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Abstract

In this paper we present an Q(nlogn) lower bound proofs for a several covering
problems including optimal line bipartition problem, min-max covering by two axis
parallel rectangles, discrete and continuous two-center problems, two-line center prob-
lem, etc. Our proofs are based on using “rotational reduce technique” and well known
lower bound for the maximal gap problem.
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1 Introduction

In this paper we present an Q(nlogn) lower bound proofs in the algebraic decision-tree
model for a several covering problems. In particular, we consider the case when we are given
a set S of n points in the plane and

Optimal line bipartition. We wish to partition S by a line [ into two subsets S; and
Sy such that max (f(S1), f(S2)} is minimal, where f is some real-valued monotone
function that is defined over the collection of subsets of S. We consider the case when
f(S") defines an area, perimeter of the convex hull of S’ or diameter of S'.

Euclidean two-center. We wish to find a pair of two disks d; and ds of smallest possible
common radius that cover S.

Two covering. We wish to find a pair of two axis-parallel rectangles r; and ry that
together cover S and minimize the maximum of their perimeters.

L., discrete two-center. We wish to find a pair of discrete squares by and bo, i.e. squares
that are centered at points of some given set F', that cover S and minimize the size of
the largest square.

Two-line center We wish to find a pair of strips w; and w, that cover S such that the
width of the widest strip is minimized.



Smallest rotated enclosing square. We wish to find a minimal square s centered at
some point ¢ that covers S. The square s may rotate.

Largest rotated empty square. We wish to find a largest square s centered at some
point ¢ that does not contain any point from S. The square s may rotate.

Rotated squares. We wish to find a pair of side-parallel squares s; and s, whose union
contains S, so as to to minimize the size (perimeter or area) of the largest square.

All these problems belong to the field of geometric optimization and covering. There are
many results considering all the problems described above. Mitchell and Wynters [17] present
solutions for the two instances of the optimal line bipartition problem, in which f(S’) is either
the perimeter or area of the convex hull of S’. Their solutions require O(n?) and O(n?) time,
respectively. Asano et al. [3] present an O(nlogn) time algorithm for the diameter case.
Later, Devillers and Katz [5] considered the restricted version of the problem where points
of S are in convex position and gave O(nlogn) time algorithm for all three cases. The
Euclidean two-center problem received a lot of attention in the papers [2, 11, 14]. Megiddo
[16] gave a linear time algorithm for the case of one disk, and since then only near quadratic
results were achieved for two disks. In a major breakthrough, Sharir [19] showed that this
problem can be solved in O(nlog”n) time. Since then some improvements were made by
using randomized techniques (see, e.g. [7]) Hershberger and Suri [9] considered two covering
problem and solved in O(nlogn) runtime the decision version of the problem where the value
of perimeter A is given and we want to find whether exist two axis-parallel rectangles of a
given perimeter A that cover S. Glozman et al. [8] succeeded to obtain an O(nlogn) running
time solution to the original two covering problem. Katz et al. [13] proposed an O(n log®n)
time solution for L., discrete two-center problem that was improved by Bespamyatnikh and
Segal [4] to O(nlogn) running time. We mention here that the case of the squares with
arbitrary centers can be solved in linear time [20]. The best result for the two-line center
problem was given by Jaromczyk and Kowaluk [12] and runs in time O(n?log®n) (see also
[8, 14]). The smallest rotated enclosing square problem has been solved in Katz et al. [13]
with O(nlogn) time solution. The largest rotated empty square problem can be considered
as some variant of a classical “largest empty circle” problem [18]. In our case, however,
we are given already the center of the square which may rotate. Finally, Jaromczyk and
Kowaluk [10] showed how to solve the rotated squares problem. They gave O(n?) runtime
algorithm and showed how to generalize it to the case of rectangles.

Little has been done in proving lower bounds for geometric optimization and covering
problems. In the extended version of paper [20] Sharir and Welzl showed a Q(nlogn) lower
bound for the Ly, 4-center problem. Woeginger [21] proved a Q(nlogn) lower bound for the
restricted Euclidean 1-center problem. Drysdale and Jaromeczyk [6] provided a Q(nlogn)
lower bound for the maximum area and maximum perimeter k-gon problems. The same
result was obtained by Avis et al. [1] for determining the existence of a line stabber for a
family of n line segments in the plane.

