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Abstract— Connected Vehicles network is designed to 

provide a secure and private method for drivers to use the 

most efficiently the roads in certain area. When dealing with 

the scenario of car to access points connectivity (Wi-Fi, 3G, 

LTE), the vehicles are connected by central authority like 

cloud. Thus, they can be monitored and analyzed by the cloud 

which can provide certain services to the driver, i.e. usage 

based insurance (UBI), entertainment services, navigation etc. 

The main objective of this work is to show that by 

analyzing the information about a driver which is provided to 

the usage based insurance companies, it is possible to get 

additional private data, even if the basic data in first look, 

seems not so harmful. In this work, we present an analysis of 

a novel approach for reconstructing driver’s path from other 

driving attributes, such as cornering events, average speed 

and total driving time. We show that, in some cases, it is 

possible to reconstruct the driver’s path, while not knowing 

the target point of the trip.1 

I. INTRODUCTION 

The Internet of Things (IoT) is a new trend in our 

information and communication process stemming from 

the evolution of the Internet. There are many use cases in 

which IoT technologies are explored like smart phones, 

watches, electrical devices and more. One of the most 

interesting fields that we plan to investigate is a cloud 

monitored vehicles, in which trip information (location and 

time) is generated by each vehicle and stored in cloud’s 

database. The information that is stored in the cloud’s 

database can be very valuable for third party companies. 

Their interest can be due to many utilities that the data 

gathered from the vehicle can provide, e.g. tracking, 

learning patterns, providing usage based insurance, 

learning statistics about road conditions and more. 

Therefore, it is important to ensure a privacy of the user in 

a process of queries which are performed by the various 

third party companies. 

 

In this work we will focus on usage-based-insurance (UBI). 

A usage-based-insurance is an automobile insurance where 

the insurer uses data on driving behavior to set the 

                                                           
1 This is a pre-print of an article published in Telecommunication 

Systems journal. The final authenticated version is available online at: 

https://doi.org/10.1007/s11235-018-00544-6 

premium offered to each policyholder. The premiums are 

adjusted so as to reflect the individual driver risk profiles 

constructed by the insurer. In order to calculate the risk of 

each driver properly, the insurance company has to know 

several driving attributes e.g. total driving time, cornering, 

and average speed. Commercial UBI programs are 

available on the market today are mainly based on 

information extracted from the car’s on-board-diagnostics 

(OBD) system, or from externally installed hardware 

components, referred to as black-boxes or aftermarket 

devices. Another method for measuring cornering and 

other attributes for the UBI revenues are smartphone-based 

insurance telematics applications, aiming to avoid the 

logistic and monetary costs associated with on-board-

diagnostics or black-box dependent solutions. 

 

The aim of this thesis is to identify whether the privacy of 

the users can be compromised by the usage-based-

insurance companies. The privacy breach can be reached 

by getting basic information about specific user and by 

using the algorithms that we conducted. Thus, throughout 

the thesis we will show that it is possible to find user’s path 

by knowing some attributes that the UBI companies gather 

from the driver in order to assess the level of each user’s 

risk.  

 

This work is organized as follows: Section II presents the 

problem definition and describes the model used in this 

research.  Literature survey and previous work description 

can be found in Section III. Section IV describes our 

algorithms for revealing driver’s path. In Section V we 

show extended simulation results and finally Section VI 

concludes our work. 

II. SLRRENEMILERP AND MODEL 

This section provides a description of the model used in 

this research and the required notations. In addition, it 

includes a definition of the problem studied. 

 

A. Model 

 

The routing algorithm is assumed to be an on-demand 

algorithm, i.e., a path between a source node and a 

destination node is set up only when a request is made.  



 

We start by listing the graph theory notations which are 

used in this work. 

Connected vehicles network is well presented using graph 

theory, while the roads are presented as a collection of 

directed edges and the intersections are presented as a 

collection of vertices. Intersections are defined as the 

junction at-grade of two or more roads meeting or crossing. 

Furthermore, we also define intersections as turning events 

greater than 60°. Let some directed graph 𝐺 represent a 

road map inside a defined area. We let 𝑉(𝐺), 𝐸(𝐺) to 

represent the sets of vertices (intersections) and edges 

(roads), respectively of 𝐺, where |𝑉(𝐺)| = 𝑛. A directed 

edge 𝑒𝑣𝑖,𝑣𝑗
= (𝑣𝑖 , 𝑣𝑗)  ∈ 𝐸 exists if a vehicle can reach 𝑣𝑗 

from 𝑣𝑖 in 1 hop path. The use of directed graph comes 

from constraints on the direction of driving in the physical 

world. If there is a directed edge which connects vertex 𝑣𝑖 

to 𝑣𝑗 , vertex 𝑣𝑗 is considered as a successor of 𝑣𝑖 . If there is 

a successor for the vertex, it is possible for the driver to 

drive to the next intersection.  

In addition, we define a simple path as a set of disjoint 

vertices [𝑣𝑖 , … , 𝑣𝑗], which are connected by edges, while 

one can reach the last vertex from the first vertex using the 

directed edges. We define the length of the path 𝑃𝑎𝑡ℎ as a 

number of vertices that path contains, and denote it 

as |𝑃𝑎𝑡ℎ|.  
The use of weighted directed graph comes from the legal 

and physical constraints of each road. There are 3 weights 

for each of the edges 𝑒𝑣𝑖,𝑣𝑗
∈ 𝐸 in graph 𝐺: 

 We define 𝑊(𝑒𝑣𝑖,𝑣𝑗
) as the maximum legal speed 

which is allowed by law in the road between 𝑣𝑖 to 𝑣𝑗 , 

and define 

𝑊([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑙 , 𝑣𝑘]) =
𝑊(𝑒𝑣𝑖,𝑣𝑗

)+⋯+𝑊(𝑒𝑣𝑙,𝑣𝑘
)

|[𝑣𝑖,𝑣𝑗,…,𝑣𝑙,𝑣𝑘]|−1
 which is 

average speed in [𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑙 , 𝑣𝑘] 𝑝𝑎𝑡ℎ. 

 We use 𝑑(𝑒𝑣𝑖,𝑣𝑗
)  = |𝑒𝑣𝑖,𝑣𝑗

| to denote the road distance 

of 𝑒𝑣𝑖,𝑣𝑗
 which connects vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺). We 

assume that 𝑑(𝑣𝑖 , 𝑣𝑗)  is limited by 𝑚𝑖𝑛𝑟𝑜𝑎𝑑 ≤ 

𝑑(𝑒𝑣𝑖,𝑣𝑗
)  ≤ 𝑚𝑎𝑥𝑟𝑜𝑎𝑑 . In order to denote the distance 

of a certain path, we use the following notations: 

 We define 𝑑([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘]) as a distance of the 

[𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘] path. 

 We define 𝑑([𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘], 𝑣𝑎) as a distance of the 

[𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘 , 𝑣𝑎] path, while 𝑣𝑎 is disjoint 

from 𝑣𝑖 , 𝑣𝑗 , … , 𝑣𝑘 vertices. 

 

There are 2 limits on the distance which we define as 

follows: 

 

 We define 𝑋𝑡𝑢𝑟𝑛, a distance between 2 turns to the 

same direction: 

 𝑚𝑖𝑛𝑟𝑜𝑎𝑑 ≤ 𝑋𝑡𝑢𝑟𝑛 ≤ 𝑚𝑎𝑥𝑡𝑢𝑟𝑛 

 Let’s define 𝑚𝑎𝑥𝑑𝑖𝑠𝑡  as a maximum distance between 

the starting vertex and the possible turn. In general, it 

is bounded by |𝐸| ∙ 𝑚𝑎𝑥𝑟𝑜𝑎𝑑 . However, in our 

algorithms we can limit it with maximum legal speed 

and time difference between the starting vertex and 

possible turning event. 

 

In order to map the popularity of the roads in certain area, 

we use 𝑃(𝑒𝑣𝑖,𝑣𝑗
) to denote the road popularity which 

connects vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺). If we want to denote the 

average popularity of certain directed path, we would 

use 𝑃([𝑣𝑖 , … , 𝑣𝑗]). 

