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Abstract

Combined Input and Output Queued (CIOQ) architectures aithoderate fabrispeedupS > 1
have come to play a major role in the design of high perforraawitches. In this paper we study
ClOQ switches with First-In-First-Out (FIFO) buffers piding Quality of Service (QoS) guarantees.
The goal of the switch policy is to maximize the total valuepaickets sent out of the switch. We
analyze the performance of a switch policy by means of coitiyeeainalysis, where a uniform worst-
case performance guarantee is provided for all traffic pateAzar and Richter [8] proposed ti¥e
PG algorithm (Preemptive Greedy with a preemption factofpthat is8-competitive for an arbitrary
speedup value whefi = 3. We improve upon their result by showing that this algoritachieves a
competitive ratio of7.5 and7.47 for § = 3 and/3 = 2.8, respectively. Basically, we demonstrate that

B-PG is at most?*2? and at least; -competitive.

*A preliminary version of this work appeared in ProceedinbE$A 2008



1 Introduction

The main tasks of a router are to receive packets from the jpquts, to find their destination ports using a
routing table, to transfer the packets to their correspandutput ports, and finally to transmit them on the
input links.

If a burst of packets destined to the same output port afrivessimpossible to transmit all the packets
immediately, and some of them must be buffered inside theebWor dropped).

A critical aspect of the switch architecture is the placetr@nbuffers. In the output queuing (OQ)
architecture, packets arriving from the input lines imnagely cross the switching fabric, and join a queue
at the switch output port. Thus, the OQ architecture allomesto maximize the throughput, and permits the
accurate control of packet latency. However, in order tacagontention, the internal speed of an OQ switch
must be equal to the sum of all the input line rates. The redevelopments in networking technology has
produced a dramatic growth in line rates, and have made témal speedup requirements of OQ switches
difficult to meet. This has in turn generated great inteneghé input queuing (IQ) switch architecture,
where packets arriving from the input lines are queued atripet ports. The packets are then extracted
from the input queues to cross the switching fabric and tambgdrded to the output ports.

It is well-known that the 1Q architecture can lead to low tghput, and it does not allow the control of
latency through the switch. The main problem of the IQ agdttitre is head-of-line (HOL) blocking, which
occurs when packets at the head of various input queuesntbatea specific output port of the switch. To
alleviate the problem of HOL blocking, one can maintain athemput a separate queue for each output.
This technique is known as virtual output queuing (VOQ).

Another method to get the delay guarantees of an 1Q switaechwo that of an OQ switch is to increase
the speedups of the switching fabric. A switch is said to have a speed\jif the switching fabric runsy
times faster than each of the input or the output lines. Heae®Q switch has a speedup@f(where N
is the number of input/output lines), while an 1Q switch haspaedup of.. For values ofS betweenl and
N, packets need to be buffered at the inputs before switchingedl as at the outputs after switching. This
architecture is called Combined Input and Output Queue®@@Iswitch. CIOQ switches with a moderate
speedups have received increasing attention in the literature dvetdst decade, see e.g. [11, 12].

Given a CIOQ switch, the switch policy consists of a buffemiagement policy controlling the usage
of the buffers, a scheduling policy controlling the switetbfic, and a transmission policy controlling the
output buffers. The buffer management policy decides for @acket that arrives to a buffer, whether to
accept or reject it (in the latter case the packet is lostpréemption is allowed, the buffer management
policy can drop from the buffer a packet that was previouslyepted to make room for a new packet. The
scheduling policy is responsible for selecting the packetbe transferred from the input queues to the
output queues. This has to be done in a way that preventsntmmigi.e., at any given time at most one
packet can be removed from any CIOQ input port, and at mospacket can be added to any CIOQ output
port. The transmission policy selects the packet to be setti@output link.

In the present paper we consider CIOQ switches with Firgtitst-Out (FIFO) buffers. We study the
case of traffic with packets of variable values where theevalfia packet represents its priority. This
corresponds to the DiffServ (Differentiated Services) i¢8]. The goal of the switch policy is to maximize
the total value of the packets sent out of the switch.

Since Internet traffic is difficult to model and it does notree® follow the more traditional Poisson
arrival model [24, 26], we do not assume any specific traffidlehoWe rather analyze our policies against
arbitrary traffic and provide a uniform worst-case throughguarantee for all traffic patterns, using com-
petitive analysis [25, 10]. In competitive analysis, théirempolicy is compared to the optimal offline policy
OPT, which knows the entire input sequence in advance. The ctitmpeatio of a policy A is the maxi-
mum, over all sequences of packet arriva)of the ratio between the value of packets senOdyT" out of
o, and the value of packets sent Hyout of o.



