
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE
http://cjtcs.cs.uchicago.edu/

Best Effort and Priority Queuing Policies for
Buffered Crossbar Switches

Alex Kesselman Kirill Kogan Michael Segal∗

August 14, 2012

Abstract: The buffered crossbar switch architecture has recently gained considerable research
attention. In such a switch, besides normal input and output queues, a small buffer is associated
with each crosspoint. Due to the introduction of crossbar buffers, output and input contention
is eliminated, and the scheduling process is greatly simplified. We analyze the performance of
switch policies by means of competitive analysis, where a worst-case throughput guarantee is
provided for all traffic patterns. The goal of the switch policy is to maximize the total value of
packets sent out of the switch. For the case of unit length and value packets (Best Effort), we
present a simple greedy switch policy that is at most 4-competitive and at least 3/2-competitive.
Moreover, we demonstrate that any online policy for this case is at least 3/2-competitive for a
special case of unit size buffers.

For the case of variable value packets, we consider the Priority Queueing (PQ) mechanism,
which provides better Quality of Service (QoS) guarantees by decreasing the delay of real-
time traffic. We propose a preemptive greedy switch policy with a preemption factor of β

whose competitve ratio is at most (β + 2)2 + 2/(β − 1) (16.24 for β = 1.53) and at least
(2β −1)/(β −1) (3.87 for β = 1.53). The results for upper bounds hold for any value of the
switch fabric speedup. Moreover, the presented policies incur low overhead and are amenable to
efficient hardware implementation at wire speed. To the best of our knowledge, this is the first
work on competitive analysis for the buffered crossbar switch architecture.

1 Introduction

The main task of a router is to receive packets from the input ports, to find their destination ports using a
routing table, to transfer the packets to their corresponding output ports, and finally to transmit them on the
output links. The switching fabric in a router is responsible for transferring packets from the input ports to

∗The work on this paper has been partially supported by US Air Force European Office of Aerospace Research and Development,
grant FA8655-09-1-3016, Deutsche Telecom, European project FLAVIA and Israeli Ministry of Industry, Trade and Labor (consortium
CORNET).

Key words and phrases: Buffered Crossbar Switches, Control Policies, Competitive Analysis.

Alex Kesselman, Kirill Kogan, Michael Segal
Licensed under a Creative Commons Attribution License

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

the output ports. If a burst of packets destined to the same output port arrives, it is impossible to transmit all
the packets immediately, and some of them must be buffered inside the switch (or dropped).

A critical aspect of the switch architecture is the placement of buffers. In the output queueing (OQ)
architecture, packets arriving from the input lines immediately cross the switching fabric, and join a queue
at the switch output port. Thus, the OQ architecture allows one to maximize the throughput, and permits
an accurate control of packet latency. However, in order to avoid contention, the internal speed of an OQ
switch must be equal to the sum of all the input line rates. The recent developments in networking technology
produced a dramatic growth in line rates, and have made the internal speedup requirements of OQ switches
difficult to meet. This has in turn generated great interest in the input queueing (IQ) switch architecture,
where packets arriving from the input lines are queued at the input ports. The packets are then extracted from
the input queues to cross the switching fabric and to be forwarded to the output ports.

It is well-known that the IQ architecture can lead to low throughput, and it does not allow the control
of latency through the switch. For example, for random traffic, uniformly distributed over all outputs, the
throughput (i.e. the average number of packets sent in a time unit) of an IQ switch has been shown to be
limited to approximately 58% of the throughput achieved by an OQ switch [18]. The main problem of the IQ
architecture is head-of-line (HOL) blocking, which occurs when packets at the head of various input queues
contend on a specific output port of the switch. To alleviate the problem of HOL blocking, one can maintain
at each input a separate queue for each output. This technique is known as virtual output queueing (VOQ).

Another method to get the delay guarantees of an IQ switch closer to that of an OQ switch is to increase
the speedup S of the switching fabric. A switch is said to have a speedup S, if the the switching fabric runs S
times faster than each of the input or the output lines. Hence, an OQ switch has a speedup of N (where N is
the number of input/output lines), while an IQ switch has a speedup of 1. For values of S between 1 and N
packets need to be buffered at the inputs before switching as well as at the outputs after switching. In order
to combine the advantages of both OQ and IQ switches, Combined Input-Output Queued (CIOQ) switches
balance between the crossbar speedup and the complexity of scheduling algorithms. They usually have a
fixed small speedup of 2, and thus need buffer space at both input and output side. This architecture has been
extensively studied in the literature, see e.g. [9, 12, 13].

Most CIOQ switches use a crossbar switching fabric with a centralized scheduler. While it is theoretically
possible to build crossbar schedulers that give 100% throughput [27] or rate and delay guarantees [9, 16]
they are considered too complex to be practical. No commercial backbone router today can make hard
guarantees on throughput, rate or delay. In practice, commercial systems use heuristics such as iSLIP [26]
with insufficient speedup to give guarantees. Perhaps the most promising way of obtaining guaranteed
performance has been to use maximal matching with a speedup of two in the switch fabric [12]. The parallel
matching process can be characterized by three phases: request, grant, and accept. Therefore, the resolution
time would be the time spent in each of the phases plus the transmission delays for the exchange of request,
grant, and accept information. Unfortunately, the performance of schedulers that are based on matching
computations does not scale well with the increase of the switch speedup.

A possible solution to minimize the scheduling overhead is to use buffers in the crosspoints of the crossbar
fabric, or buffered crossbar. The adoption of internal buffers drastically improves the overall performance of
the switch. The main benefit of the buffered crossbar switch architecture is that each input and output port
can make efficient scheduling decisions independently and in parallel, eliminating the need for a centralized
scheduler. As a result, the scheduler for a buffered crossbar is much simpler than that for a traditional
unbuffered crossbar [10]. Note that the number of buffers is proportional to the number of crosspoints, that is
O(N2). However, the crosspoint buffers are typically very small.

