally, in cluster-based MAC protocols clusterheads 

are responsible for management tasks regarding the 

medium access. In cluster-based routing protocols, 

efficiency is achieved by flooding the routing control 

message on top of the topology backbone. In order to 

reduce the redundant retransmissions known as the 

“broadcast storm problem” in cluster-based broadcasting 

protocols, clusterheads and some selected gateway 

vehicles are given sole responsibility for rebroadcasting. 

From a security perspective, cluster-based data 

aggregation can contribute to better data correctness by 

crosschecking for consistency verification of the data 

aggregated from the cluster members.  

The prevailing clustering formation strategy (e.g., 

[4,5,11]) in VANET is to distribute the state of vehicles – 

commonly: undecided, member, gateway, or clusterhead – 

on the regular transmission of beacons. Each vehicle 

chooses its appropriate state, according to the state of the 

vehicles nearby. An undecided vehicle will join the first 

clusterhead from which it hears a beacon, and if the 

vehicle does not hear from a clusterhead within a given 

time period, it will become a clusterhead itself. When two 

clusterheads come within a predefined range, a 

clusterhead election procedure is applied in order to 

guarantee a minimal range between adjacent clusterheads. 

This range can be the actual spatial distance, as in [12]. 

The implication is that a clusterhead is required to hold 

real-time knowledge of the adjacent clusterhead’s 

position. To avoid this requirement, the range can be 

estimated according to the received signal strength [5]. In 

[4], when vehicles receive a beacon message from more 

than one clusterhead, it changes its state to gateway. 

However, in [13], Kenichi et al. show that if no special 

criteria are used, under this strategy almost all non-

clusterhead vehicles change their state to gateways, 

increasing the number of vehicles involving in packet 

relaying, as well as duplicated packets and the probability 

of packet collision. To reduce the number of gateways 

involved in the packet relaying, in [14] Kayis et al. 

propose to select the optimal gateway in terms of 

minimizing the speed difference between gateways and 

the corresponding clusterhead vehicle. 

Broadly speaking, the above clustering schemes can be 

sub-partitioned according to the objectives of the 

clustering scheme, which it takes into account during the 

clusterhead election procedure. In order to reduce the 

cluster reorganization overhead, a widespread objective is 

to try to maintain a stable clustering [4,8,9,12,15]. One 

approach to obtain stability (see for example [4,12]) is to 

assign higher priority in the clusterhead election procedure 

for the vehicle with small speed deviation from the 

surrounding vehicles’ average speed. In [12], Wang et al. 

suggest taking into account the trip duration in the election 

procedure. A vehicle that is about to travel for a longer 

time is assigned higher priority. Another approach to 

increase stability is to choose the vehicle with the longest 

clusterhead duration at the first clusterhead election 

procedure [9]. Two additional objectives relevant to our 

study are controlling cluster size and producing non-

overlapping clusters. The common approach for 

controlling cluster size is by setting a predefined 

maximum distance between a clusterhead and its 

members. However, this approach does not scale well and 

will poorly adapt to the diverse and constantly changing 

density introduced in the vehicular environment. In [11], 

Fan et al. suggest using a common fixed upper bound on 

all cluster sizes. The implication is that the clusterhead 

may reject vehicles within range from joining the cluster 

due to resource exhaustion. Consequently, the lower 

bound for distance between adjacent clusterheads is not 

assured. In order to produce non-overlapping clusters, 

Wang et al. [12] suggest electing a clusterhead that has the 

highest priority in its one-hop neighborhood and the 

highest priority in the one-hop neighborhood of one of its 

one-hop neighbors. However, this strategy assures non-

overlapping clusters only at the time of the clusterhead 

election procedure, which in the dynamic vehicular 

environment may last for a short period of time. 

As discussed above, in order to increase robustness we 

look for a clustering strategy that starts with group 

formation and only then chooses the temporary 

clusterhead. The second approach for clustering formation 

is based on this idea (e.g., [10,13]). Groups are defined by 

dissecting roads into predetermined area cells. This is 

obviously a very simple and efficient approach as each 

vehicle will automatically know to which cluster it 

belongs and the clusterhead will be automatically chosen 

by its proximity to the cell’s center. However, it may 

create unstable groups, so even when groups of vehicles 

are traveling together at the same speed, the group will 

constantly re-divide. Also this method is non-scalable, as 

the cell sizes are predetermined and cannot be adapted to 

different traffic densities. In this work, we suggest 

dissecting the road in a dynamic manner rather than in a 

static one. The benefit is that it will result in high 

adaptivity, allowing us to set objectives that insure the 

quality of our clustering. 

Since used by life-critical safety applications, security is a 

fundamental aspect of any beaconing process. Rather than 

reinventing the wheel, we refer readers to [15], at which 

the authors present a secure beaconing process at which 

beacon messages are digitally signed and carry a 

certificate to confirm valid network participants. 
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3 System Model and Problem Definition 

In this work we consider clustering scheme in a multi-lane 

highway scenario. We suggest leveraging the organized 

movement of vehicles on road systems in the following 

manner. The road is divided at each road intersection into 

road segments with one entrance and one exit. Each such 

segment will be clustered independently. The reason for 

this is that in this work we consider a cluster-based 

topology for inter-vehicle communication. Since Road 

Side Units (RSUs) are expected to be deployed on road 

intersections in order to facilitate safety applications such 

as Blind Merge Warning,
1
 and as most of the 

communication will be from vehicle to RSU and back, we 

assume that RSUs will act as clusterheads for a predefined 

area around them. The exact manner in which RSUs 

integrate into the hierarchical topology is outside the 

scope of this work. 

Moreover, in our clustering scheme only groups of 

vehicles traveling in the same direction are clustered. This 

is viable as vehicles traveling in the same direction share 

similar moving patterns due to traffic laws and road 

structures, thereby creating a stable topology. In addition, 

when considering highway or suburban roads, vehicles 

traveling in opposite directions are commonly separated 

by traffic barriers and, therefore, their beacon messages 

are less relevant. 

In what follows we will describe the geographic clustering 

optimization problem for the above scenario, derived from 

efficient and reliable beacon dissemination objectives. 

First we describe the objectives at the cluster level. Based 

on those objectives we define the criteria for a valid 

solution to our clustering problem. Then, we describe the 

objectives at the performance topology level, and based on 

them we define our optimization problem. 

Before diving into a detailed description of the problem 

definition, some notations and definitions are required (see 

Fig. 2). We are given a network N with n ordered nodes 

U={u1,u2,…,un} that are moving along a road from left to 

right (we will discuss this assumption later). Instead of 

denoting the location of nodes explicitly, we use their 

relative locations. Let us denote by D={d0,d1,…,dn} the set 

of inter-distances such that di is the inter-distance between 

ui and ui+1. The inter-distances d0,dn denote the space at 

the edge of the model and are set to . In some cases, we 

will need to observe subsets of the sets U and D. Hence, 

                                                           

1
 This application warns a vehicle if it is attempting to 

merge from a location with limited visibility and another 

vehicle is approaching and predicted to occupy the 

intended merging space. 

let U(di,dj) be the subset of U framed by the inter-

distances di,dj, i.e., U(di,dj)={ui+1,ui+2,...,uj}. Similarly, let 

D(di,dj) be the D subset {di+1,di+2,...,dj-1}. To indicate that 

one or both of the endpoints is to be included in the set, 

we substitute a square bracket for the corresponding 

parenthesis, e.g., D[di,dj)= {di,di+1,...,dj-1}. In addition, let 

us denote by S={C1,C2,…,Cm} the set of clusters such that 

Ci is a set of consecutive nodes that forms the i'th cluster 

in the set, and m is the number of clusters in the model. 

Accordingly, let G={g0,g1,…,gm} be the set of inter-cluster 

gaps such that gi represents the inter-distance located 

between the clusters Ci and Ci+1, and g0,gm represent the 

end-points d0,dn, respectively. Notice that according to the 

above notations Ci=U(gi-1,gi). In some cases, we will want 

to refer to the set of inter-cluster gaps G at a specific D-

CUT iteration. For this purpose, let G(t) be the set of inter-

cluster gaps at iteration t. 

Remark: The D-CUT algorithm is based on comparing 

the length of inter-distances and gaps. In order to deal 

with ties in gap or inter-distance comparisons, the 

gap/inter-distance having the smaller index wins. 

At the cluster level, we look for star topology, which 

allows one hop aggregation/dissemination. This objective 

requires the existence of at least one clusterhead candidate 

that covers the entire cluster population within its 

transmission range. However, to increase the robustness of 

the topology we require the existence of at least pmin >1 

clusterhead candidates. To ensure a valid solution for any 

possible configuration, we demand all cluster members to 

be clusterhead candidates when the size of the cluster is at 

most pmin. Our second objective is to limit the cluster size 

in order to allocate to each cluster member an orthogonal 

channel resource. Each cluster that fulfils these objectives 

will be defined as a valid cluster as defined below. 

First we let u’U(di,dj) be a clusterhead candidate of the 

subset U(di,dj) iff dist(u,u’) ≤ Rmax for all uU(di,dj), 

where dist(u,u’) denotes the Euclidian distance between u 

and u’, and Rmax denotes the maximal transmission range. 

Definition 1. The Boolean objective function F receives 

two inter-distances di,dj, which form the subset U(di,dj), 

and returns true if and only if this subset satisfies the 

following two conditions: 

 p ≥ min(pmin, k) where p is the number of clusterhead 

candidates in U(di,dj) and k = |U(di,dj)|. 

 k ≤ kmax. 

We note here that the D-CUT algorithm properties are 

preserved for any objective function that satisfies: 

If (U(di,dj)U(dx,dy) & F(dx,dy)=true) F(di,dj)=true 

(e.g., an objective function that allows some q hop 

connections between a clusterhead and its cluster 

members). 

Based on this definition, we define a valid solution for the 

network N as follows. 

Definition 2. Given the network N with the set of nodes 

{u1,u2,…,un}, the Clustering Assignment (CA) is a function 

assigning each node in the network to a cluster for which 

 

Fig. 2. The model basic notations. 
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the received cluster set S fulfils: (i) every cluster in S 

satisfies the objective function; (ii) each node belongs to 

only one cluster; and (iii) the union of all clusters in S 

contains all nodes in the network. 

At the performance topology level, we construct 

geographically optimized topology aims to provide an 

efficient and reliable inter-cluster bandwidth reuse. That 

is, grouping dense and consecutive nodes into clusters that 

are separated by maximally possible gaps. This type of 

clustering allows a strong connection between cluster 

members and reduces the inter-cluster interference. 

Having a fairness design goal in mind, we consider a 

Max-Min inter-cluster gap objective as the first objective 

of the optimization problem. In addition, in order to 

achieve efficient utilization of the allocated bandwidth, we 

consider minimizing the number of clusters in the network 

as the second objective of the optimization problem. 

Let V(N) be the set of all possible clustering assignments 

of the network. Now we are ready to formally define the 

optimal geographical clustering objectives described 

above: 

 Objective 1: mini[1…m-1]gi is maximized over all 

solutions from V(N). 

 Objective 2: The number of clusters is minimized over 

all solutions from V(N). Let us denote by Sopt the 

optimal solution such that |Sopt|=min SV(N) |S|. 