Our results. We consider a CIOQ switch with FIFO buffers of limited capgacWe assume that each
packet has an intrinsic value designating its priority. Walgze theg-Preemtive Greedy policy3¢ PG)
that was shown to b&-competitive by Azar and Richter [8] fg8 = 3. We improve upon their result by
establishing thap- PG is 7.47-competitve forg = 2.8. Basically, we demonstrate that tffePG policy
achieves a competitive ratio 3% (for g8 > 1). In particular, our result implies that for the valge= 3
used by Azar and Richter [8] the competitive ratiogieP G is at most.5. Our proof technique is completely
different from the one presented in [8] and does not make tidaramy packets. In addition, we show a
first lower bound of/f—f1 on the performance gf-PG for sufficiently largeS. Thus,s-PG is at leastd.5
and4.36-competitive fors = 3 andj = 2.8, respectively.

Related work. A large humber of scheduling algorithms have been propasedei literature for the
IQ switch architecture: these include PIM [4], iSLIP [23]atBh [14] to name a few. These algorithms
achieve high throughput when the traffic pattern is admlisgilniform), i.e. the aggregate arrival rate to
an input or output port is less thdn However, their performance typically degrades when trafinon-
uniform [22]. Most of the above works on the control of IQ an®@Q switches assume that there is always
enough buffer space to store the packets when and whereche€las, all packets arriving to the switch
eventually cross it. However, contrary to this setting dliserved empirically in the Internet that packets are
routinely dropped in switches. In the present work we aditles question of the design of control policies
for switches, when buffer space is limited, and thus packe dhay occur.

The problem of throughput maximization in the context ofragk buffer has been explored extensively
in recent years (see [16] for a good survey). Englert and &estnn [15] presented almost matching lower
and upper bounds on the competitive ratigggbreemptive greedy policy3(is the preemption factor) in the
context of a single FIFO buffer (lower boundlig07 and upper bound i5.732).

Competitive analysis of preemptive and non-preemptiveedaling policies for shared memory OQ
switches was given by Hahne et al. [17] and Kesselman and ddarjd9], respectively. Aiello et al.
[1] considered the throughput of various protocols in a eekwf OQ switches with limited buffer space.
Kesselman et al. [18] studied the throughput of local buffemagement policies in a system of merge
buffers.

Azar and Richter [7] presented4acompetitive algorithm for a weighted multi-queue switalofdem
with FIFO buffers. An improved-competitive algorithm was later given by Azar and Rich&r [Albers
and Schmidt [3] proposed a deterministi&9-competitive algorithm for the case of unit-value packets.
Azar and Litichevskey [5] derived & 58-competitive algorithm for this special case with largefers.
Albers and Jacobs [2] gave an experimental study of new aadikionline packet buffering algorithms.

Kesselman and Rosén [20] studied CIOQ switches with FIFfielsu(a generalization of the multi-
gueue switch problem). For the case of packets with uniteglthey presented a switch policy that is
3-competitive for any speedup. For the case of packets witlabla values, they proposed two switch
policies achieving competitive ratios 6 and8 min(n, 2log «), wheren is the number of distinct packet
values andx is the ratio between the largest and the smallest valuesr @ Richter [8] obtained an
8-competitive algorithm for CIOQ switches with FIFO buffemhich is the first algorithm that achieves a
constant competitive ratio for the general case of arlyispeedup and packet values. Kesselman and Rosén
[21] considered the case of CIOQ switches with Priority QugP Q) buffers and proposed a policy that is
6-competitive for any speedup.

Organization. The rest of the paper is organized as follows. The model ggar appears in Section
2. The switch policy is presented and analyzed in Sectiond3S&ttion 4, respectively. We mention some
conclusions in Section 5.



2 Model Description

In this section we describe our model. We consideNasr N CIOQ switch with N input ports, N output
ports, and a speedup (see Figure 1). Packets, of equal size, arrive at input p&#eh packet is labeled
with the output port on which it has to leave the switch andased in the input queue corresponding to its
output port. When a packet crosses the switch fabric, itasqd in the output queue and resides there until
it is sent on the output link. For a packetwe denote by (p) its value.