Buffered crossbar switches have received significant research attention. Javidi et al. [17] demonstrated
that a buffered crossbar switch with no speedup can achieve 100% throughput under a uniform traffic.
Nabeshima [28] introduced buffered crossbar switches with VOQs and proposed a scheme based on the
Oldest Cell First (OCF) arbitration at the input as well as the crosspoint buffers. Chuang et al. [10] described

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

a set of scheduling algorithms to provide throughput, rate and delay guarantees with a moderate speedup of 2
and 3.

In the previous research, the scheduling policies for the buffered crossbar switch architecture were
analyzed by means of simulations that assumed particular traffic distributions. However, Internet traffic is
difficult to model and it does not seem to follow the traditional Poisson arrival model [30, 31]. In this work
we do not assume any specific traffic model and rather analyze our policies against arbitrary traffic using
competitive analysis [29, 7], which provides a uniform worst-case throughput guarantee for all traffic patterns.
In competitive analysis, the online policy A is compared to the optimal clairvoyant offline policy OPT that
knows the entire input sequence in advance. The competitive ratio of a policy A is the maximum, over all
sequences of packet arrivals σ , of the ratio between the the total value of packets sent by OPT out of σ , and
that of A.

1.1 Our Results

We consider a buffered crossbar switch with three levels of buffering: input, crosspoint, and output of arbitrary
capacity. The switch policy controlling the switch consists of two components: a buffer management policy
that controls admission to buffers, and a scheduling policy that is responsible for the transfer of packets from
input buffers to crosspoint buffers and from crosspoint buffers to output buffers. The goal of the switch policy
is to maximize the total value of transmitted packets. When all packets have a unit value, this corresponds to
the number of packets sent out of switch. When packets have variable values, this corresponds to the total
value of the sent packets.

First we study the case of unit value packets, which abstracts the Best Effort model [11]. We introduce
a simple greedy policy that is at most 4-competitive. Moreover, we show that this policy also is at least
3/2-competitive. In addition we prove that any online policy for this problem is at least 3/2-competitive
for a special case of unit size buffers. Then we study Priority Queueing (PQ) buffers, where packets of the
highest priority must be forwarded first. We assume that each packet has an intrinsic value designating its
priority, which abstracts the Differentiated Services (DiffServ) model [8]. We propose a preemptive greedy
switch policy with a preemption factor of β whose competitive ratio is at most (β +2)2 +2/(β −1) (16.23
for β = 1.53) and at least (2β −1)/(β −1) (3.87 for β = 1.53). Our results for upper bounds hold for any
speedup. Moreover, the proposed policies have low implementation overhead and can operate at high speeds.
We are not aware of any previous work on the competitive analysis of buffered crossbar switches.

1.2 Related Work

Kesselman et al. [19] studied preemptive policies for FIFO buffers in output-queued (OQ) switches and
introduced a new bounded-delay model. Competitive analysis of preemptive and non-preemptive scheduling
policies for shared memory OQ switches was given by Hahne et al. [15] and Kesselman and Mansour [23],
respectively. Kesselman et al. [22] studied the throughput of local buffer management policies in a system of
merge buffers.

Azar and Richter [5] presented a 4-competitive algorithm for a valued uniformly sized packets in input-
queued (IQ) switch with FIFO buffers. An improved 3-competitive algorithm was given by Azar and Richter
[4]. Albers and Schmidt [2] proposed a deterministic 1.89-competitive algorithm for the case of unit-value
packets. Azar and Litichevskey [3] derived a 1.58-competitive algorithm for the same special case with
large buffers. Recently, Albers and Jacobs [1] gave an experimental study of new and known online packet
buffering algorithms.

Kesselman and Rosén [24] studied combined-input-output-queued (CIOQ) switches with FIFO buffers.
For the case of packets with unit values, they presented a switch policy that is 3-competitive for any speedup.
For the case of packets with variable values, they proposed two switch policies achieving competitive ratios

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 3

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

of 4S and 8min(k,2logβ), where S is the speedup of the switch, k is the number of distinct packet values and
β is the ratio between the largest and the smallest values. Azar and Richter [6] proposed the β -PG algorithm
(Preemptive Greedy with a preemption factor of β) that is 8-competitive for an arbitrary speedup value when
β = 3. Kesselman et al. [21] improved upon their result by showing that this algorithm achieves a competitive
ratio of 7.5 for β = 3 and an arbitrary value of speedup. Kesselman and Rosén [25] considered the case of
CIOQ switches with PQ buffers and proposed a policy that is 6-competitive for any value of speedup.

Kesselman et al. [20] considered combined-input-crossbar-output (CICOQ) switches with FIFO buffers
and proposed the β -preemptive greedy algorithm that is 19.95-competitive for β = 1.67. [14] surveyed
the most of the recent results in online buffer-management policies for different switch architectures and
queueing models.

1.3 Paper Organization

The rest of the paper is organized as follows. The model description appears in Section 2. The cases of unit
and variable value packets are analyzed in Section 3 and Section 4, respectively. We conclude with Section 5.

2 Model Description

Figure 1: An example of a buffered crossbar switch.

We consider an crossbar switch with N input ports and output ports (see Fig 1). Packets, of equal length,
arrive at input ports, and each packet is labeled with the output port on which it has to leave the switch. For a
packet p, we denote by V (p) its value. The switch has three levels of buffering: each input i maintains for
each output j a separate virtual output queue VOQi, j of capacity BIi, j; each crosspoint corresponding to input
i and output j maintains a queue CQi, j of capacity BCi, j; each output j maintains a queue OQ j of capacity
BO j. We denote the length of queue q by |q|. Sometimes we use ”*” to refer to all queue indices in range
[1,N].

