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Abstract

Combined Input and Output Queued (CIOQ) architectures witha moderate fabricspeedupS > 1
have come to play a major role in the design of high performance switches. In this paper we study
CIOQ switches with First-In-First-Out (FIFO) buffers providing Quality of Service (QoS) guarantees.
The goal of the switch policy is to maximize the total value ofpackets sent out of the switch. We
analyze the performance of a switch policy by means of competitive analysis, where a uniform worst-
case performance guarantee is provided for all traffic patterns. Azar and Richter [8] proposed theβ-
PG algorithm (Preemptive Greedy with a preemption factor ofβ) that is8-competitive for an arbitrary
speedup value whenβ = 3. We improve upon their result by showing that this algorithmachieves a
competitive ratio of7.5 and7.47 for β = 3 andβ = 2.8, respectively. Basically, we demonstrate that
β-PG is at mostβ

2
+2β

β−1
and at leastβ

2

β−1
-competitive.

∗A preliminary version of this work appeared in Proceedings of ESA 2008



1 Introduction

The main tasks of a router are to receive packets from the input ports, to find their destination ports using a
routing table, to transfer the packets to their corresponding output ports, and finally to transmit them on the
input links.

If a burst of packets destined to the same output port arrives, it is impossible to transmit all the packets
immediately, and some of them must be buffered inside the switch (or dropped).

A critical aspect of the switch architecture is the placement of buffers. In the output queuing (OQ)
architecture, packets arriving from the input lines immediately cross the switching fabric, and join a queue
at the switch output port. Thus, the OQ architecture allows one to maximize the throughput, and permits the
accurate control of packet latency. However, in order to avoid contention, the internal speed of an OQ switch
must be equal to the sum of all the input line rates. The recentdevelopments in networking technology has
produced a dramatic growth in line rates, and have made the internal speedup requirements of OQ switches
difficult to meet. This has in turn generated great interest in the input queuing (IQ) switch architecture,
where packets arriving from the input lines are queued at theinput ports. The packets are then extracted
from the input queues to cross the switching fabric and to be forwarded to the output ports.

It is well-known that the IQ architecture can lead to low throughput, and it does not allow the control of
latency through the switch. The main problem of the IQ architecture is head-of-line (HOL) blocking, which
occurs when packets at the head of various input queues contend on a specific output port of the switch. To
alleviate the problem of HOL blocking, one can maintain at each input a separate queue for each output.
This technique is known as virtual output queuing (VOQ).

Another method to get the delay guarantees of an IQ switch closer to that of an OQ switch is to increase
thespeedupS of the switching fabric. A switch is said to have a speedupS, if the switching fabric runsS
times faster than each of the input or the output lines. Hence, an OQ switch has a speedup ofN (whereN
is the number of input/output lines), while an IQ switch has aspeedup of1. For values ofS between1 and
N , packets need to be buffered at the inputs before switching as well as at the outputs after switching. This
architecture is called Combined Input and Output Queued (CIOQ) switch. CIOQ switches with a moderate
speedupS have received increasing attention in the literature over the last decade, see e.g. [11, 12].

Given a CIOQ switch, the switch policy consists of a buffer management policy controlling the usage
of the buffers, a scheduling policy controlling the switch fabric, and a transmission policy controlling the
output buffers. The buffer management policy decides for any packet that arrives to a buffer, whether to
accept or reject it (in the latter case the packet is lost). Ifpreemption is allowed, the buffer management
policy can drop from the buffer a packet that was previously accepted to make room for a new packet. The
scheduling policy is responsible for selecting the packetsto be transferred from the input queues to the
output queues. This has to be done in a way that prevents contention, i.e., at any given time at most one
packet can be removed from any CIOQ input port, and at most onepacket can be added to any CIOQ output
port. The transmission policy selects the packet to be sent on the output link.

In the present paper we consider CIOQ switches with First-In-First-Out (FIFO) buffers. We study the
case of traffic with packets of variable values where the value of a packet represents its priority. This
corresponds to the DiffServ (Differentiated Services) model [9]. The goal of the switch policy is to maximize
the total value of the packets sent out of the switch.