Each input; maintains for each outpyt a separate queugOQ); ; of capacity BI; ; (Virtual Output
Queuing) and each outpgitmaintains a queu®(); of capacityBO;. All queues in the switch are FIFO,
namely, packets leave the queues in the order of their &riva

Figure 1: An example of a CIOQ switch.

We divide time into discrete steps. During each time steparmaore packets can arrive on each input
port, and one packet can be forwarded from each output pogtdividle each time step into three phases.
The first phase is theansmissiorphase during which a packet from each non-empty output qoaude
sent on the output link. The second phase isahéval phase. In the arrival phase one or more packets
arrive at each input port. The third phase is #ubedulingphase when packets are transferred from the
input buffers to the output buffers. In a switch with a spgedtiS, up to S packets can be removed from
any input and up t& packets can be added to each output. This is done in (up Wjcles, where in
each cycle we compute a matching between the inputs and thetsand transfer the packets accordingly.
Specifically, an edgé;, j) in the matching between inputind outpuy corresponds to transmitting a packet
from virtual output queud” OQ); ; to output queu®();. We denote the-th scheduling cyclel(< s < 5)
at time stept by t,.! Suppose that the switch is managed by a palicyBy VOQ;‘}]- we denoteV’ OQ); ; as
managed by, and byOQ;-4 we denoteO(Q); as managed byl. We represent the state of a switch as an
N x N bipartite multi-graph with the set of nodé&3;, U Vi, representing the input and the output ports.
Each packep in VOQ); ; creates an edgg, j) whose weight equall (p).

The switch policy is composed of three main components, haméransmission policy, a buffer man-
agement policy and a scheduling policy.

Transmission Policy. The transmission policy at each time step decides whichgiaskransmitted out
of each output buffer.

Buffer Management Policy. The buffer management policy controls the admission of @iciato the
buffers. More specifically, when a packet arrives to a buffex buffer management policy decides whether
to acceptor rejectit. An accepted packet can be lapgeempteddropped).

Scheduling Policy.At every scheduling cycle, the scheduling policy first desiavhich packets can be
scheduled. Then it specifies, according to computed magchihich packets are transferred from the inputs

with slight abuse of notation we say that= (t — 1)s, ts+1 = (t + 1)1 andt = t1.



to the outputs. The aim of the switch policy is that of maximggzthe total value of packets sent from the
output ports. Let be a sequence of packets arriving at the inputs of the switehl’“ (o) and V"7 (¢)

be the total value of packets transmitted out of the sequenbg an online switch policyd and an optimal
offline policy OPT, respectively. The competitive ratio of a switch policy &fided as follows.

Definition 2.1 An online switch policy is said to bec-competitive if for every input sequence of packets
o, VOPT(g) < ¢-VA(o) + d, whered is a constant independent of

3 p-Preemptive Greedy Switch Policy

In this section we describe the switch policy that was firitoduced by Azar and Richter [8]. We treat
each virtual input or output queue as a separate buffer witbpendenbuffer management policy. The
B-preemptive greedy3- PG) policy appearing in Figure 2 uses a natural preemptivedyréaffer manage-
ment policy and a scheduling policy based on maximum weighiiching. The value of the parameter
will be determined later. Observe that a pagket not scheduled to an output buffer if it will be dropped or
if it will preempt another packet’ such thaf’(p’) > V(p)/3. In what follows when we say “first packet”,
or “last packet”, we mean the first or last packet accordinglED order in the relevant set.

e Transmission: Transmit the first packet from each non-empty output queue.

e Buffer Management of Input and Output Buffers (greedy): Acceptan arriving
packetp if there is free space in the buffer. Droyif the buffer is full andV (p) is
less than the minimal value among the packets currentlyaitfifer. Otherwise
drop from the buffer a packet with the minimal value and accepiwe say that
p preempte’).

e Scheduling: For each buffel’ OQ); ;, consider the first packet iINOQ); ; and
denote its value byy. Mark this packet asligible, if OQ); is not full or if the
minimal value among the packets@); is at mostw/ .

Compute anaximum weightatching.

Figure 2: The3-Preemptive Greedy Switch Policg{PG).