Furthermore, in order to have exact definition of a 

cornering event we define a turning angle as at least 60°, 

similarly to [1]. Therefore, if an angle between the previous 

road direction and the current road direction is between 0-

59°, it would be considered as straight driving, and if the 

angle is between 60°-180°, it would be considered as a 

turning event.  When dealing with calculation of the closest 

edge to a specific GPS coordinate, we introduce the 

definition of ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) which is a straight 

segment distance between GPS point 𝑝 and edge (road) 𝑒.  

In addition to the edge weights, it is important to define the 

direction of each edge (road). Thus, we introduce 

the 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. We will use < 𝑣𝑖 , 𝑣𝑗 > to define the 2 

dimensional 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 vector of 𝑒𝑣𝑖,𝑣𝑗
, while each 

𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is relative to the north of the planet. 

Furthermore, we later on will use the notion 

of 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  vector, which is the vector of 

predecessor road. Predecessor road, is a road in which 

former vertex is the first vertex of the currently examined 

road.   

Finally, in order to assess the number of turning events 

inside the certain path, we use the notation of 

𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ. 

 

B. Problem Definition 

 

This work presents a study of the problem of Breaching 

Drivers Privacy by revealing driver's path while using 

basic driving information. The motivation is to find an 

efficient algorithm in a good computation time, which 

would hopefully reveal driver's path while the starting 

point is given. Specifically, we would like to maximize the 

revealed path distance, while minimizing the variance 

between the real driver’s path and the revealed path. 

Furthermore, we would like to have the best revealed path 

which has the highest popularity among possible paths. 

Since there are vast amount of possibilities for turning in a 

specific amount of seconds, it would be very challenging to 

find the correct path. Thus, the objective of this work is to 

determine how to use the given driver’s attributes, and to 

find the influence of the road popularities on breaching 

driver’s privacy. 



III. SLRWEEUPIVELP 

This section reviews the previous works which were 
performed in the field of privacy and usage based insurance 
path mitigation. We first survey the works which defines the 
user privacy and ways to protect it. Afterwards, we examine 
some works which deal with usage based insurance and 
their threat to user’s privacy.  

A. Privacy classification 

In order to understand the threats that UBI possesses to 

the privacy of the drivers, it is important to classify and 

measure privacy levels. Thus, restraining the queries which 

the third party companies ask the database. Therefore, 

Xiaofeng et al. [2] suggests classifying the privacy levels by 

two parameters: universality and confidentiality.  The 

privacy universality indicates how many people think their 

privacy is impaired when the information is disclosed. 

While, the privacy confidentiality indicates the importance 

of the privacy to the data owner and the degree of secrecy. 

In addition, there are many other methods for 

classification of privacy levels such as using machine 

learning algorithms in order to compute the mutual 

information between the utility and privacy. The utility of a 

dataset is a measure of how useful a privatized dataset is to 

the dataset owner. Thus, by setting a privacy threshold, 

which defines the levels of privacy inside the dataset, the 

utility of the query to the dataset of the third party can be 

restricted. As a result, it can prevent privacy breach [3]. To 

the best of our knowledge, the path of the user is the most 

valuable private data of each user [4]. Thus, in our work we 

focus on inferring the path of the user which is considered 

to be the highest private data. This is because UBI 

companies can infer other private attributes from driver’s 

path, like personal address, working address and the places 

that the user has visited. For example, it would be very 

dangerous for any politician to expose his daily pass, 

accordingly, exposing himself to unnecessary threat. 

B. Privacy Anonymization 

    The main threat to user’s privacy is inferring an 

additional information about a driver from an information 

table release. The first model of privacy-preserving data 

publication was k-anonymity [5]. That model suggests to 

generalize the values of the attributes so that each of the 

released record becomes indistinguishable from at least k-1 

other records, when projected on those attributes. As a 

consequence, each individual may be linked to sets of 

records of size at least 𝑘 in the released anonymized table, 

whence privacy is protected to some extent. 

While k-anonymity refers only to single release of the table, 

protecting the private information from adversaries who 

examine the sequential release was studied in [6]. Wang et 

al. introduces the “lossy join” which generalizes the current 

release of the table column, so that the join with the 

previous release of the table column becomes lossy enough 

to disorient the attacker. Shmueli et al. [7] further 

investigates the notion of protecting the data in sequential 

releases and extends the study of continuous data 

publishing. In their study, they present 2 privacy attributes, 

k-linkability and k-diversity. The k-linkability mandates that 

even if an adversary combines information from all 

releases of the underlying table, he would not be able to 

link any selection of values of the attributes to less than 𝑘 

distinct values of the sensitive attribute. The k-diversity 

demands that such an adversary would not be able to link 

any selection of values of the attributes with any sensitive 

value with probability greater than 1/𝑘. In order to achieve 

the requirements above, the paper [7] proposes “Cell-

Generalization” method, in which each cell is generalized 

independently. 

C. Usage Based Insurance data aggregation methods  

   There are several methods for Usage Based Insurance to 

gain user’s data. Such methods can gain small portion of 

drivers’ attributes or even all them. One of those methods 

is vehicle telematics based program. In order to enter the 

program, a driver has to install telematics unit which in 

turn gains user’s mileage, breaking habits, time of a day 

when the data was recorded and average speed. 

Furthermore, some telematics units aggregate cornering 

behavior log of the driver [8]. Given the privacy issues 

surrounding the geographic tracking of individuals, many 

solutions explicitly claim that the customer’s GPS 

coordinates are not recorded. Privacy policies clearly state 

what information is collected, as well as the possibility of 

sharing the data with third-parties, using it for fraud 

prevention and research, or for compliance with the law 

[9]. Recent estimates predict that up to 30% of all vehicles 

in the United States, and 60% of all vehicles in the United 

Kingdom, will be insured through some type of insurance 

telematics program by the year 2020 [10]. 

    Because of large costs related to installation, 

maintenance, and logistics which involved with telematics 

programs, another method for aggregating driver’s 

attributes was presented in [11]–[14]. That method 

involves a smartphone-based insurance telematics 

applications. Currently, the commercial expansion of the 

UBI industry is held up by the process of acquiring data. 

On one hand, the use of smartphones for the collection of 

driving data is much simpler than telematics methods, due 

to the high percentage of drivers who own a smartphone. 

On the other hand, the vast amount of information that can 

be collected from the smartphone can infer driver’s privacy 

[15]. 



D. Cornering data 

Despite efforts to improve the conditions of the road 

surface and the quality of the tires, skidding and rollover 

events still play a major role in many of today’s car 

accidents. Moreover, statistics show that even though only 

three percent of all vehicle crashes involve a rollover, 

approximately 1/3 of all passenger deaths are related to 

rollover events [16]. As of yet, no safety system exists that 

can fully compensate for the dangers in turning events 

induced by excessive speeds or reckless driving. Thus, in 

order to perform a better risk analyses of the driver’s 

driving skills, it is important to detect dangerous cornering 

events. 

E. Path Finding Algorithms 

One of the most interesting privacy breach attacks, is an 

attack which gains path from some driver’s attributes. 

Hunter at el. [117] presented an algorithm of reconstructing 

vehicle trajectories from sparse sequences of GPS points, 

for which the sampling interval ranges between 10 seconds 

and 2 minutes.  The algorithm maps streaming GPS data in 

real-time, with a high throughput. They present an efficient 

Expectation Maximization algorithm to train the filter on 

new data without ground truth observations. Two of the 

common problems which occur when dealing with these 

GPS traces are the correct mapping of these observations to 

the road network, and the reconstruction of the trajectories 

of the vehicles from these traces. The main challenge is 

finding the right path among very high possible paths due 

to urban environment. The main disadvantage of that 

algorithm is despite of its success reconstructing driver’s 

path, it needs points in the middle and the end of the path. 

In our work, we assume that we have only the starting 

point and the cornering events. Thus, we do not map the 

GPS traces. 

 

Another interesting work which inferred driver’s path from 

another attributes was performed by Dewri et al. [1]. In 

their study, they showed that the destinations of trips may 

also be determined without having to record GPS 

coordinates. In this paper, they studied the threat of 

location inference in vehicle telematics applications that 

collect driving habits data. Hence, developing an inference 

algorithm to demonstrate that inferring the destinations of 

driving trips is possible with access to simple features such 

as driving speed and distance traveled. The algorithm does 

fail in some cases, e.g. traffic jams. In order to work, it 

needs an ideal road and turning conditions. Thus, when 

there is a traffic jam or if the driver didn’t take a turn in the 

right speed or pattern it wouldn’t work. Furthermore, the 

researcher considers that every driver, always takes a 

shortest path to the destination. In our work, we do not 

make that assumption and our algorithm can work even if 

there is a traffic jam.   

