

1

Abstract A key component for safety applications in

Vehicular ad-hoc network (VANET) is the use of periodic

beacon messages which provide vehicles with a real-time

vehicle proximity map of their surroundings. Based on

this map, safety applications can be used for accident

prevention by informing drivers about evolving hazardous

situations. In order to allow synchronized and cooperative

reactions, the target of this work is to design a beacon

dissemination process that provides a real-time, broad and

coordinated map under the challenging VANET

conditions. To this end, we propose an aggregation-

dissemination based scheme for a beacon dissemination

process based on inter vehicle communication. We present

our proposed scheme in a set of two papers. In this first

one, we propose the Distributed Construct Underlying

Topology (D-CUT) algorithm tailed specifically to

provide an optimized topology for such beacon

dissemination process. To deal with the heavy load of

beacon messages required for an accurate and broad map,

we propose a topology that allows the execution of

extensive but reliable spatial bandwidth reuse. Our D-

CUT algorithm exploits the real-time and coordinated map

for constructing an adaptive and robust topology to deal

with the dynamic nature of the VANET environment. We

present theoretically provable bounds demonstrating the

ability of the algorithm to deal with the dynamic nature of

the VANET environment supported by simulation results.

In our second paper, we present a communication system

design that uses this optimized topology as the

infrastructure for efficient and reliable beacon

dissemination process.

Keywords Beacon dissemination  distributed algorithm 

optimal clustering assignment  self-organizing topology

1 Introduction

Vehicular ad-hoc network (VANET) is a promising

branch of traditional MANET. VANET is designed to

provide wireless communication between vehicles and

between vehicles and nearby roadside equipment. This

communication intends to improve both safety and

comfort on the road. VANET has a number of difficulties

regarding the traditional MANET. Due to the dynamic

nature of VANET environments, configuration is always

changing, where links may appear and disappear very

quickly and vehicle density is constantly changing. On the

other hand, VANET has some inherent advantages over

the traditional MANET. It is generally assumed that

vehicles will be aware of their own geographical position.

In addition, vehicles in a VANET environment move in an

organized fashion within the constraints of traffic flow.

A key component in safety applications are the periodic

beacon messages which provide vehicles with a broad and

accurate vehicle proximity map of their surroundings.

Based on this map, safety applications – usually referred

to as Cooperative Awareness applications – can be used

for accident prevention by informing drivers about

evolving hazardous situations. In addition, an accurate

vehicle proximity map can facilitate other essential multi-

layer objectives such as optimized geographic oriented

forwarding [1] and addressing methodologies. From a

routing point of view, high levels of awareness can be

very beneficial in terms of route discovery, end-to-end

delay, and number of retransmissions [2]. Torrent-Moreno

et al. [3] propose a transmit power control method, based

on the vehicles’ location proximity, to control the load of

beacon messages.

In order to be used as a reliable infrastructure for safety

applications, the surrounding vehicle proximity map

should be as accurate as possible. Hence, while

considering a fully deployed high-density vehicular

scenario combined with the dynamic topology of the

vehicular environment (e.g., a free highway), creating a

broad and accurate vehicle proximity map becomes

challenging. Such an accurate estimation in a dynamic

environment requires a high transmission frequency of

beacon messages, in broadcast fashion, from numerous

nearby vehicles; which, in turn, results in a high data load

on the channel. Thus, beacon dissemination methodology

is measured according to its ability to provide an accurate

map under such a high load on the channel.

In this paper we suggest a self-organizing cluster-based

topology to serve as the infrastructure for a beacon

dissemination process. This process is designed to replace

the traditional multipoint-to-multipoint transmission of

beacon messages by a cluster-based aggregation-

dissemination process. For this purpose, the network is

partitioned into clusters of adjacent vehicles (see Fig. 1).

Each cluster contains a designated vehicle referred to as

the clusterhead, connected by one-hop intra-cluster links

to its cluster members. The second level of the topology

A Cluster-Based Beaconing Approach in VANET: Near Optimal

Topology Via Proximity Information

Yair Allouche and Michael Segal

Communication Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel

2

consists of multi-hop, inter-cluster links that connect

adjacent clusterheads.

On top of this topology, we consider the following three-

phase beacon dissemination process. In the first phase,

beacons in the same cluster are aggregated by

clusterheads. In the second phase, clusterheads

disseminate the compressed aggregated beacon to their

adjacent clusters. In the final phase, clusterheads

broadcast the aggregated information to all their cluster

members, providing each vehicle with a local vehicle

proximity map. As the map is disseminated from a single

source and in one broadcast transmission, each cluster

member successfully receiving this broadcast transmission

receives the same vehicle proximity map as its

surroundings. Later we will show how this coordination is

exploited by our algorithm.

Into the aforementioned process, we suggest integrating

contention-free medium access control (MAC) protocols.

This notion has been suggested in the past [4,5] because of

the following twofold benefits: First, intra-cluster channel

access synchronization provides contention-free access

between cluster members. Second, bandwidth efficiency is

achieved by bandwidth reuse among clusters. However, to

date, this bandwidth reuse has not yet been utilized

properly due to interference from adjacent clusters.

The target of this work is to design a clustering scheme

that provides an optimized topology for an efficient and

reliable beacon dissemination process. To provide this, we

want a process that executes extensive but reliable spatial

bandwidth reuse. To this end, the inter-cluster interference

must be addressed. This work aims to reduce this

interference by geographically optimizing the topology,

and in this way, creating reliable bandwidth reuse. So to

geographically optimize the topology, we require that the

clusters be as dense and as far apart from each other as

possible. Furthermore, we require limiting cluster size in

order to guarantee that each vehicle has contention-free

channel access on which to send its message. Once

limited, our objective is to increase the cluster to its

maximal size; thereby allowing the most efficient

utilization of the allocated bandwidth. Later, we define an

optimization problem according to the above objectives.

Requiring that the clusters be as far apart from each other

as possible comes at the expense of less-efficient inter-

cluster links. However, since the beacon dissemination

process is measured by its ability to cope with a high data

load carried by intra-cluster links, reliable spatial

bandwidth reuse is of the essence.

In this paper we introduce the Distributed Construct

Underlying Topology (D-CUT) algorithm, which aims to

provide the desired topology under the challenging

VANET conditions. On top of this topology, our beacon

dissemination process provides each vehicle a real-time

and coordinate vehicle proximity map to be used by safety

applications. In order to cope with the challenging

VANET conditions, the algorithm uses this available real-

time and coordinated map as the building block for

maintaining the topology. By using the coordinated map

as its input, the D-CUT algorithm creates a synergetic

relationship with the beacon dissemination process. On

one hand, the more coordinates and the greater the

accuracy of the vehicle proximity map, the better the

algorithm’s performance. On the other hand, better

algorithm performance leads to a better beacon

dissemination process, which results in a more accurate

and coordinated proximity map.

In more detail, for a clustering strategy to be feasible for

VANET, it must promptly react to the highly dynamic

behaviors of vehicular networks. To obtain adaptivity, the

D-CUT algorithm logically partitions the local vehicle

proximity map into road sections where each section

contains geographically optimized clusters. Given the

real-time location of the nearby vehicles, the algorithm

updates the partitioning according to the most recent

topological changes while aiming to maintain

geographically optimized clusters. The algorithm

coordinates its operation by exploiting the coordinated

map. Later, we will present theoretical and simulation

studies to demonstrate the ability of the D-CUT algorithm

to self-start and maintain the geographically optimized

clusters under the dynamic nature of VANET

environments.

Though hierarchical topology has many advantages, the

downside is its over-sensitivity to clusterhead failures. In

order to ease this effect, the algorithm grants clusterheads

a temporary, easy-replaceable leadership position rather

than a stable one. So instead of following the common

approach, which begins with clusterhead selection and the

consequent formation of a cluster, this algorithm reverses

the process by starting with cluster formation and only

then chooses the temporary clusterhead. To deal with the

frequent clusterhead replacement, the algorithm provides a

straightforward and robust clusterhead election procedure

that is based on the available coordinated vehicle

proximity map.

This paper is organized as follows: In Section 2, we

summarize other approaches for building a hierarchical

topology in VANET. In Section 3 we give a formal

definition of the clustering optimization problem

Fig. 1. The hierarchical network topology described in this paper
created by grouping sets of sequential vehicles into clusters. At the

intra-cluster level, the members of each cluster are linked to a

designated clusterhead (CH). At the inter-cluster level, CHs are
linked, if needed, via gateways (GWs), to their adjacent clusters.

3

considered in this paper. Then, in Section 4, we describe

the D-CUT algorithm and in Section 5, we show

theoretically provable bounds for the algorithm’s

performance. In Section 6, we show a simulation study

that supports our analytical results. This paper concludes

with section 7.

2 Related Works

There has been extensive research on the multi-layered

benefits of cluster-based protocols in Vehicular Ad Hoc

Networks. The focus has been on developing cluster-based

MAC protocols, as in [4,5]; cluster-based routing

protocols, as in [6,7]; cluster-based broadcasting

protocols, as in [8,9]; and security protocols, as in [10].

Generally, in cluster-based MAC protocols clusterheads

are responsible for management tasks regarding the

medium access. In cluster-based routing protocols,

efficiency is achieved by flooding the routing control

message on top of the topology backbone. In order to

reduce the redundant retransmissions known as the

“broadcast storm problem” in cluster-based broadcasting

protocols, clusterheads and some selected gateway

vehicles are given sole responsibility for rebroadcasting.

From a security perspective, cluster-based data

aggregation can contribute to better data correctness by

crosschecking for consistency verification of the data

aggregated from the cluster members.

The prevailing clustering formation strategy (e.g.,

[4,5,11]) in VANET is to distribute the state of vehicles –

commonly: undecided, member, gateway, or clusterhead –

on the regular transmission of beacons. Each vehicle

chooses its appropriate state, according to the state of the

vehicles nearby. An undecided vehicle will join the first

clusterhead from which it hears a beacon, and if the

vehicle does not hear from a clusterhead within a given

time period, it will become a clusterhead itself. When two

clusterheads come within a predefined range, a

clusterhead election procedure is applied in order to

guarantee a minimal range between adjacent clusterheads.

This range can be the actual spatial distance, as in [12].

The implication is that a clusterhead is required to hold

real-time knowledge of the adjacent clusterhead’s

position. To avoid this requirement, the range can be

estimated according to the received signal strength [5]. In

[4], when vehicles receive a beacon message from more

than one clusterhead, it changes its state to gateway.

However, in [13], Kenichi et al. show that if no special

criteria are used, under this strategy almost all non-

clusterhead vehicles change their state to gateways,

increasing the number of vehicles involving in packet

relaying, as well as duplicated packets and the probability

of packet collision. To reduce the number of gateways

involved in the packet relaying, in [14] Kayis et al.

propose to select the optimal gateway in terms of

minimizing the speed difference between gateways and

the corresponding clusterhead vehicle.

Broadly speaking, the above clustering schemes can be

sub-partitioned according to the objectives of the

clustering scheme, which it takes into account during the

clusterhead election procedure. In order to reduce the

cluster reorganization overhead, a widespread objective is

to try to maintain a stable clustering [4,8,9,12,15]. One

approach to obtain stability (see for example [4,12]) is to

assign higher priority in the clusterhead election procedure

for the vehicle with small speed deviation from the

surrounding vehicles’ average speed. In [12], Wang et al.

suggest taking into account the trip duration in the election

procedure. A vehicle that is about to travel for a longer

time is assigned higher priority. Another approach to

increase stability is to choose the vehicle with the longest

clusterhead duration at the first clusterhead election

procedure [9]. Two additional objectives relevant to our

study are controlling cluster size and producing non-

overlapping clusters. The common approach for

controlling cluster size is by setting a predefined

maximum distance between a clusterhead and its

members. However, this approach does not scale well and

will poorly adapt to the diverse and constantly changing

density introduced in the vehicular environment. In [11],

Fan et al. suggest using a common fixed upper bound on

all cluster sizes. The implication is that the clusterhead

may reject vehicles within range from joining the cluster

due to resource exhaustion. Consequently, the lower

bound for distance between adjacent clusterheads is not

assured. In order to produce non-overlapping clusters,

Wang et al. [12] suggest electing a clusterhead that has the

highest priority in its one-hop neighborhood and the

highest priority in the one-hop neighborhood of one of its

one-hop neighbors. However, this strategy assures non-

overlapping clusters only at the time of the clusterhead

election procedure, which in the dynamic vehicular

environment may last for a short period of time.