Since Internet traffic is difficult to model and it does not seem to follow the more traditional Poisson
arrival model [24, 26], we do not assume any specific traffic model. We rather analyze our policies against
arbitrary traffic and provide a uniform worst-case throughput guarantee for all traffic patterns, using com-
petitive analysis [25, 10]. In competitive analysis, the online policy is compared to the optimal offline policy
OPT , which knows the entire input sequence in advance. The competitive ratio of a policyA is the maxi-
mum, over all sequences of packet arrivalsσ, of the ratio between the value of packets sent byOPT out of
σ, and the value of packets sent byA out ofσ.

1



Our results. We consider a CIOQ switch with FIFO buffers of limited capacity. We assume that each
packet has an intrinsic value designating its priority. We analyze theβ-Preemtive Greedy policy (β-PG)
that was shown to be8-competitive by Azar and Richter [8] forβ = 3. We improve upon their result by
establishing thatβ-PG is 7.47-competitve forβ = 2.8. Basically, we demonstrate that theβ-PG policy
achieves a competitive ratio ofβ

2+2β
β−1

(for β > 1). In particular, our result implies that for the valueβ = 3
used by Azar and Richter [8] the competitive ratio ofβ-PG is at most7.5. Our proof technique is completely
different from the one presented in [8] and does not make use of dummy packets. In addition, we show a
first lower bound of β2

β−1
on the performance ofβ-PG for sufficiently largeS. Thus,β-PG is at least4.5

and4.36-competitive forβ = 3 andβ = 2.8, respectively.
Related work. A large number of scheduling algorithms have been proposed in the literature for the

IQ switch architecture: these include PIM [4], iSLIP [23], Batch [14] to name a few. These algorithms
achieve high throughput when the traffic pattern is admissible (uniform), i.e. the aggregate arrival rate to
an input or output port is less than1. However, their performance typically degrades when traffic is non-
uniform [22]. Most of the above works on the control of IQ and CIOQ switches assume that there is always
enough buffer space to store the packets when and where needed. Thus, all packets arriving to the switch
eventually cross it. However, contrary to this setting it isobserved empirically in the Internet that packets are
routinely dropped in switches. In the present work we address the question of the design of control policies
for switches, when buffer space is limited, and thus packet drop may occur.

The problem of throughput maximization in the context of a single buffer has been explored extensively
in recent years (see [16] for a good survey). Englert and Westermann [15] presented almost matching lower
and upper bounds on the competitive ratio ofβ-preemptive greedy policy (β is the preemption factor) in the
context of a single FIFO buffer (lower bound is1.707 and upper bound is1.732).

Competitive analysis of preemptive and non-preemptive scheduling policies for shared memory OQ
switches was given by Hahne et al. [17] and Kesselman and Mansour [19], respectively. Aiello et al.
[1] considered the throughput of various protocols in a network of OQ switches with limited buffer space.
Kesselman et al. [18] studied the throughput of local buffermanagement policies in a system of merge
buffers.

Azar and Richter [7] presented a4-competitive algorithm for a weighted multi-queue switch problem
with FIFO buffers. An improved3-competitive algorithm was later given by Azar and Richter [6]. Albers
and Schmidt [3] proposed a deterministic1.89-competitive algorithm for the case of unit-value packets.
Azar and Litichevskey [5] derived a1.58-competitive algorithm for this special case with large buffers.
Albers and Jacobs [2] gave an experimental study of new and known online packet buffering algorithms.

Kesselman and Rosén [20] studied CIOQ switches with FIFO buffers (a generalization of the multi-
queue switch problem). For the case of packets with unit values, they presented a switch policy that is
3-competitive for any speedup. For the case of packets with variable values, they proposed two switch
policies achieving competitive ratios of4S and8min(n, 2 log α), wheren is the number of distinct packet
values andα is the ratio between the largest and the smallest values. Azar and Richter [8] obtained an
8-competitive algorithm for CIOQ switches with FIFO buffers, which is the first algorithm that achieves a
constant competitive ratio for the general case of arbitrary speedup and packet values. Kesselman and Rosén
[21] considered the case of CIOQ switches with Priority Queuing (PQ) buffers and proposed a policy that is
6-competitive for any speedup.