 

The work of Gao et al. [18] shows that drivers can be 

tracked by merely collecting their speed data and knowing 

their home location. To demonstrate the algorithm’s real-

world applicability, they evaluated its performance with 

datasets which represents suburban and urban areas. The 

algorithm predicted destinations with error within 250 

meters for 14% traces and within 500 meters for 24% 

traces one dataset (254 traces). For a larger dataset (691 

traces), they similarly predicted destinations with error 

within 250 and 500 meters for 13% and 26% of the traces 

respectively. Thus, showing that these insurance schemes 

enable a substantial breach of privacy. The percent of 

predicted endpoints within 250 meters of the actual 

endpoint also does not decrease with distance, with trips as 

long as 10.5 miles still having endpoints correctly predicted 

to within 250 meters. Unfortunately, the main assumption 

of the algorithm is that the speed is known at least in a rate 

of 2 samples in second, very high sampling rate, since there 

is sometimes a loss in GPS signal. In our work, we are 

basing our solutions on an average speed of the driver 

instead of continuous speed data. 

 

If the attacker wishes to find user’s path, he has to rely only 

on the information that the UBI companies need in order to 

assess the risk of the driver, while the combination of all of 

them can cause a privacy breach. As we mentioned 

beforehand, the attributes that are provided are starting 

point, cornering log file, and average speed. Cornering data 

is provided about the speed pattern when a driver performs 

a turn, left or right. Thus, when performed dangerously, it 

would cause much higher insurance payment. As shown in 

[19] and [9], left turn differs from right turn in some 

features like higher speed in left turn and different speed 

pattern. Hence, the detection of left turn, right turn is 

performed by matching training templates for these events 

with some test data. In our algorithms we assume that the 

cornering data is provided to us after the detection of left 

and right turn and the time when the turning event 

occurred.  

IV. IUHEIIIIIAPIIRTELEIBN    
Within this section, we present, describe and analyze a new 

approach for discovering driver’s trajectory from attributes 

that are provided to the UBI companies. 

A. Mapping popularities in graph 𝐆 

Before the use of the algorithm, it is important to map all of 

the road popularities. Thus, we propose 

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm in order to perform this 

task. 

 

The input of the 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm 

receives 𝐺 = (𝑉, 𝐸), directed graph which represents the 

driving area. In addition, in order to compute popularity 

weight for each of the edges, we also need GPS log files, 

where each one of them encapsulates the GPS coordinates 

of specific road user (vehicle). The GPS log files are 

defined as 𝑃𝑓𝑖𝑙𝑒 array. The GPS coordinates of each 

vehicle 𝑖 in 𝑃𝑓𝑖𝑙𝑒 is formatted as follows, while 𝐺𝑃𝑆𝑧 



represents GPS coordinates of the vehicle.In our algorithm 

we denote GPS data 𝑗 inside 𝑃𝑓𝑖𝑙𝑒 𝑖 as 𝑃𝑓𝑖𝑙𝑒[𝑖][𝑗]. The 

algorithm returns graph 𝐺 = (𝑉, 𝐸) with adjacent 

popularity weight 𝑃(𝑒) for each edge 𝑒.  

𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓𝒊𝒕𝒊𝒆𝒔 (𝑮, 𝑷𝑭𝒊𝒍𝒆)  

1. 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑒 𝑖𝑛 𝐸: 
2.          𝑃(𝑒)  = 0 

3. 𝒇𝒐𝒓 𝑖 ← 1 𝑡𝑜 𝑖 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑓𝑖𝑙𝑒𝑠: 

4.           𝒇𝒐𝒓 𝑗 ← 1 𝑡𝑜  𝑗 ←  𝑃𝑓𝑖𝑙𝑒[𝑖]. 𝑙𝑒𝑛𝑔𝑡ℎ: 
5.                     𝑝 =  𝑃𝑓𝑖𝑙𝑒[𝑖][𝑗] 
6.                    𝑑 = ∞ 

7.                    𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑛𝑢𝑙𝑙 
8.                   𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑒 𝑖𝑛 𝐸: 
9.                              

𝒊𝒇 ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) < 𝑑: 

10.                                              𝑑 = 

ℎ𝑎𝑟𝑣𝑒𝑠𝑖𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) 

11.                                              𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑒 

12.                   𝑃(𝑒𝑐𝑙𝑜𝑠𝑒𝑠𝑡)+= 1 

13.  𝒓𝒆𝒕𝒖𝒓𝒏 𝐺 

 

The computation time of 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm 

is equal to 𝑂(|𝐸| ∙ |𝐶| ∙ |𝑁|), while |𝐸| represents a number 

of edges in the graph, |𝐶| is the number of files and |𝑁| 
represents a number of GPS coordinates in each file. 

Furthermore, if the number of GPS coordinates is very 

high, we can construct Voronoi Diagram for finding the 

closest edge to each GPS coordinate. Thus, we can take all 

of the GPS coordinates and build a Voronoi Diagram for 

them, which will consume computation time of 𝑂(|𝐶| ∙
|𝑁| log(|𝐶| ∙ |𝑁|)). Afterwards, for each edge, we find 

which Voronoi cells it intersects. Therefore, if 𝑘 represents 

the maximum number of voronoi cells that can be 

intersected by single edge, the total computation time 

would be 𝑂(|𝐶| ∙ |𝑁| log(|𝐶| ∙ |𝑁|) + |𝐸| ∙ 𝑘). 

B. Finding Straight Paths From a certain vertex 

In order to find driver’s path, first, it is important to find 

the possible paths between the last vertex in the 𝑝𝑎𝑡ℎ and 

possible turn event which will be used later on. This is the 

goal of 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm. In addition, we 

limit 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm to find paths with 

distance which is no greater than Y kilometers. 

 

There are several functions which we use in the 

algorithm. The “append_vertex” function is used when we 

want to add a vertex to path. The “append_one_path” 

function is used when we want to add an entire path to the 

array. The “append_paths” is used when we want to add 

several paths to an array. In addition, the “add_vertex” 

function is used when we want temporarily add a certain 

vertex to the end of the path. Finally, the “add_paths” is 

used when we want temporarily add one path to another, 

while the second path is added in the end of the first path. 

Thus, in following code lines path will not contain the 

added vertex or path. In the input of the 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm there are attributes that 

assist the algorithm to find possible paths. The algorithm 

receives ∆𝑡 which is the time difference between the 

starting vertex and the turning event. Another attribute is a 

direction (left or right) that the driver made a turn to, which 

we will denote as 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛. In addition, we 

define 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 as a speed in residential area. 

Furthermore, the algorithm has to know what happened 

before it was called, e.g. previous path, and whether it is 

another recursion call, which complies when 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 

Boolean is False.  It gets 𝑃𝑎𝑡ℎ attribute which is a path until 

the current vertex, and 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 which is a Boolean that 

indicates whether the previous road was a turn event. 

In the output of the algorithm, we get a set of paths 

which go straight, starting from the last vertex of the 𝑃𝑎𝑡ℎ 

until possible turning vertices under the constraints of ∆𝑡 

and 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛.  