As discussed above, in order to increase robustness we

look for a clustering strategy that starts with group

formation and only then chooses the temporary

clusterhead. The second approach for clustering formation

is based on this idea (e.g., [10,13]). Groups are defined by

dissecting roads into predetermined area cells. This is

obviously a very simple and efficient approach as each

vehicle will automatically know to which cluster it

belongs and the clusterhead will be automatically chosen

by its proximity to the cell’s center. However, it may

create unstable groups, so even when groups of vehicles

are traveling together at the same speed, the group will

constantly re-divide. Also this method is non-scalable, as

the cell sizes are predetermined and cannot be adapted to

different traffic densities. In this work, we suggest

dissecting the road in a dynamic manner rather than in a

static one. The benefit is that it will result in high

adaptivity, allowing us to set objectives that insure the

quality of our clustering.

Since used by life-critical safety applications, security is a

fundamental aspect of any beaconing process. Rather than

reinventing the wheel, we refer readers to [15], at which

the authors present a secure beaconing process at which

beacon messages are digitally signed and carry a

certificate to confirm valid network participants.

4

3 System Model and Problem Definition

In this work we consider clustering scheme in a multi-lane

highway scenario. We suggest leveraging the organized

movement of vehicles on road systems in the following

manner. The road is divided at each road intersection into

road segments with one entrance and one exit. Each such

segment will be clustered independently. The reason for

this is that in this work we consider a cluster-based

topology for inter-vehicle communication. Since Road

Side Units (RSUs) are expected to be deployed on road

intersections in order to facilitate safety applications such

as Blind Merge Warning,
1
 and as most of the

communication will be from vehicle to RSU and back, we

assume that RSUs will act as clusterheads for a predefined

area around them. The exact manner in which RSUs

integrate into the hierarchical topology is outside the

scope of this work.

Moreover, in our clustering scheme only groups of

vehicles traveling in the same direction are clustered. This

is viable as vehicles traveling in the same direction share

similar moving patterns due to traffic laws and road

structures, thereby creating a stable topology. In addition,

when considering highway or suburban roads, vehicles

traveling in opposite directions are commonly separated

by traffic barriers and, therefore, their beacon messages

are less relevant.

In what follows we will describe the geographic clustering

optimization problem for the above scenario, derived from

efficient and reliable beacon dissemination objectives.

First we describe the objectives at the cluster level. Based

on those objectives we define the criteria for a valid

solution to our clustering problem. Then, we describe the

objectives at the performance topology level, and based on

them we define our optimization problem.

Before diving into a detailed description of the problem

definition, some notations and definitions are required (see

Fig. 2). We are given a network N with n ordered nodes

U={u1,u2,…,un} that are moving along a road from left to

right (we will discuss this assumption later). Instead of

denoting the location of nodes explicitly, we use their

relative locations. Let us denote by D={d0,d1,…,dn} the set

of inter-distances such that di is the inter-distance between

ui and ui+1. The inter-distances d0,dn denote the space at

the edge of the model and are set to . In some cases, we

will need to observe subsets of the sets U and D. Hence,

1
 This application warns a vehicle if it is attempting to

merge from a location with limited visibility and another

vehicle is approaching and predicted to occupy the

intended merging space.

let U(di,dj) be the subset of U framed by the inter-

distances di,dj, i.e., U(di,dj)={ui+1,ui+2,...,uj}. Similarly, let

D(di,dj) be the D subset {di+1,di+2,...,dj-1}. To indicate that

one or both of the endpoints is to be included in the set,

we substitute a square bracket for the corresponding

parenthesis, e.g., D[di,dj)= {di,di+1,...,dj-1}. In addition, let

us denote by S={C1,C2,…,Cm} the set of clusters such that

Ci is a set of consecutive nodes that forms the i'th cluster

in the set, and m is the number of clusters in the model.

Accordingly, let G={g0,g1,…,gm} be the set of inter-cluster

gaps such that gi represents the inter-distance located

between the clusters Ci and Ci+1, and g0,gm represent the

end-points d0,dn, respectively. Notice that according to the

above notations Ci=U(gi-1,gi). In some cases, we will want

to refer to the set of inter-cluster gaps G at a specific D-

CUT iteration. For this purpose, let G(t) be the set of inter-

cluster gaps at iteration t.

Remark: The D-CUT algorithm is based on comparing

the length of inter-distances and gaps. In order to deal

with ties in gap or inter-distance comparisons, the

gap/inter-distance having the smaller index wins.

At the cluster level, we look for star topology, which

allows one hop aggregation/dissemination. This objective

requires the existence of at least one clusterhead candidate

that covers the entire cluster population within its

transmission range. However, to increase the robustness of

the topology we require the existence of at least pmin >1

clusterhead candidates. To ensure a valid solution for any

possible configuration, we demand all cluster members to

be clusterhead candidates when the size of the cluster is at

most pmin. Our second objective is to limit the cluster size

in order to allocate to each cluster member an orthogonal

channel resource. Each cluster that fulfils these objectives

will be defined as a valid cluster as defined below.

First we let u’U(di,dj) be a clusterhead candidate of the

subset U(di,dj) iff dist(u,u’) ≤ Rmax for all uU(di,dj),

where dist(u,u’) denotes the Euclidian distance between u

and u’, and Rmax denotes the maximal transmission range.

Definition 1. The Boolean objective function F receives

two inter-distances di,dj, which form the subset U(di,dj),

and returns true if and only if this subset satisfies the

following two conditions:

 p ≥ min(pmin, k) where p is the number of clusterhead

candidates in U(di,dj) and k = |U(di,dj)|.

 k ≤ kmax.

We note here that the D-CUT algorithm properties are

preserved for any objective function that satisfies:

If (U(di,dj)U(dx,dy) & F(dx,dy)=true) F(di,dj)=true

(e.g., an objective function that allows some q hop

connections between a clusterhead and its cluster

members).

Based on this definition, we define a valid solution for the

network N as follows.

Definition 2. Given the network N with the set of nodes

{u1,u2,…,un}, the Clustering Assignment (CA) is a function

assigning each node in the network to a cluster for which

Fig. 2. The model basic notations.

5

the received cluster set S fulfils: (i) every cluster in S

satisfies the objective function; (ii) each node belongs to

only one cluster; and (iii) the union of all clusters in S

contains all nodes in the network.

At the performance topology level, we construct

geographically optimized topology aims to provide an

efficient and reliable inter-cluster bandwidth reuse. That

is, grouping dense and consecutive nodes into clusters that

are separated by maximally possible gaps. This type of

clustering allows a strong connection between cluster

members and reduces the inter-cluster interference.

Having a fairness design goal in mind, we consider a

Max-Min inter-cluster gap objective as the first objective

of the optimization problem. In addition, in order to

achieve efficient utilization of the allocated bandwidth, we

consider minimizing the number of clusters in the network

as the second objective of the optimization problem.

Let V(N) be the set of all possible clustering assignments

of the network. Now we are ready to formally define the

optimal geographical clustering objectives described

above:

 Objective 1: mini[1…m-1]gi is maximized over all

solutions from V(N).

 Objective 2: The number of clusters is minimized over

all solutions from V(N). Let us denote by Sopt the

optimal solution such that |Sopt|=min SV(N) |S|.

The D-CUT algorithm produces the Geographically Near-

Optimal Clustering Assignment (GNOCA) with the

resulting cluster set S’ that meets Objective 1 and

approximates Objective 2 by a factor of 3.

4 The D-CUT algorithm

4.1 Overview

In this section we present the Distributed Construct

Underlying Topology (D-CUT) algorithm. The D-CUT

algorithm is an iterative algorithm, which strives to

discover and maintain a geographically optimal clustering

for the ever-changing network configuration. At each

iteration the D-CUT algorithm gets a snapshot of the local

vehicle proximity map and updates the clustering solution

according to the changes in the network configuration.

The D-CUT algorithm exploits the constraint movement

of vehicles (on roads) by basing the clustering scheme on

road dissection. Specifically, clustering is achieved by

partitioning the road into sections, where each section

contains a different cluster. The D-CUT algorithm dissects

the road by prioritizing the dissection candidate – the

inter-distances – according to their size. By dissecting the

road according to the inter-distance sizes, small scale

(intra-cluster) reconfiguration changes are disregarded.

Accordingly, as long as group of vehicles is traveling

together, they will maintain their cluster form, even when

intra-cluster changes have taken place. However, when

larger scale changes occur, as groups of vehicles from

different clusters noticeably approach each other, or

alternately, subgroups of some cluster are considerably

drifting apart, clustering reorganization will happen in

order to maintain a geographically optimal clustering for

the new network configuration. According to the above,

the D-CUT algorithm consists of the following clustering

reorganization procedures:

(i) The Split-Join procedure enables two groups of

vehicles from adjacent clusters separated by a small inter-

cluster gap and forming a valid cluster, to Join. So when

two groups of vehicles approach each other up to the point

at which the gap between them is smaller than the

surrounding gaps, the Split-Join procedure is applied in

order to create one valid cluster from these two nearby

groups. To avoid unnecessary cluster reorganization, when

one or two of the approaching groups is a sub-cluster, the

sub-cluster is divided by a Split operation prior to the Join

operation.

(ii) The Split procedure reacts to a scenario in which a

cluster becomes invalid or discontinued; for example, in

cases in which two groups within the same cluster drift

apart. In this operation, the cluster will be divided at the

maximal inner gap among the inner gaps forming two

valid clusters.

(iii) The Join procedure is motivated by reducing the

number of clusters in the model. Therefore, join

conditions allow continuously increasing cluster size as

long as this operation is not preventing more beneficial

future operations. For this purpose, the Join conditions

allow two clusters to join not only when a gap is located

between two larger gaps as with the Split-Join procedure,

but also when it is located between a larger gap from one

side and non-joinable clusters from the other side.

4.2 Detailed description

Below is the formal explanation of this procedure:

Fig. 3 presents the D-CUT algorithm run by vehicles that

belong to cluster Ci. The algorithm uses as input the local

vehicle proximity map of its vicinity. This map consists

of: (i) the updated location of its own clusters and its two

adjacent clusters (i.e., Ci-1,Ci,,Ci+1) and (ii) the size of the

inter-cluster gaps delimiting those clusters (i.e.,

gi-1,gi,,gi+1). In addition, the Join procedure requires two

additional bits of information from each of its neighbor

clusters, as will be detailed later. As output, the algorithm

produces the new CA of Ci.

As mentioned above, the Split-Join procedure enables not

only clusters but also sub-clusters to join. The following

function is used to find the optimal cluster or sub-clusters,

in terms of Objective 1, to be joined.