Organization. The rest of the paper is organized as follows. The model description appears in Section
2. The switch policy is presented and analyzed in Section 3 and Section 4, respectively. We mention some
conclusions in Section 5.
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2 Model Description

In this section we describe our model. We consider anN × N CIOQ switch with N input ports, N output
ports, and a speedupS (see Figure 1). Packets, of equal size, arrive at input ports. Each packet is labeled
with the output port on which it has to leave the switch and is placed in the input queue corresponding to its
output port. When a packet crosses the switch fabric, it is placed in the output queue and resides there until
it is sent on the output link. For a packetp, we denote byV (p) its value.

Each inputi maintains for each outputj a separate queueV OQi,j of capacityBIi,j (Virtual Output
Queuing) and each outputj maintains a queueOQj of capacityBOj . All queues in the switch are FIFO,
namely, packets leave the queues in the order of their arrivals.
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Figure 1: An example of a CIOQ switch.

We divide time into discrete steps. During each time step oneor more packets can arrive on each input
port, and one packet can be forwarded from each output port. We divide each time step into three phases.
The first phase is thetransmissionphase during which a packet from each non-empty output queuecan be
sent on the output link. The second phase is thearrival phase. In the arrival phase one or more packets
arrive at each input port. The third phase is theschedulingphase when packets are transferred from the
input buffers to the output buffers. In a switch with a speedup of S, up toS packets can be removed from
any input and up toS packets can be added to each output. This is done in (up to)S cycles, where in
each cycle we compute a matching between the inputs and the outputs and transfer the packets accordingly.
Specifically, an edge(i, j) in the matching between inputi and outputj corresponds to transmitting a packet
from virtual output queueV OQi,j to output queueOQj . We denote thes-th scheduling cycle (1 ≤ s ≤ S)
at time stept by ts.1 Suppose that the switch is managed by a policyA. By V OQA

i,j we denoteV OQi,j as
managed byA, and byOQA

j we denoteOQj as managed byA. We represent the state of a switch as an
N × N bipartite multi-graph with the set of nodesVNI

∪ VNO
representing the input and the output ports.

Each packetp in V OQi,j creates an edge(i, j) whose weight equalsV (p).
The switch policy is composed of three main components, namely, a transmission policy, a buffer man-

agement policy and a scheduling policy.
Transmission Policy.The transmission policy at each time step decides which packet is transmitted out

of each output buffer.
Buffer Management Policy. The buffer management policy controls the admission of packets into the

buffers. More specifically, when a packet arrives to a buffer, the buffer management policy decides whether
to acceptor reject it. An accepted packet can be laterpreempted(dropped).

Scheduling Policy.At every scheduling cycle, the scheduling policy first decides which packets can be
scheduled. Then it specifies, according to computed matching, which packets are transferred from the inputs

1With slight abuse of notation we say thatt0 = (t− 1)S , tS+1 = (t+ 1)1 andt = t1.
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to the outputs. The aim of the switch policy is that of maximizing the total value of packets sent from the
output ports. Letσ be a sequence of packets arriving at the inputs of the switch.Let V A(σ) andV OPT (σ)
be the total value of packets transmitted out of the sequenceσ, by an online switch policyA and an optimal
offline policyOPT , respectively. The competitive ratio of a switch policy is defined as follows.

Definition 2.1 An online switch policyA is said to bec-competitive if for every input sequence of packets
σ, V OPT (σ) ≤ c · V A(σ) + d, whered is a constant independent ofσ.

