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Abstract

In this paper we consider online scheduling problems for linear topology under various objective functions:
minimizing the maximum completion time, minimizing the largest delay, and minimizing the sum of completion
times. We show that for the two-directional versions of each problem, no online algorithm can deterministically
achieve the optimal solution for any of the considered objective functions, and propose a 2-approximation on-line
algorithm for each minimization objective.

1 Introduction

In this paper we consider various scheduling problems that arise in the area of traffic scheduling and control. A
network is represented as an undirected line G = (V,E). An (undirected) edge (u, v) ∈ E between two nodes
u, v ∈ V represents a unit segment of road between two locations u and v. A set C = {c1, . . . , ck} of k cars should be
routed through the network of n nodes, where each car i has its own source si and destination node di. The capacity
of each node — in terms of the number of cars it can keep at a time — is unlimited; however, each time only one car
can pass an edge in either direction. All cars start their routes at the same time. We define a completion time of a
car as the time measured since the beginning of the execution until the car reaches its destination. Let a delay of a
car be defined as a difference between the completion time of the car and the length of its route (i.e., the number of
edges in its route). The goal is to move all the cars towards their destinations, satisfying at least one of the following
objectives:

• (MinMakespan) Minimizing the maximum completion time, i.e., the time when the last car reaches its desti-
nation.

• (MinMax) Minimizing the largest delay of the cars.

• (MinSum) Minimizing the total sum of completion times over all cars.

MinMakespan objective optimizes global time complexity of car scheduling, which may be important from per-
spective of managers of the road infrastructure. MinMax objective, in turn, optimizes latency of a single road user.
An important criteria of energy consumption and CO2 emission is roughly captured by the MinSum objective.

Observe that the optimum algorithm for the MinSum objective function is also the optimum solution if we
replace “completion times” by “delays” in the specification of MinSum objective function; this is because the sum of
completion times is equal to the sum of delays plus the sum of the lengths of the routes, and the latter is fixed and
straightforward to compute for a given input.

We focus on solving the above stated problems in linear networks using on-line algorithms as described in [15].
An on-line algorithm is a local algorithm that routes traffic through each edge separately without any knowledge of
future arrivals, i.e., an edge traversal decision made at some time step T is based solely on information available to
that edge up until time step T . We define the information available for decision making by some edge u, v at time
step T to be the source and destination nodes of each car occupying nodes u and v at time step T . If at least two
cars could be scheduled to traverse an edge at the same time, we say that a collision occurs at this edge at that time.

An on-line algorithm is said to be optimal for a minimization problem if for any deployment of cars in the
network, the algorithm produces an optimal minimum solution. We show that for the two-directional versions of each
problem, no on-line algorithm can deterministically achieve the optimal solution for any of the considered objective
functions, and propose a 2-approximation on-line algorithm for each minimization objective (an X-approximation
on-line algorithm for a minimization problem is one where the result acheived by the algorithm is at most X times
larger than the optimally achieved result). We also show that each algorithm requires only a limited-buffer queue
for each node in the network.
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In the final section, we adjust our model slightly by adding the option of ”weighted vehicles”, where the delay of
different cars have different costs for the system. We investigate a 2-weighted version of this model and show that
in this case, no on-line algorithm can acheive the optimal solution for any of our objective funtions, even for the
1-directional network scenarios.

2 Related work

In [12], Leighton et al. showed that for any network and any set of packets whose paths through the network are
fixed and edge-simple, there exists a schedule for routing the packets to their destinations in O(c + d) steps using
constant-size queues, where c is the congestion of the paths in the network, and d is the length of the longest path.
Mansour and Patt-Shamir [17] and also Cidon et al. [7] showed that if packets are routed greedily on shortest paths,
then all of the k packets reach their destinations within d + k steps. These schedules however may be much longer
than the optimal ones, because k may be much larger than c. Rabani and Tardos [20] and Ostrovsky and Rabani [18]
extended the main ideas used in [12] and in the off-line algorithm presented in [14] to obtain on-line local control
algorithms for the general packet routing problem producing near-optimal schedules. Some related result for trees
can be found in [6].

Liu and Zaks [16] studied a greedy algorithm for delivering messages with deadlines in synchronous networks.
They considered bottleneck-free networks, in which the capacity of each edge leaving any processor is at least the
sum of the capacities of the edges entering it. For such networks where there is at most one simple path connecting
any pair of vertices, they have shown a necessary and sufficient condition for the initial configuration to have a
feasible schedule, and proved that if this condition holds then the greedy algorithm, that chooses at each step the
most urgent messages (those with closest deadlines), determines such a feasible schedule. Adler et al. [1] dealt with
the time-constrained packet routing problem when one wants to schedule a set of packets to be transmitted through
a multinode network, where every packet has a source and a destination (as in traditional packet routing problems)
as well as a release time and a deadline. The objective is to schedule the maximum number of packets subject to
deadline constraints. The problem is known to be NP-complete even when the underlying topology is a linear line [2].
For the buffered case, [1] provides logarithmic factor approximation algorithms for the time-constrained scheduling
problem with weighted packets on trees and meshes. Leung et al. [15] considered a problem of routing unit-length,
-time messages in different types of networks under various restrictions of four parameters: source node, destination
node, release time, and deadline. Peis et al. [19] considered different routing problems for fixed and variable paths
for the grid topology.

Many algorithms designing efficient gathering scheme in the context of wireless networks have been considered
before, see e.g. [3, 4, 5, 10, 21]. The aim is to minimize the number of steps (makespan) needed to send all messages
to the base station. Opposite to our model, a node cannot both receive and transmit simultaneously. Moreover,
during a step only non interfering transmissions can be done.

Our Contribution. We deliver on-line (local) solutions, for each considered objective, which are optimal if all cars
travel in the same direction, and automatically give 2-approximations in the general two-directional setting. We also
show that in the general two-directional setting it is impossible to deliver optimal on-line (local) solutions for none
of the considered objectives.