4  Analysis

We will show thatg-PG achieves a competitive ratio (ﬁéf—%ﬂ for any speeduy’ assuming thap3 >

1. We also derive a lower bound @% on the performance gf-PG for sufficiently largeS. Our
analysis proceeds along the lines of the work in [21], whtdkligs Priority Queuing (PQ) buffers. However,
extension from PQ to FIFO buffers is technically challerggin

In what follows we fix an input sequenee To prove the competitive ratio gi-PG we will assign
value to the packets sent By PG so that no packet is assigned more tt@%ﬁ%ﬂ times its value and then
show that the value assigned is indeed at 18437 (o).

For the analysis, we consid&rPT that never preempts packets. Obviously, sGdAT exists since it
knows the whole input a priori and can accept only the padketswill be transmitted.

The assignment routine presented in Figure 3 specifies haasign value to the packets sentby G
(we will show that it is feasible).



e Step1: Assign to each packet scheduled®yPG at timet, its own value.

e Letp’ be the packet scheduled BYPT at timet, from VOQZ/™, if any. Let
p be the first packet irVOijG at timet, if any or a dummy packet with zerp
value otherwise.

e Step2: If pis not eligiblefor transmission and either (Ij (p') < V (p) or (ii)
V(p') > V(p), p’ is present inVOQ{’”jG andp’ has been previously assigned
some value by Step, then proceed as follows: Let’ be the packet that will be
sent fromOQF“ at the same time at whiadB PT" will sendp’ from OQ9*" (we
will later show thatp” exists and its value is at leakt(p)/3). If (i), assign the
value ofp’ to p”. If (i), re-assign top” the value that was previously assigned
p’ by Step4.

e Step3: If V(p') > V(p) then proceed as follows:

—

o

— Sub-Step3.1: If p’ was scheduled bg-PG prior to timet,, then assign
the value ofV (p’) top’.

— Sub-Step3.2: Else ifp’ is not present WOijG, consider the set of pack
ets with value at least’ (p') that are scheduled by-PG from VOQ!¢
prior to timet,. Assign the value oV (p’) to a packet in this set that is not
in VOQSJPT at the beginning of;, and has not previously been assigned a
value by either Sub-Step1 or Sub-Ste3.2 (we will later show that such
a packet exists).

— Sub-Step3.3: Else ¢’ is present irﬁ/OijG), remove the value assigned
to p’ by Step4 and assign the value &f(p’) to p’ (we will later show that
the removed value is re-assigned by Stgp

e Step4: If a packetg preempts a packet at aninputor outputqueue of3-PG,
re-assign t@ the value that has been previously assignegd.to

Figure 3: Assignment Routine — executed at the end of scimedcyclet,.

Observe that the assignment routine assigns some valudamphckets that are scheduled out of the
input queues. Furthermore, if a packet is preempted at ggubgtieue then the total value assigned to it is
re-assigned to the packet that preempts it. The followirsgenkation follows from the finiteness of the input
sequence.

Observation 4.1 When the assignment routine finishes, only packets thatvarteally sent by- PG are
assigned some value.

The following claim bounds the total value that can be asgigio as-PG packet before it leaves a
virtual output queue.

Claim 4.2 The weight assigned to@ PG packet before it leaves a virtual output queue is at moshits o
value.

Proof. Initially, a 5-PG packetq’ in a virtual output queue can be assigned its own value by Sap-
3.3. If ¢’ is later preempted by a packgttheng is re-assigned the value that was assigned toy Step
4. Obviously,q is assigned at most its own valued$q) > V' (¢’). Note that ifg will be assigned its own
value by Sub-Step.3, then the value assigned ¢doy Step4 is either re-assigned by the case (ii) of Step
or removed by Step.3 and re-assigned by Stép The claim follows. O



In the next claim we show that when the case (ii) of Ste-assigns the value assigned tg-#G
packet located at a virtual output queue, the value of thedasket in this queue is at least the value that
needs to be re-assigned.

Claim 4.3 If the case (ii) of Step or Step3.3 apply and we re-assign the value assigned to the packet
VOQZ{D jG by Stept, then we have that'(p) is at least the value to be re-assigned, where the first packet
in VOQFE.