 

𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑷𝒂𝒕𝒉 𝑭𝒊𝒏𝒅𝒆𝒓 

 ( ∆𝒕 , 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒖𝒓𝒏, 𝑷𝒂𝒕𝒉 , 𝑭𝒓𝒐𝒎 𝑻𝒖𝒓𝒏)  

1) 𝐵 = {} 

2) 𝑰𝒇 |𝑃𝑎𝑡ℎ| ≥ 2: 

3)          

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐺𝑒𝑡 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 2 𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑃𝑎𝑡ℎ 

4) 𝒆𝒍𝒔𝒆:  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑙𝑙 
5) 𝑁𝑜𝑑𝑒 = 𝑙𝑎𝑠𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑃𝑎𝑡ℎ 

6) 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 =
 𝐹𝑖𝑛𝑑 𝑎𝑙𝑙 𝑁𝑜𝑑𝑒’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑛 𝐺(𝑉, 𝐸) 

7) 𝑰𝒇 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) == 0: 
8)         𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑" 

9)         𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ) 

10)         𝒓𝒆𝒕𝒖𝒓𝒏 𝐵 

11) 𝒆𝒍𝒔𝒆:  
12)          𝑋 = 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 ∗ ∆𝑡 

13)         𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠): 
14)                     𝑰𝒇 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  is not 𝑛𝑢𝑙𝑙: 
15)                              𝐴𝑛𝑔𝑙𝑒, 𝑡𝑢𝑟𝑛 = Find angle, turn 

between the previous and current direction 

16)                              𝑰𝒇 180° > 𝑎𝑛𝑔𝑙𝑒 > 59°  𝑎𝑛𝑑 𝑡𝑢𝑟𝑛 =
= 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑢𝑟𝑛: 

17)                                          𝑰𝒇 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 ==  𝐹𝑎𝑙𝑠𝑒: 
18)                                                       

𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ[𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ) − 1] 𝑎𝑠 "𝑡𝑢𝑟𝑛" 

19)                                                       

𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ (𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑"))            

20)                                         𝒆𝒍𝒔𝒆: 
21)                                                       

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖])) 

22)                                                        

𝑰𝒇 𝑋 < 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡: 
23)                                                                           𝑋 =



  𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡 

24)                               

𝒆𝒍𝒔𝒆 𝒊𝒇  𝑎𝑛𝑔𝑙𝑒 < 60°  && 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 == 𝐹𝑎𝑙𝑠𝑒: 
25)                                          𝑰𝒇 𝑑(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) <

𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡: 

26)                             

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖]))  

27)                                                          𝑰𝒇 𝑋 <
𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡: 

28)                                                           

 𝑋 = 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡 

29)                                        

 𝒆𝒍𝒔𝒆:  𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑜𝑛𝑒𝑝𝑎𝑡ℎ
(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑")) 

30)                   else:           𝑰𝒇 𝑑(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) <
𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡: 

31)                                                        

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑𝑣𝑒𝑟𝑡𝑒𝑥(𝑆uccessors[𝑖])) 

32)                                                         

𝑰𝒇 𝑋 < 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡: 
33)                                                             

𝑋 = 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∗ ∆𝑡 

34)                                     

𝒆𝒍𝒔𝒆:  𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑𝑣𝑒𝑟𝑡𝑒𝑥("𝑐𝑙𝑜𝑠𝑒𝑑")) 

35) 𝐴 = ℎ 𝑚𝑜𝑠𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 𝑜𝑝𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝐵 

36) 𝐵 =  𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝐵 

37) 𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝐿𝑒𝑛𝑔𝑡ℎ[𝐴]: 
38)       

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑝𝑎𝑡ℎ𝑠(𝑺𝒕𝒓𝒂𝒊𝒈𝒉𝒕 𝑷𝒂𝒕𝒉 𝑭𝒊𝒏𝒅𝒆𝒓 

                        (∆𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛, 𝐴[𝑖], 𝐹𝑎𝑙𝑠𝑒))      
39) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵  

 

 

The 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm defines an 𝐵 

array, and 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. The 𝐵 array, later on 

will encapsulate all of our possible paths until the possible 

turn. Whereas, the variable 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 indicates 

the vector of the previous road. Consequently, in steps 7-10, 

the input 𝑝𝑎𝑡ℎ is marked as “closed” and 𝐵 is retuned if 

there are no successors, otherwise the algorithm proceeds to 

the12-34 steps, which in turn, adds the path and their 

successors to 𝐵 array and assigns the longest possible 

distance to 𝑋 variable. The 𝑋 variable would store the 

maximum distance that can be reached with the boundary of 

∆𝑡 and maximum legal speed, while the least maximum 

legal speed equals to 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑝𝑒𝑒𝑑 . 

In steps 13-34, the algorithm examines each of the 

successors of the 𝑁𝑜𝑑𝑒. It calculates the angle between 

the 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, which was calculated in 2-4 

steps, and the current road direction and determines whether 

the current road is considered as a turning event to the same 

direction as 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛. In that case, the successor 

is marked as a “turn”, the p𝑎𝑡ℎ and its successor are marked 

as “closed”, and appended to 𝐵 array.  In other cases in 

which the angle is less than 60°, the 𝑝𝑎𝑡ℎ and its successor 

are just appended to 𝐵 array. Furthermore, there is one case 

in which the algorithm cannot determine whether there was 

any possible turning event. It happens when the 

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is equal to 𝑛𝑢𝑙𝑙. Thus, the angle and 

the turn direction cannot be calculated. Hence, the successor 

of the 𝑝𝑎𝑡ℎ is considered as a straight continuation of 

the 𝑝𝑎𝑡ℎ. In addition, the algorithm uses the 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 

attribute in order to determine whether it is the main 

algorithm call or it is a recursion call. If 𝐹𝑟𝑜𝑚 𝑇𝑢𝑟𝑛 is 

equal to True, it means that this is the first call of the 

algorithm, which means that if the angle is between 60° - 

180° , and the 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑢𝑟𝑛 is equal to turning 

direction between the previous and current road, the 

successor is just a straight continuation of the 𝑝𝑎𝑡ℎ and is 

not considered as a possible turn.  In all other cases, the new 

path which consist of the 𝑝𝑎𝑡ℎ and its successor are marked 

as “closed” and appended to 𝐵 array. The algorithm 

appends the 𝑝𝑎𝑡ℎ and its successor which is not marked as 

“closed”, only if the distance of the 𝑝𝑎𝑡ℎ and its successor 

is less than 𝑊(𝑃𝑎𝑡ℎ, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖]) ∙ ∆𝑡 which is 

maximum distance that can be reached.  

In steps 35-36 we partition the paths that are stored in 𝐵 

array into 2 arrays. The first array 𝐴 would store only the h 

most popular opened paths, while 𝐵 array would store only 

closed paths. Opened paths, on a contrary to the closed 

paths, are paths from which the driver can proceed 

propagating to another vertex, according to algorithm 

limitations. 

Finally, in steps 37-38, the algorithm recursively 

searches the continuation paths and eventually returns the 𝐵 

array. 

Analyzing 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ𝑠 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm 

Let’s denote ⌈
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑚𝑖𝑛𝑟𝑜𝑎𝑑
⌉ as 𝛼. The number of hops is 

maximized when each road distance is equal to 𝑚𝑖𝑛𝑟𝑜𝑎𝑑. 

Thus, the number of hops that 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 

algorithm reaches is bounded by 𝑂(𝛼). 

Theorem 1: The total computing time of the 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would be bounded by 

𝑂(ℎ𝛼). 

Proof: From the 35
th
 step, it can be examined that the 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm takes ℎ most popular 

paths and proceeds to the next step which in turn goes 

recursively to the successors of the last vertex of the 𝑝𝑎𝑡ℎ. 

If the algorithm produces maximum number of hops, the 

total computing time is equal to ∑ ℎ𝑚𝛼
𝑚=1 = ℎ + ℎ2 + ℎ3 +

⋯ + ℎ𝛼 = 𝑂(ℎ𝛼). 

C. Defining 𝑭𝒊𝒏𝒅𝒊𝒏𝒈 𝑷𝒂𝒕𝒉𝒔 algorithm 

The 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, gets several parameters 

from 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm and finds all 

possible paths from a last vertex in the 𝑝𝑎𝑡ℎ either until 

number of turns in every path is equal to predefined criteria, 

or the path reached a dead-end or the number of turns is 



equal to number of rows in 𝑀𝐶 file. A dead-end state is a 

state of the graph 𝐺 when the algorithm cannot reach any 

other vertex from a specific vertex under specific 

constraints.  The predefined criteria is a parameter 𝑚 which 

is the maximum turning events in all paths that 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm returns to 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm. In the input there are 

several attributes that assist 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm on 

finding continuation to the current 𝑝𝑎𝑡ℎ. The algorithm gets 

2 attributes, 𝑇𝑟𝑖𝑝𝑡𝑖𝑚𝑒 and 𝑀𝐶 file,  that allow it to estimate 

the time boundaries in which it has to find the successor 

paths to the last vertex of the 𝑃𝑎𝑡ℎ.  In addition, it gets 

parameter 𝑚 which notates the maximum number of turning 

events that the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠 algorithm can reach. The 

output of the algorithm returns possible continuation paths 

from the last vertex of the 𝑃𝑎𝑡ℎ.  