3 MinMakespan objective

For the MinMakespan objective we adopt the smallest slack time algorithm from [15], designed in a slightly different
setting with deadlines. In this model, the goal is to maximize the number of cars that arrive to their destinations
within their deadlines. The algorithm in [15] gives priority to the car with the smallest maximum time span that this
car can be delayed by without missing its deadline (i.e., that minimizes time to the deadline minus the remaining
length of the route). Since the deadlines in this setting could be chosen arbitrarily large for all cars, this is equivalent
to giving priority to the car whose destination node is currently farthest away in our model; i.e., both executions —
the one in the model with deadlines and the other in our model — result in the same car schedules. Leung et al. [15]
proved that this algorithm is optimal for the case of MinMakespan objective criteria for directed graph, in the model
with deadlines. By equivalency of executions, the corresponding Furthest-from-Destination algorithm is optimal in
our model when all cars travel in the same direction. In order to transform this algorithm into the two-directional
scenario, we interleave the one-way algorithm applied separately to the cars moving right and moving left.

Observe that since in the uni-directional scenario we solve the problem optimally, always moving one car from
each non-empty queue and at most adding one car to each queue, our algorithm performs with limited buffer queues
no larger than their starting queue sizes, with an exception of a maximum needed buffer size of 1 for nodes starting
with 0 cars in their queue. The same extends to the general two-directional scenario.
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3.1 Non feasibility of on-line algorithm

To show that no on-line algorithm exists for optimally solving the two-directional version of the MinMakespan
problem, we present the following example depicted in Figure 1. There are two scenarios. In each of them there
are two cars, starting at nodes v3 and v4, moving by two hops to the right and two hops to the left respectively.
Additionally, in the first scenario, shown in Figure 1(a), there is a third car starting at node v0 and moving by three
hops to the right, while in the second “symmetric” scenario, shown in Figure 1(b), the third car starts at node v7
and moves by three hops to the left. Figure 1(a) shows the MinMakeSpan to be 3 in the first scenario (and hence in
the same scenario as they are symmetrical). This can be achieved by an off-line algorithm.

Suppose, to the contrary, that there is an on-line algorithm that achieves MinMakespan 3 in both scenarios. In
the first round the algorithm decides which of the first two cars, i.e., starting at nodes v3 and v4, passes the link
(v3, v4) first. This decision is made locally, therefore it is the same in both scenarios. If the car starting at node
v4 passes first (which is optimal for the first scenario), then in the second scenario one of the other two cars will
yield MinMakespan 4. Mainly, since the car starting at v7 must reach its destination in 3 steps, it means that in
the third step it must traverse link (v4, v5), and similarly the car that started at node v3; both have one more step
to do, therefore at least one of them performs 4 steps, which is a contradiction. In the remaining case when the car
starting at node v3 passes to node v4 in the first step, the analysis of the first scenario is symmetric to the analysis of
the previous case and also results in a contradiction. Therefore, the MinMakespan of any on-line algorithm for the
considered example must be at least 4 and is bigger than the optimum (achieved by some off-line algorithm). This
also shows a competitive ratio of fracoptimum+ 1optimum for any online algorithm.
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(a) Original scenario with optimal MinMakeSpan
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(b) Symmetrical scenario with non-optimal MinMakespan

Figure 1: LEFT: Optimal strategy for MinMakeSpan is achieved by selection of 2L over 2R to traverse link (v3, v4)
at time step 1, resulting in no further collisions. MakeSpan = 3. RIGHT: Lowest possible MakeSpan if 2L is selected
over 2R (in symmetrical scenario) to traverse link (v3, v4) at time step 1, resulting in a required decision at time step
3 when a collision occurs. MakeSpan = 4.

4 MinMax objective

4.1 MinMax off-line algorithm

In case of MinMax objective function, we follow a different approach. First consider scenarios when all cars move into
the same direction. We solve the decision version of the problem, namely, given a value δ, we answer whether there
is a scheduling scheme for all the cars such that all of them can arrive to their destinations while each one of them
suffering a delay which does not exceed δ. Having solved the decision problem, we can apply a binary search on the
value of δ in order to find the optimal solution. In order to solve the decision problem, we again adopt the smallest
slack algorithm from [15], when for every car we set a deadline as δ + dist(si, di). In this way we solve the problem
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optimally for uni-directional scenarios. We point out that we do not need to know the possible range of δ values,
since the binary search can be performed on increasing values 1, 2, 4, . . . , 2i, starting at the smallest value. However,
the described algorithm is not local, as it requires simulating different executions of the algorithm from [15].

In order to solve the problem in the two-directional case, we divide the time into odd and even time slots. In
every odd time slot we give priority to the cars moving in the right direction, while at even slots we give priority to
the cars moving in the left direction. Note that the priority resolves collisions between the cars moving in opposite
directions; if no collision happens then a car can still move opposite to its priority time slot. This provides us with
approximation factor of 2. In the next section we will describe an on-line (local) algorithm for the MinMax objective
that is optimal for uni-directional scenarios, and therefore it can be used in order to obtain 2 approximation as an
on-line algorithm.

4.2 MinMax on-line algorithm

In this section we focus on developing optimum on-line algorithm in uni-directional case. In general two-directional
case, a simple scheme of interleaving the two uni-directional algorithms, as explained in the previous section, gives
on-line algorithm with approximation factor 2.

We first explain the solution for scenarios when all the cars share the same destination point. Let us enumerate
the track sections, starting from the destination, with serial numbers from 1. Section number indicates car’s distance
in hopes from the destination. We use the following strategy:

Algorithm MaxDelaySolve: The priority is given to the car which was originally closer to the destination.

Lemma 4.1. Algorithm MaxDelaySolve optimally solves the problem for the case of one destination.