Proof. Consider the time step at whight has arrived and was accepted by bgt#PG and OPT. If

p e VOijG has been assigned some valgeshould have preempted another pagkeh VOijG and
was re-assigned the value that had been previously assignétly Step4. Sinces-PG always preempts
the least valuable packet from a queue, all packeté@r@f jG preceding’, andp in particular, must have a
value of at least’(¢'). Moreover, according to Claim 4.2, had been assigned at most its own value. That
establishes the claim. O

We demostrate that the value assigned by $t&fithe assighnment routine covers the value of scheduled
OPT packets that are not dealt with by Stzpr Step3 as well as the value re-assigned by Sub-St8p

Claim 4.4 The value assigned by Stémf the assignment routine is at least as large as the totalevalf
packets scheduled iy PT whose value is not assigned by Siepr Step3 and the value re-assigned by
Sub-Ste3.3.

Proof. Firstly note thatD PT packets packets whose value is not assigned byZtestep3 are scheduled
from queues wherg-PG had an eligible packet with value larger than thataP7’s. Secondly observe
that Sub-Ste3.3 of the assignment routine applies only if the packet regidinthe corresponding-PG
queue,VOijG, is eligible for transmission, for otherwise its value wbllave been re-assigned by Step
2 (caseii). According to Claim 4.3, the value that needs to be re-assidpy Sub-Step.3 is at most the
value of the packet at the headléOQf jG. The claim follows by the maximality of matching computed by

8-PG. O

Now we show that the assignment routine is feasible andlegian upper bound on the value assigned
to a single packet.

Lemma 4.5 The assignment routine is feasible.

Proof. First we show that the assignment as defined is feasible. 1St8pb-Ste3.1, Sub-SteB.3 and
Step4 are clearly feasible. We therefore consider Stzpad3.2.

First we consider Stefl. Let p be the first packet irVOQfJG. Assume thap is not eligible for
transmission. Then, by the definition 6fPG, the minimal value among the packetsG@i@); is at least
V(p)/B andOQ); is full. Thus, during the followingBO; time steps3-PG will send packets with value
of at leastV (p)// out of OQ;. The packep’ scheduled by) PT' from VOQ%PT at timet, will be sent
from OQJ»OPT in one of these time steps. Singevas not eligible for transmission we have that the packet
as specified in Stepindeed exists, and its value is at le&Sip) /5.

Next we consider Sub-Step2. First note that if this case applies, then the pagkdscheduled by
OPT from VOQY!™ at timet,) is dropped by3-PG from VOQ!(' at some time,, < t,.

Lett, > t, be the last time beforg at which a packet of value at ledg{(p’) is dropped frorTVOijG.
Since the greedy buffer management policy is applieﬁ’@QfJG, VOQZ{DJG containsB1; ; packets with
value of at leasV (p’) at this time. LetP be the set of these packets. Note thlaf P because it has already
been dropped bg-PG at this time. We have that ijt,, t;), 3-PG has actually scheduled all packets from
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P, since in[t,, ts) no packet of value at lea$t(p’) has been dropped, and at timethe packet at the head
of VOQZ{DJG has a value less than(p’).We show that at least one packet fréhis availablefor assignment
at timet,, i.e., it has not been assigned any value by Stapd is not currently present MOQQJPT. Let
x be the number of packets frof that are currently present MOQ%P T By the construction, these
packets are unavailable. From the rest of the packefs mpacket is considered available unless it has been
already assigned a value by StepObserve that a packet frof can be assigned a value by S&pnly
during[t,, ts) (when it is scheduled).

We now argue thaD PT has scheduled at mo#t/; ; — 1 — « packets out oV OQ; ; in [t,,t,), and
thus P contains at least one available packet. To see this obdeavéier packets fromP that are present
in VOQYTT at timet,, were already present HOQ/™ at timet,.. The same applies to packet(recall
thatp’ ¢ P). SinceOPT maintains FIFO order, all the packets t@PT scheduled out oVOQ%PT
in [t,,ts) were also present im’OQ%PT at timet,.. Therefore, the number of such packets is at most
BI; ; — 1 — x (recall that the capacity oF OQ; ; is B1; ;). We obtain that at least one packet fram
is available for assignment at Sub-Step since|P| = BI; ;, = packets are unavailable because they are
present inVOngP T and at mostBI; ; — 1 — z packets are unavailable because they have been already
assigned a value by St&p O

Lemma 4.6 No packet is assigned more th Qﬁﬁ times its own value.