𝑭𝒊𝒏𝒅𝒊𝒏𝒈 𝑷𝒂𝒕𝒉𝒔 ( 𝑇𝑟𝑖𝑝𝑡𝑖𝑚𝑒, 𝑃𝑎𝑡ℎ, 𝑀𝐶, 𝑚)  

1) 𝐵 = {} 

2) ∆𝑡 =  |𝑀𝐶[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ][1] −  𝑇𝑟𝑖𝑝𝑇𝑖𝑚𝑒| 
3) 𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠=𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑒𝑟

 

4)            ( ∆𝑡, 𝑀𝐶[𝑡𝑢𝑟𝑛𝑛𝑢𝑚𝑃𝑎𝑡ℎ
][0], [𝑃𝑎𝑡ℎ[𝑃𝑎𝑡ℎ. 𝑙𝑒𝑛𝑔𝑡ℎ −

                                                                                    1]], 𝑇𝑟𝑢𝑒) 

5) 𝒇𝒐𝒓 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠:  
6)          𝑑𝑒𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 "𝑐𝑙𝑜𝑠𝑒𝑑" 𝑚𝑎𝑟𝑘  
7) 𝑰𝒇 𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) == 0: 
8)         𝑀𝑎𝑟𝑘 𝑃𝑎𝑡ℎ 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑". 

9)         𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ) 

10)         𝒓𝒆𝒕𝒖𝒓𝒏 𝐵 

11) 𝒆𝒍𝒔𝒆:  
12)    𝒇𝒐𝒓 𝑖1 𝑡𝑜 𝑖𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠): 
13)         

 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑝𝑎𝑡ℎ𝑠(𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑛𝑜𝑑𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠[𝑖])) 

14)          𝑰𝒇 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐵[𝑖] == 𝐿𝑒𝑛𝑔𝑡ℎ[𝑀𝐶]: 

15)                            𝑀𝑎𝑟𝑘 𝐵[𝑖] 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑" 

16) 𝐴 = 𝐵 

17) 𝒇𝒐𝒓 𝑖1 𝒕𝒐 𝑖𝐿𝑒𝑛𝑔𝑡ℎ[𝐴]: 
18)        𝑊𝐻 = 𝐹𝑎𝑙𝑠𝑒 

19)         

𝑰𝒇 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐴[𝑖] <

            𝑚 𝑎𝑛𝑑 𝐴[𝑖] 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 "𝑐𝑙𝑜𝑠𝑒𝑑": 
20)               𝑛 = 𝑜𝑢𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑒𝑑𝑔𝑒 𝑖𝑛 𝐴[𝑖] 
21)               𝒇𝒐𝒓 𝑗1 𝒕𝒐  𝑗𝐿𝑒𝑛𝑔𝑡ℎ[𝐵]: 
22)                    𝑰𝒇 𝐵[𝑗] ≠ 𝐴[𝑖] && 𝑛 equals to one of turning 

nodes in 𝐵[𝑗] && 𝑛 ! = 𝐵[𝑗][𝑙𝑒𝑛𝑔𝑡ℎ(𝐵[𝑗]) − 1]: 
23)                                       𝑊𝐻 = 𝑇𝑟𝑢𝑒 

24)                                        

𝑘 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑛 𝑖𝑛 𝐵[𝑗] 
25)                                        𝑃 = []  
26)                                        𝒘𝒉𝒊𝒍𝒆 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃 ≤

𝑙𝑒𝑛𝑔𝑡ℎ(𝑀𝐶) 𝑜𝑟 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃 ≤ 𝑚: 
27)                                                               

𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝐵[𝑗][𝑘]) 

28)                                         𝑘++          

29)                                        

𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝐴[𝑖]. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑃)) 

30)                                       

 𝐴. 𝑎𝑝𝑝𝑒𝑛𝑑_𝑜𝑛𝑒_𝑝𝑎𝑡ℎ(𝐴[𝑖]. 𝑎𝑑𝑑_𝑝𝑎𝑡ℎ𝑠(𝑃)) 

31)                                        𝑰𝒇 𝐴[𝑖] ∈ 𝐵: 
32)                                                      𝑑𝑒𝑙𝑒𝑡𝑒 𝐴[𝑖] 𝑓𝑟𝑜𝑚 𝐵 

33)         𝑰𝒇 𝑊𝐻 == 𝐹𝑎𝑙𝑠𝑒: 
34)                        T= MC[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝐴[𝑖]+1][1] 

35)                           𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑𝑝𝑎𝑡ℎ𝑠 

36)                                        (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠( 𝑇, 𝐴[𝑖], 𝑀𝐶, 𝑚))      
37)                        𝑰𝒇 𝐴[𝑖] ∈ 𝐵: 
38)                                    𝑑𝑒𝑙𝑒𝑡𝑒 𝐴[𝑖] 𝑓𝑟𝑜𝑚 𝐵   

39) 𝒓𝒆𝒕𝒖𝒓𝒏 𝐵             

 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm logic 

The Algorithm uses two arrays that hold the paths. 

Array 𝐴 holds all the potential paths that have not been 

completed enough turning events according to 𝑀𝐶 file, 

while Array 𝐵 holds all possible paths. During each 

iteration, the algorithm goes recursively throughout possible 

paths which are limited in time, turning direction and 

average maximum legal speed. If there are no continuation 

paths for the 𝑃𝑎𝑡ℎ, the 𝑃𝑎𝑡ℎ is marked as “closed” and the 

algorithm returns the 𝑃𝑎𝑡ℎ with “closed” mark to higher 

level recursion. In order to bring down the computation time 

of the algorithm, before going to another recursion, the 

algorithm checks whether the continuation of the 𝑃𝑎𝑡ℎ 

already exists in other paths which were examined before. 

In that case, the algorithm copies the rest of the path to 𝐴, 𝐵 

arrays, with the restrictions that we mentioned before.  

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm steps 

In step number 1, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm defines 

𝐵 array, which later on will encapsulate all of our possible 

paths. In the 3
rd

 step, the algorithm retrieves, using 

the 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm, all of the possible 

continuation paths with a time boundary of ∆𝑡 . Therefore, 

in steps 6-11 if there are no consequent trajectories, the 

algorithm marks the input 𝑝𝑎𝑡ℎ as “closed” and returns it. 

Otherwise, in steps 12-15, if the input 𝑝𝑎𝑡ℎ with its 

continuation path encapsulates the same number of turning 

events as the length of 𝑀𝐶 file, it is marked as “closed”. 

Therefore, we introduce auxiliary array 𝐴 which in the 16
th
 

step holds the paths of 𝐵 array. The 𝐴 array would hold all 

of the 𝐵 array paths. The role of 𝐴 array is to keep the order 

of path search. Steps 17-36 constitute the main core of the 

algorithm in which it iterates through all of the paths in 

array 𝐴 and finds recursively, all of the possible paths which 

are bounded by time, turning direction, legal speed and 

maximum turning events 𝑚. 

In order to reduce the computation time of the 

algorithm, before going to another recursion, it checks, in 

steps 21-32, whether the algorithm has already visited the 



current vertex. In this case, it copies the continuation path 

from a previous trajectory that is already containing the 

continuation path of the current vertex. The copying of the 

continuation path is within the boundaries of 𝑀𝐶 file size. 

Finally, in steps 33-36, in case that the algorithm didn’t 

manage to find the continuation path in other paths, it 

recursively calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm. 

Analyzing 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm 

If a distance  𝑋𝑡𝑢𝑟𝑛 is equal to 𝑚𝑖𝑛𝑟𝑜𝑎𝑑, then the number 

of possible turns that algorithm 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 

would produce is bounded by  ⌊
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑋𝑡𝑢𝑟𝑛
⌋ =  ⌊

𝑚𝑎𝑥𝑑𝑖𝑠𝑡

𝑚𝑖𝑛𝑟𝑜𝑎𝑑
⌋ =

𝑂(𝛼) turns. Thus, the number of possible turns which the 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would find is bounded 

by 𝑂(𝛼).  

Lemma 2 – The computation time of the 𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑖𝑛𝑔 

algorithm without checking previous paths equals to 

𝑂(ℎ𝛼 ∙ 𝛼𝑚−1). 