The D-CUT algorithm produces the Geographically Near-

Optimal Clustering Assignment (GNOCA) with the 

resulting cluster set S’ that meets Objective 1 and 

approximates Objective 2 by a factor of 3. 

4 The D-CUT algorithm 

4.1 Overview 

In this section we present the Distributed Construct 

Underlying Topology (D-CUT) algorithm. The D-CUT 

algorithm is an iterative algorithm, which strives to 

discover and maintain a geographically optimal clustering 

for the ever-changing network configuration. At each 

iteration the D-CUT algorithm gets a snapshot of the local 

vehicle proximity map and updates the clustering solution 

according to the changes in the network configuration. 

The D-CUT algorithm exploits the constraint movement 

of vehicles (on roads) by basing the clustering scheme on 

road dissection. Specifically, clustering is achieved by 

partitioning the road into sections, where each section 

contains a different cluster. The D-CUT algorithm dissects 

the road by prioritizing the dissection candidate – the 

inter-distances – according to their size. By dissecting the 

road according to the inter-distance sizes, small scale 

(intra-cluster) reconfiguration changes are disregarded. 

Accordingly, as long as group of vehicles is traveling 

together, they will maintain their cluster form, even when 

intra-cluster changes have taken place. However, when 

larger scale changes occur, as groups of vehicles from 

different clusters noticeably approach each other, or 

alternately, subgroups of some cluster are considerably 

drifting apart, clustering reorganization will happen in 

order to maintain a geographically optimal clustering for 

the new network configuration. According to the above, 

the D-CUT algorithm consists of the following clustering 

reorganization procedures: 

(i) The Split-Join procedure enables two groups of 

vehicles from adjacent clusters separated by a small inter-

cluster gap and forming a valid cluster, to Join. So when 

two groups of vehicles approach each other up to the point 

at which the gap between them is smaller than the 

surrounding gaps, the Split-Join procedure is applied in 

order to create one valid cluster from these two nearby 

groups. To avoid unnecessary cluster reorganization, when 

one or two of the approaching groups is a sub-cluster, the 

sub-cluster is divided by a Split operation prior to the Join 

operation. 

(ii) The Split procedure reacts to a scenario in which a 

cluster becomes invalid or discontinued; for example, in 

cases in which two groups within the same cluster drift 

apart. In this operation, the cluster will be divided at the 

maximal inner gap among the inner gaps forming two 

valid clusters. 

(iii) The Join procedure is motivated by reducing the 

number of clusters in the model. Therefore, join 

conditions allow continuously increasing cluster size as 

long as this operation is not preventing more beneficial 

future operations. For this purpose, the Join conditions 

allow two clusters to join not only when a gap is located 

between two larger gaps as with the Split-Join procedure, 

but also when it is located between a larger gap from one 

side and non-joinable clusters from the other side. 

4.2 Detailed description 

Below is the formal explanation of this procedure: 

Fig. 3 presents the D-CUT algorithm run by vehicles that 

belong to cluster Ci. The algorithm uses as input the local 

vehicle proximity map of its vicinity. This map consists 

of: (i) the updated location of its own clusters and its two 

adjacent clusters (i.e., Ci-1,Ci,,Ci+1) and (ii) the size of the 

inter-cluster gaps delimiting those clusters (i.e.,               

gi-1,gi,,gi+1). In addition, the Join procedure requires two 

additional bits of information from each of its neighbor 

clusters, as will be detailed later. As output, the algorithm 

produces the new CA of Ci.  

As mentioned above, the Split-Join procedure enables not 

only clusters but also sub-clusters to join. The following 

function is used to find the optimal cluster or sub-clusters, 

in terms of Objective 1, to be joined. 

Definition 3. The Max-Min Inter-Distance Pair (MMIDP) 

is a function that finds a pair of inter-distances (denoted 

by (d
(l)

,d
(r)

)) from adjacent clusters, such that the minimal 

value in the pair is maximized over all possible pairs 

forming a valid cluster. More formally, given the inter-

cluster gap gi, let X = {(d,d’)dD[gi-1,gi), 

d’D(gi,gi+1],F(d,d’)=true}. The split candidates pair 

(d
(l)

,d
(r)

) is the pair that maximizes min(d,d’) over all 

possible choices of (d,d’)X. When more than one pair 

satisfies the condition, the pair with the maximal second 

pair value determines the unique MMIDP. In some cases 



 
6 

// Stage 1 - Split-Join procedure on gi-1 

(d
(l)

,d
(r)

) = MMIDP(gi-1);  

 if (SJC(d
(l)

,d
(r)

,gi-1))     

        if uU(d
(l)

,d
(r)

) then Ci-1=U(d
(l)

,d
(r)

) and exit; 

        else Ci=U(d
(r)

,gi); 

// Stage 2 - Split-Join procedure on gi 

(d
(l)

,d
(r)

)= 
 
MMIDP(gi);  

 if(SJC(d
(l)

,d
(r}

,gi))   

        if uU(d
(l)

,d
(r)

) then Ci+1=U(d
(l)

,d
(r)

) and exit; 

        else Ci=U(gi-1,d
(l)

); 

// Stage 3 - apply Split procedure on Ci  

if(SC1(Ci) SC2(Ci)) 

       d’=max(D(gi-1,gi)) where F(gi-1,d’)= F(d’,gi)=true; 

       if uU(gi-1,d’) then Ci=U(gi-1,d’) and exit; 

       else Ci+1=U(d’,gi) and exit; 

// Stage 4 apply Join procedure on gi-1.  

if(JC1(gi-1) JC2(gi-1)) && !(SJC(gi-2) SC2(Ci-1))) 

       Ci=U(gi-2,gi); 

// Stage 5 apply Join procedure on gi. 

if (JC1(gi) JC2(gi)) && !(SJC(gi+1) SC2(Ci+1))) 

       Ci=U(gi-1,gi+1); 

Fig. 3. The D-CUT algorithm. 

we will refer to the output of the function (d
(l)

,d
(r)

) as 

MMIDP. 

Definition 4. We define the following Split-Join 

Condition (SJC): 

 SJC(d
(l)

,d
(r)

,gi)= min(d
(l)

,d
(r)

)>gi. 

Split-Join Procedure (Stages 1-2): Given the inter-

cluster gap gi, the Split-Join procedure (see Fig. 4a) 

enables two adjacent groups separated by this inter-cluster 

gap to join. To find the optimal cluster or sub-clusters to 

be joined, the procedure begins with finding the MMIDP, 

(d
(l)

,d
(r)

). Then, the SJC verifies whether min(d
(l)

,d
(r)

) is 

larger than the inter-cluster gap, gi, trapped between them. 

When this condition is satisfied, the Split-Join procedure 

removes the inter-cluster gap gi by joining U(d
(l)

,gi), 

U(gi,d
(r)

) to form the new cluster U(d
(l)

,d
(r)

). In case 

U(d
(l)

,gi) is a sub-cluster (i.e., d
(l)

  gi-1), a preceding Split 

operation is applied on d
(l)

, resulting in the additional 

cluster U(gi-1,d
(l)

). Symmetrically, when d
(r)gi+1, 

U(d
(r)

,gi+1) is formed. Only members of the new cluster 

U(d
(l)

,d
(r)

) terminate this iteration of the algorithm at the 

end of this stage, the rest continue to successive stages. 

Each cluster first applies the procedure (stage 1) on its left 

inter-cluster gap and then (stage 2) on its right inter-

cluster gap. Nevertheless, as we shall see in the following 

section, this procedure is performed in a coordinated 

fashion between the clusters. So when Ci applies a Split 

Join procedure with its left neighbor, Ci-1 applies the same 

symmetric procedure with its right neighbor Ci. An 

example of the procedure is illustrated in Fig. 5. 

Definition 5. We define the following Split Conditions: 

 SC1(Ci)= !F(gi-1,gi); 

 SC2(Ci)= d’>gi-1,gi, where d’=max(D(gi-1,gi)). 

Split Procedure (Stage 3): Given a cluster Ci and some 

inter-distance d’, the split procedure is defined to partition 

the cluster Ci into two clusters: U(gi–1,d’) and U(d’,gi). In 

order to maintain stable CA, which consists of large 

clusters, the D-CUT tries to modify the current CA by a 

Split procedure only when the current CA contains clusters 

that are: (i) not satisfied by the objective function F, or (ii) 

discontinuous. Therefore, when a cluster ceases to satisfy 

the objective function F, the first split condition (SC1) is 

fulfilled. The second split condition (SC2) is satisfied 

when the inner gap becomes larger than its delimiting 

inter-cluster gaps. In both cases, the split operation is done 

on the maximal inter-distance that results in creation of 

two valid clusters. 

Remark: Due to the SC1, the D-CUT algorithm produces 

a valid CA at each iteration. An invalid CA will be 

received when the last iteration CA, updated by the new 

node’s locations, creates one or more invalid clusters. 

When some of the clusters do not satisfy the objective 

function F, the Split operation, triggered by SC1, will 

occur. As a result, each invalid cluster is replaced by two
2
 

valid clusters. Since this operation is triggered 

independently among clusters, the split operations occur 

simultaneously, and a valid CA is received. 

                                                           
2
 Here we assume that an invalid cluster, which was a valid cluster in 

the previous iteration, can be split to 2 valid clusters. The algorithm can 

intuitively be expanded to deal with the case where an invalid cluster is 
required to be split to more than 2 clusters. 

 

Fig. 4. (a) The Split Join procedure. In this example SJC(d(l),d(r),gi) is 
satisfied. As a result, a Split operation on d(l) is triggered, which is 

followed, at once, by a Join operation over gi. Thus, the new CA of this 

range is the 2 clusters U(gi-1,d
(l)) and U(d(l),gi+1). (b) The Join 

procedure. Here, JC2(gi) is fulfilled. Consequently, a Join operation 

over gi  produces the new cluster U(gi-1,gi+1). 
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Definition 6. We define the following two Join 

Conditions: 

 JC1(gi)=(gi–1>gi) && !F(gi,gi+2) && F(gi-1,gi+1); 

 JC2(gi)=(gi+1>gi) && !F(gi–2,gi) && F(gi-1,gi+1). 

Join Procedure (Stages 4-5): Given the gap gi, the Join 

procedure (see Fig. 4b) is defined by removing the gap gi 

to create the new cluster U(gi-1,gi+1). The Join procedure is 

motivated by Objective 2, i.e., reducing the number of 

clusters in the model. Thus, the join conditions allow two 

clusters that form a valid cluster to join when it is trapped 

by a larger gap from one side and non-joinable clusters 

from the other side (JC1 and JC2). To guarantee a 

coordinated Join operation, the Join conditions verify that 

the cluster to be joined with is not going to be split at the 

same iteration. Notice that this procedure requires two bits 

of additional information from each of its neighbor 

clusters. The first reflects whether its two immediate 

adjacent clusters are forming a valid cluster and the 

second is whether they satisfy the SJC. 

4.3 Clusterhead Election Procedure 

As mentioned, the high adaptivity of the algorithm to the 

dynamic environment leads to frequent and difficult to 

predict clusterhead changes. Though this quality is highly 

desired from a robustness point of view, it may lead to 

high overhead. Hereby, we present a low-cost, robust, and 

coordinated clusterhead election procedure. For this 

purpose, the D-CUT algorithm limits the clusterhead to a 

solitary function; aggregating the required information to 

form the updated vehicle proximity map and 

disseminating this map within the cluster. Each vehicle 

that successfully receives this map acquires all the 

required information to become the next iteration 

clusterhead. 