Definition 3. The Max-Min Inter-Distance Pair (MMIDP)

is a function that finds a pair of inter-distances (denoted

by (d
(l)

,d
(r)

)) from adjacent clusters, such that the minimal

value in the pair is maximized over all possible pairs

forming a valid cluster. More formally, given the inter-

cluster gap gi, let X = {(d,d’)dD[gi-1,gi),

d’D(gi,gi+1],F(d,d’)=true}. The split candidates pair

(d
(l)

,d
(r)

) is the pair that maximizes min(d,d’) over all

possible choices of (d,d’)X. When more than one pair

satisfies the condition, the pair with the maximal second

pair value determines the unique MMIDP. In some cases

6

// Stage 1 - Split-Join procedure on gi-1

(d
(l)

,d
(r)

) = MMIDP(gi-1);

 if (SJC(d
(l)

,d
(r)

,gi-1))

 if uU(d
(l)

,d
(r)

) then Ci-1=U(d
(l)

,d
(r)

) and exit;

 else Ci=U(d
(r)

,gi);

// Stage 2 - Split-Join procedure on gi

(d
(l)

,d
(r)

)=

MMIDP(gi);

 if(SJC(d
(l)

,d
(r}

,gi))

 if uU(d
(l)

,d
(r)

) then Ci+1=U(d
(l)

,d
(r)

) and exit;

 else Ci=U(gi-1,d
(l)

);

// Stage 3 - apply Split procedure on Ci

if(SC1(Ci) SC2(Ci))

 d’=max(D(gi-1,gi)) where F(gi-1,d’)= F(d’,gi)=true;

 if uU(gi-1,d’) then Ci=U(gi-1,d’) and exit;

 else Ci+1=U(d’,gi) and exit;

// Stage 4 apply Join procedure on gi-1.

if(JC1(gi-1) JC2(gi-1)) && !(SJC(gi-2) SC2(Ci-1)))

 Ci=U(gi-2,gi);

// Stage 5 apply Join procedure on gi.

if (JC1(gi) JC2(gi)) && !(SJC(gi+1) SC2(Ci+1)))

 Ci=U(gi-1,gi+1);

Fig. 3. The D-CUT algorithm.

we will refer to the output of the function (d
(l)

,d
(r)

) as

MMIDP.

Definition 4. We define the following Split-Join

Condition (SJC):

 SJC(d
(l)

,d
(r)

,gi)= min(d
(l)

,d
(r)

)>gi.

Split-Join Procedure (Stages 1-2): Given the inter-

cluster gap gi, the Split-Join procedure (see Fig. 4a)

enables two adjacent groups separated by this inter-cluster

gap to join. To find the optimal cluster or sub-clusters to

be joined, the procedure begins with finding the MMIDP,

(d
(l)

,d
(r)

). Then, the SJC verifies whether min(d
(l)

,d
(r)

) is

larger than the inter-cluster gap, gi, trapped between them.

When this condition is satisfied, the Split-Join procedure

removes the inter-cluster gap gi by joining U(d
(l)

,gi),

U(gi,d
(r)

) to form the new cluster U(d
(l)

,d
(r)

). In case

U(d
(l)

,gi) is a sub-cluster (i.e., d
(l)

  gi-1), a preceding Split

operation is applied on d
(l)

, resulting in the additional

cluster U(gi-1,d
(l)

). Symmetrically, when d
(r)gi+1,

U(d
(r)

,gi+1) is formed. Only members of the new cluster

U(d
(l)

,d
(r)

) terminate this iteration of the algorithm at the

end of this stage, the rest continue to successive stages.

Each cluster first applies the procedure (stage 1) on its left

inter-cluster gap and then (stage 2) on its right inter-

cluster gap. Nevertheless, as we shall see in the following

section, this procedure is performed in a coordinated

fashion between the clusters. So when Ci applies a Split

Join procedure with its left neighbor, Ci-1 applies the same

symmetric procedure with its right neighbor Ci. An

example of the procedure is illustrated in Fig. 5.

Definition 5. We define the following Split Conditions:

 SC1(Ci)= !F(gi-1,gi);

 SC2(Ci)= d’>gi-1,gi, where d’=max(D(gi-1,gi)).

Split Procedure (Stage 3): Given a cluster Ci and some

inter-distance d’, the split procedure is defined to partition

the cluster Ci into two clusters: U(gi–1,d’) and U(d’,gi). In

order to maintain stable CA, which consists of large

clusters, the D-CUT tries to modify the current CA by a

Split procedure only when the current CA contains clusters

that are: (i) not satisfied by the objective function F, or (ii)

discontinuous. Therefore, when a cluster ceases to satisfy

the objective function F, the first split condition (SC1) is

fulfilled. The second split condition (SC2) is satisfied

when the inner gap becomes larger than its delimiting

inter-cluster gaps. In both cases, the split operation is done

on the maximal inter-distance that results in creation of

two valid clusters.

Remark: Due to the SC1, the D-CUT algorithm produces

a valid CA at each iteration. An invalid CA will be

received when the last iteration CA, updated by the new

node’s locations, creates one or more invalid clusters.

When some of the clusters do not satisfy the objective

function F, the Split operation, triggered by SC1, will

occur. As a result, each invalid cluster is replaced by two
2

valid clusters. Since this operation is triggered

independently among clusters, the split operations occur

simultaneously, and a valid CA is received.

2
 Here we assume that an invalid cluster, which was a valid cluster in

the previous iteration, can be split to 2 valid clusters. The algorithm can

intuitively be expanded to deal with the case where an invalid cluster is
required to be split to more than 2 clusters.

Fig. 4. (a) The Split Join procedure. In this example SJC(d(l),d(r),gi) is
satisfied. As a result, a Split operation on d(l) is triggered, which is

followed, at once, by a Join operation over gi. Thus, the new CA of this

range is the 2 clusters U(gi-1,d
(l)) and U(d(l),gi+1). (b) The Join

procedure. Here, JC2(gi) is fulfilled. Consequently, a Join operation

over gi produces the new cluster U(gi-1,gi+1).

7

Definition 6. We define the following two Join

Conditions:

 JC1(gi)=(gi–1>gi) && !F(gi,gi+2) && F(gi-1,gi+1);

 JC2(gi)=(gi+1>gi) && !F(gi–2,gi) && F(gi-1,gi+1).

Join Procedure (Stages 4-5): Given the gap gi, the Join

procedure (see Fig. 4b) is defined by removing the gap gi

to create the new cluster U(gi-1,gi+1). The Join procedure is

motivated by Objective 2, i.e., reducing the number of

clusters in the model. Thus, the join conditions allow two

clusters that form a valid cluster to join when it is trapped

by a larger gap from one side and non-joinable clusters

from the other side (JC1 and JC2). To guarantee a

coordinated Join operation, the Join conditions verify that

the cluster to be joined with is not going to be split at the

same iteration. Notice that this procedure requires two bits

of additional information from each of its neighbor

clusters. The first reflects whether its two immediate

adjacent clusters are forming a valid cluster and the

second is whether they satisfy the SJC.

4.3 Clusterhead Election Procedure

As mentioned, the high adaptivity of the algorithm to the

dynamic environment leads to frequent and difficult to

predict clusterhead changes. Though this quality is highly

desired from a robustness point of view, it may lead to

high overhead. Hereby, we present a low-cost, robust, and

coordinated clusterhead election procedure. For this

purpose, the D-CUT algorithm limits the clusterhead to a

solitary function; aggregating the required information to

form the updated vehicle proximity map and

disseminating this map within the cluster. Each vehicle

that successfully receives this map acquires all the

required information to become the next iteration

clusterhead.

Once a new cluster is formed by the algorithm, a

clusterhead is elected based on the contention amongst the

clusterhead candidates that are prioritized according to

their proximity to the cluster center. The cluster center can

be defined as center of gravity of graph representation of

the cluster members. Only vehicles that successfully

receive the coordinated proximity map will participate in

the contention process. Thus, the contention sequence is

agreed upon among the clusterhead candidates. By

broadcasting a Clusterhead Declaration Message, a

clusterhead candidate informs the rest of the cluster

members that it is the current clusterhead.

The robustness of the contention increases with the

increase in number of competitors. However, requiring a

large number of competitors may lead to less-efficient

clusters and longer contention period. The objective

function-free parameter pmin enables balancing the

robustness level and the clusters’ efficiency.

5 Theoretical analysis

Above we described a CA optimization problem based on

the following two objectives: Objective 1 is to minimize

the smallest inter-cluster gap over all solutions and

Objective 2 is to minimize the number of clusters over all

solutions. In some scenarios those two objectives

contradict each other. To evaluate this effect, we set a

lower bound approximation for our optimization problem.

In particular, we show a lower bound for the

approximation ratio for Objective 2, to every CA that

satisfies Objective 1.

After showing this bound, we conduct a theoretical

analysis to demonstrate the ability of the D-CUT

algorithm to self-start and maintain an optimized CA in

the dynamic VANET environment. For this purpose, we

will show coordinate, local, and fast convergence of the

algorithm to the GNOCA. This optimized CA meets

Objective 1 and approximates Objective 2 by a factor of 3.

We first show a coordinate output when the algorithm is

executed by the different vehicles. As mentioned above,

the vehicle proximity map is distributed within the cluster

from a single source and in one broadcast transmission.

Thus, cluster-members that receive this map have the

same input to the D-CUT algorithm, and thus, the same

output. Adjacent clusters only share the overlapping

portion of the vehicle proximity map, as each of them only

shares information with the clusters directly adjacent to

them. Despite the uncoordinated input, we will show that

adjacent clusters have coordinated outputs. In particular,

we will prove that if two adjacent clusters are involved in

Split-Join or Join procedures, the procedures will be

mirrored. This coordination is obtained from the

overlapping portion of the coordinated map and with

minimal coordination overhead.

We continue by demonstrating the locality of the D-CUT

clustering process. In a properly functioning clustering

algorithm, configuration changes in a certain place of the

model will influence the clustering process of a local sub-

model in the vicinity. Obviously, when the network is

disconnected it automatically partitions into sub-networks.

However, when considering a long and connected network

as in a busy highway, the network in its entirety spans

several kilometers. To demonstrate the locality of the D-

CUT algorithm, we will show that the network is

partitioned into sub-networks at certain inter-distances that

are relatively larger than the inter-distances around them.

Fig. 5. An example of concurrent Split Join operation. (a) The input
of the D-CUT algorithm for cluster Ci and (b) the output. In this

scenario, since the last D-CUT execution, a group of two vehicles

from cluster Ci-1 have approached cluster Ci. At the same time, a
group of two vehicles from cluster Ci gets very close to cluster Ci+1.

The D-CUT will react to those changes by two parallel Split Join

operations. By a Split Join procedure with its left neighbor, the right
sub-cluster of Ci-1 joins the left sub-cluster of Ci. By a Split Join

procedure with its right neighbor, the right sub-cluster of Ci joins the

cluster Ci+1.

8

Each such sub-model is clustered independently by the D-

CUT algorithm.

To conclude, we show the fast and strict convergence of

the D-CUT algorithm from any given CA to a GNOCA.

An existing condition in showing convergence is the

assumption that the configuration is stable (the exact

definition of a stable configuration will be given later).

This is clearly a weak assumption as the vehicular

environment is very dynamic. Hence, in order to

demonstrate the ability of the algorithm to deal with such

a dynamic environment, we will show a very fast and

strict convergence of the D-CUT algorithm. To prove the

fastness and strictness, we will show the logarithmic

convergence time solely of the distance between the initial

CA and the GNOCA and not of the network in its entirety.

This, combined with the fact that the D-CUT algorithm

can be executed at a high rate, shows the ability of the D-

CUT to converge even in the VANET’s dynamic

environment.

5.1 Lower bound

Hereby we show the lower bound for an approximation

ratio for Objective 2, for every CA that satisfies Objective

1.

THEOREM 1: There exists a network N so that any valid

CA that meets Objective 1 approximates Objective 2 with

factor of 2.

Proof: We consider a network N organized in dense,

equally spaced, groups of kmax/2 and kmax/2+1 nodes,

where each group of kmax/2 nodes is followed by a group

of kmax/2+1 nodes (see Fig. 6). Moreover, the inter-

distances that separate the groups are larger than the inter-

distances that separate the group members. Let us denote

by S1 and S2 the CAs that meet Objective 1 and Objective

2, correspondingly. Under this configuration, the size of

each cluster in S2 is maximal, i.e., |C|=kmax for CS2.