3 β-Preemptive Greedy Switch Policy

In this section we describe the switch policy that was first introduced by Azar and Richter [8]. We treat
each virtual input or output queue as a separate buffer withindependentbuffer management policy. The
β-preemptive greedy (β-PG) policy appearing in Figure 2 uses a natural preemptive greedy buffer manage-
ment policy and a scheduling policy based on maximum weight matching. The value of the parameterβ
will be determined later. Observe that a packetp is not scheduled to an output buffer if it will be dropped or
if it will preempt another packetp′ such thatV (p′) > V (p)/β. In what follows when we say “first packet”,
or “last packet”, we mean the first or last packet according toFIFO order in the relevant set.

• Transmission: Transmit the first packet from each non-empty output queue.

• Buffer Management of Input and Output Buffers (greedy): Accept an arriving
packetp if there is free space in the buffer. Dropp if the buffer is full andV (p) is
less than the minimal value among the packets currently in the buffer. Otherwise,
drop from the buffer a packetp′ with the minimal value and acceptp (we say that
p preemptsp′).

• Scheduling: For each bufferV OQi,j , consider the first packet inV OQi,j and
denote its value byw. Mark this packet aseligible, if OQj is not full or if the
minimal value among the packets inOQj is at mostw/β.
Compute amaximum weightmatching.

Figure 2: Theβ-Preemptive Greedy Switch Policy (β-PG).

4 Analysis

We will show thatβ-PG achieves a competitive ratio ofβ
2+2β
β−1

for any speedupS assuming thatβ >

1. We also derive a lower bound ofβ
2
−β+1

β−1
on the performance ofβ-PG for sufficiently largeS. Our

analysis proceeds along the lines of the work in [21], which studies Priority Queuing (PQ) buffers. However,
extension from PQ to FIFO buffers is technically challenging.

In what follows we fix an input sequenceσ. To prove the competitive ratio ofβ-PG we will assign
value to the packets sent byβ-PG so that no packet is assigned more thanβ2+2β

β−1
times its value and then

show that the value assigned is indeed at leastV OPT (σ).
For the analysis, we considerOPT that never preempts packets. Obviously, suchOPT exists since it

knows the whole input a priori and can accept only the packetsthat will be transmitted.
The assignment routine presented in Figure 3 specifies how toassign value to the packets sent byβ-PG

(we will show that it is feasible).
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• Step1: Assign to each packet scheduled byβ-PG at timets its own value.

• Let p′ be the packet scheduled byOPT at timets from V OQOPT
i,j , if any. Let

p be the first packet inV OQPG
i,j at timets if any or a dummy packet with zero

value otherwise.

• Step2: If p is not eligiblefor transmission and either (i)V (p′) ≤ V (p) or (ii)
V (p′) > V (p), p′ is present inV OQPG

i,j andp′ has been previously assigned
some value by Step4, then proceed as follows: Letp′′ be the packet that will be
sent fromOQPG

j at the same time at whichOPT will sendp′ fromOQOPT
j (we

will later show thatp′′ exists and its value is at leastV (p)/β). If (i), assign the
value ofp′ to p′′. If (ii), re-assign top′′ the value that was previously assigned to
p′ by Step4.

• Step3: If V (p′) > V (p) then proceed as follows:

– Sub-Step3.1: If p′ was scheduled byβ-PG prior to timets, then assign
the value ofV (p′) to p′.

– Sub-Step3.2: Else ifp′ is not present inV OQPG
i,j , consider the set of pack-

ets with value at leastV (p′) that are scheduled byβ-PG from V OQPG
i,j

prior to timets. Assign the value ofV (p′) to a packet in this set that is not
in V OQOPT

i,j at the beginning ofts, and has not previously been assigned a
value by either Sub-Step3.1 or Sub-Step3.2 (we will later show that such
a packet exists).

– Sub-Step3.3: Else (p′ is present inV OQPG
i,j ), remove the value assigned

to p′ by Step4 and assign the value ofV (p′) to p′ (we will later show that
the removed value is re-assigned by Step1).

• Step4: If a packetq preempts a packetq′ at aninput or outputqueue ofβ-PG,
re-assign toq the value that has been previously assigned toq′.

Figure 3: Assignment Routine – executed at the end of scheduling cyclets.