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 4

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

The buffering model defines in which order packets should be fetched out of the buffer. We consider the
First-In-First-Out (FIFO) model under which packets must leave the buffer in the order of their arrivals and
the Priority Queuing (PQ) model under which packets of the highest value (priority) must be forwarded first.

We divide time into discrete steps, where a step is defined as the time between the departure of two
consecutive packets. That is, during each time step more than one packet can arrive at each input port and
only one packet can be sent out of each output port.

We divide each time step into three phases. The first phase is the transmission phase during which the
first packet from each non-empty output queue is sent on the output link. The second phase is the arrival
phase, during which zero or at least one packet arrives at each input port. The third phase is the scheduling
phase, which consists of so called input and output subphases. During the input scheduling subphase each
input port may transfer one packet from a virtual output queue to the corresponding crosspoint queue. During
the output scheduling subphase each output port can fetch one packet from a crosspoint queue. Notice that
a packet arriving at the input port i and destined to the output port j passes through three buffers before it
leaves the switch, namely VOQi, j, CQi, j and OQ j.

In a switch with a speedup of S, up to S packets can be removed from any input port and up to S packets
can be added to each output port during the scheduling phase. This is done in (up to) S consecutive scheduling
cycles, where each cycle comprises input and output scheduling subphases.

Suppose that the switch is managed by a policy A. We estimate the effectiveness of a switch policy by
means of competitive analysis [7]. In competitive analysis, the online policy is compared to the optimal
offline policy OPT , which knows the entire input sequence in advance. The aim of a switch policy is to
maximize the total value of the packets sent out of the switch. Let σ be a sequence of packets arriving at the
input ports of the switch. We denote by V A(σ) the total value of packets transmitted by A under the input
sequence σ . The competitive ratio is defined as follows [7].

Definition 2.1. An online switch policy A is said to be c-competitive if for every input sequence of packets
σ , V OPT (σ)≤ c ·V A(σ), where c is a constant independent of σ .

3 Unit Value Packets

In this section we consider the case of unit value packets. First we introduce a general lower bound on the
competitive ratio of any online policy for this case. Later we define a simple Greedy Unit Switch Policy (see
Figure 2) and analyze its lower and upper bounds. Note that GU never drops accepted packets and therefore
implements back pressure at all buffering levels inside the switch.

Theorem 3.1. The competitive ratio of any online algorithm A is at least 3/2 for a switch with all buffers of
uniform size B = 1 and a speedup S = 1.

Proof. Consider the following scenario. At time slot t = 0, each input i receives two packets: one packet is
destined to output i and the other one is destined to output ai 6= i. During the next time slot t = 1 the online
algorithm A sends one packet destined to output li (either i or ai) from each input port i while OPT sends the
packet to the alternative output oi 6= li. During the next time slot t = 2 a packet destined to output oi arrives
at each input i. OPT accepts all these packets while A has to drop them due to lack of space. As result the
competitive ratio of A is at least 3N/2N = 3/2.

Next we demonstrate that a lower bound of GU is at least 3/2 for the buffers of uniform size B.

Theorem 3.2. The competitive ratio of GU is at least 3/2 for a switch with all buffers of uniform size B > 1,
and a speedup S = 1.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 5

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

Greedy Unit Switch Policy (GU)

Transmission Phase : Transmit the first packet from each non-empty output queue.

Arrival Phase : Accept the arriving packet p if there is free space in the buffer. Drop p in case the buffer is full.

Scheduling Phase :

Input Subphase: for each input i choose an arbitrary head-of-line packet p if any in VOQGU
i, j such that CQGU

i, j

is not full and transfer it to CQGU
i, j .

Output Subphase: for each output j if OQGU
j is not full choose an arbitrary head-of-line packet p if any in

CQGU
i, j and transfer it to OQGU

j .

Figure 2: GU Switch Policy for Unit Length and Value Packets.

Proof. At time slot t = 0 each input i receives a burst of 2B packets: B packets destined to output i and B
packets destined to output ai 6= i. During the following B time slots GU sends B packets destined to output
i from each input i while OPT sends B packets destined to output ai. At time t = B a burst of B packets
destined to output ai arrives at each input i. OPT accepts all these packets while GU has to drop them due to
lack of space. Therefore, the competitive ratio of GU is at least 3NB/2NB = 3/2.

Now we show that the GU policy is 4-competitive for any value of speedup. To analyze the throughput of
the GU policy we introduce some helpful definitions. The next definition concerns packets that OPT may
deliver during a time step while GU does not.

Definition 3.3. For a given switch policy A, a packet sent by OPT from output port j at time t is said to be
extra if A does not transmit a packet from output port j at this time.

Next we define a wider class of so called potential extra packets that encompass extra packets.

Definition 3.4. For a given policy A, a packet p located at queue Q of OPT is called potential extra if
the number of packets in Q preceding p with respect to the FIFO order is greater than the length of the
corresponding queue of A.

Clearly, each extra packet should eventually become potential extra prior to transmission. We will map
every potential extra packet to a packet sent by GU , in such a way that at most three potential extra packets
are mapped to each GU packet. This mapping technique was first introduced in [15]. We need some auxiliary
claims.

Claim 3.5. No new potential extra packets appear during a transmission phase.

Proof. Consider an OPT output queue OQOPT
j . If OQOPT

j is empty at the beginning of the transmission
phase, then we are done. Otherwise, OPT transmits a packet out of OQOPT

j and thus the difference between
|OQOPT

j | and |OQGU
j | cannot increase.

Claim 3.6. The number of potential extra packets does not increase during an arrival phase.