Proof. Enumerate the cars with continuous numbers from 1 to k, starting from the section closest to the destination.
Without loss of generality, we can assume that the order of cars’ arrivals at the destination is according to their serial
numbers. Suppose MaxDelaySolve strategy was violated. Thus, we have the car cl, which started from a section p, for
some p ≥ 1, and arrived at destination with order number l+ t, for some t > 0, and the car cl+t, which started from
a position p+m, for some m > 0, and arrived with order number l. In this case, the delay of car cl is l+ t− p, and
the delay of car cl+t is equal to l− p−m. Consequently, the maximum delay is no less than max(l+ t− p, l− p−m).
Subject to MaxDelaySolve strategy, the delay of the car cl is l−p, and the delay of car cl+t is l+ t−p−m. Thus, the
maximum delay that can be produced by cl and cl+t using MaxDelaySolve strategy is max(l− p, l+ t− p−m). One
can see that max(l+ t− p, l− p−m) > max(l− p, l+ t− p−m), since l+ t− p > l− p−m > l− p > l+ t− p−m
for any l, t, p,m. Consequently, the violation of MaxDelaySolve strategy only increases the maximum delay.

Next, we propose a solution in case when there are two destination points. We denote the destinations by A and
B (A is to the left of B and all the cars go to the left). Let us denote any car having A as the destination point by
ca, and any car that goes to B as cb.

Algorithm 2-MaxDelaySolve: The priority is given to the car which was originally closer to A.

Lemma 4.2. Algorithm 2-MaxDelaySolve optimally solves the problem for the case of 2 destinations.

Proof. Cars to the right of B move towards B in accordance with 2-MaxDelaySolve strategy, since the algorithm
operates in all areas of network equally. Suppose the maximum delay in the arrival of these cars to B is equal to fb,
and the maximum delay in the arrival of the cars between A and B to A is equal to fa. Assume there is another
strategy A, that gives a maximum delay of cars, m, which is less than produced by 2-MaxDelaySolve strategy. The
maximum delay in the arrival of the cars between A and B at A is f̄a ≥ fa (due to violation of 2-MaxDelaySolve
strategy). Assume that when using A the last car of type ca comes to B with delay d < fb. That means there is a car
of type cb, that comes to B with delay e ≥ fb. If f̄a < d, then 2-MaxDelaySolve strategy gives a solution fb, and A
givesm ≥ e ≥ fb. If f̄a ≥ d, then 2-MaxDelaySolve strategy gives a solution max(fa, fb), and A gives max(f̄a, e) delay.
Since e ≥ fb, then max(f̄a, e) ≥ max(fa, fb). Suppose now that d ≥ fb and e ≤ fb. If f̄a < d, then 2-MaxDelaySolve
strategy gives a solution max(fa, fb), and A gives m ≥ d ≥ max(fa, fb). If f̄a ≥ d, then 2-MaxDelaySolve strategy
gives a solution fa, and A gives m ≥ f̄a. It can be seen that any violation from 2-MaxDelaySolve strategy does not
improve the solution, since maximal delay is max(fa, fb).

Now, we turn out to deal with the general case of p destinations, with the cars going left. Assume that the
destinations are ordered with d1 being the leftmost destination. We call any car that goes to di to be of type cdi .

Algorithm p-MaxDelaySolve: The priority is given to the car which was originally closer to d1.
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We will prove the optimality of p-MaxDelaySolve strategy by induction on the number of destinations. We have
proved that p-MaxDelaySolve solves the problem with p destinations for p = 1, 2. Let us assume that p-MaxDelaySolve
solves the problem with p− 1 destinations. Look at the problem with p destinations. Let us remove destination dp
and cdp cars. We got a problem with p−1 destinations, which we can solve optimally by induction hypothesis. Notice
that once we return back dp and all cdp . Cars to the right of dp, move to dp according to p-MaxDelaySolve, since the
algorithm operates in all areas equally. Assume the maximum delay in the arrival of these cars at dp is equal to fp,
and the maximum delay in the arrival of the objects at di, i = 1, . . . , p − 1 is equal to f . Assume there is another
algorithm A that produces a maximum delay, m, which is less than one produced by p-MaxDelaySolve. Now, the
maximum delay in the arrival of the cars at di, i = 1, . . . , p−1 is f̄ ≥ f (due to violation of p-MaxDelaySolve). Denote
the delay of the arrival of the cars cdi , i = 1, . . . , p− 1 at dp as Di, i = 1, ..., p− 1. Let D = max

i=1,...,p−1
Di. Assume that

when using A, D < fp. This means that there is a car of type cdp that comes to dp with delay e ≥ fp. If f̄ < D,
then p-MaxDelaySolve gives a solution fp, and A produces m ≥ e ≥ fp delay. If f̄ ≥ D, then p-MaxDelaySolve gives
a solution max(f, fp), and A gives us max(f̄ , e) delay. Since e ≥ fp, then max(f̄ , e) ≥ max(f, fp). Suppose now that
D ≥ fp and e ≤ fp. If f̄ < D, then p-MaxDelaySolve gives a solution max(f, fp), and A creates m ≥ D ≥ max(f, fp)
delay. If f̄ ≥ D, then p-MaxDelaySolve gives a solution f , and A leads to m ≥ f̄ delay. It can be seen that any
violation from p-MaxDelaySolve does not improve the solution. Maximal delay is max(f, fp) = max

i=1,...,p
fi, where each

fi, i = 1, . . . , p corresponds to maximum delay in the arrival of the objects between at di and di+1 at di. As before,
our algorithm performs with limited buffer queues no larger than their starting queue sizes, with an exception of a
maximum needed buffer size of 1 for nodes starting with 0 cars in their queue.