Once a new cluster is formed by the algorithm, a 

clusterhead is elected based on the contention amongst the 

clusterhead candidates that are prioritized according to 

their proximity to the cluster center. The cluster center can 

be defined as center of gravity of graph representation of 

the cluster members. Only vehicles that successfully 

receive the coordinated proximity map will participate in 

the contention process. Thus, the contention sequence is 

agreed upon among the clusterhead candidates. By 

broadcasting a Clusterhead Declaration Message, a 

clusterhead candidate informs the rest of the cluster 

members that it is the current clusterhead. 

The robustness of the contention increases with the 

increase in number of competitors. However, requiring a 

large number of competitors may lead to less-efficient 

clusters and longer contention period. The objective 

function-free parameter pmin enables balancing the 

robustness level and the clusters’ efficiency. 

5 Theoretical analysis 

Above we described a CA optimization problem based on 

the following two objectives: Objective 1 is to minimize 

the smallest inter-cluster gap over all solutions and 

Objective 2 is to minimize the number of clusters over all 

solutions. In some scenarios those two objectives 

contradict each other. To evaluate this effect, we set a 

lower bound approximation for our optimization problem. 

In particular, we show a lower bound for the 

approximation ratio for Objective 2, to every CA that 

satisfies Objective 1. 

After showing this bound, we conduct a theoretical 

analysis to demonstrate the ability of the D-CUT 

algorithm to self-start and maintain an optimized CA in 

the dynamic VANET environment. For this purpose, we 

will show coordinate, local, and fast convergence of the 

algorithm to the GNOCA. This optimized CA meets 

Objective 1 and approximates Objective 2 by a factor of 3. 

We first show a coordinate output when the algorithm is 

executed by the different vehicles. As mentioned above, 

the vehicle proximity map is distributed within the cluster 

from a single source and in one broadcast transmission. 

Thus, cluster-members that receive this map have the 

same input to the D-CUT algorithm, and thus, the same 

output. Adjacent clusters only share the overlapping 

portion of the vehicle proximity map, as each of them only 

shares information with the clusters directly adjacent to 

them. Despite the uncoordinated input, we will show that 

adjacent clusters have coordinated outputs. In particular, 

we will prove that if two adjacent clusters are involved in 

Split-Join or Join procedures, the procedures will be 

mirrored. This coordination is obtained from the 

overlapping portion of the coordinated map and with 

minimal coordination overhead. 

We continue by demonstrating the locality of the D-CUT 

clustering process. In a properly functioning clustering 

algorithm, configuration changes in a certain place of the 

model will influence the clustering process of a local sub-

model in the vicinity. Obviously, when the network is 

disconnected it automatically partitions into sub-networks. 

However, when considering a long and connected network 

as in a busy highway, the network in its entirety spans 

several kilometers. To demonstrate the locality of the D-

CUT algorithm, we will show that the network is 

partitioned into sub-networks at certain inter-distances that 

are relatively larger than the inter-distances around them. 

 

Fig. 5. An example of concurrent Split Join operation. (a) The input 
of the D-CUT algorithm for cluster Ci and (b) the output. In this 

scenario, since the last D-CUT execution, a group of two vehicles 

from cluster Ci-1 have approached cluster Ci. At the same time, a 
group of two vehicles from cluster Ci gets very close to cluster Ci+1. 

The D-CUT will react to those changes by two parallel Split Join 

operations. By a Split Join procedure with its left neighbor, the right 
sub-cluster of Ci-1 joins the left sub-cluster of Ci. By a Split Join 

procedure with its right neighbor, the right sub-cluster of Ci joins the 

cluster Ci+1.  



 
8 

Each such sub-model is clustered independently by the D-

CUT algorithm. 

To conclude, we show the fast and strict convergence of 

the D-CUT algorithm from any given CA to a GNOCA. 

An existing condition in showing convergence is the 

assumption that the configuration is stable (the exact 

definition of a stable configuration will be given later). 

This is clearly a weak assumption as the vehicular 

environment is very dynamic. Hence, in order to 

demonstrate the ability of the algorithm to deal with such 

a dynamic environment, we will show a very fast and 

strict convergence of the D-CUT algorithm. To prove the 

fastness and strictness, we will show the logarithmic 

convergence time solely of the distance between the initial 

CA and the GNOCA and not of the network in its entirety. 

This, combined with the fact that the D-CUT algorithm 

can be executed at a high rate, shows the ability of the D-

CUT to converge even in the VANET’s dynamic 

environment. 

5.1 Lower bound 

Hereby we show the lower bound for an approximation 

ratio for Objective 2, for every CA that satisfies Objective 

1. 

THEOREM 1: There exists a network N so that any valid 

CA that meets Objective 1 approximates Objective 2 with 

factor of 2. 

Proof: We consider a network N organized in dense, 

equally spaced, groups of kmax/2 and kmax/2+1 nodes, 

where each group of kmax/2 nodes is followed by a group 

of kmax/2+1 nodes (see Fig. 6). Moreover, the inter-

distances that separate the groups are larger than the inter-

distances that separate the group members. Let us denote 

by S1 and S2 the CAs that meet Objective 1 and Objective 

2, correspondingly. Under this configuration, the size of 

each cluster in S2 is maximal, i.e., |C|=kmax for CS2. 

Accordingly, |S2| = n/kmax. On the other end, the CA that 

meets Objective 1, clusters each group into a cluster. 

Hence, |S1| = 2n/(kmax/2+kmax/2+1). Consequently, the 

ratio between |S1| and |S2| is 2. 
 

5.2 Coordinate output 

In this section we will show that the CA produced by the 

D-CUT algorithm is coordinated among all nodes. More 

formally, assume the output of D-CUT for some node ux is 

Cp, and for uy is Cq; if uyCp then Cp=Cq. Before proving 

the above assertion, let us establish the following: 

Observation 1: In the case where SJC(d
(l)

,d
(r)

,gi) is 

satisfied: (i) if d
(l)

 > d
(r)

 then d
(l)

 maxD[d
(l)

,d
(r)

]) and d
(r)

 

 maxD[gi,d
(r)

]); (ii) symmetrically, if d
(l)

 < d
(r)

, d
(r)

 

maxD[d
(l)

,d
(r)

]), and d
(l)

 maxD[d
(l)

,gi]). 

Proof: Without loss of generality, let d
(l)

 > d
(r)

. Since 

SJC(d
(l)

,d
(r)

,gi) holds, d
(l)

,d
(r)

 > gi. Furthermore, from d
(r)

 as 

the output of the MMIDP function, we can conclude that 

d
(r) 

>d’D(gi,d
(r)

), as F(d
(l)

,d’) = true (since D(d
(l)

,d’) 

D(d
(l)

,d
(r)

)). Symmetrically, d
(l) 

>dD(d
(l)

,gi). 

From this observation we can conclude the following. 

Observation 2: If SJC(d1
(l)

,d1
(r)

,gi-1)=true and 

SJC(d2
(l)

,d2
(r)

,gi)=true then U(d2
(l)

,d1
(r)

)= . 

Lemma 1: Given that one of the Join conditions is 

satisfied on gi-1, then gi does not satisfy any of the Join 

conditions at the same iteration. 

Proof: Since gi–1 is satisfying one of the Join conditions 

we can conclude that F(gi–2,gi)=true and either gi–1 < gi or 

F(gi-1,gi+1)=false. On the other hand, for gi to satisfy the 

Join condition, the expression F(gi-1,gi+1)=true must be 

fulfilled and either gi–1>gi or F(gi–2,gi)=false. Thus, the 

lemma holds. 

THEOREM 2: Let the output of D-CUT for some node ux 

be Cp and for uy be Cq. If uyCp then Cp=Cq. 

Proof: Consider some two nodes ux and uy, and let 

Cp(t),Cq(t) denote the clusters containing ux and uy, 

respectively, at any iteration t. In case Cq(t) is not one of 

the adjacent clusters of Cp(t), the new cluster Cp(t+1) will not 

contain uy since Split-Join and Join operations are applied 

only between adjacent clusters. In case Cp(t)=Cq(t), the D-

CUT algorithm will have the same input at iteration t for 

ux and uy, and therefore, it will produce the same output. 

Finally, consider the case that Cq(t) is one of Cp(t)’s 

neighbors. Without loss of generality, let us assume that 

Cq(t)=Cp(t)–1. If uyCp(t+1), the algorithm run by ux performs 

either a Split-Join operation at stage 1 or a Join operation 

at stage 4. Following the symmetric nature between stage 

1 and stage 2, if ux performs a Split-Join operation in stage 

1, then uy performs an equivalent Split-Join operation at 

stage 2, as long as it is not a part of the newly formed 

cluster at stage 1. Observation 2 assures that uy will not be 

a part of the newly formed cluster when uyCp(t+1). 

Likewise, following the symmetry between stage 4 and 

stage 5, if ux performs a Join operation in stage 4, then uy 

performs an equivalent Split-Join operation in stage 5, as 

long as it does not perform any operation in the preceding 

four stages. If ux performs a Join operation in step 4, 

according to the join conditions, no operation is performed 

by uy in the first 3 stages. Finally, Lemma 1 assures that uy 

is not involved in a Join operation at stage 4. 

5.3 Independent sub-model clustering 

In this section we seek to demonstrate the locality of the 

D-CUT clustering process. The algorithm, as we prove 

below, partitions the model N into local sub-models, 

where each sub-model is clustered independently. That is, 

configuration changes in one sub-model do not have any 

influence on CA changes in the rest of the model. This 

partition is done according to the local maximum inter-

distance defined below: 

Definition 7. Let Q(d’,t) be the set of any inter-distances d 

that satisfies either F(d’,d)=true, or F(d,d’)=true at 

iteration t. We define d’ as a local maximum inter-distance 

in the time frame [t’, t’’], if and only if, d’ > dQ(d’,t) 

at any iteration t, t’   t  t’’. 

Now we shall confirm that as long as the two inter-

distances remain the local maximum in the time interval 

[t’, t’’], the sub-model trapped between them is clustered 

independently. 
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Definition 8. Let gv(t) be the inter-cluster gap located at the 

inter-distance dv in iteration t, i.e., dv = gv(t). Accordingly, 

gv(t)-1,gv(t)+1 are the 2 inter-cluster gaps that frame dv from 

left and right, respectively, at iteration t. 

THEOREM 3: Consider dv,du 2 consecutive local 

maximum inter-distances in the time frame [t’,t’’]. Then, 

the D-CUT algorithm is clustering the sub-network 

U(dv,du) independently of the rest of the model, in the time 

frame [t’+1, t’’]. 