Proof. Consider a virtual output queue VOQOPT
i, j . We argue that the difference between |VOQOPT

i, j | and
|VOQGU

i, j | cannot increase unless VOQGU
i, j is full. It follows from the fact that GU greedily accepts all arriving

packets if the input buffer is not full. Obviously, VOQOPT
i, j may not contain any potential extra packets if

VOQGU
i, j is full.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 6

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

In the following claim we bound the number of new potential extra packets that may appear during an
input scheduling subphase.

Claim 3.7. Consider an input scheduling subphase. For any input port i, the number of new potential extra
packets in the virtual output queues VOQOPT

i,∗ and crosspoint queues CQOPT
i,∗ that appear at the end of this

subphase is at most two.

Proof. New potential extra packets may appear only in VOQOPT
i, j if GU transfers a packet from VOQGU

i, j and
in CQOPT

i,k if OPT transfers a packet to this queue provided that j 6= k. Thus, at most two new potential extra
packets may occur.

The next claim limits the number of new potential extra packets that may occur during an output
scheduling subphase.

Claim 3.8. Consider an output scheduling subphase. For any output port j, the number of new potential extra
packets in the crosspoint queues CQOPT

∗, j and output queue OQOPT
j that appear at the end of this subphase is

at most one.

Proof. Consider an output scheduling subphase tos. We have that one new potential extra packet may appear
in CQOPT

i, j if GU transfers a packet from CQGU
i, j . Notice that if the number of potential extra packets in OQOPT

j

increases, then all crossbar queues CQGU
∗, j must have been empty at the beginning of tos. In this case, the

potential extra packet appearing in OQOPT
j must have already been a potential extra packet in a queue CQOPT

i, j
at the beginning of tos. That establishes the claim.

The mapping routine presented in Figure 3 maps all potential extra packets to the packets sent by GU
(we will show in the sequel that the routine is feasible). The routine runs at each (sub)phase, and adds some
mappings according to the actions of GU and OPT .

Mapping Routine:

• Step 1: Arrival Phase. For each VOQOPT
i, j , if OPT accepts a packet that becomes potential extra, this packet

replaces in the mapping the preceding packet in VOQOPT
i, j that ceases to be potential extra.

• Step 2: Scheduling Phase. (The next sub-steps are repeated S times for each scheduling cycle.)
For each input port i, map new potential extra packet(s) in the virtual output queues VOQOPT

i,∗ and
crosspoint queues CQOPT

i,∗ to the packet transferred by GU from input port i.

– Sub-Step 2.2: Output Scheduling Subphase. For each output port j, map new potential extra packet in
the crosspoint queues CQOPT

∗, j and output queue OQOPT
j to the packet transferred by GU to output port

j.

Figure 3: Mapping Routine for the GU policy.

We make the following observation concerning potential extra packets.

Observation 3.9. All potential extra packets are mapped by the mapping routine.

The observation is due to the fact that the routine runs during all but the transmission phase. Notice that
by Claim 3.5, no new potential extra packets appear during a transmission phase. The next lemma shows that
the mapping routine is feasible and at most three potential extra packets are mapped to a packet transmitted
out of the switch by GU .

Lemma 3.10. The mapping routine is feasible and no GU packet is mapped more than three times by the
mapping routine prior to transmission out of the switch for any value of the speedup S.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 7

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

Proof. According to Claim 3.6, the number of potential extra packets in the virtual output queues does not
increase during the arrival phase. Therefore, if a new potential extra packet appears in VOQOPT

i, j , it must be
the case that another packet in VOQOPT

i, j ceases to be potential extra at the end of the arrival phase. Hence,
Step 1 of the mapping routine is feasible and no new mappings are added to GU packets.

Claim 3.7 implies that the number of new potential extra packets in the virtual output queues and
crosspoint queues corresponding to an input port that appear at the end of the input scheduling subphase is at
most two. We argue that no new potential extra packet may appear if GU does not transmit a packet from this
input port. In this case, the potential extra packet appearing in a crosspoint queue of OPT must have already
been potential extra at the beginning of the input scheduling subphase under consideration. Thus, Step 2.1 of
the mapping routine is feasible and no GU packet is mapped more than twice.

By Claim 3.8, the number of new potential extra packets in the crosspoint queues and output queue
corresponding to an output port that appear at the end of the output scheduling subphase is at most one. We
claim that no new potential extra packet may appear if GU does not transfer a packet to this output port. In
this case, the potential extra packet appearing in the output queue of OPT must have already been potential
extra at the beginning of the output scheduling subphase under consideration. Therefore, Step 2.2 of the
mapping routine is feasible and no GU packet is mapped more than once.

Note the GU does not drop packets that have been admitted to the switch. Therefore, the mapping is
persistent and all mapped GU packets are eventually sent out of the switch. Furthermore, no GU packet is
mapped more than three times in total.

Now we will show that GU achieves a competitive ratio of 4.

Theorem 3.11. The competitive ratio of GU is at most 4 for any speedup value.

Proof. Fix an input sequence σ . Evidently, the number of packets sent by OPT is bounded by the number
of packets sent by GU plus the number of extra packets. Observe that every extra packet at first becomes a
potential extra packet prior to transmission. By Lemma 3.10, the number of extra packets is bounded by three
times the number of packets transmitted by GU . In this way we obtain, V OPT (σ)≤ 4V GU(σ).

4 Variable Value Packets

In this section we study the case of variable value packets under the Priority Queueing buffering model.
Remember that packets of the highest value have a strict priority over packets with lower values and are
always forwarded first. The goal of the switch policy is to maximize the total value of packets that cross the
switch.

We define the β -Preemptive Greedy Variable Switch Policy (see Figure 4). The rationale behind β -PGV
is that it preempts packets inside the switch only to serve significantly more valuable packets (β times the
value of the evicted packet). Although the Priority Queueing mechanism may violate the global FIFO order,
it still maintains the FIFO order within each individual flow consisting of packets with the same value.