Proof: The number of possible turns which the 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm would find is bounded 

by 𝑂(𝛼).  In every recursion, the 𝑃𝑎𝑡ℎ𝐹𝑖𝑛𝑑𝑖𝑛𝑔 algorithm 

reveals 𝛼 new paths while calling 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡  𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 

which computation time is bounded by 𝑂(ℎ𝛼). Thus, the 

computation time would be   ℎ𝛼 + 𝛼 ∙  ℎ𝛼 + 𝛼2 ∙  ℎ𝛼 + ⋯ +
𝛼𝑚−1 ∙  ℎ𝛼 =  ℎ𝛼 ∙ (1 + 𝛼 + 𝛼2 + 𝛼3 + ⋯ + 𝛼𝑚−1) =
𝑂( ℎ𝛼 ∙ 𝛼𝑚−1). 

Lemma 3 – The computation time for iterating in 

previous paths is equal to 𝑂(𝑚 ∙ 𝛼2𝑚). 

 Proof: In the worst case scenario, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

algorithm would iterate through all of the possible paths 

until it will reach 𝑚 turning events in all the paths. Thus, in 

every turning vertex, it will have to iterate through all the 

possible previous paths in 𝐵 array.  The maximum number 

of possible paths is bounded by 𝛼𝑚 . For each possible path, 

the algorithm will iterate through 𝑚 ∙ 𝛼𝑚 vertices, which is 

the maximum number of vertices in the 𝐵 array.  Thus the 

maximum computation time for checking previous paths in 

steps 16-36 of 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, is bounded by 

𝑂(𝑚 ∙ 𝛼𝑚 ∙ 𝛼𝑚) = 𝑂(𝑚 ∙ 𝛼2𝑚). 

Theorem 4 – The total computation time of 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm equals to 𝑂( ℎ𝛼 ∙ 𝛼𝑚−1 +
𝑚 ∙ 𝛼2𝑚). 

Proof: The theorem complies from lemma 2 and lemma 3. 

D. Defining 𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓 𝑷𝒂𝒕𝒉𝒔 algorithm 

The 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm finds all 

possible paths, while after each call to the 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, it deletes all of dead-end paths. 

The 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm gets the 𝑀𝐶 file 

which holds the cornering event time and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥, 

which is an intersection from where the driver started his 

path. In addition, it gets 𝑚 parameter which determines the 

maximum number of new turning events within the paths 

which the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm should return. Ranked 

paths according to the average popularity of each path are 

returned/ 

𝑮𝒆𝒕𝒕𝒊𝒏𝒈 𝑷𝒐𝒑𝒖𝒍𝒂𝒓 𝑷𝒂𝒕𝒉𝒔 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 (𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 𝒗𝒆𝒓𝒕𝒆𝒙, 𝑴𝑪, 𝒎)  

1) 𝑐 = 1 

2) 𝑃𝑎𝑡ℎ𝑠 =
𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠(00: 00, [𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥], 𝑀𝐶, 𝑚 ∙ 𝑐) 

3) 𝑐 + + 

4) 𝒘𝒉𝒊𝒍𝒆 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛𝑒𝑑 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑃𝑎𝑡ℎ𝑠: 

5)             𝒇𝒐𝒓 𝑗1 𝑡𝑜 𝑗𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ𝑠): 

6)                    𝑰𝒇 𝑃𝑎𝑡ℎ𝑠[𝑗] 𝑖𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 “𝑐𝑙𝑜𝑠𝑒𝑑” &&  

                                 𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ𝑠[𝑗] < 𝐿𝑒𝑛𝑔𝑡ℎ(𝑀𝐶): 

7)                            𝑑𝑒𝑙𝑒𝑡𝑒 𝑃𝑎𝑡ℎ𝑠[𝑗] 

8)             𝒇𝒐𝒓 𝑗1 𝑡𝑜 𝑗𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑎𝑡ℎ𝑠): 

9)                     𝑰𝒇 𝑃𝑎𝑡ℎ𝑠[𝑗] 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑐𝑙𝑜𝑠𝑒𝑑: 

10)                             𝑇 =  𝑀𝐶[𝑡𝑢𝑟𝑛_𝑛𝑢𝑚𝑃𝑎𝑡ℎ𝑠[𝑗] + 1][1] 

 

11)                             

𝑃𝑎𝑡ℎ𝑠 =
𝑃𝑎𝑡ℎ𝑠 ∪ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑠(𝑇, 𝑃𝑎𝑡ℎ𝑠[𝑗], 𝑀𝐶, 𝑚 ∙ 𝑐) 

12)                             𝑑𝑒𝑙𝑒𝑡𝑒 𝑃𝑎𝑡ℎ𝑠[𝑗] 

13)              𝑐 + + 

14)  

𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑜𝑟𝑡𝑒𝑑 𝑃𝑎𝑡ℎ𝑠 𝑎𝑟𝑟𝑎𝑦 𝑏𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦  

 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, by using 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, finds possible paths which are 

available from a certain 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. The aim of the 

algorithm is to get possible paths while deleting all of dead-

end paths after each iteration of 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm. 

Consequently, in the output it would provide paths which 

are ranked by average popularity. 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm steps 

In the 2
nd

 step, the algorithm uses 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

algorithm in order to find possible paths 

from 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Consequently, in steps 5-7, the 

algorithm checks whether a path has a dead-end. The 

indication for it, is when 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm marked 

the path as “closed”, while the current number of turns has 

not reached the number of turns that can be concluded from 

𝑀𝐶 file. Afterwards, in steps 8-12, the 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, for every remaining 



path, looks for continuation paths. The 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm calls 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

algorithm and requires from it to retrieve all of the 

continuation paths until it reaches at maximum 𝑚 ∙ 𝑐 turning 

events. Thus, iterating steps 5-13 until the number of turns 

in every path would comply with number of turns defined in 

𝑀𝐶 file. In other words, when the path turns reach the 

number of rows in 𝑀𝐶 file, the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, 

marks it as “closed”.  

Lemma 5 – The overall number of iterations through 5-13 

steps is bounded by ⌈
|𝑀𝐶|

𝑚
⌉ − 1 .  

Proof: Every time the 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm is 

called, it discovers at most 𝑚 new turning events. The 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm will stop iterating 

through 5-13 steps when there will be no opened paths. The 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm will mark the path as “closed”, 

when the number of turning events would be equal to |𝑀𝐶|. 
The first call to 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 is made in 2

nd
 step and 

other calls are made within steps number 5-13. Thus, the 

overall number of iterations through 5-13 steps is bounded 

by ⌈
|𝑀𝐶|

𝑚
⌉ − 1. 

Lemma 6 – The number of paths which 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

algorithm finds is bounded by 𝑂(𝛼|𝑀𝐶|).  

Proof: 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm in 2
nd

 step, calls 

for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm, the former finds at 

maximum 𝛼 𝑚 paths for the 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Afterwards, 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, iterates through steps 

number 5-13 until all of the paths are marked as “closed”. In 

each iteration, the algorithm calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 

algorithm, while the former finds at most 𝛼 𝑚 new paths for 

last vertex for each of the paths in 𝑃𝑎𝑡ℎ𝑠 array. 

Let’s examine the number of paths after each iteration: 

Iter. # Start 1 𝑖 
⌈
|𝑀𝐶|

𝑚
⌉ − 2 ⌈

|𝑀𝐶|

𝑚
⌉

− 1 

#paths  

𝛼 𝑚 

 

𝛼 2𝑚 

 

𝛼 (𝑖+1)𝑚 

 

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−1)∙𝑚
 

 

𝛼
⌈
|𝑀𝐶|

𝑚
⌉∙𝑚

 

Thus, number of paths is bounded by 𝛼⌈
|𝑀𝐶|

𝑚
⌉∙𝑚 = 𝑂(𝛼|𝑀𝐶|) 

. 

Theorem 7 – Overall computation time of 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm is bounded by 

O((𝛼(⌈
|𝑀𝐶|

𝑚
⌉−1)∙𝑚 + 1) ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}) . 