Observe that the assignment routine assigns some value onlyto packets that are scheduled out of the
input queues. Furthermore, if a packet is preempted at an output queue then the total value assigned to it is
re-assigned to the packet that preempts it. The following observation follows from the finiteness of the input
sequence.

Observation 4.1 When the assignment routine finishes, only packets that are eventually sent byβ-PG are
assigned some value.

The following claim bounds the total value that can be assigned to aβ-PG packet before it leaves a
virtual output queue.

Claim 4.2 The weight assigned to aβ-PG packet before it leaves a virtual output queue is at most its own
value.

Proof. Initially, a β-PG packetq′ in a virtual output queue can be assigned its own value by Sub-Step
3.3. If q′ is later preempted by a packetq, thenq is re-assigned the value that was assigned toq′ by Step
4. Obviously,q is assigned at most its own value asV (q) > V (q′). Note that ifq will be assigned its own
value by Sub-Step3.3, then the value assigned toq by Step4 is either re-assigned by the case (ii) of Step2
or removed by Step3.3 and re-assigned by Step1. The claim follows. ut
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In the next claim we show that when the case (ii) of Step2 re-assigns the value assigned to aβ-PG
packet located at a virtual output queue, the value of the first packet in this queue is at least the value that
needs to be re-assigned.

Claim 4.3 If the case (ii) of Step2 or Step3.3 apply and we re-assign the value assigned to the packetp′ in
V OQPG

i,j by Step4, then we have thatV (p) is at least the value to be re-assigned, wherep is the first packet
in V OQPG

i,j .

Proof. Consider the time step at whichp′ has arrived and was accepted by bothβ-PG andOPT . If
p′ ∈ V OQPG

i,j has been assigned some value,p′ should have preempted another packetq′ in V OQPG
i,j and

was re-assigned the value that had been previously assignedto q′ by Step4. Sinceβ-PG always preempts
the least valuable packet from a queue, all packets inV OQPG

i,j precedingp′, andp in particular, must have a
value of at leastV (q′). Moreover, according to Claim 4.2,q′ had been assigned at most its own value. That
establishes the claim. ut

We demostrate that the value assigned by Step1 of the assighnment routine covers the value of scheduled
OPT packets that are not dealt with by Step2 or Step3 as well as the value re-assigned by Sub-Step3.3.

Claim 4.4 The value assigned by Step1 of the assignment routine is at least as large as the total value of
packets scheduled byOPT whose value is not assigned by Step2 or Step3 and the value re-assigned by
Sub-Step3.3.

Proof. Firstly note thatOPT packets packets whose value is not assigned by Step2 or Step3 are scheduled
from queues whereβ-PG had an eligible packet with value larger than that ofOPT ’s. Secondly observe
that Sub-Step3.3 of the assignment routine applies only if the packet residing in the correspondingβ-PG
queue,V OQPG

i,j , is eligible for transmission, for otherwise its value would have been re-assigned by Step
2 (caseii). According to Claim 4.3, the value that needs to be re-assigned by Sub-Step3.3 is at most the
value of the packet at the head ofV OQPG

i,j . The claim follows by the maximality of matching computed by
β-PG. ut

Now we show that the assignment routine is feasible and establish an upper bound on the value assigned
to a single packet.

Lemma 4.5 The assignment routine is feasible.

Proof. First we show that the assignment as defined is feasible. Step1, Sub-Step3.1, Sub-Step3.3 and
Step4 are clearly feasible. We therefore consider Steps2 and3.2.

First we consider Step2. Let p be the first packet inV OQPG
i,j . Assume thatp is not eligible for

transmission. Then, by the definition ofβ-PG, the minimal value among the packets inOQj is at least
V (p)/β andOQj is full. Thus, during the followingBOj time steps,β-PG will send packets with value
of at leastV (p)/β out of OQj. The packetp′ scheduled byOPT from V OQOPT

i,j at timets will be sent
from OQOPT

j in one of these time steps. Sincep was not eligible for transmission we have that the packet
as specified in Step2 indeed exists, and its value is at leastV (p)/β.