First we demonstrate two different lower bounds on the performance of the β -PGV policy.

Theorem 4.1. The competitive ratio of β -PGV is at least (2β +1)/(β +2) for B = N = S.

Proof. During the time t = 0,1 the input port 1 receives a burst of B packets of value 1 destined to output port
1. At time t = 2,3 the input port 1 receives a burst of B packets of value β − ε destined to output port 1. The
policy β -PGV drops all but three packets from the last burst received at time t = 3. The total value obtained
by β -PGV is 2N ∗1+(N +3)∗ (β − ε). On the other hand, OPT drops all but three packets from the second
burst received at time t = 1 gaining the value of (N +3)∗1+2N ∗ (β − ε). Hence, the competitive ratio of
β -PGV is at least (2β +1)/(β +2) for sufficiently large N.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 8

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

β -Preemptive Greedy Variable Switch Policy (β -PGV)

Transmission Phase : For each non-empty output queue, transmit the first packet in the FIFO order with the largest
value.

Arrival Phase : Accept an arriving packet p if there is a free space in the corresponding virtual output queue
VOQPGV

i, j . Drop p if VOQPGV
i, j is full and V (p) is less than the minimal value among the packets currently in

VOQPGV
i, j . Otherwise, drop from VOQPGV

i, j a packet p′ with the minimal value and accept p. We say that p
preempts p′.

Scheduling Phase :

Input Subphase: For each input port i do the following. For each virtual output queue VOQPGV
i, j , choose

the packet p that is the first packet in the FIFO order among the packets with the largest value if any.
If CQPGV

i, j is not full, mark p as eligible. Otherwise, consider a packet p′ with the smallest value in
CQPGV

i, j . If V (p)≥ β ∗V (p′), then mark p as eligible (p will preempt p′ if selected for transmission).
Among the eligible packets with the largest value in VOQPGV

i,∗ , select an arbitrary packet p′′ and transfer
p′′ to the corresponding crosspoint queue while preempting a packet with the smallest value from that
queue if necessary.

Output Subphase: For each output port j do the following. For each crosspoint queue CQPGV
i, j , choose

the packet that is the first packet in the FIFO order among the packets with the largest value if any.
Among all chosen packets in CQPGV

∗, j , select an arbitrary packet p with the largest value. If OQPGV
j is

not full, then transfer p to OQPGV
j . Otherwise, consider a packet p′ with the smallest value in OQPGV

j .
If V (p)≥ β ∗V (p′), then preempt p′ and transfer p to OQPGV

j .

Figure 4: β -PGV Switch Policy for Priority Queuing Model.

Theorem 4.2. The competitive ratio of β -PGV is at least (2β −1)/(β −1) for B = N = S and β > 1.

Proof. During the time slot t = i the input i receives a burst of B packets of value β i for 0≤ i < N destined to
output port 1. At time slot 0 < t < B, β -PGV preempts B−1 packets of value β i−1 from output buffer BO1
and transmits one such packet. The total value that is obtained by β -PGV is N ∗β (N−1)+(β N−1)/(β −1).
OPT buffers all packets at the crosspoint buffers and transmits all of them gaining the value of N ∗β (N−1)+
N ∗ (β N −1)/(β −1). Hence, the competitive ratio of β -PGV is at least (2β −1)/(β −1) for sufficiently
large N.

Now we show that β -PGV achieves a competitive ratio of (β +2)2+2/(β −1) for any speedup. In order
to show the competitive ratio of β -PGV we will assign values to the packets sent by β -PGV so that no packet
is assigned more than (β +2)2 +2/(β −1) times its value, and then show that the value assigned is indeed at
least V OPT (σ). Our analysis is done along the lines of the work in [25], which studies Priority Queuing (PQ)
buffers for CIOQ switches.

For the analysis, we assume that OPT maintains FIFO order and never preempts packets. Notice that
any optimal schedule can be transformed into a non-preemptive FIFO schedule of the same value.

Lemma 4.3. There is OPT algorithm that maintains FIFO order and never preempts packets.

Proof. The proof is similar to that for CIOQ switches [24]. We argue that any feasible schedule of optimal
algorithm in the non-FIFO model can be transformed to a schedule in the FIFO model, in which the same
set of packets is sent. First, without loss of generality, assume that the optimal algorithm in the non-FIFO
model never preempts packets at the inputs or drops packets at the crosspoints and outputs. If this is not the
case, one can admit to the input buffers only packets that are eventually sent from the output buffers without
affecting the value of the solution. Second, we transform the none-FIFO schedule of the optimal algorithm

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 9

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

• Step 1 Assign to each packet scheduled by β -PGV during the input scheduling subphases of ts once its own
value; assign to each packet scheduled by β -PGV during the output scheduling subphases of ts β times own
its value.

For each input port i, let p′ be the packet scheduled by OPT from VOQOPT
i, j if any during the input scheduling

subphase of ts. Let p be the first packet with the largest value in VOQPGV
i, j if any or a dummy packet with zero value

otherwise.

• Step 2 If V (p′)≤V (p) and p is not eligible for transmission, then proceed as follows. Consider the beginning
of the output scheduling subphase that takes place during a scheduling cycle t ′s when OPT schedules p′ from
CQOPT

i, j and let p′′ be the first packet with the largest value in CQPGV
i, j if any or a dummy packet with zero

value otherwise.

– Sub-Step 2.1 If V (p′′)≥V (p)/β and p′′ is not eligible for transmission at the beginning of the output
scheduling subphase of t ′s, let p̂ be the packet that will be sent out of OQPGV

j at the same time at which
OPT will send p′ from OQOPT

j (we will later show that p̂ exists and its value is at least V (p′)/β 2)).
Assign the value of p′ to p̂.