Proof: According to Theorem 4, the computation time for 

each call to 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 is bounded by 𝑂( ℎ𝛼 ∙ 𝛼𝑚−1 +
𝑚 ∙ 𝛼2𝑚). In the 2

nd
 step, the 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 

algorithm calls for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm and finds at 

most 𝛼𝑚 paths for the 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥. Before steps 

number 8-12, there will be the following number of paths in 

𝑃𝑎𝑡ℎ𝑠 array, which equals to number of calls to 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm: 

It. # 1 2 𝑖 
⌈
|𝑀𝐶|

𝑚
⌉ − 2 ⌈

|𝑀𝐶|

𝑚
⌉ − 1 

#paths 

before 

steps 

8-12 

 

𝛼 𝑚 

 

𝛼 2𝑚 

 

𝛼 𝑖∙𝑚 

 

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−2)∙𝑚
 

 

𝛼
(⌈

|𝑀𝐶|
𝑚

⌉−1)∙𝑚
 

Thus, the overall computation time is a combination of 

computation time in the 2
nd

 step which is bounded by 

𝑂( ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚) and all of the calls to 

𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm in each iteration which is 

bounded by 𝑂 (∑ 𝛼𝑐𝑚 ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}
⌈
|𝑀𝐶|

𝑚
⌉−1

𝑐=1 ). 

Thus, the overall computation time for all calls is as 

follows:  

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} + ∑ 𝛼𝑐𝑚 ∙
⌈

|𝑀𝐶|

𝑚
⌉−1

𝑐=1

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} = { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} +

𝛼𝑚 ∙ { ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} + ⋯ + 𝛼
(⌈

|𝑀𝐶|

𝑚
⌉−1)∙𝑚

∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚} = 𝑂 ((𝛼
(⌈

|𝑀𝐶|

𝑚
⌉−1)∙𝑚

+ 1) ∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚}).  

E. 𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔 algorithm 

Finally, we are using all of previous components for the 

following algorithm In the input of the algorithm there is 

𝐺 = (𝑉, 𝐸) directed graph which represents the area of 

driving, while the vertices represent intersections or turns 

greater than 60° and edges represent the roads. 

Furthermore, the algorithm gets the 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥, 

𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒  which is driver’s average speed,  𝑀𝐶 file, and 

∆𝑡 𝑡𝑜𝑡𝑎𝑙 which is the total driving time. Furthermore, the 

algorithm gets parameter 𝑚 which defines number of new 

turning events for each call for 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑃𝑎𝑡ℎ𝑠 algorithm. 

Ordered array of all possible paths, for driver movement 

serves as an output for our algorithm.  The possible paths 

are ordered by the average road popularity. 

𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔 

(𝑺𝒂𝒗𝒆𝒓𝒂𝒈𝒆, ∆𝒕 𝒕𝒐𝒕𝒂𝒍, 𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 𝒗𝒆𝒓𝒕𝒆𝒙, 𝑴𝑪, 𝒎)  1. 𝐺 = 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 () 

2. 𝑃𝑎𝑡ℎ𝑠 = 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 

                             (𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥, 𝑀𝐶, 𝑚) 

3. 𝒇𝒐𝒓 𝑝𝑎𝑡ℎ 𝑖𝑛 𝑃𝑎𝑡ℎ𝑠: 

4.          𝑰𝒇 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ ∆𝑡 𝑡𝑜𝑡𝑎𝑙 ∗ 1.1 <



|𝑝𝑎𝑡ℎ|     ||    |𝑝𝑎𝑡ℎ| < 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ ∆𝑡 𝑡𝑜𝑡𝑎𝑙 ∗ 0.9: 

5.                     𝑑𝑒𝑙𝑒𝑡𝑒 (𝑝𝑎𝑡ℎ) 

6. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑃𝑎𝑡ℎ𝑠 

 

In step 1, the algorithm is mapping the popularities for each 

edge by using 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm. 

Consequently, in step 2, the algorithm gets possible paths 

that can be reached from a 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑒𝑥 and bounded 

by 𝑀𝐶 file, while ∆𝑡𝑡𝑜𝑡𝑎𝑙 is the total trip time of the driver. 

Afterwards in steps 3-5, it deletes all of the paths that do not 

meet the user’s average speed attribute. Finally, the 

algorithm returns all of the remaining paths which are 

ranked by average popularity of the path. 

Theorem 8 – The total computation time of 

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟’𝑠 𝑃𝑎𝑡ℎ𝑠 algorithm is bounded by  

𝑂 (|𝐸| ∙ |𝐶| ∙ |𝑁| + ((𝛼(⌈
|𝑀𝐶|

𝑚
⌉−1)∙𝑚 + 1) ∙

{ ℎ𝛼 ∙ 𝛼𝑚−1 + 𝑚 ∙ 𝛼2𝑚})) . 

Proof: The computation time derives from computation time 

of 𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm and Theorem 7. 

 

V. SIMULATION 

   This section describes the results of the path 

reconstruction algorithms which were implemented on the 

real vehicle’s paths. A description of the set-up is followed 

by a presentation of the findings and their analysis. 

A. Environment Set-up 

   In order to test our algorithms we used the dataset of real 

life trajectories. The dataset was collected as a part of 

𝐺𝑒𝑜𝐿𝑖𝑓𝑒 2.0 project and was conducted and published by 

𝑀𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 company. The paths were collected during 5 

years by the people of Beijing [20]. In addition, in order to 

implement our algorithms 𝑃𝑦𝑡ℎ𝑜𝑛 2.7 coding language was 

used. The algorithms were tested over the trajectories with 

turning events in a range of 1-6 events, and trajectories 

distance varying from 0.337 𝑘𝑚 to 8.69 𝑘𝑚. The 

trajectories were distributed over the area of the city of 

Beijing. 

Two types of comparative analysis were tested. First 

analysis compared the rank of the closest constructed path 

as a function of traveling distance, traveled time and 

average user’s speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒), while examining the 

difference among number of turning events in trajectories. 

Second analysis compared the maximum distance of the 

first ranked constructed trajectory from the real path as a 

function of traveled distance, traveled time and average 

user’s speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒).  

In order to map all of the road popularities, we used the 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 algorithm, while GPS log files that 

we used were the log files from taxi trajectories project 

which is called T-Drive [21]. T-Drive files contain a one-

week GPS coordinates of 10,357 taxis. The total number of 

points is about 15 million.  

We used the 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐹𝑖𝑛𝑑𝑒𝑟 algorithm with the 

following parameters: 𝑌 is equal to 10𝑘𝑚 and ℎ = 2. The 

reason for our selection is that the computation times for 

those parameters are reasonable while constructing good 

trajectories.  

We used the 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟′𝑠 𝑃𝑎𝑡ℎ𝑠 algorithm 

with the 𝑚 = 3 parameter. The reason for our choice is our 

will to use 𝑚 that will be high enough, so we will not lose 

essential paths when deleting non popular paths in 

𝐺𝑒𝑡𝑡𝑖𝑛𝑔 𝑃𝑜𝑝𝑢𝑙𝑎𝑟 𝑃𝑎𝑡ℎ𝑠 algorithm, and low enough for 

obtaining computation time. 

B.  𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒊𝒏𝒈 𝑫𝒓𝒊𝒗𝒆𝒓’𝒔 𝑷𝒂𝒕𝒉𝒔 Performance 

We now present the findings for 

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑖𝑛𝑔 𝐷𝑟𝑖𝑣𝑒𝑟’𝑠 𝑃𝑎𝑡ℎ𝑠  algorithm, while examining 

the influence of the traveling distance and the average user 

speed 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒  and traveling time on the closest constructed 

path to the real trajectory. We use the notion of standings as 

a popularity assessment of each path in the 𝑃𝑎𝑡ℎ𝑠 array, 

while the most popular path will be ranked as 1 and the least 

popular path will be ranked as the length of the 𝑃𝑎𝑡ℎ𝑠 

array.  

Traveled Distance Influence 

In Fig. 5.1 we present the traveled distance influence on 

the absolute standings, respectively, of the closest 

constructed path to the real user’s path. We examined 50 

trajectories which traveling distances variant from 

0.337 𝑘𝑚 to 8.69 𝑘𝑚, while examining the difference 

between the number of rows in 𝑀𝐶 file, which represents 

the number of turning events in the path. We notice that the 

absolute standing of the constructed path increases with 

increase of traveling distance.  Furthermore, one can see 

that the number of turning events makes no difference on 

the absolute standings of the constructed path. The absolute 

standings of the path is beginning to have a bigger variance 

after traveling distance of 4 𝑘𝑚  and its very high as we 

reach the 8 − 9 𝑘𝑚. The conclusion is that we can reveal 

user’s path with an absolute standings up to 20 as long as 

his traveled distance is lower than 4 𝑘𝑚. In addition, we 

cannot see any influence of the traveled distance on the 

relative standings. 
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Average Speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒) Influence 

In Fig. 5.2 we present the user’s average speed influence 

on the absolute standings of the closest constructed path to 

the real user’s path. We examined 50 trajectories which 

speed variant from 7.46 𝑘𝑚/ℎ to 40.96 𝑘𝑚/ℎ. From figure 

5.2, it seems that the average speed doesn’t have any effect 

on the absolute standings of the constructed path. 