Proof. Consider a packet sent bys-PG. Claim 4.2 implies thap can be assigned at most once its own
value before it leaves the virtual output queue. In addjtiois assigned its own value by Steép

By the specification of Sub-Stej2, this step does not assign any valugtibit is assigned a value by
either Sub-Step.1 or Sub-SteB.2. We also show that Sub-St&pl does not assign any value jdf it is
assigned a value by either Sub-Sgep or Sub-Ste3.2. That is due to the fact that by the specification of
Sub-Ste.2, if p is assigned a value by Sub-St&f at timet, thenp is not in the input buffer cO PT at
this time. Therefore, Sub-St&pl cannot be later applied to it. We obtain tipatan be assigned at most its
own value by Sub-Step.1 and Sub-Step.2 after it leaves the virtual output queue.

Now let us consider Step Observe that cases (i) and (ii) are mutually exclusivetteumore, if case
(i) apples, then by Claim 4.3 the value of the first packehimi- PG queue is at least the value that needs
to be re-assigned. We obtain thatan be assigned at mgstimes its own value by Stebof the assignment
routine.

Finally, we bound the value assigned to a packet by $taphe output queue. Note that this assignment
is done only to packets that are actually transmitted outefdwitch (i.e. they are not preempted). In
addition,p can preempt another packgétsuch thatl’ (p') < V(p)/8. We say thap transitivelypreempts a
packetp” if either p directly preempt®” or p preempts a packet that transitively preemptg”’. Observe
that any preempted packet in an output queue can be assigmagsithree times its own value by Stép
Step3 and Stept due to preemption in the virtual output queue. Hence, thad Waiue that can be assigned
to p by Step4 due to transitively preempted packets in the output quebeusded by5%1 times its own
value.

We have that in total no packet is assigned more than3 + 27 = 5[2;?5 times its own value. 0O

Let WOPT (4, t,) be the total value of packescheduledut of the virtual output queues 61 PT by
timet, and lethM/P% (o, t,) be the total value assigned to packet$i®G by timet,, on input sequence.
We show that the value gained BYPT is bounded by the value assigned by the assignment routine.

Lemma 4.7 For any timet, the following holds W' (o,t,) < MY (0, t,).
Proof. By X;f‘j(ts) we denote the binary variable that indicates whether arridigo A has scheduled a

packet from input to output; in scheduling cyclé, (X;f‘j(ts) = 1 if some packet has been scheduled from
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input: to output;j and X, ( s) = 0 otherwise). ByP; ( s) we denote the packet itself in caX@“ =1,

or a dummy packet Wlth zero value otherwise. Flrstly, note trcording to Claim 4.4, the value aSS|gned
by Stepl coversOPT packets whose value is not assigned by Step Step3 and the value re-assigned
by Sub-Ste8.3. The proof proceeds by induction on time. The lemma triyialblds for time zero. Now
assume that the lemma holds at time; and let us show that it also holds at time First we define two
indicator variables.

Gy (ta) = 1 : If the value of the first packet iINOQ[ " at timet, is at least (PO (t,)),
BINTSS 0 : Otherwise

B, (1 — | 1+ Ifthefirst packet from OQI'? is eligible at tmer,,
A 0 : Otherwise

We aim to show thabh W OrT = WOPT (5.t )~ WOFT (5,1, 1) is bounded DA M PG = MPC (0, t,)—
MPE(o,t,_1). We have that,

™=
™=
:N

AWOPT = o)V (PG ()
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I
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I
—

Gij(ts) Eij(ts) XOT (6)V (PG (85))
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Gij(ts)(1 = By (t:)) X (t) V(PG (1))

1
M=
M=

@
Il
—
.
Il
—

s
M-

@
I

—
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I
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+ (1= Gi(t)) X (t)V (PG (1)),

We examine each of these terms separatelys; If(t,) E; ; (t.) X0 (t,) = 1, thenVOQ!¢ contains
an eligible packet with value greater than or equal to thahefpacket scheduled iyPT" from VOQ); ; at
time ¢t;. Note that3-PG computes a maximum weight matching considering eligibkkpes and the total
value of this matching is at least as large as the total valubeopackets scheduled yPT out of the
corresponding input buffers. Thus, we obtain that

ZZG i (t) XOFT (t,)V (POFT (t,))

=1 7=1
<ZZXPG PPG( ))
i=1j=1

Note that this value is assigned by Stepf the assignment routine.
Now consider the second and the third terms. By the speddfitaf the assignment routine, the value
of

i i Gij(ts)(1 — Eyj(t) (t) X0 () V(PG (t5))
i=1j=1
and

N N
YD (=Gt )X (k) V(PO (L))

i=1j=1



is assigned by Step(i) and StegB, respectively. Hence, we obtain thAtv T < AMPE, The lemma
now follows by the inductive hypothesis. O

At this point we are ready to prove the main theorem.