Proof: In order to establish this assertion, it is sufficient to 

show that the local maximum dv partitions the network 

into 2 independently clustered, sub-networks. Notice that 

if dv is not an inter-cluster gap at iteration t’, the Split 

operation will take place on the local maximum dv at 

iteration t’+1  Thus, dv is an inter-cluster gap at iteration 

t’+1, i.e., dv gv(t’+1). From this iteration up to t’’, Join 

operations on dv = gv(t) are not viable, as Join conditions 

(JC1,JC2) require at least one of the inter-cluster gaps  

gv(t)-1,gv(t)+1 to be larger than the local maximum gv(t). By 

the same reasoning, a Join operation triggered by SJC will 

not take place, as this condition requires d
(l)

,d
(r)

 to be 

larger than gv(t). Consequently, no operation between the 

adjacent clusters, which are separated by gv(t), will take 

place. To complete, we notice that JC1(gv(t)-1)=false 

regardless of whether or not F(gv(t)-1,gv(t)+1) is satisfied. 

Therefore, a Join operation on gv(t)-1 is independent in CA 

in the range D[gv(t),dn]. For reasons of symmetry, a Join 

operation on gv(t)+1 is independent in the CA of the range 

D[d0,gv(t)]. 

5.4 Convergence Process 

In this section we show the fast and strict convergence of 

the D-CUT algorithm from any given valid CA to a 

GNOCA. In order to demonstrate the above, we will take 

advantage of the correlation between the D-CUT 

convergence processes and the Split Binary Tree (SBT), a 

particular tree representation of the inter-distance set D. 

Below, we analyze the convergence process by the 

following three stages: first, we present the SBT and prove 

that it is a Binary Search Tree with expected height of 

O(log(D)); second, we limit the convergence time of the 

D-CUT algorithm by the height of the SBT; third, we 

express the SBT height as a function of the distance 

between the initial CA and the GNOCA. 

5.4.1 The Split Binary Tree (SBT) 

In what follows, we refine the notation G to refer only to 

the local sub-model D[ds,df], i.e., G(t)= G(t) D[ds,df]. In 

addition, we refine the notation D to represent only the 

subset of the inter-distances that are involved in the 

convergence process. More formally, let D be the subset 

that contains all the inter-distances that at some iteration 

during the convergence process, served as a inter-cluster 

gap in the range D[ds,df]. That is, D = 

G(t0)G(t0+1)G(t0+2) … G(t0+t2) where t0,t2 denote 

the first and last iterations in the conversance process, 

respectively. 

Definition 9. Given a network N with configuration D, the 

Split Binary Tree (SBT) is a tree representation of the 

given configuration (see Fig. 7). The root entry of the SBT 

is associated with the full set D(ds,df). Each subsequent 

SBT entry is associated with the subset of D obtained by 

the following process: We start by setting dk, the 

maximum inter-distance of the set D(ds,df), as the root 

entry. Then, we partition the set D(ds,df) into 2 subsets: 

D(ds,dk), and D(dk,df), where the first subset is associated 

with the root’s left child, and the second with the right 

child. Then, we set the maximum inter-distances dy and dz 

– where dy=max(D(ds,dk)), and dz=max(D(dk,df)) – as the 

left and right children of dk, respectively. We continue 

with this recursive process up to the point where each 

received subset contains a single inter-distance that 

obviously acts as its own maximum. As a key entry, we 

use the index of the maximum inter-distance (e.g., if dv is 

the maximum distance in the entry, we set the key entry to 

v). By l(d) and r(d) we denote the left and right end points, 

respectively, of the associated range of d. Finally, the 

function h(dv) returns the height of the subtree rooted at 

the entry v. 

Corollary 1: Given inter-distance set D, where D values 

are randomly distributed (i.e., form a random 

permutation), SBT(D) produces a Random Binary Search 

Tree on the indices of the inter-distances with expected 

height of O(logD). 

Proof: Consider the SBT(D) produced by inserting the 

tree’s entries in decreasing order. That is, we set the 

maximal inter-distance as the root. Then, at each stage we 

insert into the SBT the subsequent maximal value, which 

has not yet been inserted. We end when all inter-distances 

in D have been inserted. This SBT of the values of D is a 

Binary Search Tree considering the entry’s keys (i.e., D 

indices). When the inter-distances’ values are randomly 

distributed, this process inserts into the binary tree a 

random permutation of the keys set. Therefore, this 

process produces a Random Binary Search Tree on the 

indices of inter-distances. As demonstrated in [16], the 

expected height of such a Random Binary Search Tree is 

O(log D). 

In order to show convergence, we need to assume stable 

configuration. Using the SBT representation of the given 

configuration, a more relaxed definition for stability can 

be achieved. We define a stable configuration as a 

configuration where: (i) ds,df  remain local maximums 

 

Fig. 6. Network configuration where the ratio between |S1| and |S2| converges to 2. 
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during all the convergence process and (ii) the SBT 

representation of the sub-model D(ds,df)  is unchanged. 

5.4.2 Bounding the convergence time by the SBT 

height 

For bounding the convergence time by the height of SBT, 

we will show that each inter-distance is classified to its 

final state in the GNOCA according to its height in the 

SBT. But first, some additional definitions are required. 

We say that the inter-distance d is classified at iteration t’ 

as an inner gap if dG(t) for every t > t’. We say that the 

inter-distance d is classified at iteration t’ as an inter-

cluster gap if dG(t) for every t > t’. In addition, let us 

define a refined height h’(dv) of the sub-tree rooted at the 

entry v by counting only entries that will be classified as 

inner gap. 

Following this, we associate each inter-distance with one 

of four inter-distance types (see Fig. 8). 

Definition 10. Given dvD(ds,df), we associate dv 

according to the validity of the clusters trapped between 

l(dv), dv, r(dv) as follows: (a) dvA1 if and only if 

F(l(dv),r(dv))=true; (b) dvA2 if and only if 

F(l(dv),dv))=F(dv,r(dv))= true, and F(l(dv),r(dv))=false; (c) 

dvA3 if and only if F(l(dv),dv)=true and F(dv,r(dv))=false; 

(d) dvA4 if and only if F(l(dv),dv)=false and 

F(dv,r(dv))=true. 

Remark: The final case where 

F(l(dv),dv))=F(dv,r(dv))=false is already defined as the 

local maximum, i.e., the two sub-model end points. 

The next observation shows the relationship between 

inter-distance type and the type of its descendants in the 

SBT. 

Observation 3: Consider some inter-distance dv; if 

F(l(dv),dv)=true then all dD(l(dv),dv)) belong to A1. 

Proof: Since every diD(l(dv),dv)) is smaller than both dv 

,l(dv), we can deduce that D(l(di),r(di)) D(l(dv),dv)). 

Thus, F(l(di),r(di))=true. 

From this observation we can conclude that if d{A1A2} 

then all d descendants belong to A1. Furthermore, the left 

descendants of dA3 and the right descendants of dA4 

belong to A1 as well. 

Next, we will show the bottom-up classification process 

on the SBT. This process begins with inter-distances 

associated with A1 that are placed (if they exist) in the 

bottom of the SBT. Lemma 2 assures that every dA1 is 

classified as an inner gap at iteration t = h’(d). Lemma 3 

shows that the CA obtained at the end of this phase 

satisfies Objective 1. Then, in Lemma 4 we ensure that 

dA2 is classified as an inter-cluster gap once its 

descendants, which are all associated with A1, are 

classified. Notice that this condition is fulfilled at iteration 

t= h’(d). We continue with the bottom-up process by 

demonstrating (Lemma 5) that d{A3A4} is classified 

either as an inner gap or as an inter-cluster gap at iteration 

t = h’(d). To conclude, we prove that after the 

classification of all dD[ds,df] the obtained CA is in fact 

the GNOCA (Lemma 6). Note that the sub-model end-

points ds,df  are classified as inter-cluster gaps at iteration 

t0 as we have shown in the proof of Theorem 3. Appendix 

II provides a simple example of the relation between the 

SBT height and the convergence time. 

In order to demonstrate the classification of inter-distance 

d as an inner gap, we will ensure that if dG(t) at iteration 

t = h’(d), then the Join operation will be applied on d. In 

case dA1 we will demonstrate that SJC is satisfied, and 

when dA3,A4} the operation will be triggered by JC1 or 

JC2. However, to guarantee the classification, we need to 

prove that this operation will not be overturned by a future 

Split operation. To this end, in the following observations 

we will set some conditions that the Split operation can 

fulfill. First, we will show that SC2 is satisfied only on the 

maximal inter-distance within a cluster (Observation 4) 

and only at iteration t0 (Observation 5). Second, we will 

show that if some SBT sub-tree does not contain any inter-

distance that plays the role of inter-cluster gap at iteration 

t, then the Split operation will not be applied on any inter-

distance in this sub-tree, at any iteration t’ > t 

(Observation 6). 

Remark: As we assume a valid CA at iteration t0, and as 

all the D-CUT operations produce valid clusters, in the 

following we assume the Split operation to be triggered 

either by SC2 or by SJC. 

Observation 4: If SC2(Ci) is satisfied on d’ then d’ =  

maxD[gi-1,gi]). 

Proof: Follows directly from the definition of SC2. 

Observation 5: Let gi(t)-1,gi(t) be two consecutive inter-

cluster gaps at iteration t. For every t > t0, all dD(gi(t)-

1,gi(t)) are smaller than max(gi(t)-1,gi(t)). 

Proof: (Proof by contradiction). Let us assume the 

opposite; that is, there exists dxD(gi(t)-1,gi(t)) that satisfies 

dx > max(gi(t)-1,gi(t)). Since gi(t)-1,gi(t) are two consecutive 

inter-cluster gaps at iteration t we can deduce that dx does 

not satisfy SC2 at iteration t-1. Therefore, either dxG(t-1) 

and a Join operation takes place on dx at iteration t-1, or 

dxG(t-1) and max(gi(t-1)-1,gi(t-1)) > dx. However, regarding 

the first option, the Join operation on dx results in  

max(gi(t)-1,gi(t)) > dx, which contradicts our initial 

assumption. Thus, we are left with the second option in 

which at iteration t-1, max(gi(t-1)-1,gi(t-1)) > dx. For reasons 

 

Fig. 7. The SBT of the set D’={35,40,45,30,40,42,20}. 
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of symmetry, let us assume that gi(t-1)-1 < gi(t-1). 

Accordingly, to satisfy dx > max(gi(t)-1,gi(t)), gi(t-1) is 

replaced by gi(t), where gi(t) < gi(t-1). The replacement of  

gi(t-1) by the smaller gi(t) cannot be the outcome of a Join 

operation on gi(t-1), since only a Join operation triggered by 

JC1(gi(t-1)) can result in gi(t-1) > gi(t-1)+1, gi(t-1)+1 = gi(t), and 

JC1(gi(t-1))=false. Therefore, we are left with the case 

where gi(t) is created by a Split operation in the range 

between dx and gi(t-1). As SC2 is applied only on an inter-

distance larger than its framing inter-cluster gaps, this 

Split operation is triggered by SJC(d
(l)

,d
(r)

,gi(t-1)-1), where  
gi(t) =  d

(r)
. In such case, dxD(d

(l)
,d

(r)
), and therefore, 

F(d
(l)

,dx)=true. Thus, gi(t) = d
(r) 

> dx as the pair (d
(l)

,d
(r)

) is 

preferred over (d
(l)

,dx) by the MMIDP function.
 

This 

contradicts our initial assumption that dx > max(gi(t)-1,gi(t)). 

Observation 6: If D(l(dv),r(dv))G(t’) = , then 

D(l(dv),r(dv))G(t) =  for every t > t’. 