Accordingly, |S2| = n/kmax. On the other end, the CA that

meets Objective 1, clusters each group into a cluster.

Hence, |S1| = 2n/(kmax/2+kmax/2+1). Consequently, the

ratio between |S1| and |S2| is 2.

5.2 Coordinate output

In this section we will show that the CA produced by the

D-CUT algorithm is coordinated among all nodes. More

formally, assume the output of D-CUT for some node ux is

Cp, and for uy is Cq; if uyCp then Cp=Cq. Before proving

the above assertion, let us establish the following:

Observation 1: In the case where SJC(d
(l)

,d
(r)

,gi) is

satisfied: (i) if d
(l)

 > d
(r)

 then d
(l)

 maxD[d
(l)

,d
(r)

]) and d
(r)

 maxD[gi,d
(r)

]); (ii) symmetrically, if d
(l)

 < d
(r)

, d
(r)

maxD[d
(l)

,d
(r)

]), and d
(l)

 maxD[d
(l)

,gi]).

Proof: Without loss of generality, let d
(l)

 > d
(r)

. Since

SJC(d
(l)

,d
(r)

,gi) holds, d
(l)

,d
(r)

 > gi. Furthermore, from d
(r)

 as

the output of the MMIDP function, we can conclude that

d
(r)

>d’D(gi,d
(r)

), as F(d
(l)

,d’) = true (since D(d
(l)

,d’)

D(d
(l)

,d
(r)

)). Symmetrically, d
(l)

>dD(d
(l)

,gi).

From this observation we can conclude the following.

Observation 2: If SJC(d1
(l)

,d1
(r)

,gi-1)=true and

SJC(d2
(l)

,d2
(r)

,gi)=true then U(d2
(l)

,d1
(r)

)= .

Lemma 1: Given that one of the Join conditions is

satisfied on gi-1, then gi does not satisfy any of the Join

conditions at the same iteration.

Proof: Since gi–1 is satisfying one of the Join conditions

we can conclude that F(gi–2,gi)=true and either gi–1 < gi or

F(gi-1,gi+1)=false. On the other hand, for gi to satisfy the

Join condition, the expression F(gi-1,gi+1)=true must be

fulfilled and either gi–1>gi or F(gi–2,gi)=false. Thus, the

lemma holds.

THEOREM 2: Let the output of D-CUT for some node ux

be Cp and for uy be Cq. If uyCp then Cp=Cq.

Proof: Consider some two nodes ux and uy, and let

Cp(t),Cq(t) denote the clusters containing ux and uy,

respectively, at any iteration t. In case Cq(t) is not one of

the adjacent clusters of Cp(t), the new cluster Cp(t+1) will not

contain uy since Split-Join and Join operations are applied

only between adjacent clusters. In case Cp(t)=Cq(t), the D-

CUT algorithm will have the same input at iteration t for

ux and uy, and therefore, it will produce the same output.

Finally, consider the case that Cq(t) is one of Cp(t)’s

neighbors. Without loss of generality, let us assume that

Cq(t)=Cp(t)–1. If uyCp(t+1), the algorithm run by ux performs

either a Split-Join operation at stage 1 or a Join operation

at stage 4. Following the symmetric nature between stage

1 and stage 2, if ux performs a Split-Join operation in stage

1, then uy performs an equivalent Split-Join operation at

stage 2, as long as it is not a part of the newly formed

cluster at stage 1. Observation 2 assures that uy will not be

a part of the newly formed cluster when uyCp(t+1).

Likewise, following the symmetry between stage 4 and

stage 5, if ux performs a Join operation in stage 4, then uy

performs an equivalent Split-Join operation in stage 5, as

long as it does not perform any operation in the preceding

four stages. If ux performs a Join operation in step 4,

according to the join conditions, no operation is performed

by uy in the first 3 stages. Finally, Lemma 1 assures that uy

is not involved in a Join operation at stage 4.

5.3 Independent sub-model clustering

In this section we seek to demonstrate the locality of the

D-CUT clustering process. The algorithm, as we prove

below, partitions the model N into local sub-models,

where each sub-model is clustered independently. That is,

configuration changes in one sub-model do not have any

influence on CA changes in the rest of the model. This

partition is done according to the local maximum inter-

distance defined below:

Definition 7. Let Q(d’,t) be the set of any inter-distances d

that satisfies either F(d’,d)=true, or F(d,d’)=true at

iteration t. We define d’ as a local maximum inter-distance

in the time frame [t’, t’’], if and only if, d’ > dQ(d’,t)

at any iteration t, t’  t  t’’.

Now we shall confirm that as long as the two inter-

distances remain the local maximum in the time interval

[t’, t’’], the sub-model trapped between them is clustered

independently.

9

Definition 8. Let gv(t) be the inter-cluster gap located at the

inter-distance dv in iteration t, i.e., dv = gv(t). Accordingly,

gv(t)-1,gv(t)+1 are the 2 inter-cluster gaps that frame dv from

left and right, respectively, at iteration t.

THEOREM 3: Consider dv,du 2 consecutive local

maximum inter-distances in the time frame [t’,t’’]. Then,

the D-CUT algorithm is clustering the sub-network

U(dv,du) independently of the rest of the model, in the time

frame [t’+1, t’’].

Proof: In order to establish this assertion, it is sufficient to

show that the local maximum dv partitions the network

into 2 independently clustered, sub-networks. Notice that

if dv is not an inter-cluster gap at iteration t’, the Split

operation will take place on the local maximum dv at

iteration t’+1 Thus, dv is an inter-cluster gap at iteration

t’+1, i.e., dv gv(t’+1). From this iteration up to t’’, Join

operations on dv = gv(t) are not viable, as Join conditions

(JC1,JC2) require at least one of the inter-cluster gaps

gv(t)-1,gv(t)+1 to be larger than the local maximum gv(t). By

the same reasoning, a Join operation triggered by SJC will

not take place, as this condition requires d
(l)

,d
(r)

 to be

larger than gv(t). Consequently, no operation between the

adjacent clusters, which are separated by gv(t), will take

place. To complete, we notice that JC1(gv(t)-1)=false

regardless of whether or not F(gv(t)-1,gv(t)+1) is satisfied.

Therefore, a Join operation on gv(t)-1 is independent in CA

in the range D[gv(t),dn]. For reasons of symmetry, a Join

operation on gv(t)+1 is independent in the CA of the range

D[d0,gv(t)].

5.4 Convergence Process

In this section we show the fast and strict convergence of

the D-CUT algorithm from any given valid CA to a

GNOCA. In order to demonstrate the above, we will take

advantage of the correlation between the D-CUT

convergence processes and the Split Binary Tree (SBT), a

particular tree representation of the inter-distance set D.

Below, we analyze the convergence process by the

following three stages: first, we present the SBT and prove

that it is a Binary Search Tree with expected height of

O(log(D)); second, we limit the convergence time of the

D-CUT algorithm by the height of the SBT; third, we

express the SBT height as a function of the distance

between the initial CA and the GNOCA.

5.4.1 The Split Binary Tree (SBT)

In what follows, we refine the notation G to refer only to

the local sub-model D[ds,df], i.e., G(t)= G(t) D[ds,df]. In

addition, we refine the notation D to represent only the

subset of the inter-distances that are involved in the

convergence process. More formally, let D be the subset

that contains all the inter-distances that at some iteration

during the convergence process, served as a inter-cluster

gap in the range D[ds,df]. That is, D =

G(t0)G(t0+1)G(t0+2) … G(t0+t2) where t0,t2 denote

the first and last iterations in the conversance process,

respectively.

Definition 9. Given a network N with configuration D, the

Split Binary Tree (SBT) is a tree representation of the

given configuration (see Fig. 7). The root entry of the SBT

is associated with the full set D(ds,df). Each subsequent

SBT entry is associated with the subset of D obtained by

the following process: We start by setting dk, the

maximum inter-distance of the set D(ds,df), as the root

entry. Then, we partition the set D(ds,df) into 2 subsets:

D(ds,dk), and D(dk,df), where the first subset is associated

with the root’s left child, and the second with the right

child. Then, we set the maximum inter-distances dy and dz

– where dy=max(D(ds,dk)), and dz=max(D(dk,df)) – as the

left and right children of dk, respectively. We continue

with this recursive process up to the point where each

received subset contains a single inter-distance that

obviously acts as its own maximum. As a key entry, we

use the index of the maximum inter-distance (e.g., if dv is

the maximum distance in the entry, we set the key entry to

v). By l(d) and r(d) we denote the left and right end points,

respectively, of the associated range of d. Finally, the

function h(dv) returns the height of the subtree rooted at

the entry v.

Corollary 1: Given inter-distance set D, where D values

are randomly distributed (i.e., form a random

permutation), SBT(D) produces a Random Binary Search

Tree on the indices of the inter-distances with expected

height of O(logD).

Proof: Consider the SBT(D) produced by inserting the

tree’s entries in decreasing order. That is, we set the

maximal inter-distance as the root. Then, at each stage we

insert into the SBT the subsequent maximal value, which

has not yet been inserted. We end when all inter-distances

in D have been inserted. This SBT of the values of D is a

Binary Search Tree considering the entry’s keys (i.e., D

indices). When the inter-distances’ values are randomly

distributed, this process inserts into the binary tree a

random permutation of the keys set. Therefore, this

process produces a Random Binary Search Tree on the

indices of inter-distances. As demonstrated in [16], the

expected height of such a Random Binary Search Tree is

O(log D).

In order to show convergence, we need to assume stable

configuration. Using the SBT representation of the given

configuration, a more relaxed definition for stability can

be achieved. We define a stable configuration as a

configuration where: (i) ds,df remain local maximums

Fig. 6. Network configuration where the ratio between |S1| and |S2| converges to 2.

10

during all the convergence process and (ii) the SBT

representation of the sub-model D(ds,df) is unchanged.

5.4.2 Bounding the convergence time by the SBT

height

For bounding the convergence time by the height of SBT,

we will show that each inter-distance is classified to its

final state in the GNOCA according to its height in the

SBT. But first, some additional definitions are required.

We say that the inter-distance d is classified at iteration t’

as an inner gap if dG(t) for every t > t’. We say that the

inter-distance d is classified at iteration t’ as an inter-

cluster gap if dG(t) for every t > t’. In addition, let us

define a refined height h’(dv) of the sub-tree rooted at the

entry v by counting only entries that will be classified as

inner gap.

Following this, we associate each inter-distance with one

of four inter-distance types (see Fig. 8).

Definition 10. Given dvD(ds,df), we associate dv

according to the validity of the clusters trapped between

l(dv), dv, r(dv) as follows: (a) dvA1 if and only if

F(l(dv),r(dv))=true; (b) dvA2 if and only if

F(l(dv),dv))=F(dv,r(dv))= true, and F(l(dv),r(dv))=false; (c)

dvA3 if and only if F(l(dv),dv)=true and F(dv,r(dv))=false;

(d) dvA4 if and only if F(l(dv),dv)=false and

F(dv,r(dv))=true.

Remark: The final case where

F(l(dv),dv))=F(dv,r(dv))=false is already defined as the

local maximum, i.e., the two sub-model end points.

The next observation shows the relationship between

inter-distance type and the type of its descendants in the

SBT.

Observation 3: Consider some inter-distance dv; if

F(l(dv),dv)=true then all dD(l(dv),dv)) belong to A1.

Proof: Since every diD(l(dv),dv)) is smaller than both dv

,l(dv), we can deduce that D(l(di),r(di)) D(l(dv),dv)).

Thus, F(l(di),r(di))=true.

From this observation we can conclude that if d{A1A2}

then all d descendants belong to A1. Furthermore, the left

descendants of dA3 and the right descendants of dA4

belong to A1 as well.