4.3 Non feasibility of optimal on-line algorithm
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Figure 2: Notations:
L/R indicates left/right
moving car. Number indi-
cates travel distance left.
Asterisks indicate number
of delays accumulated by
car. Example shows de-
cisions needed for achiev-
ing optimal MinMax de-
lays in individual scenar-
ios occurring on same net-
work at non-overlapping
times.

We begin the proof by examining three simple scenarios occurring in the same network at adjacent segments, but
at different times, as shown in Figure 2. All three scenarios are similar, showing a queue of cars needing to proceed
in the same direction to the next node as their final destination, while another car is traveling towards them in the
opposite direction and will require traversing the same link (causing further delay). In order to achieve the optimal
MinMax delay for each scenario, all cars from the original queue must proceed before the arriving car is allowed to
traverse the congested link. As such, any optimal on-line algorithm must behave in the same way when given this
local information.

We now examine the scenario in Figure 3, which depicts the same three scenarios from the previous example with
one difference - all three scenarios occur at the same time on the network. Notice that until time step 5, the two
instances are indistinguishable by any node in the network. Since the scenarios are indistinguishable until this time
step, an optimal on-line algorithm must behave the same way for each collision as it did for the separate instances,
leading to the collisions beginning at time step 5. From this point on, Figure 3 demonstrates the lowest achievable
MinMax solution yielded by any algorithm once the situation in time step 5 has been reached, giving a MinMax
delay of 3.
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However, as seen in Figure 4, a lower (and in fact optimal) solution with a MinMax delay of 2 can be reached
if we change the decision in time step 2, allowing the car traveling right (instead of the cars in the queue with
one hop remaining) to traverse the congested link. In this case, the car will continue unimpeded and cause no
further collisions while the overall MinMax in the system remains the same (this is due to the fact that in the
original individual scenario, the MinMax delay was lower than that of the other two individual scenarios and could
be increased without affecting the overall MinMax of the system). As we have shown, there exist at least 2 different
scenarios which require conflicting local decisions based on the same information in order to achieve an optimal
MinMax solution, and therefore no on-line algorithm can be used to achieve such a solution. This also shows a
competitive ratio of fracoptimum+ 1optimum for any online algorithm.

5 MinSum objective

In this section we show that no on-line algorithm exists for optimally solving the two-directional version of the
MinSum problem, and base a 2-approximation algorithm on the ShortestToGo policy (STG for short), which we prove
to be and optimal on-line algorithm for the uni-directional version of the problem.

First note that the sum of times spent by each car in the system can be represented as the sum of the remaining
cars in each iteration until traversal completion. This is due to the fact that each car increases the sum of the time
spent by one in each iteration it remains in the system. Denote by Gi the number of cars in the system at iteration
i and I to be the number of iterations until all cars reached their destinations, then the sum of times spent in the
system by all cars is S =

∑I
i=1Gi.

5.1 MinSum on-line algorithm

We start by describing the optimal on-line algorithm for solving the uni-directional version of the MinSum problem.

Definition 1. Strategy : A policy which decides for each node at each time step, which car (if any) proceeds to the
next node. A strategy is valid if for a given node and time step (iteration) at most one car proceeds, and all cars
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Figure 4: Notations: L/R indicates
left/right moving car. Number in-
dicates travel distance left. Aster-
isks indicate number of delays accu-
mulated by car. Example shows Min-
Max achieved on combined scenar-
ios using a different decision for link
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lution. After this decision is made, no
further delays are needed and optimal
MinMax solution is reached. MinMax
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reach their destinations.

Definition 2. Execution: Given a set of k cars with a source and destination for each car, and some strategy σ, an
execution is the resulting movements of each car in each time step i ∈ [0, 1, . . . , I] derived from σ.

Definition 3. Instruction Set : An ordered list Pcq of time steps given to a car cq. A car carries out the instructions
one at a time, moving to the subsequent node when the next time step in the list has been reached. We label each
node vi with i corresponding to its position in the linear graph from left to right (i ∈ N = [0, 1, . . . , n− 1]). For each
car cq and node vi we have an instruction Pcq (i) = t

cq
i where t

cq
i is the time step at which cq leaves node vi. For any

node vi not in the path of cq we define t
cq
i = (−1).

An instruction set for cq is valid if it abides by the following constraints:

1. For each vi not in the path of cq, Pcq (i) = (−1).

2. For each vi in the path of cq, 0 < Pcq (i) < Pcq (i+ 1) <∞.

Note that for a valid instruction set, exactly dcq instructions are greater than 0, where dcq is the number of edges
the car must traverse until its destination.
We denote Π as the assignment of one instruction set to each car in the system.

Correspondingly, we denote T
cq
i to be the time step in which a car cq reaches node vi. We define two functions

ϕ : C → N and ψ : C → N , which map each car to the index of its source and destination node respectively. Note
that T

cq
ϕ(cq)

= 0, T
cq
ϕ(cq)+1 = t

cq
ϕ(cq)

, . . . , T
cq
ϕ(cq)+dcq+1 = t

cq
ϕ(cq)+dcq

= T
cq
ψ(cq)

. (Each car visits one node more than the

amount of edges in its path.)
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Definition 4. Instruction Based Strategy (IBS): Given an instruction set assignment Π, IBS(Π) is the strategy of
having each car carry out its instruction set in order. We say Π is a valid assignment if the instruction set of each
car is valid and IBS(Π) is a valid strategy.

If IBS(Π) is valid, the contribution of each car cq to the sum S derived from the resulting execution is: T
cq
ψ(cq)

=

T
cq
ϕ(cq)+dcq+1 = t

cq
ϕ(cq)+dcq

. The sum S of times spent in the system by all cars in the execution is: S =
∑
k T

cq
ψ(cq)

.

Lemma 5.1. Any execution based on a valid strategy can be transformed into a valid instruction set assignment Π,
such that using the same initial car placements and following IBS(Π) recreates the original execution.