Proof: To establish this observation it suffices to show 

that if D(l(dv),r(dv))G(t’) = , then 

D(l(dv),r(dv))G(t’+1) = . Explicitly, a Split operation is 

not taking place at iteration t’ in the range D(l(dv),r(dv)). 

From D(l(dv),r(dv))G(t’) = , it can be deduced that 

D[l(dv),r(dv)] D[gi(t)-1,gi(t)], where gi(t)-1,gi(t) are the two 

inter-cluster gaps that frame dv from left and right, 

respectively. Accordingly, neither SJC (Observation 1) nor 

SC2 (Observation 4) hold, since by definition, both 

l(dv),r(dv) are larger than every dD(l(dv),r(dv)). 

After setting the conditions under which the Split 

operation can be fulfilled, we begin describing the bottom-

up classification process by demonstrating the 

classification of dvA1 as the inner gap at iteration t = 

h’(dv). 

Lemma 2: If dvA1, then dv is classified at iteration t = 

h’(dv), as an inner gap. 

Proof: We will demonstrate this lemma by way of 

induction on the inter-distance refined height. In the base 

case, dv (dv = gv(t0)) is an SBT leaf (h(dv)=0). In this case 

D(l(dv),dv) = D(dv,r(dv)) = , and therefore,    

l(dv)D[gv(t0)-1, gv(t0)) and r(dv)D(gv(t0)-1, gv(t0)+1]. In 

addition, since dvA1, we can conclude that F(l(dv),r(dv))= 

true, where by definition l(dv),r(dv) > gv(t0). Consequently, 

SJC(l(dv),r(dv),gv(t0)) is satisfied and a Join operation on 

gv(t0) will take place at iteration t0. Subsequent to this 

operation, D(l(dv),r(dv))G(t0+1) = . According to 

Observation 6, this assures that dv is classified at iteration 

t0 as the inner gap as a Split operation on dv will not take 

place at any t > t0. For the inductive step, let us assume 

that the lemma holds for all d such that h’(d)  t - 1. 

Accordingly, as all dv descendants belong to A1 

(Observation 3), they all have been classified as inner gaps 

at iteration t - 1. Therefore, D(l(dv),dv)G(t-1) = 

D(dv,r(dv))G(t-1)=  (see Fig. 9a). As demonstrated in 

the base case, this assures the classification of dv as an 

inner gap. 

Lemma 3: Let t1 = t0 + max(h(d))  for all 

dD(ds,df)A1G(t) satisfies Objective 1 for every t  t1. 

Proof: Let us denote by dv = gv(t) the minimal inter-cluster 

gap in G(t) at some iteration t  t1. According to Lemma 2, 

dvA1, and thus, F(l(dv),r(dv))=false. This implies that 

every valid CA must contain at least one inter-cluster gap 

in the range D(l(dv),r(dv)). The lemma holds as dv is the 

maximal inter-distance in this range. 

The meaning of this result is that if we subdivide the 

model at any inter-distance dA1, each such sub-model 

satisfies Objective 1. 

Now we wish to continue with the bottom-up 

classification process by demonstrating the classification 

of dvA2 as an inter-cluster gap at iteration t = h’(dv). In 

order to demonstrate the classification of d as an inter-

cluster gap, we will show that d is located between two 

clusters, and their union produces an invalid cluster. 

Considering such d, and assuming that all d descendents 

from A1 are classified as inner gap, the following 

observation ensures that this state is irreversible. 

Observation 7: Consider dvA1 (dv = gv(t)). If             

F(gv(t)-1,gv(t)+1)=false at some iteration t  h’(dv), then 

F(gv(t)-1,gv(t)+1)=false at any iteration t’  t. 

Proof: The observation follows if a Split operation will 

not take place in the range D(gv(t)-1,gv(t)+1) at any t’  t. 

From Observation 5 we can conclude that SC2 is applied 

only at iteration t0. In addition, since (i) only gA1 can 

satisfy SJC(d
(l)

,d
(r)

,g), and (ii) all dv descendants that 

belong to A1 are classified as inner gap at iteration t 

(Lemma 2), a Split operation in the range D(gv(t)-1,gv(t)+1) 

will not be triggered by any gD(l(dv),r(dv)). To conclude, 

we note that any gD(l(dv),r(dv)) will not trigger a Split 

 

Fig. 8. Illustration of 3 of the 4 inter-distance types. The fourth type A4 is a mirror image of A3. 
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operation (by satisfying SJC) on dD(l(dv),r(dv)). This is 

because either l(dv) or r(dv) are located in the range 

between d and g, such that min(l(dv),r(dv)) > d. As 

demonstrated in Observation 1, in such a case, the Split 

operation will not be applied on d. 

Lemma 4: If dvA2, then dv is classified as an inter-cluster 

gap at iteration t = h’(dv). 

Proof: Following Observation 3, in case dvA2, all its 

descendants (if any exist) are from A1. Following Lemma 

2, this implies that all dv descendants are classified as 

inner gaps at iteration t (see Fig. 9b). Hence, from 

F(l(dv),r(dv))=false we can conclude that (i) dv=gv(t)G(t) 

and (ii) F(gv(t)-1,gv(t)+1)=false. The lemma follows from 

Observation 7, which ensures that F(gv(t’)-1,gv(t’)+1)=false at 

any iteration t’ > t. 

To complete the bottom-up classification process, we wish 

to show the classification of dv{A3A4} at iteration t = 

h’(dv). Lemma 5 confirms that if dv is located between 

non-joinable clusters (i.e., their union produces an invalid 

cluster) at iteration t, then it is classified as an inner gap; 

while if dv is located between joinable clusters, either JC1 

(if dvA3) or JC2 (if dvA4) will be satisfied on dv, and as 

a result, it will be classified as an inner gap. To show that 

indeed the Join conditions are satisfied, in the following 

two observations we characterize the inter-cluster gaps 

gv(t)-1,gv(t)+1, framing dv=gv(t) from left and right, 

respectively, at iteration t. 

Observation 8: Let t’ = h’(dv). If dvA3, then gv(t)-1 > gv(t) 

for every t  t’. 

Proof: Since dvA3 then all dv left descendants (i.e., 

dD(l(dv),dv)) are from A1 (Observation 3). Thus, all dv 

left descendants are classified as inner gaps at iteration t’ 

(Lemma 2). Therefore, l(dv)D[gv(t)-1,gv(t)) for every t > t’. 

Obviously, if l(dv) = gv(t)-1, the lemma follows as l(dv) > 

gv(t). On the other hand, if l(dv)D(gv(t)-1,gv(t)), following 

Observation 5 l(dv) max(gv(t)-1,gv(t)). Since l(dv) > gv(t) we 

can conclude that gv(t)-1 > gv(t). 

Observation 9: Let t’ = h’(dv). If dvA3 then 

gv(t)+1{A2A3} for every t  t’. 

Proof: According to Lemma 2, gv(t)+1A1 at any iteration t 

 t’. In addition, since dvA3, by definition, 

F(dv,r(dv))=false. Therefore, gv(t)+1 is a descendant of dv, 

and thus, dv > gv(t)+1. Since F(dv,gv(t)+1)=true we can 

deduce that gv(t)+1{df A4}. Thus, gv(t)+1{A2A3} at any 

iteration t  t’. 

Lemma 5: If dvA3 then dv is classified at iteration 

t=h’(dv) either as an inner gap when F(gv(t)-1,gv(t)+1)=true 

or as an inter-cluster gap when F(gv(t)-1,gv(t)+1)=false. 

Proof: Following Observation 7, if dv A3 and          

F(gv(t)-1,gv(t)+1)=false, then dv is classified as an inter-

cluster gap. Hence, to prove the lemma, we will ensure 

that if dvA3 and F(gv(t)-1,gv(t)+1)=true, then the Join 

operation, triggered by JC1(gv(t)), occurs at iteration t. We 

will demonstrate it by induction on the inter-distance 

refined height. By Observation 8 we get that gv(t)-1 > gv(t) at 

iteration t. Thus, to show that JC1(gv(t)) is satisfied it is 

sufficient to show that F(gv(t),gv(t)+2)=false (see Fig. 9c). 

To simplify the notation, we let dvA3* if dvA3 and 

F(gv(t)-1,gv(t)+1)=true. 

For the base case, we consider the dv without 

descendant from A3*. Notice that gv(t)+1 is a gv(t) 

descendant and belongs to {A2,A3} (Observation 9). 

According to Lemma 4, if gv(t)+1A2 then 

F(gv(t),gv(t)+2)=false. If gv(t)+1A3, F(gv(t),gv(t)+2)=false as dv 

has no descendant from A3*. Therefore, JC1(gv(t)) is 

satisfied. Following Observation 6, a Split operation on dv 

will not be applied at any iteration t’ > t, and thus, dv is 

classified as an inner gap. Assume that our induction 

hypothesis holds for all d such that h’(d)  t-1. Here as 

well, the case where gv(t)+1A2 comes from Lemma 4. If 

gv(t)+1A3, F(gv(t),gv(t)+2)=false directly follows the 

inductive hypothesis. As in the base case, the assertion is 

 

Fig. 9. SBT state at the iteration of dv classification: (a) dvA1,: all dv descendants have been classified at t= h’(dv) as inner-gaps. Hence, SJC(l(dv),r(dv),gv) 

holds, and dv is classified as inner-gap; (b) dvA2: in this case as well, dv descendants have been classified at t=h’(dv). However, as F(l(dv),r(dv)) = false, dv is 

classified as an inter-cluster-gap; (c) dvA3: this type of inter-distance can be classified either as an inner-gap (as illustrated here) or as an inter-cluster-gap. 

This is determined according to the outcome of the F(gv(t)-1,gv(t)+1) at t= h’(dv).  
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concluded by Observation 6. 

For reasons of symmetry the above lemma holds for 

dvA4. 

Lemma 6: Let t2 = t0 + max(h’(d) for all dD(ds,df). 

G(t) satisfies Objective 2 with an approximation ratio of at 

most 3 for every t  t2. 

Proof: In order to compare the values of Objective 2 in 

optimal CA and the CA produced by the D-CUT 

algorithm, we will bound the number of inter-cluster gaps 

in each sub-model range separately. As the sub-model 

D[ds,df] shares the endpoint ds with its left sub-model and 

df with its right sub-model, we count only the left 

endpoints in each sub-model. To be exact, we determine 

G(t2)-1 inter-cluster gaps for the sub-model D[ds,df]. As 

demonstrated above (in the proofs of Lemma 4 and 

Lemma 5), each inter-cluster gap gi(t2)G(t2), excluding 

the sub-model end points {gs(t2),gf(t2)}, satisfies           

F(gi(t2)-1,gi(t2)+1)=false. Accordingly, G(t2) can be 

segmented into ½G(t2)-1 pairs of consecutive clusters, 

where the union of each cluster pair produces an invalid 

cluster. (In case of an odd number of clusters we remain 

with the rightmost cluster unpaired.) This implies that 

every valid CA has at least ½G(t2)-1 inter-cluster gaps 

in the range D[ds,df], because every valid CA contains at 

least one inter-cluster gap in the range of each consecutive 

pair of clusters. Let Gopt be the set of the inter-cluster gaps 

in optimal CA (in the perspective of term 2) in the range 

D[ds,df]. We obtain that G(t2)-1  2 Gopt +1. Since 

F(ds,df)=false, Gopt  1. Hence, in the worst case we get 

an approximation ratio of 3. The ratio converges to the 

lower bound 2 in approximation with the increase of sub-

model size. 