– Sub-Step 2.2 If V (p′′) < V (p)/β , consider the set of packets with value at least V (p′)/β that are
scheduled by PGV from CQPGV

i, j prior to t ′s. Assign the value of V (p′) to a packet in this set that has
not previously been assigned any value by Sub-Step 2.2 (we will later show that such a packet exists).

• Step 3 If V (p′)>V (p) then proceed as follows:

– Sub-Step 3.1 If p′ was already scheduled by PGV , then assign the value of V (p′) to p′.

– Sub-Step 3.2 Otherwise, consider the set of packets with value at least V (p′) that are scheduled by
PGV from VOQPGV

i, j prior to the scheduling cycle ts. Assign the value of V (p′) to a packet in this set
that is not in VOQOPT

i, j at the beginning of this subphase, and has not previously been assigned any
value by either Sub-Step 3.1 or Sub-Step 3.2 (we will later show that such a packet exists).

• Step 4 If a packet q preempts a packet q′ at a crosspoint or output queue of PGV , re-assign to q the value
that was or will be assigned to q′.

Figure 5: Assignment Routine for β -PGV policy - executed for every scheduling cycle ts.

by swapping the order in which packets are sent so that FIFO order is maintained. Such a transformation is
always feasible since no packet is scheduled before its arrival time. The value of the resulting solution does
not change since the number of packets in any buffer at any given time does not change. Hence, no packet is
dropped at the buffers. The lemma follows.

The assignment routine presented on Figure 5 specifies how to assign values to the packets sent by
β -PGV . Observe that the routine assigns some value only to packets that are scheduled out of the virtual
output queues and crosspoint queues. Furthermore, if a packet is preempted, then the total value assigned to
it is re-assigned to the packet that preempts it.

Now we demonstrate that the routine is feasible and establish an upper bound on the value assigned to a
single PGV packet.

Lemma 4.4. The assignment routine is feasible and the value of each packet scheduled by OPT is assigned
to a PGV packet. The result holds for any value of the speedup.

Proof. First we show that the assignment routine as defined is feasible. Step 1, Sub-Step 3.1 and Step 4 are
trivially feasible. Consider Sub-Steps 2.1, 2.2 and 3.2.

Sub-Step 2.1. Let p′′ be the first packet with the largest value in CQPGV
i, j at the beginning of the output

scheduling subphase of t ′s and suppose that p′′ is not eligible for transmission. If V (p′′) ≥ V (p)/β then,

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 10

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

by the definition of PGV , the minimal value among the packets in OQPGV
j is at least V (p′′)/β ≥V (p)/β 2

and OQPGV
j is full. Thus, during the following BO j time steps PGV will send packets with value of at least

V (p′)/β 2 out of OQPGV
j . The packet p′ scheduled by OPT from VOQOPT

i, j will be sent from OQOPT
j in one

of these time steps (recall that by our assumption OPT maintains FIFO order). Since V (p′)≤V (p), we have
that the packet p̂ of PGV as specified in Step 2.1 indeed exists, and its value is at least V (p′)/β 2.

Sub-Step 2.2. If V (p′′) < V (p)/β , then evidently PGV scheduled at least BCi, j packets with value at
least V (p′)/β out of CQPGV

i, j during [ts, t ′s). By the construction, at most BCi, j−1 of these packets have been
assigned some value by Sub-Step 2.2. That is due to the fact that p′ is still present in CQOPT

i, j at the beginning
of the output scheduling subphase of t ′s and by our assumption OPT maintains FIFO order. Henceforth, one
of these packets must be available for assignment, i.e., it has not been assigned any value by Sub-Step 2.2
prior to t ′s.

Sub-Step 3.2. First note that if this case applies, then the packet p′ (scheduled by OPT from VOQOPT
i, j

during the input scheduling subphase of ts) is dropped by PGV from VOQPGV
i, j during the arrival phase ta < ts.

Let t ′a ≥ ta be the last arrival phase before ts at which a packet of value at least V (p′) is dropped from VOQPGV
i, j .

Since the greedy buffer management policy is applied to VOQPGV
i, j , it contains BIi, j packets with value of at

least V (p′) at the end of t ′a. Let P be the set of these packets. Note that p′ /∈ P because it has been already
dropped by PGV by this time. We have that in [t ′a, ts), PGV has actually scheduled all packets from P, since
in [t ′a, ts) no packet of value at least V (p′) has been dropped, and at time ts all packets in VOQPGV

i, j have values
less than V (p′). We show that at least one packet from P is available for assignment, i.e., it has not been
assigned any value by Step 3 prior to ts and is not currently present in VOQOPT

i, j . Let x be the number of
packets from P that are present in VOQOPT

i, j at the end of the scheduling cycle ts. By the construction, these x
packets are unavailable for assignment. From the rest of the packets in P, a packet is considered available
for assignment unless it has been already assigned a value by Step 3. Observe that a packet from P can be
assigned a value by Step 3 only during [t ′a, ts) (when it is scheduled). We now argue that OPT has scheduled
at most BIi, j−1− x packets out of VOQOPT

i, j in [t ′a, ts), and thus P contains at least one available packet. To
see this observe that the x packets from P that are present in VOQOPT

i, j at the beginning of the scheduling
cycle ts, were already present in VOQOPT

i, j at the end of the arrival phase t ′a. The same applies to the packet p′

(recall that p′ /∈ P). Since OPT maintains FIFO order, all the packets that OPT scheduled out of VOQOPT
i, j in

[t ′a, ts) were also present in VOQOPT
i, j at the end of the arrival phase t ′a. Therefore, the number of such packets

is at most BIi, j−1−x (recall that the capacity of VOQi, j is BIi, j). We obtain that at least one packet from P is
available for assignment at Sub-Step 3.2 since |P|= BIi, j, x packets are unavailable for assignment because
they are present in VOQOPT

i, j and at most BIi, j−1− x packets are unavailable because they have been already
assigned some value by Step 3.