Theorem 4.8 The competitive ratio of the- PG policy is at mostﬁg%?ﬁ for any speedup.

Proof. Suppose thab PT sends the last packet inout of an output buffer at tim&*. By Lemma 4.7,
WOPT (g, 1) < MPC (q, t*).

Lemma 4.6 and Observation 4.1 imply that

B%+28 Naxe

MP% (o, t*) <
(0-7 )— IB_].

().
It follows that )
VOPT(U) < ﬁﬁ 'i_‘ 215 VPG(U),

sinceW O (g, t*) = VOPT (o) (recall that by our assumptiaR PT" does not preempt packets). 0
Corollary 4.9 The competitive ratio of th2.8- PG policy is at most.47 for any speedup.

Finally, we establish a lower bound on the performancg-éiG.

D_. 21 1. During time slots ¢t =0,...,s* -1 each
S*s%, of the input ports 1,...,s* receives one
packet of value ' (t=0,...,s* - 1),

1 2. During time slots t=s*,....s* +s—1
o 1+s21 each of the input ports s +1,...s% +s

receives one packet of 5 —e.
P

N
>

52

~tei: Y L

g2 Speedup S=s?

Figure 4: Scenario for Lower Bound.

Theorem 4.10 The 8- PG algorithm is at Ieastﬁﬁ—fl-competitive for sufficiently large value of speedtip
andg > 1.

Proof. Consider the following scenario (see Figure 4). All packetals are destined to output pdrivith
queueOQ; of capacitys®. The capacity of virtual output queudsOQ; ; for 1 < i < s* is s*> and the
capacity of virtual output queudsOQ); ; for s> + 1 < j < s? + s is one. The value of speeduis s°.

During the first phase of arrivals at time slats= 0, ..., s> — 1 each of the input ports, ..., s?
receives one packet of val@ (t = 0, ..., s> — 1). Later, during the second phase of arrivals at the next time



slotst = s2, ..., s2+s— 1 each of the input ports? + 1, ..., s+ s receives one packet of vals” — e,
wheree > 0.

During the first phase of arrivals, by the definition PG it will always preempt old packets from
0Q; and accept there the newly arrived packets since they are wadmable by a factor of than the
previously arrived packets. Moreover, during the first ghakarrivalsg-PG sends packets with the total
value of 1 + B8 +...+ 852 = (8°~1 —1)/(8 — 1). In addition,0Q; containss® packets of valug* .

During the second phase of arrivals thePG algorithm will drop all but2s of packets (whose weight
is ﬂ82 — €) since no packets i0Q; will be preempted and by time= s? + s — 1: s of these packets will
be buffered in virtual output queusOQ); ; for s> +1 < j < s + s ands of these packets will be buffered
OQ1. In addition, 3-PG will transmit s> packets of weighBs*~!. So the overall value obtained Iy PG
is Vpa = (8571 = 1)/(8 —1) + 2851 + 25(85 — e).

On the other hand) PT will first buffer all packets that arrived at input potts. . ., s2 during the first
phase (time slots= 0, ..., s> — 1) without transferring them t®Q;. ThenO PT will transfer all packets
that arrived at input ports® + 1, ..., s> 4+ s to OQ; during the second phase and send them on the output
link. Having done with these packet3,PT will deliver all packets buffered at input ports.. . ., s2. In this
way, the value obtained b9 PT is Vopr = s2(85° — 1)/(8 — 1) + s2(8*" — ¢).

For sufficiently larges, which is a function ofN, and a constant value ¢f, Vpq is dominated by
s235°~1. ThereforeVopr/Vpe tends to3/(3 — 1) + 8. O

5 Conclusions

A major problem addressed today in networking researcleia¢ked for a fast switch architecture supporting
guaranteed QoS. In this paper we study CIOQ switches witlORjEeues. We consider switch policies
that maximize the switch throughput for any traffic pattend aise competitive analysis to evaluate their
performance. Our main results are an improved upper bouddhranfirst lower bound on the competitive

ratio of the switch policy proposed by Azar and Richter [8]n iteresting future research direction is to
close the gap between the upper and lower bounds, whiclnestithins rather substantial.
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