Furthermore, number of turns also doesn’t influence the 

absolute standings of the constructed path. 

 

Influence of Traveling Time 

    In Fig. 5.3 we present the user’s traveling time influence 

on the absolute standings of the closest constructed path to 

the real user’s path. We examined 50 trajectories while 

traveling time varies from 1.75 minutes to 30.4 minutes. 

As expected, we notice that the absolute standing of the 

constructed path increases with the increase of traveling 

time.  Furthermore, one can see that number of turning 

events makes no difference on the absolute standing of the 

constructed path. The absolute standings is starting to have 

a bigger variance after traveling time of 7 minutes  and is 

getting very high as we reach 12.5 minutes. The 

conclusion is that we can reveal user’s path as long as his 

traveling distance is lower than 7 minutes, while the 

constructed path has absolute standings is in top 20 

trajectories. 

 

Maximum distance from trajectory 

In order to examine the maximum distance between the 

constructed trajectory and the driver’s path, we tested the 

maximum distance from the first ranked constructed 

trajectory. Three types of comparative analysis were 

performed. First analysis compared the maximum distance 

of the first ranked constructed path as a function of traveled 

distance. Second analysis compared the maximum distance 

of the first ranked constructed path as a function of user’s 

average speed (𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒). Third analysis compared the 

maximum distance of the first ranked constructed path as a 

function of traveling time. 
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Figure 5.4: Maximum distance of the first ranked 

constructed path as a function of traveled 

distance. 

Figure 5.1: Absolute standings of the constructed 

path as a function of traveling distance 
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Figure 5.2: Absolute standings of the closest 

constructed path as a function of user’s average 

speed. 
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Figure 5.3: Absolute standings of the constructed 

path as a function of user’s traveling time 
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Figure 5.5: Maximum distance of the first ranked 

constructed path as a function of traveling time. 
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Figure 5.6: Maximum distance of the first ranked 

constructed path as a function of average speed. 

Figure 5.7: Maximum distance of the first ranked, 

median and random trajectory as a function of traveled 

distance in paths which start in the residential road and 

finish in the highway. 
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From Fig. 5.4 one can learn that as traveling distance is 

getting higher, the maximum distance is getting higher with 

greater variance. The ratio between the axes has a 

proportion lower than 1 in a majority of trajectories. 

Furthermore, number trajectories which have maximum 

distance lower than 10%, 15%, 20% of the driver’s traveled 

distance are equal to 12, 15, 19 out of 50 trajectories, 

respectively. From Fig. 5.5, we observe that the traveling 

time has no influence on the maximum distance. From Fig. 

5.6, we observe that average speed has the same influence 

on maximum speed as the influence of traveling distance. 

 

 

 

 

 

 

 

 

 

 

 

Types of trajectories and their influence on maximum 

distance  

There are 3 types of trajectories which we examined. 

First type of trajectory is a path in which the driver starts 

from residential road and finish his path in the highway. 

Second type of a trajectory is a path in which the driver 

starts from a residential area, propagates via highway roads 

and finishes his path in residential area. Third type is a 

trajectory in which the driver starts from the highway.  

In order to understand the difference between the roads and 

their influence of the roads popularity, we compared the 

maximum distance between the real trajectory and the most 

popular (1
st
 place), random and median ranked trajectory. 

 

 

a) Residential to highway trajectory 

We can notice that in 7 out of 7 paths, the 1
st
 ranked 

path was closer to the real trajectory than a median ranked 

path, see Fig. 5.7. Thus, the popularity plays an important 

role in that kind of trajectories. 
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Figure 5.8: Maximum distance of the first ranked, median 

and random trajectory as a function of traveled distance in 

paths which start in the residential road and finish in the 

highway and roads which start from the residential road, 

propagates through highway and finish in residential road.  
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Figure 5.9: Maximum distance of the first ranked, 

median and random trajectory as a function of 

traveled distance in all types of path 

 

b) Residential through highway to residential 

trajectories 

The setup is:  

1. The driver started from residential road and ended 

his path in highway. 

2. The driver started from residential road, drove 

through the highway and ended his path in 

residential area. 

We can notice (Fig. 5.8) that in 12 out of 14 trajectories, the 

1st ranked path was closer to the real trajectory than a 

median ranked path. On the one hand, in the majority of 

trajectories, the 1st ranked path was closer to the real 

trajectory than a median, which means that the popularity 

has a major influence on the constructed path. On the other 

hand, when we added a second type of trajectories to our 

bar chart, we can notice that not all of the 1st place 

trajectories are closer than a median ranked paths to the real 

trajectory, which means that the second type of trajectories 

add a certain uncertainty. 

 

c) Trajectories which start from the highway 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 concludes all 3 types of the trajectories. We 

can notice that by adding the 3
rd

 types of trajectories 

(trajectories which start from a highway), the majority of 

trajectories which are closer to the real trajectories are 

median trajectories. Thus, in a 3
rd

 type of trajectories, the 

popularity doesn’t play an important role for constructing 

driver’s trajectory. 

C. General Findings 

There are several findings that we noticed while running 

our algorithms. First, when there is an interchange in 

driver’s path, our algorithms produce constructed path 

which doesn’t have a good absolute standings, with no 

difference what is the traveling time, traveling distance or 

average speed of the user. Second, because of a high 

amount of possible paths, our algorithms are performing in 

a reasonable computation time when a path has a distance 

up to 10 𝑘𝑚 . Third, motorway and freeway roads have 

higher popularity than residential roads. Thus, when the 

driver drives on the residential road, which is located near 

the motorway or freeway, the constructed path would be 

ranked in worse position. Finally, there are some situations 

in which the real path is passing through private roads. 

Hence, there will be some difficulty to reconstruct his path. 

The constructed path might be close or far from the original 

road, depends on the case. In addition, there are some paths 

which we ignored since the popularities of those paths were 

too low. The amount of that kind of paths was about 7% of 

the  total amount of paths that we examined. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work we have studied the problem of breaching 

driver’s privacy by revealing driver's path while using basic 

driving information. Although the problem has been studied 

in several articles, some of them assume that GPS 

coordinates of the driver in the middle and the end of the 

path are known, while others assume that driver’s 

continuous speed is known. We proposed a new approach 

for reconstructing driver’s trajectory from basic driving 

information and by using roads popularities. By knowing 

the beginning location, driver’s average speed, and 

cornering log file, we can reconstruct driver’s path while 

having the closest reconstructed path ranked among top 

ranked paths. The paths are constructible within a 

reasonable time. 

For reconstructing the driver’s path, first we found 

possible turning vertices from starting vertex. We continued 

doing so, until number of turning vertices in each path was 

equal to a predefined criteria. Afterwards, we deleted all of 

dead-end paths and continued finding continuation paths 

until the number of turning events was equal to the number 

of cornering events in cornering log file. Finally, we deleted 

all of the paths which are not comply with cornering log file 

and driver’s average speed. Thus, we ranked the final paths 

by their popularities. When we examined the maximum 

distance from the first ranked constructed trajectory as a 

function of traveled distance, traveling time and driver’s 

average speed, we showed that as traveled distance is 

getting higher, the maximum distance is getting higher with 

greater variance, while the same applies for user’s average 

speed. In addition, when the path starts from residential 

road and finish its path in a highway, the constructed path 



would be ranked much higher than a path which started in 

highway. This phenomenon can be explained by hypothesis 

that the driver tends to drive from lower to higher 

popularity roads, while highways have higher popularities. 

In other words, the driver which starts from residential road, 

will tend to propagate to the highway. Furthermore, the 

standings of the trajectory which is closest to the real 

trajectory are not influenced by the amount of turning 

events. 

The optimal solution is yet to be reached when it comes to 

reconstruction of driver’s path while using roads 

popularities, and is a task for future study. Other possible 

directions are reconstructing driver’s path while knowing 

GPS coordinates in the middle of the trajectory. That can be 

useful when the user is willing to provide his GPS 

coordinates but his signal is lost in some scenarios, e.g. 

driving in the tunnel or in areas with electro-magnetic 

interference. 
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