Next, we will show the bottom-up classification process

on the SBT. This process begins with inter-distances

associated with A1 that are placed (if they exist) in the

bottom of the SBT. Lemma 2 assures that every dA1 is

classified as an inner gap at iteration t = h’(d). Lemma 3

shows that the CA obtained at the end of this phase

satisfies Objective 1. Then, in Lemma 4 we ensure that

dA2 is classified as an inter-cluster gap once its

descendants, which are all associated with A1, are

classified. Notice that this condition is fulfilled at iteration

t= h’(d). We continue with the bottom-up process by

demonstrating (Lemma 5) that d{A3A4} is classified

either as an inner gap or as an inter-cluster gap at iteration

t = h’(d). To conclude, we prove that after the

classification of all dD[ds,df] the obtained CA is in fact

the GNOCA (Lemma 6). Note that the sub-model end-

points ds,df are classified as inter-cluster gaps at iteration

t0 as we have shown in the proof of Theorem 3. Appendix

II provides a simple example of the relation between the

SBT height and the convergence time.

In order to demonstrate the classification of inter-distance

d as an inner gap, we will ensure that if dG(t) at iteration

t = h’(d), then the Join operation will be applied on d. In

case dA1 we will demonstrate that SJC is satisfied, and

when dA3,A4} the operation will be triggered by JC1 or

JC2. However, to guarantee the classification, we need to

prove that this operation will not be overturned by a future

Split operation. To this end, in the following observations

we will set some conditions that the Split operation can

fulfill. First, we will show that SC2 is satisfied only on the

maximal inter-distance within a cluster (Observation 4)

and only at iteration t0 (Observation 5). Second, we will

show that if some SBT sub-tree does not contain any inter-

distance that plays the role of inter-cluster gap at iteration

t, then the Split operation will not be applied on any inter-

distance in this sub-tree, at any iteration t’ > t

(Observation 6).

Remark: As we assume a valid CA at iteration t0, and as

all the D-CUT operations produce valid clusters, in the

following we assume the Split operation to be triggered

either by SC2 or by SJC.

Observation 4: If SC2(Ci) is satisfied on d’ then d’ =

maxD[gi-1,gi]).

Proof: Follows directly from the definition of SC2.

Observation 5: Let gi(t)-1,gi(t) be two consecutive inter-

cluster gaps at iteration t. For every t > t0, all dD(gi(t)-

1,gi(t)) are smaller than max(gi(t)-1,gi(t)).

Proof: (Proof by contradiction). Let us assume the

opposite; that is, there exists dxD(gi(t)-1,gi(t)) that satisfies

dx > max(gi(t)-1,gi(t)). Since gi(t)-1,gi(t) are two consecutive

inter-cluster gaps at iteration t we can deduce that dx does

not satisfy SC2 at iteration t-1. Therefore, either dxG(t-1)

and a Join operation takes place on dx at iteration t-1, or

dxG(t-1) and max(gi(t-1)-1,gi(t-1)) > dx. However, regarding

the first option, the Join operation on dx results in

max(gi(t)-1,gi(t)) > dx, which contradicts our initial

assumption. Thus, we are left with the second option in

which at iteration t-1, max(gi(t-1)-1,gi(t-1)) > dx. For reasons

Fig. 7. The SBT of the set D’={35,40,45,30,40,42,20}.

11

of symmetry, let us assume that gi(t-1)-1 < gi(t-1).

Accordingly, to satisfy dx > max(gi(t)-1,gi(t)), gi(t-1) is

replaced by gi(t), where gi(t) < gi(t-1). The replacement of

gi(t-1) by the smaller gi(t) cannot be the outcome of a Join

operation on gi(t-1), since only a Join operation triggered by

JC1(gi(t-1)) can result in gi(t-1) > gi(t-1)+1, gi(t-1)+1 = gi(t), and

JC1(gi(t-1))=false. Therefore, we are left with the case

where gi(t) is created by a Split operation in the range

between dx and gi(t-1). As SC2 is applied only on an inter-

distance larger than its framing inter-cluster gaps, this

Split operation is triggered by SJC(d
(l)

,d
(r)

,gi(t-1)-1), where
gi(t) = d

(r)
. In such case, dxD(d

(l)
,d

(r)
), and therefore,

F(d
(l)

,dx)=true. Thus, gi(t) = d
(r)

> dx as the pair (d
(l)

,d
(r)

) is

preferred over (d
(l)

,dx) by the MMIDP function.

This

contradicts our initial assumption that dx > max(gi(t)-1,gi(t)).

Observation 6: If D(l(dv),r(dv))G(t’) = , then

D(l(dv),r(dv))G(t) =  for every t > t’.

Proof: To establish this observation it suffices to show

that if D(l(dv),r(dv))G(t’) = , then

D(l(dv),r(dv))G(t’+1) = . Explicitly, a Split operation is

not taking place at iteration t’ in the range D(l(dv),r(dv)).

From D(l(dv),r(dv))G(t’) = , it can be deduced that

D[l(dv),r(dv)] D[gi(t)-1,gi(t)], where gi(t)-1,gi(t) are the two

inter-cluster gaps that frame dv from left and right,

respectively. Accordingly, neither SJC (Observation 1) nor

SC2 (Observation 4) hold, since by definition, both

l(dv),r(dv) are larger than every dD(l(dv),r(dv)).

After setting the conditions under which the Split

operation can be fulfilled, we begin describing the bottom-

up classification process by demonstrating the

classification of dvA1 as the inner gap at iteration t =

h’(dv).

Lemma 2: If dvA1, then dv is classified at iteration t =

h’(dv), as an inner gap.

Proof: We will demonstrate this lemma by way of

induction on the inter-distance refined height. In the base

case, dv (dv = gv(t0)) is an SBT leaf (h(dv)=0). In this case

D(l(dv),dv) = D(dv,r(dv)) = , and therefore,

l(dv)D[gv(t0)-1, gv(t0)) and r(dv)D(gv(t0)-1, gv(t0)+1]. In

addition, since dvA1, we can conclude that F(l(dv),r(dv))=

true, where by definition l(dv),r(dv) > gv(t0). Consequently,

SJC(l(dv),r(dv),gv(t0)) is satisfied and a Join operation on

gv(t0) will take place at iteration t0. Subsequent to this

operation, D(l(dv),r(dv))G(t0+1) = . According to

Observation 6, this assures that dv is classified at iteration

t0 as the inner gap as a Split operation on dv will not take

place at any t > t0. For the inductive step, let us assume

that the lemma holds for all d such that h’(d)  t - 1.

Accordingly, as all dv descendants belong to A1

(Observation 3), they all have been classified as inner gaps

at iteration t - 1. Therefore, D(l(dv),dv)G(t-1) =

D(dv,r(dv))G(t-1)=  (see Fig. 9a). As demonstrated in

the base case, this assures the classification of dv as an

inner gap.

Lemma 3: Let t1 = t0 + max(h(d))  for all

dD(ds,df)A1G(t) satisfies Objective 1 for every t  t1.

Proof: Let us denote by dv = gv(t) the minimal inter-cluster

gap in G(t) at some iteration t  t1. According to Lemma 2,

dvA1, and thus, F(l(dv),r(dv))=false. This implies that

every valid CA must contain at least one inter-cluster gap

in the range D(l(dv),r(dv)). The lemma holds as dv is the

maximal inter-distance in this range.

The meaning of this result is that if we subdivide the

model at any inter-distance dA1, each such sub-model

satisfies Objective 1.

Now we wish to continue with the bottom-up

classification process by demonstrating the classification

of dvA2 as an inter-cluster gap at iteration t = h’(dv). In

order to demonstrate the classification of d as an inter-

cluster gap, we will show that d is located between two

clusters, and their union produces an invalid cluster.

Considering such d, and assuming that all d descendents

from A1 are classified as inner gap, the following

observation ensures that this state is irreversible.

Observation 7: Consider dvA1 (dv = gv(t)). If

F(gv(t)-1,gv(t)+1)=false at some iteration t  h’(dv), then

F(gv(t)-1,gv(t)+1)=false at any iteration t’  t.

Proof: The observation follows if a Split operation will

not take place in the range D(gv(t)-1,gv(t)+1) at any t’  t.

From Observation 5 we can conclude that SC2 is applied

only at iteration t0. In addition, since (i) only gA1 can

satisfy SJC(d
(l)

,d
(r)

,g), and (ii) all dv descendants that

belong to A1 are classified as inner gap at iteration t

(Lemma 2), a Split operation in the range D(gv(t)-1,gv(t)+1)

will not be triggered by any gD(l(dv),r(dv)). To conclude,

we note that any gD(l(dv),r(dv)) will not trigger a Split

Fig. 8. Illustration of 3 of the 4 inter-distance types. The fourth type A4 is a mirror image of A3.

12

operation (by satisfying SJC) on dD(l(dv),r(dv)). This is

because either l(dv) or r(dv) are located in the range

between d and g, such that min(l(dv),r(dv)) > d. As

demonstrated in Observation 1, in such a case, the Split

operation will not be applied on d.

Lemma 4: If dvA2, then dv is classified as an inter-cluster

gap at iteration t = h’(dv).

Proof: Following Observation 3, in case dvA2, all its

descendants (if any exist) are from A1. Following Lemma

2, this implies that all dv descendants are classified as

inner gaps at iteration t (see Fig. 9b). Hence, from

F(l(dv),r(dv))=false we can conclude that (i) dv=gv(t)G(t)

and (ii) F(gv(t)-1,gv(t)+1)=false. The lemma follows from

Observation 7, which ensures that F(gv(t’)-1,gv(t’)+1)=false at

any iteration t’ > t.

To complete the bottom-up classification process, we wish

to show the classification of dv{A3A4} at iteration t =

h’(dv). Lemma 5 confirms that if dv is located between

non-joinable clusters (i.e., their union produces an invalid

cluster) at iteration t, then it is classified as an inner gap;

while if dv is located between joinable clusters, either JC1

(if dvA3) or JC2 (if dvA4) will be satisfied on dv, and as

a result, it will be classified as an inner gap. To show that

indeed the Join conditions are satisfied, in the following

two observations we characterize the inter-cluster gaps

gv(t)-1,gv(t)+1, framing dv=gv(t) from left and right,

respectively, at iteration t.

Observation 8: Let t’ = h’(dv). If dvA3, then gv(t)-1 > gv(t)

for every t  t’.

Proof: Since dvA3 then all dv left descendants (i.e.,

dD(l(dv),dv)) are from A1 (Observation 3). Thus, all dv

left descendants are classified as inner gaps at iteration t’

(Lemma 2). Therefore, l(dv)D[gv(t)-1,gv(t)) for every t > t’.

Obviously, if l(dv) = gv(t)-1, the lemma follows as l(dv) >

gv(t). On the other hand, if l(dv)D(gv(t)-1,gv(t)), following

Observation 5 l(dv) max(gv(t)-1,gv(t)). Since l(dv) > gv(t) we

can conclude that gv(t)-1 > gv(t).

Observation 9: Let t’ = h’(dv). If dvA3 then

gv(t)+1{A2A3} for every t  t’.

Proof: According to Lemma 2, gv(t)+1A1 at any iteration t

 t’. In addition, since dvA3, by definition,

F(dv,r(dv))=false. Therefore, gv(t)+1 is a descendant of dv,

and thus, dv > gv(t)+1. Since F(dv,gv(t)+1)=true we can

deduce that gv(t)+1{df A4}. Thus, gv(t)+1{A2A3} at any

iteration t  t’.

Lemma 5: If dvA3 then dv is classified at iteration

t=h’(dv) either as an inner gap when F(gv(t)-1,gv(t)+1)=true

or as an inter-cluster gap when F(gv(t)-1,gv(t)+1)=false.

Proof: Following Observation 7, if dv A3 and

F(gv(t)-1,gv(t)+1)=false, then dv is classified as an inter-

cluster gap. Hence, to prove the lemma, we will ensure

that if dvA3 and F(gv(t)-1,gv(t)+1)=true, then the Join

operation, triggered by JC1(gv(t)), occurs at iteration t. We

will demonstrate it by induction on the inter-distance

refined height. By Observation 8 we get that gv(t)-1 > gv(t) at

iteration t. Thus, to show that JC1(gv(t)) is satisfied it is

sufficient to show that F(gv(t),gv(t)+2)=false (see Fig. 9c).