Next we consider Sub-Step3.2. First note that if this case applies, then the packetp′ (scheduled by
OPT from V OQOPT

i,j at timets) is dropped byβ-PG from V OQPG
i,j at some timetq < ts.

Let tr ≥ tq be the last time beforets at which a packet of value at leastV (p′) is dropped fromV OQPG
i,j .

Since the greedy buffer management policy is applied toV OQPG
i,j , V OQPG

i,j containsBIi,j packets with
value of at leastV (p′) at this time. LetP be the set of these packets. Note thatp′ /∈ P because it has already
been dropped byβ-PG at this time. We have that in[tr, ts), β-PG has actually scheduled all packets from
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P , since in[tr, ts) no packet of value at leastV (p′) has been dropped, and at timets the packet at the head
of V OQPG

i,j has a value less thanV (p′).We show that at least one packet fromP is availablefor assignment
at timets, i.e., it has not been assigned any value by Step3 and is not currently present inV OQOPT

i,j . Let
x be the number of packets fromP that are currently present inV OQOPT

i,j . By the construction, thesex
packets are unavailable. From the rest of the packets inP , a packet is considered available unless it has been
already assigned a value by Step3. Observe that a packet fromP can be assigned a value by Step3 only
during [tr, ts) (when it is scheduled).

We now argue thatOPT has scheduled at mostBIi,j − 1 − x packets out ofV OQi,j in [tr, ts), and
thusP contains at least one available packet. To see this observe that thex packets fromP that are present
in V OQOPT

i,j at timets, were already present inV OQOPT
i,j at timetr. The same applies to packetp′ (recall

that p′ /∈ P ). SinceOPT maintains FIFO order, all the packets thatOPT scheduled out ofV OQOPT
i,j

in [tr, ts) were also present inV OQOPT
i,j at time tr. Therefore, the number of such packets is at most

BIi,j − 1 − x (recall that the capacity ofV OQi,j is BIi,j). We obtain that at least one packet fromP
is available for assignment at Sub-Step3.2 since|P | = BIi,j, x packets are unavailable because they are
present inV OQOPT

i,j and at mostBIi,j − 1 − x packets are unavailable because they have been already
assigned a value by Step3. ut

Lemma 4.6 No packet is assigned more thanβ
2+2β
β−1

times its own value.

Proof. Consider a packetp sent byβ-PG. Claim 4.2 implies thatp can be assigned at most once its own
value before it leaves the virtual output queue. In addition, p is assigned its own value by Step1.

By the specification of Sub-Step3.2, this step does not assign any value top if it is assigned a value by
either Sub-Step3.1 or Sub-Step3.2. We also show that Sub-Step3.1 does not assign any value top if it is
assigned a value by either Sub-Step3.1 or Sub-Step3.2. That is due to the fact that by the specification of
Sub-Step3.2, if p is assigned a value by Sub-Step3.2 at timets, thenp is not in the input buffer ofOPT at
this time. Therefore, Sub-Step3.1 cannot be later applied to it. We obtain thatp can be assigned at most its
own value by Sub-Step3.1 and Sub-Step3.2 after it leaves the virtual output queue.

Now let us consider Step2. Observe that cases (i) and (ii) are mutually exclusive. Furthermore, if case
(ii) apples, then by Claim 4.3 the value of the first packet in theβ-PG queue is at least the value that needs
to be re-assigned. We obtain thatp can be assigned at mostβ times its own value by Step2 of the assignment
routine.