We show that the value of each packet that is scheduled by OPT is assigned to a PGV packet. Note that
the assignment routine handles all packets scheduled by OPT out of the virtual output queues. The only two
cases left uncovered by Step 2 and Step 3 of the assignment routine are (i) V (p′)≤V (p) and p is eligible for
transmission and (ii) V (p′)≤V (p), p is not eligible for transmission, V (p′′)≥V (p)/β and p′′ is eligible for
transmission. We show that these cases are covered by Step 1: for the case (i), the value of p′ is assigned
during the input scheduling subphase when p is scheduled since V (p)≥V (p′); for the case (ii), the value of
p′ is assigned during the output scheduling subphase when p′′ is scheduled since V (p′′)≥V (p)/β . If a PGV
packet is preempted, the value assigned to it is re-assigned to the preempting packet by Step 4.

Lemma 4.5. No PGV packet is assigned more than (β +2)2 +2/(β −1), β > 1 times its value. The result
holds for any value of the speedup.

Proof. Consider a packet p sent by PGV . Observe that p can be assigned at most 1+β times own its value
by Step 1 and at most β +β 2 times its own value by Step 2. By the specification of Sub-Step 3.2, it does

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 11

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

not assign any value to p if it is assigned a value by either Sub-Step 3.1 or Sub-Step 3.2. We now show that
Sub-Step 3.1 does not assign any value to p if it is assigned a value by Sub-Step 3.2. That is due to the fact
that by the specification of Sub-Step 3.2, if p is assigned a value by this sub-step during ts, then p is not
present in the input buffer of OPT at this time. Therefore, Sub-Step 3.1 cannot be later applied to it. We
obtain that p can be assigned at most once its own value by Step 3. Hence, a packet that does not perform
preemptions can be assigned at most 2+2β +β 2 times its value.

Next we analyze Step 4. We say that p transitively preempts a packet q if either p directly preempts q
or p preempts another packet that transitively preempts q. Firstly, p can preempt another packet q′ in the
crosspoint queue such that V (q′) ≤ V (p)/β . Observe that any preempted packet in a crosspoint queue is
assigned at most once its own value by Step 1, once its own value by Step 3 and no value by Step 2. Hence,
the total value that can be assigned to p by Step 4 due to transitively preempted packets when p preempts q′

is bounded by twice its own value. Secondly, p can preempt another packet q′′ in the output queue such that
V (q′′)≤V (p)/β . Observe that any preempted packet in an output queue is assigned at most 1+β times its
own value by Step 1, β times own its value by Step 2, once its own value by Step 3, and 2/(β −1) times own
its value by Step 4. Thus, the total value that can be assigned to p by Step 4 due to transitively preempted
packets when p preempts q′′ is bounded by 2+2β +2/(β −1) times its own value. Therefore, in total no
PGV packet is assigned more than (β +2)2 +2/(β −1) times its own value.

The main theorem follows directly from Lemma 4.4 and Lemma 4.5.

Theorem 4.6. The competitive ratio of the PGV policy is at most (β + 2)2 + 2/(β − 1), β > 1 for any
speedup.

5 Conclusions

As switch speeds constantly grow, centralized switch scheduling algorithms become the main performance
bottleneck. In this paper we consider competitive switch policies for buffered crossbars switches with PQ
buffers. The major advantage of the buffered crossbar switch architecture is that the need for centralized
arbitration is eliminated and scheduling decisions can be made independently by the input and output ports.

Our main result is the preemptive greedy switch policy with a preemption factor β . We show that its
competitive ratio is at most (β +2)2 +2/(β −1) (16.24 for β = 1.53) and at least (2β −1)/(β −1) (3.87
for β = 1.53) for the general case of unit length and variable value packets.

We also propose a simple greedy switch policy that achieves a competitive ratio of at most 4 and at least
3/2 in the case of unit length and value packets. The results for upper bounds hold for any value of switch
fabric speedup. As far as we know, these are the first results on competitive analysis for the buffered crossbar
switch architecture. We believe that this work advances the design of practical switch policies with provable
worst-case performance guarantees for state-of-the-art switch architectures.

References

[1] S. Albers and T. Jacobs, ”An Experimental Study of New and Known Online Packet Buffering Algo-
rithms”, Algorithmica, Vol 57, Issue 4, pp. 754-765, 2010. 3

[2] S. Albers and M. Schmidt, ”On the Performance of Greedy Algorithms in Packet Buffering”, SIAM
Journal on Computing, Vol. 35, No. 2, pp. 278-304, 2005. 3

[3] Y. Azar and M. Litichevskey, ”Maximizing Throughput in Multi-queue Switches”, Algorithmica, Vol.
45, No. 1, pp. 69-90, 2006. 3

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 12

http://dx.doi.org/10.4086/cjtcs

BEST EFFORT AND PRIORITY QUEUING POLICIES FOR BUFFERED CROSSBAR SWITCHES

[4] Y. Azar and Y. Richter, ”The Zero-one Principle for Switching Networks”, Proc. STOC, 2004, pp. 64-71.
3

[5] Y. Azar and Y. Richter, ”Management of Multi-Queue Switches in QoS Networks”, Algorithmica, Vol.
43, No. 1-2, pp. 81-96, 2005. 3

[6] Y. Azar and Y. Richter, ”An Improved Algorithm for CIOQ switches”, ACM Transactions on Algorithms,
Vol. 2, No. 2, pp. 282-295, 2006. 4

[7] A. Borodin and R. El-Yaniv, ”Online Computation and Competitive Analysis”, Cambridge University
Press, 1998. 3, 5

[8] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang and W. Weiss, ”An Architecture for Differentiated
Services”, Internet RFC 2475, December 1998. 3