To simplify the notation, we let dvA3* if dvA3 and

F(gv(t)-1,gv(t)+1)=true.

For the base case, we consider the dv without

descendant from A3*. Notice that gv(t)+1 is a gv(t)

descendant and belongs to {A2,A3} (Observation 9).

According to Lemma 4, if gv(t)+1A2 then

F(gv(t),gv(t)+2)=false. If gv(t)+1A3, F(gv(t),gv(t)+2)=false as dv

has no descendant from A3*. Therefore, JC1(gv(t)) is

satisfied. Following Observation 6, a Split operation on dv

will not be applied at any iteration t’ > t, and thus, dv is

classified as an inner gap. Assume that our induction

hypothesis holds for all d such that h’(d)  t-1. Here as

well, the case where gv(t)+1A2 comes from Lemma 4. If

gv(t)+1A3, F(gv(t),gv(t)+2)=false directly follows the

inductive hypothesis. As in the base case, the assertion is

Fig. 9. SBT state at the iteration of dv classification: (a) dvA1,: all dv descendants have been classified at t= h’(dv) as inner-gaps. Hence, SJC(l(dv),r(dv),gv)

holds, and dv is classified as inner-gap; (b) dvA2: in this case as well, dv descendants have been classified at t=h’(dv). However, as F(l(dv),r(dv)) = false, dv is

classified as an inter-cluster-gap; (c) dvA3: this type of inter-distance can be classified either as an inner-gap (as illustrated here) or as an inter-cluster-gap.

This is determined according to the outcome of the F(gv(t)-1,gv(t)+1) at t= h’(dv).

13

concluded by Observation 6.

For reasons of symmetry the above lemma holds for

dvA4.

Lemma 6: Let t2 = t0 + max(h’(d) for all dD(ds,df).

G(t) satisfies Objective 2 with an approximation ratio of at

most 3 for every t  t2.

Proof: In order to compare the values of Objective 2 in

optimal CA and the CA produced by the D-CUT

algorithm, we will bound the number of inter-cluster gaps

in each sub-model range separately. As the sub-model

D[ds,df] shares the endpoint ds with its left sub-model and

df with its right sub-model, we count only the left

endpoints in each sub-model. To be exact, we determine

G(t2)-1 inter-cluster gaps for the sub-model D[ds,df]. As

demonstrated above (in the proofs of Lemma 4 and

Lemma 5), each inter-cluster gap gi(t2)G(t2), excluding

the sub-model end points {gs(t2),gf(t2)}, satisfies

F(gi(t2)-1,gi(t2)+1)=false. Accordingly, G(t2) can be

segmented into ½G(t2)-1 pairs of consecutive clusters,

where the union of each cluster pair produces an invalid

cluster. (In case of an odd number of clusters we remain

with the rightmost cluster unpaired.) This implies that

every valid CA has at least ½G(t2)-1 inter-cluster gaps

in the range D[ds,df], because every valid CA contains at

least one inter-cluster gap in the range of each consecutive

pair of clusters. Let Gopt be the set of the inter-cluster gaps

in optimal CA (in the perspective of term 2) in the range

D[ds,df]. We obtain that G(t2)-1  2 Gopt +1. Since

F(ds,df)=false, Gopt  1. Hence, in the worst case we get

an approximation ratio of 3. The ratio converges to the

lower bound 2 in approximation with the increase of sub-

model size.

Following the above lemmas (Lemmas 2 through 6), we

can establish the following intermediate conclusion:

Corollary 2: The D-CUT algorithm converges to the

GNOCA after no more than t2 iterations.

5.5 D-CUT strict convergence

After we have limited the convergence time by the SBT

refined height, we want to express the SBT refined height

as a function of the distance between the initial CA and the

GNOCA, i.e., (G(t0)G(t2))\(G(t0)G(t2)). We consider

only the following subset to express the refined height of

the SBT:

Definition 11. Let  = G(t0)\G(t2) be the set of inter-

cluster gaps in the range D(ds,df) that belong to the initial

CA G(t0), but do not belong to the GNOCA, G(t2).

(Obviously,   (G(t0)G(t2))\(G(t0)G(t2)).)

Definition 12. Let  = D(ds,df)\(G(t0))G(t2)) be the set

of temporary inter-cluster gaps in the range D(ds,df) that

appears (by Split operation), and is then removed (by Join

operation) during the course of the convergence process.

Notice that the union of the sets  and gives the set of

all inter-distances that are classified as inner gaps. As the

refined height is a function of the inter-distances that are

classified as inner gaps, and  is a lower bound of the

distance between the initial CA and the GNOCA, our goal

is to express the ratio between the size of sets  and .

Below, we demonstrate that ||  3.5|| by showing

that ||  2.5||. In order to set this bound, we will relate

all Split operations that occur during the convergence

process to an explicit subset of . In particular, we define

the subset v to be the set of inter-cluster gaps that are

located in the range D(l(dv),r(dv)) at iteration t0, i.e., v

D(l(dv),r(dv))G(t0), where dv and both

l(dv)r(dv) Since every dD(l(dv),r(dv)) belongs to A1,

we can conclude that every such d is classified as an inner

gap (Lemma 2), and thus, v. The right neighbor subset

of v is denoted by u= D(r(dv),r(du))G(t0) (see Fig. 10).

First, we relate each Split operation that takes place in the

range D[l(dv),r(dv)] to the subset v. This criterion is

sufficient to relate any Split operation triggered by SC2 to

one of  subsets. To see why, recall that according to

Observation 6, if v=, then the Split operation will not

take place in the range D(l(dv),r(dv)). Moreover, in

Observation 9 we show that if v= and a Split operation,

triggered by SC2, takes place on r(dv), then u ≠ .

Accordingly, such a Split operation can be related either to

v (if v ≠ ) or to u (if u ≠ ). However, when

considering a Split operation triggered by SJC, the above

criterion is not enough. This is because Split operation

triggered by SJC(d
(l)

,d
(r)

,gi) can be spread outside the

range D[l(dv),r(dv)] even if giD[l(dv),r(dv)]. In

Observation 10 we demonstrate that in such a case the

new inter-cluster gap does not belong to A1. Thus, this

new inter-cluster gap will not trigger an additional Split

operation triggered by SJC. Hence, by relating any Split

operation triggered by SJC(d
(l)

,d
(r)

,gi), where

giD[l(dv),r(dv)], to the subset v we ensure that any Split

operation triggered by SJC will be related to one of 

subsets.

Fig. 10. Notations used in the D-CUT strict convergence sub-section.

14

Definition 13. We say that a Split operation on d results in

v. v, if one of the following is satisfied: (i)

dD[l(dv),r(dv)] or (ii) dD[l(dv),r(dv)], and the operation

is triggered by the inter-cluster gap gi, where

giD[l(dv),r(dv)].

Observation 9: Let v,u be two adjacent  subsets. Let d’

= r(dv) = l(du). If SC2 is satisfied on d’ at iteration t0, then

either v or u.

Proof: Without loss of generality let d’A2A3. We will

show that v. In this case l(d’)=l(dv), since by definition

the ranges D(l(d’),d’), D(l(dv),d’) contain only d, and

both l(d’),l(dv). Hence, to demonstrate the observation

we will show that G(t0)D(l(d’),d’). Let gj(t0)-1,gj(t0) be

the two inter-cluster gaps framing d’ at iteration t0 from

the left and right, respectively, i.e., d’D(gj(t0)-1,gj(t0)).

According to Observation 4, d’= max(D[gj(t0)-1, gj(t0)]). In

addition, by definition l(d’) > d’. Thus, l(d’)D[gj(t0)-1,

gj(t0)], i.e., gj(t0)-1D(l(d’),d’).

Observation 10: Consider the case when SJC(d
(l)

,d
(r)

,gi) is

satisfied. If giD(l(dv),r(dv)) and d
(l)
A1, then

d
(l)
D(l(dv),r(dv)).

Proof: (Proof by contradiction.) Assume to the contrary

that d
(l)
D(l(dv),r(dv)). Accordingly, l(dv)D(d

(l)
,gi). In

addition, since d
(l)
A1 we can deduce that r(d

(l)
)D(d

(l)
,gi)

as well. As by definition r(d
(l)

) > d
(l)

 and l(dv) > gi,

max(l(dv),r(d
(l)

)) > max(d
(l)

,gi). According to Observation

1, in such a case SJC(d
(l)

,d
(r)

,gi)=false.

According to the above, we can establish the inequality

||  2.5|| by showing that the number of Split

operations resulting from the set v is bounded by 2.5 v.

We first consider the base case where v = 1. In this case

no more than 2 Split operations (on l(dv),r(dv)) will result

from the Join operation on gi(t
0

). This is because

SJC(l(dv),r(dv),gi(t0))=true at iteration t0. After the Join

operation on gi(t0), the range D(l(dv),r(dv)) (which does not

contain any inter-cluster gap) will not be split, as

demonstrated in Observation 6.

Next, we show that if v  2, then no more than 2v + 1

Split operations will result from the set v. As we seek an

upper bound, we are allowed to assume that if v  then

SJC(l(dv),r(dv),dv) will be satisfied. Therefore, we presume

that the Split on l(dv),r(dv) will result in v . According

to the above, the total number of Split operations resulting

from the set v is limited to the sum of: (i) the number of

Split operations on the both ends of the sub-model:

l(dv),r(dv), (ii) the number of Split operations (either by

fulfilling SJC or SC2) taking place in the range

D(l(dv),r(dv)), and (iii) the number of Split operations

taking place (by fulfilling SJC(d
(l)

,d
(r)

,gi)) outside the

range D[l(dv),r(dv)], where giD(l(dv),r(dv)).

In the following two observations we will characterize the

split candidates in the range D(l(dv),r(dv)) according to the

initial CA at this range. To this, we let Dv,j(t) =

D[l(dv),r(dv)] D[gj(t)-1,gj(t)].

Observation 12: If SJC(d
(l)

,d
(r)

,gi(t)) is satisfied, and both

d
(l)

,gi(t)Dv,i(t) at iteration t, then d
(l)

 = max(Dv,i(t)).

Proof: We subdivide this proof into two cases according

to d
(r)

 position. (i) In case d
(r)
D(gi(t),r(dv)], F(d,d

(r)
) = true

for all dDv,i(t) as F(l(dv),r(dv)) = true. Thus, according to

Observation 1, d
(l)

 = max(Dv,i(t)). (ii) In case

d
(r)
D(r(dv),gi(t)+1], i.e., r(dv)D(gi(t),d

(r)
), F(d

(l)
,r(dv)) =

true. Hence, d
(r)

 > r(dv) as the pair (d
(l)

,d
(r)

) is preferred

over (d
(l)

,r(dv)) by the MMIDP at iteration t. In addition,

since by definition r(dv) is larger than all dDv,i(t) we can

conclude that d
(l)

 < min(r(dv),d
(r)

). The assertion follows as

(d
(l)

,d
(r)

) is preferred over (d,r(dv)) for all dDv,i(t).

For reasons of symmetry, the above observation holds for

d
(r)

 as well. In Observation 12 we demonstrated that a split

candidate d must satisfy d = max(Dv,i(t)). In the following

we extend this split candidate prerequisite to d =

max(Dv,i(t0)).

Observation 13: If d  max(Dv,j(t0)) then d  max(Dv,j(t))

for every t  t0.

Proof: In order to have d = max(Dv,j(t+1)), when d 

max(Dv,j(t)), a Split operation in the range between d and

max(Dv,j(t)) is required. However, all inter-distances in

this range are smaller than max(Dv,j(t)). According to the

above observations, such an operation will not take place

at iteration t as neither SC2 (Observation 4) nor SJC

(Observation 12) is satisfied on d’.