Finally, we bound the value assigned to a packet by Step4 in the output queue. Note that this assignment
is done only to packets that are actually transmitted out of the switch (i.e. they are not preempted). In
addition,p can preempt another packetp′ such thatV (p′) ≤ V (p)/β. We say thatp transitivelypreempts a
packetp′′ if either p directly preemptsp′′ or p preempts a packetp′ that transitively preemptsp′′. Observe
that any preempted packet in an output queue can be assigned at most three times its own value by Step1,
Step3 and Step4 due to preemption in the virtual output queue. Hence, the total value that can be assigned
to p by Step4 due to transitively preempted packets in the output queue isbounded by 3

β−1
times its own

value.
We have that in total no packet is assigned more than3 + β + 3

β−1
= β2+2β

β−1
times its own value. ut

Let WOPT (σ, ts) be the total value of packetsscheduledout of the virtual output queues ofOPT by
time ts and letMPG(σ, ts) be the total value assigned to packets inβ-PG by timets, on input sequenceσ.
We show that the value gained byOPT is bounded by the value assigned by the assignment routine.

Lemma 4.7 For any timets the following holds:WOPT (σ, ts) ≤ MPG(σ, ts).

Proof. By XA
i,j(ts) we denote the binary variable that indicates whether an algorithm A has scheduled a

packet from inputi to outputj in scheduling cyclets (XA
i,j(ts) = 1 if some packet has been scheduled from
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input i to outputj andXA
i,j(ts) = 0 otherwise). ByPA

i,j(ts) we denote the packet itself in caseXA
i,j(ts) = 1,

or a dummy packet with zero value otherwise. Firstly, note that according to Claim 4.4, the value assigned
by Step1 coversOPT packets whose value is not assigned by Step2 or Step3 and the value re-assigned
by Sub-Step3.3. The proof proceeds by induction on time. The lemma trivially holds for time zero. Now
assume that the lemma holds at timets−1 and let us show that it also holds at timets. First we define two
indicator variables.

Gi,j(ts) =

{

1 : If the value of the first packet inV OQPG
i,j at timets is at leastV (POPT

i,j (ts)),

0 : Otherwise;

Ei,j(ts) =

{

1 : If the first packet fromV OQPG
i,j is eligible at timets,

0 : Otherwise.

We aim to show that∆WOPT = WOPT (σ, ts)−WOPT (σ, ts−1) is bounded by∆MPG = MPG(σ, ts)−
MPG(σ, ts−1). We have that,

∆WOPT =
N
∑

i=1

N
∑

j=1

XOPT
i,j (ts)V (POPT

i,j (ts))

=
N
∑

i=1

N
∑

j=1

Gi,j(ts)Ei,j(ts)X
OPT
i,j (ts)V (POPT

i,j (ts))

+
N
∑

i=1

N
∑

j=1

Gi,j(ts)(1− Ei,j(ts))X
OPT
i,j (ts)V (POPT

i,j (ts))

+
N
∑

i=1

N
∑

j=1

(1−Gi,j(ts))X
OPT
i,j (ts)V (POPT

i,j (ts)).

We examine each of these terms separately. IfGi,j(ts)Ei,j(ts)X
OPT
i,j (ts) = 1, thenV OQPG

i,j contains
an eligible packet with value greater than or equal to that ofthe packet scheduled byOPT from V OQi,j at
time ts. Note thatβ-PG computes a maximum weight matching considering eligible packets and the total
value of this matching is at least as large as the total value of the packets scheduled byOPT out of the
corresponding input buffers. Thus, we obtain that

N
∑

i=1

N
∑

j=1

Gi,j(ts)Ei,j(ts)X
OPT
i,j (ts)V (POPT

i,j (ts))

≤
N
∑

i=1

N
∑

j=1

XPG
i,j (ts)V (PPG

i,j (ts)).

Note that this value is assigned by Step1 of the assignment routine.
Now consider the second and the third terms. By the specification of the assignment routine, the value

of

N
∑

i=1

N
∑

j=1

Gi,j(ts)(1 − Ei,j(ts))(ts)X
OPT
i,j (ts)V (POPT

i,j (ts))

and

N
∑

i=1

N
∑

j=1

(1−Gi,j(ts))X
OPT
i,j (ts)V (POPT

i,j (ts))
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is assigned by Step2(i) and Step3, respectively. Hence, we obtain that∆WOPT ≤ ∆MPG. The lemma
now follows by the inductive hypothesis. ut

At this point we are ready to prove the main theorem.