Following the above lemmas (Lemmas 2 through 6), we 

can establish the following intermediate conclusion: 

Corollary 2: The D-CUT algorithm converges to the 

GNOCA after no more than t2 iterations. 

5.5 D-CUT strict convergence 

After we have limited the convergence time by the SBT 

refined height, we want to express the SBT refined height 

as a function of the distance between the initial CA and the 

GNOCA, i.e., (G(t0)G(t2))\(G(t0)G(t2)). We consider 

only the following subset to express the refined height of 

the SBT: 

Definition 11. Let  = G(t0)\G(t2) be the set of inter-

cluster gaps in the range D(ds,df) that belong to the initial 

CA G(t0), but do not belong to the GNOCA, G(t2). 

(Obviously,   (G(t0)G(t2))\(G(t0)G(t2)).) 

Definition 12. Let  = D(ds,df)\(G(t0))G(t2)) be the set 

of temporary inter-cluster gaps in the range D(ds,df) that 

appears (by Split operation), and is then removed (by Join 

operation) during the course of the convergence process. 

Notice that the union of the sets  and gives the set of 

all inter-distances that are classified as inner gaps. As the 

refined height is a function of the inter-distances that are 

classified as inner gaps, and  is a lower bound of the 

distance between the initial CA and the GNOCA, our goal 

is to express the ratio between the size of sets  and . 

Below, we demonstrate that ||  3.5|| by showing 

that ||  2.5||. In order to set this bound, we will relate 

all Split operations that occur during the convergence 

process to an explicit subset of . In particular, we define 

the subset v to be the set of inter-cluster gaps that are 

located in the range D(l(dv),r(dv)) at iteration t0, i.e., v 

D(l(dv),r(dv))G(t0), where dv and both 

l(dv)r(dv) Since every dD(l(dv),r(dv)) belongs to A1, 

we can conclude that every such d is classified as an inner 

gap (Lemma 2), and thus, v. The right neighbor subset 

of v is denoted by u= D(r(dv),r(du))G(t0) (see Fig. 10). 

First, we relate each Split operation that takes place in the 

range D[l(dv),r(dv)] to the subset v. This criterion is 

sufficient to relate any Split operation triggered by SC2 to 

one of  subsets. To see why, recall that according to 

Observation 6, if v=, then the Split operation will not 

take place in the range D(l(dv),r(dv)). Moreover, in 

Observation 9 we show that if v= and a Split operation, 

triggered by SC2, takes place on r(dv), then u ≠ . 

Accordingly, such a Split operation can be related either to 

v (if v ≠ ) or to u (if u ≠ ). However, when 

considering a Split operation triggered by SJC, the above 

criterion is not enough. This is because Split operation 

triggered by SJC(d
(l)

,d
(r)

,gi) can be spread outside the 

range D[l(dv),r(dv)] even if giD[l(dv),r(dv)]. In 

Observation 10 we demonstrate that in such a case the 

new inter-cluster gap does not belong to A1. Thus, this 

new inter-cluster gap will not trigger an additional Split 

operation triggered by SJC. Hence, by relating any Split 

operation triggered by SJC(d
(l)

,d
(r)

,gi), where 

giD[l(dv),r(dv)], to the subset v we ensure that any Split 

operation triggered by SJC will be related to one of  

subsets. 

 

Fig. 10. Notations used in the D-CUT strict convergence sub-section. 
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Definition 13. We say that a Split operation on d results in 

v. v, if one of the following is satisfied: (i) 

dD[l(dv),r(dv)] or (ii) dD[l(dv),r(dv)], and the operation 

is triggered by the inter-cluster gap gi, where 

giD[l(dv),r(dv)]. 

Observation 9: Let v,u be two adjacent  subsets. Let d’ 

= r(dv) = l(du). If SC2 is satisfied on d’ at iteration t0, then 

either v or u. 

Proof: Without loss of generality let d’A2A3. We will 

show that v. In this case l(d’)=l(dv), since by definition 

the ranges D(l(d’),d’), D(l(dv),d’) contain only d, and 

both l(d’),l(dv). Hence, to demonstrate the observation 

we will show that G(t0)D(l(d’),d’). Let gj(t0)-1,gj(t0) be 

the two inter-cluster gaps framing d’ at iteration t0 from 

the left and right, respectively, i.e., d’D(gj(t0)-1,gj(t0)). 

According to Observation 4, d’= max(D[gj(t0)-1, gj(t0)]). In 

addition, by definition l(d’) > d’. Thus, l(d’)D[gj(t0)-1, 

gj(t0)], i.e., gj(t0)-1D(l(d’),d’). 

Observation 10: Consider the case when SJC(d
(l)

,d
(r)

,gi) is 

satisfied. If giD(l(dv),r(dv)) and d
(l)
A1, then 

d
(l)
D(l(dv),r(dv)). 

Proof: (Proof by contradiction.) Assume to the contrary 

that d
(l)
D(l(dv),r(dv)). Accordingly, l(dv)D(d

(l)
,gi). In 

addition, since d
(l)
A1 we can deduce that r(d

(l)
)D(d

(l)
,gi) 

as well. As by definition r(d
(l)

) > d
(l)

 and l(dv) > gi, 

max(l(dv),r(d
(l)

)) > max(d
(l)

,gi). According to Observation 

1, in such a case SJC(d
(l)

,d
(r)

,gi)=false. 

According to the above, we can establish the inequality 

||  2.5|| by showing that the number of Split 

operations resulting from the set v is bounded by 2.5 v. 

We first consider the base case where v = 1. In this case 

no more than 2 Split operations (on l(dv),r(dv)) will  result 

from the Join operation on gi(t
0

). This is because 

SJC(l(dv),r(dv),gi(t0))=true at iteration t0. After the Join 

operation on gi(t0), the range D(l(dv),r(dv)) (which does not 

contain any inter-cluster gap) will not be split, as 

demonstrated in Observation 6. 

Next, we show that if v  2, then no more than 2v + 1 

Split operations will result from the set v. As we seek an 

upper bound, we are allowed to assume that if v   then 

SJC(l(dv),r(dv),dv) will be satisfied. Therefore, we presume 

that the Split on l(dv),r(dv) will result in v . According 

to the above, the total number of Split operations resulting 

from the set v is limited to the sum of: (i) the number of 

Split operations on the both ends of the sub-model: 

l(dv),r(dv), (ii) the number of Split operations (either by 

fulfilling SJC or SC2) taking place in the range 

D(l(dv),r(dv)), and (iii) the number of Split operations 

taking place (by fulfilling SJC(d
(l)

,d
(r)

,gi)) outside the 

range D[l(dv),r(dv)], where giD(l(dv),r(dv)). 

In the following two observations we will characterize the 

split candidates in the range D(l(dv),r(dv)) according to the 

initial CA at this range. To this, we let Dv,j(t) = 

D[l(dv),r(dv)] D[gj(t)-1,gj(t)]. 

Observation 12: If SJC(d
(l)

,d
(r)

,gi(t)) is satisfied, and both 

d
(l)

,gi(t)Dv,i(t) at iteration t, then d
(l)

 = max(Dv,i(t)). 

Proof: We subdivide this proof into two cases according 

to d
(r)

 position. (i) In case d
(r)
D(gi(t),r(dv)], F(d,d

(r)
) = true 

for all dDv,i(t) as F(l(dv),r(dv)) = true. Thus, according to 

Observation 1, d
(l)

 = max(Dv,i(t)). (ii) In case 

d
(r)
D(r(dv),gi(t)+1], i.e., r(dv)D(gi(t),d

(r)
), F(d

(l)
,r(dv)) = 

true. Hence, d
(r)

 > r(dv) as the pair (d
(l)

,d
(r)

) is preferred 

over (d
(l)

,r(dv)) by the MMIDP at iteration t. In addition, 

since by definition r(dv) is larger than all dDv,i(t) we can 

conclude that d
(l)

 < min(r(dv),d
(r)

). The assertion follows as 

(d
(l)

,d
(r)

) is preferred over (d,r(dv)) for all dDv,i(t). 

For reasons of symmetry, the above observation holds for 

d
(r)

 as well. In Observation 12 we demonstrated that a split 

candidate d must satisfy d = max(Dv,i(t)). In the following 

we extend this split candidate prerequisite to d = 

max(Dv,i(t0)). 

Observation 13: If d  max(Dv,j(t0)) then d  max(Dv,j(t)) 

for every t  t0. 

Proof: In order to have d = max(Dv,j(t+1)), when d  

max(Dv,j(t)), a Split operation in the range between d and 

max(Dv,j(t)) is required. However, all inter-distances in 

this range are smaller than max(Dv,j(t)). According to the 

above observations, such an operation will not take place 

at iteration t as neither SC2 (Observation 4) nor SJC 

(Observation 12) is satisfied on d’. 

After stating the above, we are ready to limit the number 

of Split operations resulting in the set v. In Lemma 8, we 

limit the number of Split operations on dD(l(dv),r(dv)), 

resulting from v, by v - 1. Lemma 9 assures that the 

maximal number of Split operations resulting from v, on 

dD[l(dv),r(dv)] is v. 

Lemma 8: The maximal number of Split operations on 

dD(l(dv),r(dv)) resulting from the set v, is v - 1. 

Proof: As SC2 is applied only at iteration t0 (Observation 

5) and only on the maximal inter-distance in the cluster 

(Observation 4), a Split operation on dDv,j(t0) is 

triggered by SC2 only if d = max(Dv,j(t0)). According to 

Observation 12 and Observation 13, the same can be 

argued regarding SJC. Therefore, a Split operation can be 

applied only on d = max(D[gj(t0)-1,gj(t0)]) for any            

gj(t0)-1,gj(t0)v. Moreover, let gp(t0), gq(t0) be the leftmost and 

rightmost inter-cluster gaps in the set v at iteration t0, 
respectively. A Split operation will not take place in the 

ranges D(l(dv),gp(t0)), D(gq(t0),r(dv)), since l(dv) = 

max(D[l(dv),gp(t0))) and r(dv)= max(D(gq(t0)),r(dv)]). Hence, 

no more than v - 1 Split operations will result from the 

set v in the range D(l(dv),r(dv)). 

Lemma 9: The maximal number of Split operations 

triggered by SJC(d
(l)

,d
(r)

,gi(t)), where gi(t)D(l(dv),r(dv)) 

and d
(l)

 or d
(r)
D[l(dv),r(dv)], is v. 

Proof: First we would like to show that if SJC(d
(l)

,d
(r)

,gi(t)) 

is satisfied, where gi(t)D(l(dv),r(dv)) then either 

d
(l)
D(l(dv),r(dv)) or d

(r)
D(l(dv),r(dv)) holds. Assume the 

opposite; that is, D(l(dv),r(dv))  D(d
(l)

,d
(r)

). Since: (i) by 



 
15 

definition F(d
(l)

,d
(r)

)=true, and (ii) following Observation 

1, min(d
(l)

,d
(r)

)
 
> min(l(dv),r(dv)), then min(l(dv),r(dv))A1, 

which contradicts the definition of v when 

l(dv)r(dv). 