After stating the above, we are ready to limit the number

of Split operations resulting in the set v. In Lemma 8, we

limit the number of Split operations on dD(l(dv),r(dv)),

resulting from v, by v - 1. Lemma 9 assures that the

maximal number of Split operations resulting from v, on

dD[l(dv),r(dv)] is v.

Lemma 8: The maximal number of Split operations on

dD(l(dv),r(dv)) resulting from the set v, is v - 1.

Proof: As SC2 is applied only at iteration t0 (Observation

5) and only on the maximal inter-distance in the cluster

(Observation 4), a Split operation on dDv,j(t0) is

triggered by SC2 only if d = max(Dv,j(t0)). According to

Observation 12 and Observation 13, the same can be

argued regarding SJC. Therefore, a Split operation can be

applied only on d = max(D[gj(t0)-1,gj(t0)]) for any

gj(t0)-1,gj(t0)v. Moreover, let gp(t0), gq(t0) be the leftmost and

rightmost inter-cluster gaps in the set v at iteration t0,
respectively. A Split operation will not take place in the

ranges D(l(dv),gp(t0)), D(gq(t0),r(dv)), since l(dv) =

max(D[l(dv),gp(t0))) and r(dv)= max(D(gq(t0)),r(dv)]). Hence,

no more than v - 1 Split operations will result from the

set v in the range D(l(dv),r(dv)).

Lemma 9: The maximal number of Split operations

triggered by SJC(d
(l)

,d
(r)

,gi(t)), where gi(t)D(l(dv),r(dv))

and d
(l)

 or d
(r)
D[l(dv),r(dv)], is v.

Proof: First we would like to show that if SJC(d
(l)

,d
(r)

,gi(t))

is satisfied, where gi(t)D(l(dv),r(dv)) then either

d
(l)
D(l(dv),r(dv)) or d

(r)
D(l(dv),r(dv)) holds. Assume the

opposite; that is, D(l(dv),r(dv))  D(d
(l)

,d
(r)

). Since: (i) by

15

definition F(d
(l)

,d
(r)

)=true, and (ii) following Observation

1, min(d
(l)

,d
(r)

)

> min(l(dv),r(dv)), then min(l(dv),r(dv))A1,

which contradicts the definition of v when

l(dv)r(dv).

Thus, the only scenario where the Split operation resulting

from v will take place on d
(l)
D[l(dv),r(dv)] is when both

d
(r)

,gi(t)D(l(dv),r(dv)). In cases when d
(r)
D(l(dv),r(dv))

and d
(l)
D[l(dv),r(dv)], we denote d

(r)
 by d

(r)*
. In the

symmetric case when d
(l)
D(l(dv),r(dv)) and

d
(r)
D[l(dv),r(dv)], we denote d

(l)
 by d

(l)*
. As demonstrated

in Lemma 8, there are only v - 1 inter-distances in the

range D(l(dv),r(dv)) that can play the role of d
(r)*

 (or d
(l)*

)

since d
(r)*

= max(D[gj(t0)-1,gj(t0)]) for gj(t0)-1,gj(t0)v. To

conclude, notice that any of those v - 1 inter-distances

can play the role of d
(r)*

 (or d
(l)*

) only once. This happens

because if SJC(d
(l)

,d
(r)*

,gi(t)) is satisfied, then gi(t) is the

leftmost inter-cluster gap in the range D(l(dv),r(dv)). After

this operation, d
(r)*

 become the leftmost inter-cluster gap

in this range, and therefore, will not play the role as d
(r)*

again. Following the same reasoning, only the last inter-

distance removed from the v - 1 Split candidates can

play the role of both d
(r)*

 and d
(l)*

. This is because once

inter-distance plays the role of d
(r)*

 it can play the role of

d
(l)*
only after the rest of the Split candidates have been

classified as inner gaps.

Fig. 11 illustrates the worst case scenario (regarding the

number of Split operations) resulting from the set

{gi(t0),gi(t0)+1,gi(t0)+2}.

Corollary 3:   3.5 .

THEOREM 4: From any given starting point, the D-CUT

algorithm converges to GNOCA under the assumption of

stable configuration status. The convergence process

requires O() worst case time and O(log) expected

time, under the assumption of random permutation of the

size of the inter-distances in the set D(ds,df).

Proof: According to Corollary 2 the D-CUT algorithm

converges to the GNOCA after no more than t2 iterations.

Notice that the refined height of the SBT(D(ds,df)) is equal

to the refined height of SBT(), since by definition

this function only counts inter-distances that are classified

as inner gaps. Furthermore, from Corollary 3:  

3.5. Hence, in the worst case the inter-distances in the

set  are organized in increasing/decreasing length

order, and the convergence process requires O()
iterations. The theorem follows since, according to

Corollary 1, under the assumption of random permutation,

SBT(D(ds,df)) is a Random Binary Search Tree with

expected height of O(log).

6 Simulation

In order to evaluate the performance of the D-CUT

algorithm under realistic road conditions, we performed

the following simulations.

6.1 Simulation Setup

The D-CUT algorithm strongly depends on the inter-

distances between vehicles. Thus, for faithful evaluation

of the algorithm, a realistic mobility model for individual

vehicles is required. Hence, we base our simulation on the

microscopic model developed by Stefan Krauß [17]

designed for multi-lane traffic flow dynamics. In this

model, every vehicle has its own preferred speed, which

the vehicle tries to reach if the conditions are satisfied

(e.g., having enough safe distance). We set 20% of the

vehicles with 25 m/s preferred speed, 50% with 35 m/s

preferred speed, and 30% with 40 m/s preferred speed. In

our highway traffic model, we assume that the vehicles

run along a three-lane circular loop with a perimeter of

2000 [m] and we consider traffic densities of 9, 18, 27, 36,

45, 54, and 63 vehicles per km. If not specified otherwise,

the D-CUT free parameters are set as the following: Rmax

=250(meters), kmax = 25, and pmin = 2.

Since the D-CUT uses the vehicle proximity map provided

by the beacon dissemination process as its input, the D-

CUT cycle time needs to be in units of the beacon

dissemination process cycle time. Here, we assume a 0.3

sec beacon dissemination process cycle time and we

consider the following D-CUT cycle times: 0.3, 0.6, 0.9,

1.2, 1.5, and 1.8 sec.

6.2 Tracking the Optimal Solution

In our theoretical analysis we demonstrated a logarithmic

convergence time under the assumption of a stable

configuration. Here, our objective is to evaluate the

convergence time during real traffic scenarios. First, we

compare the initial convergence time of the clustering

algorithms, and next, we compare their ability to track the

optimal solution.

The initial convergence time is defined as the number of

iterations required for the algorithm’s convergence

process, i.e., starting from an initial state in which each

Fig. 11. Illustration of the worst case scenario (in terms of Split operations

number) resulting inthe set {gi(t0),gi(t0)+1,gi(t0)+2}. At t0, SJC(d1
(l),d1

(r),gi(t0)),

SJC(dv,d2
 (r),gi(t0)+1) are satisfied. Consequently, 2 Split operations (on d1

 (r), dv)

take place in the range D(l(dv),r(dv)), and additional 2 Split operations,

triggered by the candidates d1
(r), d2

(l)=dv, result outside of this range (on d1
 (l), d2

(r)). At t0+1, SJC(d3
(l),dv,gi(t0+1)), which results in an additional Split (d3

(l))

outside of this range, triggered by the candidate d3
(r)=dv. Finally, at t0+2,

SJC(l(dv),r(dv),dv) is fulfilled, triggering a Split operation on l(dv),r(dv). In total,

7 Split operations result from the set {gi(t0),gi(t0)+1,gi(t0)+2}.

16

vehicle is considered a separate cluster, until the final

state, in which no reorganizing-operation is applied by the

clustering algorithm throughout an entire iteration. Fig. 12

shows the impact of network size on convergence time

with different D-CUT cycle times (denoted by Tcycle). The

zero cycle time corresponds to the stable configuration

case. As we can see, the algorithm demonstrates a

logarithmic convergence time for the different cycle times.

The figure shows that for cycle times of 0.3 seconds the

convergence time is generally the same as under a stable

configuration. In medium and high density, a longer cycle

time results in longer convergence time. In order to shed

light on this effect, Fig. 13 presents the initial convergence

process for 0.3 and 0.6 D-CUT cycle times. The figure

compares the CA produced by the D-CUT algorithm with

the GNOCA by comparing each of the two optimization

objectives separately. Generally, this comparison shows

that the D-CUT algorithm provides a fast convergence

towards the optimal solution, and displays high correlation

with it after initial convergence. In terms of Objective 1,

in both cycle time settings, the D-CUT algorithm

promptly converges to the GNOCA (around 8 iterations).

The reason for the longer convergence time is seen when

comparing the convergence in terms of Objective 2. When

cycle time is set to 0.3 sec the algorithm continues with

the rapid convergence and completes the process at

iteration 13. When cycle time is set to 0.6 sec on the other

hand, the D-CUT gets very close to the GNOCA at the

same iteration, but due to the higher dynamic, fails to

complete the process through additional 10 iterations.

After showing the initial rapid convergence, we continue

by analyzing the ability of the D-CUT algorithm to

maintain the GNOCA. In the following we use two

different measures for evaluating this ability.

Table 1 presents the average ratio between the D-CUT CA

and the GNOCA for each of the two optimization

objectives with different D-CUT cycle times and vehicle

densities. In more detail, at the end of each D-CUT

iteration we evaluate the ratio between the minimum inter-

cluster gap and the number of clusters of the two CAs. As

we demonstrated in the previous section, the D-CUT

converges to the GNOCA in two phases. First, the D-CUT

replaces small inter-cluster gaps by larger ones up to the

convergence to an optimal CA in terms of Objective 1. In

the second phase, the algorithm greedily joins adjacent

clusters, up to convergence to the GNOCA. Accordingly,

as we can learn from this table, the algorithm obtains a

ratio of nearly one in the context of Objective 1 under the

different densities and even at cycle times as long as 1.8

sec. In low density, the number of clusters ratio between

the two CAs is nearly one as well. In medium and high

densities, a high rate of D-CUT execution results in ratio

of 1.04. The ratio increases with the increasing of cycle

time and reaches 1.17 when the cycle time is set to 1.8

sec.

The second measure we use to evaluate the ability of the

D-CUT to maintain the GNOCA is presented in Fig. 14(a).

This figure shows the average number of D-CUT

iterations standing between the D-CUT CA and the

GNOCA versus the vehicle density with different cycle

Fig. 12. Initial convergence time.

Table 1. A comparison between the D-CUT CA and the GNOCA for each of the two objectives.

Objective

D-CUT cycle time

0.3 0.6 0.9 1.2 1.5 1.8

1 2 1 2 1 2 1 2 1 2 1 2

V
eh

ic
le

 d
en

si
ty

9 1.00 1.00 0.99 1.01 0.99 1.01 0.99 1.01 0.99 1.01 0.99 1.01

18 1.00 1.01 0.99 1.02 0.99 1.03 0.99 1.04 0.99 1.05 0.99 1.05

27 1.00 1.02 0.99 1.04 0.99 1.05 0.99 1.07 0.99 1.08 0.99 1.09

36 1.00 1.04 0.99 1.07 0.99 1.10 0.99 1.12 0.99 1.14 0.99 1.15

45 0.99 1.04 0.99 1.07 0.99 1.10 0.99 1.12 0.99 1.14 0.98 1.16

54 1.00 1.04 0.99 1.08 0.99 1.11 0.99 1.14 0.99 1.15 0.99 1.17

63 1.00 1.04 0.99 1.08 0.99 1.11 0.99 1.14 0.99 1.15 0.99 1.17

17

times. Specifically, at the end of each D-CUT iteration we

freeze the configuration and evaluate the additional

number of iterations required to complete the convergence

process. From this figure we observe that the D-CUT

algorithm is capable of following the GNOCA and keeping

it within 2 iterations even for relatively high D-CUT cycle

time (1.8 sec) and under high density (63 vehicles per

km).