Proof. First set Pcq (i) = (−1) for each car cq. Given an execution based on a valid strategy, mark for each car the
time step at which it moved from vi to a subsequent node as t

cq
i . Since in a valid strategy, each car cq made dcq

ordered moves beginning at vϕ(cq) and ending at vϕ(cq)+dcq , we have dcq values of t
cq
i . For each i corresponding to

node vi ∈ [vϕ(cq), . . . , vϕ(cq)+dcq ] set Pcq (i) = t
cq
i . We now have a valid instruction set for each car and an assignment

Π. It is easy to see that IBS(Π) is valid and takes the same actions for each time step as the original strategy.

Theorem 5.2. Define S∗ to be the sum of times spent by all cars in the system using the shortest to go (STG)
strategy. For any valid strategy which yields a sum S, S∗ ≤ S.

As the above theorem holds for any strategy, it holds for any optimal strategy solving the problem of MinSum in
a uni-directional case. Denote the sum of delays achieved by any such optimum strategy as S1D

opt. We have S1D
opt ≤ S∗

and S∗ ≤ S1D
opt and, thus, S

∗ = S1D
opt. Therefore, for the problem of MinSum in a one-directional linear network, the

local STG strategy yields the optimal result. In the remainder of this section, we prove Theorem 5.2.
The proof is by contradiction: suppose that there is a strategy leading to a sum S strictly smaller than S∗. By

Lemma 5.1 we can create a corresponding instruction set assignment Π and achieve the sum S using IBS(Π). Let τ
be the first step in this execution where at some node vi the next car to proceed does not have the shortest remaining
distance to go among all cars waiting at node vi in step τ . Denote this car c, and let cSTG be a car residing in node
vi in step τ of the shortest distance to go. There are two possible scenarios:

Scenario 1: Cars c and cSTG will meet at some node vj in the future.

Scenario 2: Cars c and cSTG will not meet at any node in the future.

We show that in both scenarios we can modify the instruction set assignment so that the resulting set satisfies
the following three properties: has the same sum S, all car movements before step τ follow the STG rule, and the set
of cars that do not follow the STG rule in step τ is a strict subset of the set of cars that do not follow STG in the
original instruction set assignment Π. This argument applied finite number of times would result in final instruction
set assignment without any step with a car do not observing STG, thus contradicting our main assumption in the
beginning of the proof. In what follows, we first analyze the two scenarios, and then show in more details how to
iterate them to obtain final execution with sum S based entirely on STG.

We begin by showing that if two cars meet in two locations then we can switch their instructions in the interval
between these locations without changing the value of the objective function.

Lemma 5.3. For an execution based on a given Π, assume two cars occupied the same node vi at time step τ1, and
at time step τ2 > τ1 both occupied a different node vj. The instruction set segments Pcq (i), Pcq (i+ 1), . . . , Pcq (j − 1)

can be switched between the two cars creating a new valid Π̃. The resulting execution of IBS(Π̃) yields a new sum
S̃ = S.

Proof. Denote the two cars ca and cb. Since Π is valid and both cars occupied nodes vi and vj at times τ1 and τ2
respectively, we have the following observations:

1. Pca(i− 1) < τ1 ≤ Pca(i) < Pca(i+ 1) < . . . < Pca(j − 1) < τ2 ≤ Pca(j).

2. Pcb(i− 1) < τ1 ≤ Pcb(i) < Pcb(i+ 1) < . . . < Pcb(j − 1) < τ2 ≤ Pcb(j).

3. For any car cm ̸= ca and any node vg, Pca(g) ̸= Pcm(g).

4. For any car cm ̸= cb and any node vg, Pcb(g) ̸= Pcm(g).

We now switch these instruction set segments between ca and cb and denote P̃ca and P̃cb to be the new instruction
sets of ca and cb respectively. We have:

a. P̃ca = Pca(1), . . . , Pca(i− 1), Pcb(i), Pcb(i+ 1), . . . , Pcb(j − 1), Pca(j).

b. P̃cb = Pcb(1), . . . , Pcb(i− 1), Pca(i), Pca(i+ 1), . . . , Pca(j − 1), Pcb(j).
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We first note that since the instruction sets of all other cars remain unchanged. Also, observations 3 and 4 hold since
no new instructions have been allocated to either car, only instructions previously used by them were exchanged.
Secondly, we note that observations 1 and 2 hold for the newly created instruction sets P̃ca and P̃cb :

1. Pca(i− 1) < τ1 ≤ Pcb(i) < Pcb(i+ 1) < . . . < Pcb(j − 1) < τ2 ≤ Pca(j).

2. Pcb(i− 1) < τ1 ≤ Pca(i) < Pca(i+ 1) < . . . < Pca(j − 1) < τ2 ≤ Pcb(j).

Therefore, Π̃ is valid. Since the last instruction was not changed for any car cx in the new assignment, it remains
that ∀x : T̃ cxψ(cx) = T cxψ(cx), where T̃

cq
i is the new arrival time of car cq at node vi achieved by following the new

assignment Π̃, and we have:

S̃ =
∑
q

T̃
cq
ψ(cq)

=
∑
q

T
cq
ψ(cq)

= S.

Consider scenario 1. By Lemma 5.3, we can switch instruction segments Pcq (i), Pcq (i+1), . . . , Pcq (j− 1) between

c and cSTG. This gives us a new valid execution with sum S̃ = S where cSTG leaves node vi at time step τ .
Consider scenario 2. We note that the contribution of c and cSTG to S are T cψ(c) and T

cSTG

ψ(cSTG) respectively. Denote

vx to be the destination node of cSTG, T
c
x to be the time step at which car c reaches vx and tcx as the time step

instruction in which c leaves this node. Denote the distance between node vi to the destination nodes of c and cSTG

as distc and distSTG respectively. Denote the difference between their remaining distances as diff = distc − distSTG.
Suppose we switch the instruction set segments of c and cSTG in the line interval [vi, vi+distSTG−1] in such a way

that the instructions of cSTG are always ahead of c in this interval. Denote the new instruction sets P̃c and P̃cSTG

respectively (with the tilde(∼) notation corresponding with the new departure (t) and arrival (T ) times as well).
The new instruction set for cSTG remains valid with a new T̃ cSTG

ψ(cSTG) = T cx . However, the new instruction set of c is

only valid until P̃c(i+ distSTG − 1), since P̃c(i+ distSTG − 1) = T cSTG

ψ(cSTG) > P̃c(i+ distSTG) = Pc(x) = tcx (otherwise

the two cars would have occupied vx at the same time, which contradicts scenario 2).