Thus, the only scenario where the Split operation resulting 

from v will take place on d
(l)
D[l(dv),r(dv)] is when both 

d
(r)

,gi(t)D(l(dv),r(dv)). In cases when d
(r)
D(l(dv),r(dv)) 

and d
(l)
D[l(dv),r(dv)], we denote d

(r)
 by d

(r)*
. In the 

symmetric case when d
(l)
D(l(dv),r(dv)) and 

d
(r)
D[l(dv),r(dv)], we denote d

(l)
 by d

(l)*
. As demonstrated 

in Lemma 8, there are only v - 1 inter-distances in the 

range D(l(dv),r(dv)) that can play the role of d
(r)*

 (or d
(l)*

) 

since d
(r)* 

= max(D[gj(t0)-1,gj(t0)]) for gj(t0)-1,gj(t0)v. To 

conclude, notice that any of those v - 1 inter-distances 

can play the role of d
(r)*

 (or d
(l)*

) only once. This happens 

because if SJC(d
(l)

,d
(r)*

,gi(t)) is satisfied, then gi(t) is the 

leftmost inter-cluster gap in the range D(l(dv),r(dv)). After 

this operation, d
(r)*

 become the leftmost inter-cluster gap 

in this range, and therefore, will not play the role as d
(r)*

 

again. Following the same reasoning, only the last inter-

distance removed from the v - 1 Split candidates can 

play the role of both d
(r)*

 and d
(l)*

. This is because once 

inter-distance plays the role of d
(r)*

 it can play the role of 

d
(l)*
only after the rest of the Split candidates have been 

classified as inner gaps. 

Fig. 11 illustrates the worst case scenario (regarding the 

number of Split operations) resulting from the set 

{gi(t0),gi(t0)+1,gi(t0)+2}. 

Corollary 3:   3.5 . 

THEOREM 4: From any given starting point, the D-CUT 

algorithm converges to GNOCA under the assumption of 

stable configuration status. The convergence process 

requires O() worst case time and O(log) expected 

time, under the assumption of random permutation of the 

size of the inter-distances in the set D(ds,df). 

Proof: According to Corollary 2 the D-CUT algorithm 

converges to the GNOCA after no more than t2 iterations. 

Notice that the refined height of the SBT(D(ds,df)) is equal 

to the refined height of SBT(), since by definition 

this function only counts inter-distances that are classified 

as inner gaps. Furthermore, from Corollary 3:   

3.5. Hence, in the worst case the inter-distances in the 

set  are organized in increasing/decreasing length 

order, and the convergence process requires O() 
iterations. The theorem follows since, according to 

Corollary 1, under the assumption of random permutation, 

SBT(D(ds,df)) is a Random Binary Search Tree with 

expected height of O(log). 

6 Simulation 

In order to evaluate the performance of the D-CUT 

algorithm under realistic road conditions, we performed 

the following simulations. 

6.1 Simulation Setup 

The D-CUT algorithm strongly depends on the inter-

distances between vehicles. Thus, for faithful evaluation 

of the algorithm, a realistic mobility model for individual 

vehicles is required. Hence, we base our simulation on the 

microscopic model developed by Stefan Krauß [17] 

designed for multi-lane traffic flow dynamics. In this 

model, every vehicle has its own preferred speed, which 

the vehicle tries to reach if the conditions are satisfied 

(e.g., having enough safe distance). We set 20% of the 

vehicles with 25 m/s preferred speed, 50% with 35 m/s 

preferred speed, and 30% with 40 m/s preferred speed. In 

our highway traffic model, we assume that the vehicles 

run along a three-lane circular loop with a perimeter of 

2000 [m] and we consider traffic densities of 9, 18, 27, 36, 

45, 54, and 63 vehicles per km. If not specified otherwise, 

the D-CUT free parameters are set as the following: Rmax 

=250(meters), kmax = 25, and pmin = 2. 

Since the D-CUT uses the vehicle proximity map provided 

by the beacon dissemination process as its input, the D-

CUT cycle time needs to be in units of the beacon 

dissemination process cycle time. Here, we assume a 0.3 

sec beacon dissemination process cycle time and we 

consider the following D-CUT cycle times: 0.3, 0.6, 0.9, 

1.2, 1.5, and 1.8 sec. 

6.2 Tracking the Optimal Solution 

In our theoretical analysis we demonstrated a logarithmic 

convergence time under the assumption of a stable 

configuration. Here, our objective is to evaluate the 

convergence time during real traffic scenarios. First, we 

compare the initial convergence time of the clustering 

algorithms, and next, we compare their ability to track the 

optimal solution. 

The initial convergence time is defined as the number of 

iterations required for the algorithm’s convergence 

process, i.e., starting from an initial state in which each 

 

 

Fig. 11. Illustration of the worst case scenario (in terms of Split operations 

number) resulting inthe set {gi(t0),gi(t0)+1,gi(t0)+2}. At t0, SJC(d1
(l),d1

(r),gi(t0)), 

SJC(dv,d2
 (r),gi(t0)+1) are satisfied. Consequently, 2 Split operations (on d1

 (r), dv) 

take place in the range D(l(dv),r(dv)), and additional 2 Split operations, 

triggered by the candidates d1
(r), d2

(l)=dv, result outside of this range (on d1
 (l),  d2

 

(r)). At t0+1, SJC(d3
(l),dv,gi(t0+1)), which results in an additional Split (d3

(l)) 

outside of this range, triggered by the candidate d3
(r)=dv. Finally, at t0+2, 

SJC(l(dv),r(dv),dv) is fulfilled, triggering a Split operation on l(dv),r(dv). In total, 

7 Split operations result from the set {gi(t0),gi(t0)+1,gi(t0)+2}. 
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vehicle is considered a separate cluster, until the final 

state, in which no reorganizing-operation is applied by the 

clustering algorithm throughout an entire iteration. Fig. 12 

shows the impact of network size on convergence time 

with different D-CUT cycle times (denoted by Tcycle). The 

zero cycle time corresponds to the stable configuration 

case. As we can see, the algorithm demonstrates a 

logarithmic convergence time for the different cycle times. 

The figure shows that for cycle times of 0.3 seconds the 

convergence time is generally the same as under a stable 

configuration. In medium and high density, a longer cycle 

time results in longer convergence time. In order to shed 

light on this effect, Fig. 13 presents the initial convergence 

process for 0.3 and 0.6 D-CUT cycle times. The figure 

compares the CA produced by the D-CUT algorithm with 

the GNOCA by comparing each of the two optimization 

objectives separately. Generally, this comparison shows 

that the D-CUT algorithm provides a fast convergence 

towards the optimal solution, and displays high correlation 

with it after initial convergence. In terms of Objective 1, 

in both cycle time settings, the D-CUT algorithm 

promptly converges to the GNOCA (around 8 iterations). 

The reason for the longer convergence time is seen when 

comparing the convergence in terms of Objective 2. When 

cycle time is set to 0.3 sec the algorithm continues with 

the rapid convergence and completes the process at 

iteration 13. When cycle time is set to 0.6 sec on the other 

hand, the D-CUT gets very close to the GNOCA at the 

same iteration, but due to the higher dynamic, fails to 

complete the process through additional 10 iterations. 

After showing the initial rapid convergence, we continue 

by analyzing the ability of the D-CUT algorithm to 

maintain the GNOCA. In the following we use two 

different measures for evaluating this ability. 

Table 1 presents the average ratio between the D-CUT CA 

and the GNOCA for each of the two optimization 

objectives with different D-CUT cycle times and vehicle 

densities. In more detail, at the end of each D-CUT 

iteration we evaluate the ratio between the minimum inter-

cluster gap and the number of clusters of the two CAs. As 

we demonstrated in the previous section, the D-CUT 

converges to the GNOCA in two phases. First, the D-CUT 

replaces small inter-cluster gaps by larger ones up to the 

convergence to an optimal CA in terms of Objective 1. In 

the second phase, the algorithm greedily joins adjacent 

clusters, up to convergence to the GNOCA. Accordingly, 

as we can learn from this table, the algorithm obtains a 

ratio of nearly one in the context of Objective 1 under the 

different densities and even at cycle times as long as 1.8 

sec. In low density, the number of clusters ratio between 

the two CAs is nearly one as well. In medium and high 

densities, a high rate of D-CUT execution results in ratio 

of 1.04. The ratio increases with the increasing of cycle 

time and reaches 1.17 when the cycle time is set to 1.8 

sec. 

The second measure we use to evaluate the ability of the 

D-CUT to maintain the GNOCA is presented in Fig. 14(a). 

This figure shows the average number of D-CUT 

iterations standing between the D-CUT CA and the 

GNOCA versus the vehicle density with different cycle 

 

Fig. 12. Initial convergence time.  

Table 1. A comparison between the D-CUT CA and the GNOCA for each of the two objectives. 

 

 

 

Objective 

D-CUT cycle time 

0.3 0.6 0.9 1.2 1.5 1.8 

1 2 1 2 1 2 1 2 1 2 1 2 

V
eh

ic
le

 d
en

si
ty

 

9 1.00 1.00 0.99 1.01 0.99 1.01 0.99 1.01 0.99 1.01 0.99 1.01 

18 1.00 1.01 0.99 1.02 0.99 1.03 0.99 1.04 0.99 1.05 0.99 1.05 

27 1.00 1.02 0.99 1.04 0.99 1.05 0.99 1.07 0.99 1.08 0.99 1.09 

36 1.00 1.04 0.99 1.07 0.99 1.10 0.99 1.12 0.99 1.14 0.99 1.15 

45 0.99 1.04 0.99 1.07 0.99 1.10 0.99 1.12 0.99 1.14 0.98 1.16 

54 1.00 1.04 0.99 1.08 0.99 1.11 0.99 1.14 0.99 1.15 0.99 1.17 

63 1.00 1.04 0.99 1.08 0.99 1.11 0.99 1.14 0.99 1.15 0.99 1.17 
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times. Specifically, at the end of each D-CUT iteration we 

freeze the configuration and evaluate the additional 

number of iterations required to complete the convergence 

process. From this figure we observe that the D-CUT 

algorithm is capable of following the GNOCA and keeping 

it within 2 iterations even for relatively high D-CUT cycle 

time (1.8 sec) and under high density (63 vehicles per 

km). 

An interesting point arising from this figure is that the 

increasing of D-CUT cycle time has a small benefit to this 

measure. For example, in a density of 63 vehicles per km, 

the difference between 0.9 and 1.8 cycle times is 

negligible (1%). So even though the algorithm has 

updated the clustering at twice the rate, the results are 

almost the same. This observation can be explained by the 

fact that at a high execution rate, the algorithm is exposed 

to the configuration changes gradually, and thus, each D-

CUT iteration is less effective since the algorithm cannot 

parallel its operation in an optimal way. This explanation 

is supported by Fig. 14(b) that shows the average number 

 

Fig. 13. Initial convergence process. (a) and (c) compare the minimal inter-cluster gap of the CA produced by the D-CUT algorithm with the minimal 
inter-cluster gap of GNOCA for time cycles of 0.3 sec and 0.6 sec, respectively. (b) and (d) compare the number of clusters of the two CAs for time cycles 

of 0.3 sec and 0.6 sec, respectively. In order to scale the process time, the first 100 iterations are plotted for 0.3 sec cycle time and the first 50 iterations 

for the 0.6 sec cycle time. 