[9] S. T. Chuang, A. Goel, N. McKeown and B. Prabhakar, ”Matching Output Queueing with a Combined
Input Output Queued Switch”, IEEE Journal on Selected Areas in Communications, Vol. 17, pp.
1030-1039, December 1999. 2

[10] S.T. Chuang, S. Iyer, N. McKeown, ”Practical Algorithms for Performance Guarantees in Buffered
Crossbars”, Proc. INFOCOM 2005, Vol. 2, pp. 981-991. 2

[11] D. Clark and W. Fang, ”Explicit Allocation of Best Effort Packet Delivery Service”, IEEE/ACM Trans.
on Networking, Vol. 6, No. 4, pp. 362-373, August 1998. 3

[12] J. Dai, and B. Prabhakar, ”The Throughput of Data Switches with and without Speedup”, Proc. IEEE
INFOCOM 2000, Vol. 2, pp. 556-564, March 2000. 2

[13] P. Giaccone, E. Leonardi, B. Prabhakar and D. Shah, ”Delay Performance of High-speed Packet
Switches with Low Speedup”, Proc. IEEE GLOBECOM 2002, Vol. 3, pp. 2629-2633, November 2002.
2

[14] Michael H. Goldwasser, ”A Survey of Buffer Management Policies for Packet Switches”, SIGACT
News, Vol. 41, pp. 100-128, 2010. 4

[15] E. L. Hahne, A. Kesselman and Y. Mansour, ”Competitive Buffer Management for Shared-Memory
Switches”, Proc. SPAA, pp. 53-58, July 2001. 3, 6

[16] S. Iyer, R. Zhang, and N. McKeown, ”Routers with a Single Stage of Buffering”, ACM SIGCOMM, Vol.
3, No. 4, pp. 251-264, September 2002. 2

[17] T. Javidi, R Magill, and T. Hrabik, ”A High Throughput Scheduling Algorithm for a Buffered Crossbar
Switch Fabric”, Proc. IEEE International Conference on Communications, Vol. 5, pp. 1586-1591, 2001.
2

[18] M. Karol, M. Hluchyj and S. Morgan, “Input versus Output Queuing an a Space Division Switch”,
IEEE Trans. Communications, Vol. 35, Issue 12, pp. 1347-1356, 1987. 2

[19] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber and M. Sviridenko, “Buffer Overflow
Management in QoS Switches”, SIAM Journal on Computing, Vol. 33, Issue 3, pp. 563-583, 2004. 3

[20] A. Kesselman, K. Kogan and M. Segal, “Packet mode and QoS algorithms for buffered crossbar switches
with FIFO queuing”, Distributed Computing, Vol. 23, Issue 3, pp. 163-175, 2010. 4

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 13

http://dx.doi.org/10.4086/cjtcs

ALEX KESSELMAN, KIRILL KOGAN, MICHAEL SEGAL

[21] A. Kesselman, K. Kogan and M. Segal, ”Improved Competitive Performance Bounds for CIOQ
Switches”, Algorithmica, Vol. 63, Issue 1-2, pp. 411-424, 2012. 4

[22] A. Kesselman, Z. Lotker, Y. Mansour and B. Patt-Shamir, ”Buffer Overflows of Merging Streams,” Proc.
ESA, pp. 244-245, 2003 3

[23] A. Kesselman and Y. Mansour, ”Harmonic Buffer Management Policy for Shared Memory Switches,”
Theoretical Computer Science, Special Issue on Online Algorithms, In Memoriam: Steve Seiden, Vol.
324, Issue 2-3, pp. 161-182, 2004. 3

[24] A. Kesselman and A. Rosén, ”Scheduling Policies for CIOQ Switches,” Journal of Algorithms, Vol. 60,
No. 1, pp. 60-83, 2006. 3, 9

[25] A. Kesselman and A. Rosén, ”Controlling CIOQ Switches with Priority Queuing and in Multistage
Interconnection Networks,” Journal of Interconnection Networks, 9(1/2), pp. 53-72, 2008. 4, 9

[26] N. McKeown, ”iSLIP: A Scheduling Algorithm for Input-Queued Switches”, IEEE Transactions on
Networking, Vol. 7, No. 2, pp. 188-201, April 1999 2

[27] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, ”Achieving 100% Throughput in an
Input-Queued Switch”, IEEE Transactions on Communications, Vol. 47, No. 8, pp. 1260-1267, August
1999. 2

[28] M. Nabeshima, ”Performance Evaluation of Combined Input-and-crosspoint- queued Switch”, IEICE
Trans. Commun., Vol. E83-B, No. 3, pp. 737-741, March 2000. 2

[29] D. Sleator and R. Tarjan, ”Amortized Efficiency of List Update and Paging Rules”, Communications of
the ACM, Vol. 28, No. 2, pp. 202-208, Feb. 1985. 3

[30] V. Paxson, and S. Floyd, ”Wide Area Traffic: The Failure of Poisson Modeling”, IEEE/ACM Transac-
tions on Networking, Vol. 3, No. 3, pp. 226-244, June 1995. 3

[31] A. Veres and M. Boda, ”The Chaotic Nature of TCP Congestion Control”, Proc. INFOCOM, Vol. 3, pp.
1715-1723, March 2000. 3

AUTHORS

Alex Kesselman
Google Inc., USA
alx google com

Kirill Kogan
Ben-Gurion University of the Negev, Israel
kirill.kogan gmail com

Michael Segal
Professor
Communication Systems Engineering Department
Ben Gurion University of the Negev, Beer-Sheva, Israel
segal cse bgu ac il

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 14

http://dx.doi.org/10.4086/cjtcs

	Introduction
	Our Results
	Related Work
	Paper Organization

	Model Description
	Unit Value Packets
	Variable Value Packets
	Conclusions