Lemma 5.4. Assume a car cq reached node vi at some time T̃
cq
i = t

cq
i +∆ > T

cq
i for some ∆ ∈ [0, 1, 2, . . . , N ], and

therefore its instruction set is no longer valid. The corresponding instruction Pcq (i) can be changed to P̃cq (i) = T̃
cq
i +1

to create a new valid instruction set without delaying any other car.

Proof. We look at each car cl occupying node vi at time step T̃
cq
i . If no car cl has instruction Pcl(i) = T̃

cq
i + 1, we

can safely assign t
cq
i = T̃

cq
i + 1. Otherwise we reassign instructions in order to free up time step T̃

cq
i + 1 for cq using

the following algorithm:

Step 1:
Reassign t̃cli = max{T cli + 1, t

cq
i }.

Step 2:
If the first value (T cli + 1) was chosen and some car cm has Pcm(i) = T cli + 1, repeat Step 1 for cm. Else,
continue to step 3.

Step 3:
Set t

cq
i = T̃

cq
i + 1.

Claim 5.5. For any car cm reaching Step 1, the new instruction can only reduce its delay.

Proof of Claim: Originally Pcm(i) ≥ T cmi +1 (by definition) and Pcm(i) = T cli +1 > t
cq
i (otherwisemax{T cli +1, t

cq
i } =

t
cq
i which is not taken by any cm). So, Pcm(i) > max{T cli + 1, t

cq
i } = P̃cm(i). �

We now show that the algorithm completes, since there exists at least one car cz which has reached step 1 and
for which either T czi + 1 is available or T czi + 1 ≤ t

cq
i .

Claim 5.6. The algorithm terminates.

Proof of Claim: We have 3 scenarios:

1. ∆ = 0.

2. ∆ > 0 and some car cm that we performed step 1 on has T cmi < t
cq
i (i.e. reached node vi prior to time step

t
cq
i ).

3. ∆ > 0 and all cars on which step 1 was performed arrived at node v between t
cq
i and t

cq
i +∆.
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Scenario 1 is trivial: if T̃
cq
i + 1 is taken, then it is taken by some car cz for which T czi + 1 ≤ t

cq
i + ∆ = t

cq
i , as cz

arrived at least one time step before cq.
Scenario 2 is also trivial: we say that cz = cm and T czi + 1 ≤ t

cq
i .

For scenario 3, we note that there are ∆ time steps in the interval [t
cq
i , . . . , t

cq
i +∆], during which at most ∆ cars

arrived and can be processed through the algorithm. We look at some car cy which reaches step 1 of the algorithm.
Since by definition of scenario 3 T

cy
i +1 > t

cq
i , we have t̃

cy
i = T

cy
i +1. Since we have at most ∆ cars reaching step 1,

we look at the last such car ĉy. If T
ĉy
i + 1 is unavailable then it is taken by some car for which T cmi < t

cq
i . However,

this contradicts scenario 3. Therefore, T
ĉy
i + 1 is available. Mark cz = ĉy.

We now have for each scenario one car cz which has reached step 1 and for which either T czi + 1 is available or
T czi + 1 ≤ t

cq
i . �

After all reassignments, we have a new assignment Π̃ with P̃cq (i) = T̃
cq
i +1 without delaying any other car. Note

that P̃cq is now valid until P̃cq (i). This completes the proof of the Lemma.

By Lemma 5.4, we can set a new P̃c(x) = T cSTG
x + 1 and increase the validity of P̃c from P̃c(i+ distSTG − 1) to

P̃c(i+distSTG) = P̃c(x) without delaying any other car. We now look at the instruction set segment P̃c(x), . . . , P̃c(x+
diff−1). By Lemma 5.4, we can iteratively set a new P̃c(x+D) = T̃ cx+D+1 = T cSTG

x +D+1 (D ∈ [0, 1, . . . , diff−1]) for

each non valid instruction P̃c(x+D). If for some value of D the original instruction remains valid, then the remaining
instruction set segment remains valid and we can cease reassignment. In this case, we have a new P̃c which is valid with
P̃c(x+diff−1) = T cψ(c) without delaying any other car in the system. If for all values of D a reassignment was needed

in order to maintain validity of P̃c, we have a new valid P̃c with P̃c(x+diff−1) = T̃ cψ(c) = T̃ c
x+diff−1

+1 = T cSTG

ψ(cSTG)+diff

without delaying any other car.
We now show that for all cases of new P̃c and P̃cSTG

, the contribution of both cars to the sum S̃ achieved when using
IBS(Π̃) cannot be more than their contribution to S when using IBS(Π).
The contribution of c and cSTG to the sum S when using IBS(Π) was T cSTG

ψ(cSTG)+T
c
ψ(c), and to the sum S̃ when using

IBS(Π̃) it T̃ cSTG

ψ(cSTG) + T̃ cψ(c).

1. T̃ cSTG

ψ(cSTG) = T cx .

2. T̃ cψ(c) = max{T cSTG

ψ(cSTG) + diff T cψ(c)}.

Note that T cx < T cSTG

ψ(cSTG) & T cx ≤ T cψ(c) − diff. We have two possible outcomes:

Case 1: T cSTG

ψ(cSTG) + diff < T cψ(c).