Theorem 4.8 The competitive ratio of theβ-PG policy is at mostβ
2+2β
β−1

for any speedup.

Proof. Suppose thatOPT sends the last packet inσ out of an output buffer at timet∗. By Lemma 4.7,

WOPT (σ, t∗) ≤ MPG(σ, t∗).

Lemma 4.6 and Observation 4.1 imply that

MPG(σ, t∗) ≤
β2 + 2β

β − 1
V PG(σ).

It follows that

V OPT (σ) ≤
β2 + 2β

β − 1
V PG(σ),

sinceWOPT (σ, t∗) = V OPT (σ) (recall that by our assumptionOPT does not preempt packets). ut

Corollary 4.9 The competitive ratio of the2.8-PG policy is at most7.47 for any speedup.

Finally, we establish a lower bound on the performance ofβ-PG.

Figure 4: Scenario for Lower Bound.

Theorem 4.10 Theβ-PG algorithm is at least β2

β−1
-competitive for sufficiently large value of speedupS

andβ > 1.

Proof. Consider the following scenario (see Figure 4). All packet arrivals are destined to output port1 with
queueOQ1 of capacitys2. The capacity of virtual output queuesV OQi,1 for 1 ≤ i ≤ s2 is s2 and the
capacity of virtual output queuesV OQj,1 for s2 + 1 ≤ j ≤ s2 + s is one. The value of speedupS is s2.

During the first phase of arrivals at time slotst = 0, . . . , s2 − 1 each of the input ports1, . . . , s2

receives one packet of valueβt (t = 0, ..., s2 −1). Later, during the second phase of arrivals at the next time

9



slotst = s2, . . . , s2+ s− 1 each of the input portss2+1, . . . , s2+ s receives one packet of valueβs2 − ε,
whereε > 0.

During the first phase of arrivals, by the definition ofβ-PG it will always preempt old packets from
OQ1 and accept there the newly arrived packets since they are more valuable by a factor ofβ than the
previously arrived packets. Moreover, during the first phase of arrivalsβ-PG sends packets with the total
value of1+ β + . . .+ βs2−2 = (βs2−1 − 1)/(β − 1). In addition,OQ1 containss2 packets of valueβs2−1.

During the second phase of arrivals theβ-PG algorithm will drop all but2s of packets (whose weight
is βs2 − ε) since no packets inOQ1 will be preempted and by timet = s2 + s− 1: s of these packets will
be buffered in virtual output queuesV OQj,1 for s2+1 ≤ j ≤ s2+ s ands of these packets will be buffered
OQ1. In addition,β-PG will transmit s2 packets of weightβs2−1. So the overall value obtained byβ-PG
is VPG = (βs2−1 − 1)/(β − 1) + s2βs2−1 + 2s(βs2 − ε).

On the other hand,OPT will first buffer all packets that arrived at input ports1, . . . , s2 during the first
phase (time slotst = 0, . . . , s2− 1) without transferring them toOQ1. ThenOPT will transfer all packets
that arrived at input portss2 + 1, . . . , s2 + s toOQ1 during the second phase and send them on the output
link. Having done with these packets,OPT will deliver all packets buffered at input ports1, . . . , s2. In this
way, the value obtained byOPT is VOPT = s2(βs2 − 1)/(β − 1) + s2(βs2 − ε).

For sufficiently larges, which is a function ofN , and a constant value ofβ, VPG is dominated by
s2βs2−1. Therefore,VOPT/VPG tends toβ/(β − 1) + β. ut

5 Conclusions

A major problem addressed today in networking research is the need for a fast switch architecture supporting
guaranteed QoS. In this paper we study CIOQ switches with FIFO queues. We consider switch policies
that maximize the switch throughput for any traffic pattern and use competitive analysis to evaluate their
performance. Our main results are an improved upper bound and the first lower bound on the competitive
ratio of the switch policy proposed by Azar and Richter [8]. An interesting future research direction is to
close the gap between the upper and lower bounds, which stillremains rather substantial.
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