 

 

 

 

Fig. 14. (a) Average number of D-CUT iterations between the D-CUT CA and the GNOCA with different D-CUT cycle times. (b) Average number of D-

CUT operations against cycle time for density of 63 vehicles per km. 
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of D-CUT operations against the D-CUT cycle time at a 

density of 63 vehicles per km. As we can see, the average 

number of operations increases with the increase in the D-

CUT cycle time. 

The aforementioned finding implies an efficient clustering 

strategy in which the D-CUT is executed at a low rate 

(e.g., Tcycle = 1.8). To avoid the 17% growth in the number 

of clusters, every few seconds the D-CUT will initiate a 

rebuilding process (that will take on average two 

iterations) in order to converge to the GNOCA. 

6.2.1 Cluster Size and Channel Utilization 

In the following we want to evaluate the influence of the 

free parameter kmax on the D-CUT performance. As we 

said earlier, we limit the cluster size by kmax in order to 

guarantee channel allocation for each cluster member. 

Thus, the ratio between the average cluster size and kmax is 

a good indication for the bandwidth utilization during the 

beacon dissemination process. 

In our objective function, there are two criteria defining 

cluster validity: the first is the existence of pmin clusterhead 

candidates, which cover the entire cluster population 

within their transmission range. The second is limiting the 

cluster size by kmax. Fig. 15 presents the effect of this 

limitation on the average cluster size. Fig. 15(a) presents 

the average cluster size versus vehicle density with 

different kmax settings, and Fig. 15(b) presents the same but 

with average cluster size normalized by kmax. In low 

density, cluster size is determined according to the first 

criterion, and thus, the kmax criterion has no effect. 

However, when density increases valid clusters become 

mainly dependent on the kmax criterion. In high density, the 

average cluster size is about 60–65 percent of kmax. The 

figure highlights the scalability of the algorithm. This is 

seen by better bandwidth utilization when vehicle density, 

and thus the channel load, increase. 

Notice that the second validity criterion poses a lower 

bound of n/kmax clusters for every valid CA. As we can see 

from the dynamic simulation, the ratio achieved is even 

better than the ratio of 3 proved before for static 

configuration. 

6.2.2 The Relaxed D-CUT  

In this section we introduce a relaxed form of our D-CUT 

algorithm designed to refine the trade-off between two 

contradicting objectives, stability and adaptivity. The 

traditional D-CUT algorithm greedily replaces small inter-

cluster gaps by larger gaps. To slow down this process, the 

relaxed D-CUT algorithm triggers those replacements 

only when the difference between the two gaps is 

substantial. In particular, the replacement will take place 

only if the ratio between the gaps is larger than a 

predefined , where  is the trade-off balancing free 

parameter. 

 

Fig. 15. (a) Average cluster size versus vehicle density with different kmax settings. (b) Average cluster size normalized by kmax versus vehicle density 
with different kmax settings. 

 

 

Fig. 16. D-CUT relaxed model performances. (a) The number of D-CUT operations against the trade-off balancing free parameter  with low, 

medium, and high densities. (b) The effect of  on the number of clusters in the model for the same densities. 
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Fig. 16 presents the influence of this free parameter on the 

algorithm performance. Fig. 16(a) shows the average 

number of D-CUT operations throughout a D-CUT 

iteration, and Fig. 16(b) shows how this affects the 

number of clusters produced by the algorithm (the effect 

on minimal inter-cluster gap is small and thus is not 

presented). The figure presents the results for low density 

(9 vehicles per km), medium density (36 vehicles per km), 

and high density (63 vehicles per km). In low density, the 

trade-off balancing free parameter has no effect either on 

the (anyway low) number of operations or on the number 

of clusters produced by the algorithm. In medium and high 

density, the figures show that the increase of   is a result 

of the increase of stability at the direct expense of the 

clustering adaptivity. 

7 Conclusions 

In this paper we present the D-CUT algorithm designed 

specifically to provide extensive but reliable inter-cluster 

bandwidth reuse. To this end, the D-CUT algorithm 

performs under the following objectives: 1) the algorithm 

seeks to minimize the inter-cluster interference by 

producing clusters which are separated by the maximal 

possible inter-cluster gaps and 2) the algorithm aims to 

increase the cluster to its maximal size; thereby allowing 

the most efficient utilization of the allocated bandwidth. 

By extensive theoretical analysis we have demonstrated a 

coordinated, local and fast convergent algorithm that 

produces Geographically Near-Optimal Clustering 

Assignment (GNOCA) from any initial clustering 

assignment. We prove logarithmic convergence time 

based solely on the distances between the initial clustering 

assignment and the GNOCA. We also performed 

simulation analyses in order to evaluate the performance 

of the D-CUT algorithm under realistic road conditions. 

Our simulation results support our theoretical findings 

with respect to logarithmic initial convergence time under 

realistic traffic scenarios. Our simulation results also show 

the capability of the algorithm to follow the constantly 

changing GNOCA. It is also demonstrated that the D-CUT 

algorithm keeps the GNOCA within two iterations with 

very close bounds compared to the optimal values.  

References 

1. D. Kumar, A. Kherani, and E. Altman (2006) Route 

lifetime based optimal hop selection in VANETs on 

highway: an analytical viewpoint. In: Proceedings of 

IFIP Networking, Coimbra, Portugal. 

2. R. Baldessari et al. (2007) Car-2-car communication 

consortium-manifesto. In: DLR Electronic Library 

[http://elib. dlr. de/perl/oai2](Germany). 

3. M. Torrent-Moreno, P. Santi, and H. Hartenstein, 

(2005) Fair sharing of bandwidth in VANETs. In: 

Proceedings of the 2nd ACM international workshop 

on Vehicular ad hoc networks, pp. 49-58. 

4. Y. Gunter, B. Wiegel, and H. P. Großmann (2007) 

Cluster-based medium access scheme for vanets. In: 

IEEE Intelligent Transportation Systems Conference, 

pp. 343-348. 

5. H. Su and X. Zhang (2007) Clustering-based 

multichannel MAC protocols for QoS provisionings 

over vehicular ad hoc networks. In: IEEE Transactions 

on Vehicular Technology, vol. 56, no. 6, pp. 3309-

3323. 

6. D. Tian, Y. Wang, G. Lu, and G. Yu (2010) A 

VANETs routing algorithm based on Euclidean 

distance clustering. In: 2nd International Conference 

on Future Computer and Communication, vol. 1, pp. 

183- 187. 

7. L. Wischhof, A. Ebner, and H. Rohling (2005) 

Information dissemination in self-organizing 

intervehicle networks. In: IEEE Transactions on 

Intelligent Transportation Systems, vol. 6, no. 1, pp. 

90-101. 

8. L. Bononi and M. Di Felice (2007) A cross layered 

mac and clustering scheme for efficient broadcast in 

vanets . In: IEEE International Conference on Mobile 

Adhoc and Sensor Systems, pp. 1-8. 

9. P. Fan (2007) Improving broadcasting performance by 

clustering with stability for inter-vehicle 

communication . In: IEEE 65
th
 Vehicular Technology 

Conference, pp. 2491-2495. 

10. M. Raya, A. Aziz, and J. P. Hubaux (2006) Efficient 

secure aggregation in VANETs. In: the 3rd 

International Workshop on Vehicular ad hoc 

Networks, pp. 67-75. 

11. P. Fan, J. Haran, J. Dillenburg, and P. Nelson (2005) 

Cluster-based framework in vehicular ad-hoc 

networks. In: Ad-Hoc, Mobile, and Wireless 

Networks, pp. 32-42. 

12. Z. Wang, L. Liu, M. C. Zhou, and N. Ansari (2008) A 

position-based clustering technique for ad hoc 

intervehicle communication . In: IEEE Transactions 

on Systems, Man, and Cybernetics, Part C: 

Applications and Reviews, vol. 38, no. 2, pp. 201-208. 

13. M. Kenichi, W. Yoshiyuki, M. Nobuhito, K. Nakano, 

and M. Sengoku (2002) Flooding schemes for 

clustered ad hoc networks . In: IEICE Transactions on 

Communications, vol. 85, no. 3, pp. 605-613. 

14. O. Kayis and T. Acarman (2007) Clustering formation 

for inter-vehicle communication. In: IEEE Intelligent 

Transportation Systems Conference, pp. 636-641. 

15. P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, 

J. Freudiger, M. Raya, Z. Ma. Zhendong, F. Kargl, A. 

Kung, J. P. Hubaux (2008) Secure vehicular 

communication systems: design and architecture. In: 

IEEE Communications Magazine, Vol. 46, issue 11, 

pp. 100-109. 

16. B. Reed (2003) The height of a random binary search 

tree . In: Journal of the ACM, vol. 50, no. 3, pp. 306-

332. 

17.  Stefan Krauß, Peter Wagner, and Christian Gawron 

(1997) Metastable states in a microscopic model of 

traffic flow. In: Physical Review E, vol. 55, pp. 55-97.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Papadimitratos,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Buttyan,%20L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Holczer,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schoch,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schoch,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Freudiger,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Raya,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhendong%20Ma.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kargl,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kung,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kung,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35


 
20 

Appendix 1 – List of Abbreviations 

CA            Clustering Assignment 

D-CUT     Distributed Construct Underlying Topology 

GNOCA   Geographically Near-Optimal CA 

JC1          the first join condition 

JC2          the second join condition 

MMIDP   Max-Min Inter-Distance Pair 

SC1          the first split condition 

SC2          the second split condition 

SJC          the spit join condition 

VANET   Vehicular ad-hoc network 

 

Appendix 2 – An example of the D-CUT convergence 

process 

In the following we provide a detailed example of the D-

CUT convergence process. 

The D-CUT gets as an input 9 small scrappy clusters (see 

Fig. A.1(a)). Next we show how D-CUT converges to the 

GNOCA in three iterations that match the height of the 

corresponding SBT. 

Throughout the convergence process 14 inter-distances are 

involved. Those inter-distances are associated to the class 

A1, A2, and A3 as the following: {d1, d2, d3, d4, d5, d6, d8, d9, 

d10, d12, d14}  A1;{d13}  A2; {d7, d11}  A3. 

In first iteration (see Fig. A.1(b)) the inter-distances {d1, 

d3, d5, d8, d10, d12, d14} (which belong to A1) satisfy the SJC 

and are classified as inner-gap (Lemma 2). In addition, the 

inter-distance d13 that belong to A2 is classified as an inter-

cluster gap (Lemma 4). 

In the second iteration (see Fig. A.1(c)) the inter-distances 

{d2, d6, d9 } that belong to A1 satisfy the SJC and are 

classified as inner-gap. At the end of this iteration (after 

all inter-distances that belong to A1 are classified as inner-

gap), the CA produced by the D-CUT algorithm meets 

Objective 1 (Lemma 3). 

In the third iteration (see Fig. A.1(d)), the inter-distance  
d11 that belongs to A3 satisfies the JC1 and is classified as 

an inner-gap. In addition, the inter-distance  d7 that 

belongs to A3 is classified as an inter-cluster gap (since 

F(d7, df) = false; see Lemma 5). At the end of this iteration 

the D-CUT algorithm produces the GNOCA (Lemma 6). 

 

Fig. A.1 An example of D-CUT convergence process 

 