We obtain T̃ cSTG

ψ(cSTG) + T̃ cψ(c) = T cx + T cψ(c) < T cSTG

ψ(cSTG) + T cψ(c).

Case 2: T cSTG

ψ(cSTG) + diff ≥ T cψ(c).

We obtain T̃ cSTG

ψ(cSTG) + T̃ cψ(c) = T cx + T cSTG

ψ(cSTG) + diff ≤ T cψ(c) − diff+ T cSTG

ψ(cSTG) + diff = T cψ(c) + T cSTG

ψ(cSTG).

Since the contributions of all other cars remain unaffected, for the sum S̃ achieved in the execution using IBS(Π̃)
we get:

S̃ =
∑
q

T̃
cq
ψ(cq)

≤
∑
kq

T
cq
ψ(cq)

= S.

We now have a valid Π̃ in which for time step τ the car leaving vi has the STG distance of all cars at node vi. This
completes the analysis of Scenario 2.

We continue the procedure based on Scenarios 1 and 2 for each node v which does not have the car with the STG
distance remaining leaving it at step τ . This gives us a new Π̃ for which S̃ ≤ S and for each time step until time step
τ , any car leaving a node has the STG distance of all cars at that node. Since this can be done for any time step τ ,
we again repeat the procedure for τ + 1, τ + 2, . . . τend where τend is the time step after which no other car remains
in the system. Denote the resulting assignment Π̂ (and its corresponding sum of delays achieved as Ŝ) and note that
in the execution resulting from IBS(Π̂), any car leaving a node at any time step has the STG distance remaining
among any other car at that node. It is easy to see that the execution of the STG strategy and IBS(Π̂) for the same
initial deployment of cars yield the same results, and so Ŝ = S∗. Since we have shown that the execution of any
valid strategy yielding a sum S can be transformed into IBS(Π̂) with Ŝ ≤ S, we have: S ≥ Ŝ = S∗.

Now that we have an optimal on-line algorithm for the uni-directional MinSum problem, we divide the two-
directional problem into 2 sets of uni-directional problems by considering left and right moving vehicles in odd and
even time steps respectively. Denote Sopt to be the minimum sum for the two-directional problem, SRmin to be the
minimum contribution to Sopt from all right moving vehicles, and SLmin to be the minimum contribution to Sopt from
all left moving vehicles (Sopt = SRmin + SLmin). Denote SRopt/S

L
opt to be the minimum sum for all right/left moving
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cars in the system assuming that the problem was uni-directional and there were no left/right moving cars in the
system. It is easy to see that SRopt ≤ SRmin and SLopt ≤ SLmin. Applying the STG strategy to left and right moving

vehicles at alternating time steps will yield a total sum of times for cars in system of 2(SRopt + SLopt), since each car

stays in the system twice as long as needed for the uni-directional problem. Denote this sum as S2D
STG. We now have

a 2-approximation algorithm: S2D
STG = 2(SRopt+S

L
opt) ≤ 2(SRmin+S

L
min) = 2Sopt. Again, our algorithm performs with

limited buffer queues no larger than their starting queue sizes.

5.2 Non feasibility of on-line algorithm
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Figure 5: LEFT: Optimal strategy
for MinSum is achieved by selection
of 3R over 1R to traverse link (v0, v1)
at time step 1, resulting in no fur-
ther collisions. Sum = 3 + 3 + 2
= 8. RIGHT: Lowest possible sum
if 1R is selected over 3R to traverse
link (v0, v1) at time step 1, resulting
in a required decision at time step 3
when a collision occurs. Sum = 3 +
2 + 2 + 2 = 9.
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Figure 6: LEFT: Lowest possible
sum if 3R is selected over 1R to tra-
verse link (v0, v1) at time step 1, re-
sulting in a required decision at time
step 3 when a collision occurs. Sum
= 3 + 3 + 2 + 1 = 9. RIGHT: Opti-
mal strategy for MinSum is achieved
by selection of 1R over 3R to traverse
link (v0, v1) at time step 1, resulting
in no further collisions. Sum = 3 + 2
+ 2 + 1 = 8

Consider the scenarios in Figure 5 and Figure 6. Each car is marked with a number and letter corresponding
to the distance remaining and direction of travel respectively. In Figure 5 two cars begin at v0, one with v1 as a
destination node and the other with v3. Another car begins at v4 with its destination being v1. At time step 1, a
decision must be made as to which car will traverse edge (v0, v1). As shown, selecting the car with furthest remaining
distance to travel (3R) yields the optimal sum of 8 time units, while delaying this car in favor of selecting the car
with the shortest remaining distance yields a sum of 9 time units (due to collision avoidance needed at time step 3).
Hence, an optimal on-line algorithm must make the former decision.
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Now consider the scenario in Figure 6, with the only difference being the source node of the left moving vehicle
changed to v5. Since any on-line algorithm has the same information for edge (v0, v1) at time step 1, and we have
shown that one such deployment requires selecting the car with furthest remaining distance in order to achieve
the optimal solution, this same selection should be made in this scenario. However, we can see that with the new
scenario, this selection causes a collision at time step 3, which leads to a sum of 9 time units for the algorithm.
On the other hand, delaying the car with the furthest remaining distance in favor of advancing the car with the
shortest remaining distance over edge (v0, v1) yields a sum of 8 time units which is the optimal solution. Since the
decision at time step 1 varies between two scenarios while the information remains the same in both of them, it is
clear that no on-line algorithm can deterministically make the correct decision for both scenarios and therefore an
on-line algorithm cannot be an optimal algorithm. This also shows a competitive ratio of fracoptimum+ 1optimum
for any online algorithm.