An interesting point arising from this figure is that the

increasing of D-CUT cycle time has a small benefit to this

measure. For example, in a density of 63 vehicles per km,

the difference between 0.9 and 1.8 cycle times is

negligible (1%). So even though the algorithm has

updated the clustering at twice the rate, the results are

almost the same. This observation can be explained by the

fact that at a high execution rate, the algorithm is exposed

to the configuration changes gradually, and thus, each D-

CUT iteration is less effective since the algorithm cannot

parallel its operation in an optimal way. This explanation

is supported by Fig. 14(b) that shows the average number

Fig. 13. Initial convergence process. (a) and (c) compare the minimal inter-cluster gap of the CA produced by the D-CUT algorithm with the minimal
inter-cluster gap of GNOCA for time cycles of 0.3 sec and 0.6 sec, respectively. (b) and (d) compare the number of clusters of the two CAs for time cycles

of 0.3 sec and 0.6 sec, respectively. In order to scale the process time, the first 100 iterations are plotted for 0.3 sec cycle time and the first 50 iterations

for the 0.6 sec cycle time.

Fig. 14. (a) Average number of D-CUT iterations between the D-CUT CA and the GNOCA with different D-CUT cycle times. (b) Average number of D-

CUT operations against cycle time for density of 63 vehicles per km.

18

of D-CUT operations against the D-CUT cycle time at a

density of 63 vehicles per km. As we can see, the average

number of operations increases with the increase in the D-

CUT cycle time.

The aforementioned finding implies an efficient clustering

strategy in which the D-CUT is executed at a low rate

(e.g., Tcycle = 1.8). To avoid the 17% growth in the number

of clusters, every few seconds the D-CUT will initiate a

rebuilding process (that will take on average two

iterations) in order to converge to the GNOCA.

6.2.1 Cluster Size and Channel Utilization

In the following we want to evaluate the influence of the

free parameter kmax on the D-CUT performance. As we

said earlier, we limit the cluster size by kmax in order to

guarantee channel allocation for each cluster member.

Thus, the ratio between the average cluster size and kmax is

a good indication for the bandwidth utilization during the

beacon dissemination process.

In our objective function, there are two criteria defining

cluster validity: the first is the existence of pmin clusterhead

candidates, which cover the entire cluster population

within their transmission range. The second is limiting the

cluster size by kmax. Fig. 15 presents the effect of this

limitation on the average cluster size. Fig. 15(a) presents

the average cluster size versus vehicle density with

different kmax settings, and Fig. 15(b) presents the same but

with average cluster size normalized by kmax. In low

density, cluster size is determined according to the first

criterion, and thus, the kmax criterion has no effect.

However, when density increases valid clusters become

mainly dependent on the kmax criterion. In high density, the

average cluster size is about 60–65 percent of kmax. The

figure highlights the scalability of the algorithm. This is

seen by better bandwidth utilization when vehicle density,

and thus the channel load, increase.

Notice that the second validity criterion poses a lower

bound of n/kmax clusters for every valid CA. As we can see

from the dynamic simulation, the ratio achieved is even

better than the ratio of 3 proved before for static

configuration.

6.2.2 The Relaxed D-CUT

In this section we introduce a relaxed form of our D-CUT

algorithm designed to refine the trade-off between two

contradicting objectives, stability and adaptivity. The

traditional D-CUT algorithm greedily replaces small inter-

cluster gaps by larger gaps. To slow down this process, the

relaxed D-CUT algorithm triggers those replacements

only when the difference between the two gaps is

substantial. In particular, the replacement will take place

only if the ratio between the gaps is larger than a

predefined , where  is the trade-off balancing free

parameter.

Fig. 15. (a) Average cluster size versus vehicle density with different kmax settings. (b) Average cluster size normalized by kmax versus vehicle density
with different kmax settings.

Fig. 16. D-CUT relaxed model performances. (a) The number of D-CUT operations against the trade-off balancing free parameter  with low,

medium, and high densities. (b) The effect of  on the number of clusters in the model for the same densities.

19

Fig. 16 presents the influence of this free parameter on the

algorithm performance. Fig. 16(a) shows the average

number of D-CUT operations throughout a D-CUT

iteration, and Fig. 16(b) shows how this affects the

number of clusters produced by the algorithm (the effect

on minimal inter-cluster gap is small and thus is not

presented). The figure presents the results for low density

(9 vehicles per km), medium density (36 vehicles per km),

and high density (63 vehicles per km). In low density, the

trade-off balancing free parameter has no effect either on

the (anyway low) number of operations or on the number

of clusters produced by the algorithm. In medium and high

density, the figures show that the increase of  is a result

of the increase of stability at the direct expense of the

clustering adaptivity.

7 Conclusions

In this paper we present the D-CUT algorithm designed

specifically to provide extensive but reliable inter-cluster

bandwidth reuse. To this end, the D-CUT algorithm

performs under the following objectives: 1) the algorithm

seeks to minimize the inter-cluster interference by

producing clusters which are separated by the maximal

possible inter-cluster gaps and 2) the algorithm aims to

increase the cluster to its maximal size; thereby allowing

the most efficient utilization of the allocated bandwidth.

By extensive theoretical analysis we have demonstrated a

coordinated, local and fast convergent algorithm that

produces Geographically Near-Optimal Clustering

Assignment (GNOCA) from any initial clustering

assignment. We prove logarithmic convergence time

based solely on the distances between the initial clustering

assignment and the GNOCA. We also performed

simulation analyses in order to evaluate the performance

of the D-CUT algorithm under realistic road conditions.

Our simulation results support our theoretical findings

with respect to logarithmic initial convergence time under

realistic traffic scenarios. Our simulation results also show

the capability of the algorithm to follow the constantly

changing GNOCA. It is also demonstrated that the D-CUT

algorithm keeps the GNOCA within two iterations with

very close bounds compared to the optimal values.

References

1. D. Kumar, A. Kherani, and E. Altman (2006) Route

lifetime based optimal hop selection in VANETs on

highway: an analytical viewpoint. In: Proceedings of

IFIP Networking, Coimbra, Portugal.

2. R. Baldessari et al. (2007) Car-2-car communication

consortium-manifesto. In: DLR Electronic Library

[http://elib. dlr. de/perl/oai2](Germany).

3. M. Torrent-Moreno, P. Santi, and H. Hartenstein,

(2005) Fair sharing of bandwidth in VANETs. In:

Proceedings of the 2nd ACM international workshop

on Vehicular ad hoc networks, pp. 49-58.

4. Y. Gunter, B. Wiegel, and H. P. Großmann (2007)

Cluster-based medium access scheme for vanets. In:

IEEE Intelligent Transportation Systems Conference,

pp. 343-348.

5. H. Su and X. Zhang (2007) Clustering-based

multichannel MAC protocols for QoS provisionings

over vehicular ad hoc networks. In: IEEE Transactions

on Vehicular Technology, vol. 56, no. 6, pp. 3309-

3323.

6. D. Tian, Y. Wang, G. Lu, and G. Yu (2010) A

VANETs routing algorithm based on Euclidean

distance clustering. In: 2nd International Conference

on Future Computer and Communication, vol. 1, pp.

183- 187.

7. L. Wischhof, A. Ebner, and H. Rohling (2005)

Information dissemination in self-organizing

intervehicle networks. In: IEEE Transactions on

Intelligent Transportation Systems, vol. 6, no. 1, pp.

90-101.

8. L. Bononi and M. Di Felice (2007) A cross layered

mac and clustering scheme for efficient broadcast in

vanets . In: IEEE International Conference on Mobile

Adhoc and Sensor Systems, pp. 1-8.

9. P. Fan (2007) Improving broadcasting performance by

clustering with stability for inter-vehicle

communication . In: IEEE 65
th
 Vehicular Technology

Conference, pp. 2491-2495.

10. M. Raya, A. Aziz, and J. P. Hubaux (2006) Efficient

secure aggregation in VANETs. In: the 3rd

International Workshop on Vehicular ad hoc

Networks, pp. 67-75.

11. P. Fan, J. Haran, J. Dillenburg, and P. Nelson (2005)

Cluster-based framework in vehicular ad-hoc

networks. In: Ad-Hoc, Mobile, and Wireless

Networks, pp. 32-42.

12. Z. Wang, L. Liu, M. C. Zhou, and N. Ansari (2008) A

position-based clustering technique for ad hoc

intervehicle communication . In: IEEE Transactions

on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 38, no. 2, pp. 201-208.

13. M. Kenichi, W. Yoshiyuki, M. Nobuhito, K. Nakano,

and M. Sengoku (2002) Flooding schemes for

clustered ad hoc networks . In: IEICE Transactions on

Communications, vol. 85, no. 3, pp. 605-613.

14. O. Kayis and T. Acarman (2007) Clustering formation

for inter-vehicle communication. In: IEEE Intelligent

Transportation Systems Conference, pp. 636-641.

15. P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch,

J. Freudiger, M. Raya, Z. Ma. Zhendong, F. Kargl, A.

Kung, J. P. Hubaux (2008) Secure vehicular

communication systems: design and architecture. In:

IEEE Communications Magazine, Vol. 46, issue 11,

pp. 100-109.

16. B. Reed (2003) The height of a random binary search

tree . In: Journal of the ACM, vol. 50, no. 3, pp. 306-

332.

17. Stefan Krauß, Peter Wagner, and Christian Gawron

(1997) Metastable states in a microscopic model of

traffic flow. In: Physical Review E, vol. 55, pp. 55-97.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Papadimitratos,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Buttyan,%20L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Holczer,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schoch,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schoch,%20E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Freudiger,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Raya,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhendong%20Ma.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kargl,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kung,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kung,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35

20

Appendix 1 – List of Abbreviations

CA Clustering Assignment

D-CUT Distributed Construct Underlying Topology

GNOCA Geographically Near-Optimal CA

JC1 the first join condition

JC2 the second join condition

MMIDP Max-Min Inter-Distance Pair

SC1 the first split condition

SC2 the second split condition

SJC the spit join condition

VANET Vehicular ad-hoc network

Appendix 2 – An example of the D-CUT convergence

process

In the following we provide a detailed example of the D-

CUT convergence process.

The D-CUT gets as an input 9 small scrappy clusters (see

Fig. A.1(a)). Next we show how D-CUT converges to the

GNOCA in three iterations that match the height of the

corresponding SBT.

Throughout the convergence process 14 inter-distances are

involved. Those inter-distances are associated to the class

A1, A2, and A3 as the following: {d1, d2, d3, d4, d5, d6, d8, d9,

d10, d12, d14}  A1;{d13}  A2; {d7, d11}  A3.

In first iteration (see Fig. A.1(b)) the inter-distances {d1,

d3, d5, d8, d10, d12, d14} (which belong to A1) satisfy the SJC

and are classified as inner-gap (Lemma 2). In addition, the

inter-distance d13 that belong to A2 is classified as an inter-

cluster gap (Lemma 4).

In the second iteration (see Fig. A.1(c)) the inter-distances

{d2, d6, d9 } that belong to A1 satisfy the SJC and are

classified as inner-gap. At the end of this iteration (after

all inter-distances that belong to A1 are classified as inner-

gap), the CA produced by the D-CUT algorithm meets

Objective 1 (Lemma 3).

In the third iteration (see Fig. A.1(d)), the inter-distance
d11 that belongs to A3 satisfies the JC1 and is classified as

an inner-gap. In addition, the inter-distance d7 that

belongs to A3 is classified as an inter-cluster gap (since

F(d7, df) = false; see Lemma 5). At the end of this iteration

the D-CUT algorithm produces the GNOCA (Lemma 6).

Fig. A.1 An example of D-CUT convergence process