6 Weighted Car Model

6.1 Model Description

In addition to the problems discussed above, preliminary research was also done into the weighted version of each
optimization goal (MinSum, MinMax and MinMakespan). In the weighted model version, all original model char-
acteristics remain the same, however we now add a weight function w(c) which defines for each car its contribution
value. We look at a 2-weight model, where w(c) ∈ [w1, w2], and each car is given a constant weight value from the
initialization of the system. For simplicity, we allow the weights to be natural numbers, and normalize the values by

min(w1, w2) such that each car has a weight of 1 or W = max(w1,w2)
min(w1,w2)

. In this model, the contribution of each car in

each time step is calculated as w(c) instead of 1. In order to comply with the new model, the objective problems are
redefined as follows:

• (Weighted MinMakespan) Minimizing the maximum weighted completion time, i.e., the minimum value Tfin(c)×
w(c) over all cars, where Tfin is the finish time of car c.

• (Weighted MinMax) Minimizing the largest weighted delay of any car, i.e., the minimum value D(c) × w(c)
over all cars, where D(c) is the delay of car c.

• (Weighted MinSum) Minimizing the total sum of weighted completion times over all cars, i.e., the minimum
value of: ∑

k

(Tfin(ck)× w(ck))

This model allows us to examine more complex network behavior, where not all cars are created equal. For example
one could look at scenarios where delaying some cars, for example those who have time sensitive deliviries, is more
costly than delaying others. Another possible scenario is that some cars are more resource demanding than others.
While no optimal or approximation values have yet been found for the above objectives, the following section shows
that even for the simple case of the 1-directional problem in a linear network, an optimal on-line algorithm does not
exist for any of the objectives.

6.2 Non Feasibility of Optimal Algorithm in Weighted Model

6.2.1 Weighted MinMakespan

We take a simple scenario into consideration. Assume 2 cars, each with a different weight, situated at some node v
in the network. Denote the car with the lower and higher weight as cl and ch respectively. cl has a distance to travel
of 2 ×W + 1 and ch has a distance of 1. Clearly, we should send car cl first and acheive a weighted MakeSpan on
2×W + 1 instead of 2×W + 2. However, assume the scenario with another car, weighted x, beginning at the node
preceeding node v and having a distance of 2 to travel. Denote this car ch2 If the algorithm was optimal, it would
again choose cl to depart node v first. Since ch2 now reaches node v and both ch and ch2 must traverse the same
edge, the MakeSpan acheived by either car is 3×W . Alternatively, had ch been chosen to depart node v first, and
then ch2 in the next time step, the MakeSpan would be set at 2×W + 3 < 3×W by cl having been delayed twice.
Therefore, no optimal on-line algorithm exists for the 1-directional weighted MinMakespan objective.

6.2.2 Weighted MinMax

For the case of weighted MinMax delay we have a slightly more complex scenario. Let the leftmost node in the
network be v0 and mark each subsequent node with an increasing index. At node vW+1 (W + 1 nodes after v0) we
place W + 1 cars weighted 1. At node v1 we place one car weighted W . All nodes have the same destination vW+2
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It is easy to see that after W timesteps, the queue at node vW+1 will consist of 2 cars: a lower weighted car with a
weighted delay of W (cl) and a higher weighted car with a weighted delay of 0 (ch). Clearly, the optimal solution
would be to delay ch and acheive a weighted MinMax delay of W . We now repeat the scenario but add 4 higher
weighted cars to node v0 (with the same destination node vW+2). In this case, at time step W we have the same cars
at node vW+1, and at nodes vW , vW−1, vW−2 we have higher weighted cars with weighted delays of 0,W, 2×W and
3 ×W respectively. Assuming the same optimal algorithm from the previous scenario, we now delay ch. However,
this leads to a situation in which one of the higher weighted cars will have a weighted delay of at least 4 × W .
Alternatively, we could have delayed cl 5 times, letting the higher weighted cars continue unimpeded, and acheiving
a weighted MinMax delay of W + 5 < 4 ×W . Therefore, no optimal on-line algorithm exists for the 1-directional
weighted MinMax objective.

6.2.3 Weighted MinSum

In the weighted MinSum version, we first give the simple example of two cars at some node vi, one lower weighted
with a distance to travel of 1 (cl) and one higher weighted with a distance to travel of 2 (ch). Clearly, an optimal
algorithm must transmit ch first in order to achieve a weighted sum of 2×W+2 instead of 3×W+1 when transmitting
cl first. Once again, we enhance the scenario and add 2 higher weighted cars to the following node vi+1, each with
a distance to travel of 1. Following the behavior of the algorithm in the first scenario, ch will either be delayed by
one of cars at vi+1 or delay it. Therefore, the weighted sum will be 6 ×W + 2. Alternatively, transmitting cl first
will now prevent the added delay at vi+1 and achieve a weighted sum of 6 ×W + 1. Therefore, no optimal on-line
algorithm exists for the 1-directional weighted MinMax objective.

7 Conclusions

In this paper we considered online algorithms for scheduling problems in networks of linear topology under three
objective functions: MinMakespan, MinMax and MinSum. We showed that for the two-directional setting, no on-
line algorithm can deterministically achieve the optimal solution for any of the considered objective functions, and
propose a 2-approximation on-line algorithm for each minimization objective with limited buffer queues no larger
than their starting queue sizes. We end our paper by enhancing our original model to that of a weighted-car model,
in which the delay of each car can contribute differently to each our proposed objective problems. We then show
that in the case of the weighted model, even the 1-directional version of each problem cannot be solved optimally by
any on-line algorithm.

There are several interesting directions following from our work. First, it would be interesting to investigate if a
tight approximation ratio exists for the problems. Another intriguing question is whether there is an on-line solution
for more than one of the considered objectives (which we find unlikely taking into account that the optimum solutions
designed in this work are quite different for each measure separately), and if not — what is the tradeoff between
these objectives. Finally, the picture becomes even more complex for more advanced network topologies or adjusted
models (such as our 2-weighted model), and any work in this direction could be of potential interest.
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