The main idea of our proofs is to show the reductions from the well known problem
(MAX GAP). In order to find an appropriate reduction we will show in Section 2 how to
use the “rotational” technique that transforms the instances of the MAX-GAP problem to



the instances of our problems. This technique can be viewed as a “double cycle rotation”,
“square rotation” and “quadruple cycle rotation”. In our case, the first two problems will be
proven using “double cycle rotation’. The proofs for the two covering and L., discrete two
center problems are based on “square rotation” and the result for the rest of the problems
can be obtained by using “four cycle rotation”. We conclude in Section 3.

2 Lower Bounds

In what follows we mention the MAX-GAP problem and then present our proofs.

e MAX-GAP problem: Given real numbers 0 < zg, 2o, ...,2,_1 < 1 we want to compute
the maximum gap between two successive numbers in the sorted sequence.

In the algebraic decision-tree model, the MAX-GAP problem has a lower bound Q(n logn)
18, 15].

Remark 1. As was pointed out in the extended version of paper [20] there is a Q(nlogn)
lower bound for the GAP-EXISTENCE problem: Given real numbers 0 < zg, 2o, ..., 2, 1 <
1 and a number § > 0, find whether exist two successive numbers in the sorted sequence
with a difference at least §. Using this result one can show that the decision variants of the
problems with a Q(nlogn) lower bound based on the reduction from MAX-GAP problem
have also a Q(nlogn) lower bound.

2.1 Double Cycle Rotation

Let 0 < xg,s,...,7,_1 <1 be an instance of the MAX-GAP problem and let p be a sorted
permutation of these numbers. We compute the minimal element x,0y and the maximal
element x,,_1) of this set of numbers. If z,0) = #,,—1) then, obviously, MAX-GAP is 0.
Thus, we assume that there are at least two distinct numbers. The main idea is to map
each number to the two points onto the unit disk centered at the origin (one point will lie
on the upper arc and the other on the lower arc). We subtract x,q) from each number
2;,0<i<n-—1. Let xfo(i) = Tp(i) — Tp(0)-

Define the following mapping: z,; corresponds to the two points p,;) and pp)4, with
coordinates (cos (m — x/,,)),sin (7 — x},;))) and (cos (z); ), — sin (z};))), respectively. Note,
that points p,), Pp(1), - - - s Pp(n=1)s Pp(0)+ns - - - » Pp(n—1)+n are listed in their clockwise order on
the unit disk starting at the point (—1,0). We also want to avoid the case when the distance
measured along the upper (lower) arc of the disk between the point pym—1) (Pptn-1)+n) and
the point (1,0) ((—1,0)) is equal or larger than the MAX-GAP solution. In order to prevent
this we shift all the points (except the points (1,0) and (—1,0)) on the upper arc (lower
arc) to the right (to the left) along this arc. But for how much? We need to find any two
successive numbers in the sorted sequence of x; numbers, 0 < i < n — 1, compute the gap
v > 0 between them and then shift the points along the upper (lower) arc by «, such that
o < T — (Tpm-1) — Tp)) and v + o > T — (Typ_1) — Tpy) — . The number v can be
found by simple scanning the numbers z;,1 < ¢ < n and looking for the smallest element
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Figure 1: Mapping of MAX-GAP instance.

that is larger than x,q) (by our assumption it exists). Thus, we have a simple inequality
(T — @pm-1) + Zpo) — 7)/2 < @ < T — (Tpm-1) — Tp(oy). Shifting of points guarantee us
existence of at least one index 7, 0 <4 < n — 2, such that the distance between points p,
and py(i+1)+n is smaller than the distance between points p,) and p,;—1). The situation is
illustrated in Figure 1.

We are now ready to prove the lower bound for the optimal line bipartition and the
Euclidean two-center problems.

Theorem 1 In the algebraic decision-tree model every solution algorithm for the optimal
line bipartition problem (even if all the points are known in advance to lie on a conver hull)
has time complezity Q(nlogn).

Proof. Let 0 < xg,s,...,7,_1 < 1 be an input of the MAX-GAP problem and let S =
{Po(0), Po(1)s - - Po(n—1)s Pp(0)4ns - - - s Pp(n—1)+n} be the corresponding sequence of 2n shifted
points, as described above. Consider Figure 2(a). We will solve the optimal line bipartition
problem for S and derive the solution for the MAX-GAP problem for xg,...,z,_1. Note,
that by symmetry, in any optimal bipartition (S, Sy) for S the size of each set is n; otherwise,
we can always improve the solution by decreasing the size of one of the sets and increasing
the size of the other. Consequently, in the optimal solution the partitioning line [ divides S
between points ppiy, Pp(i+1) and Dpi)tns Pp(i+1)+n, for some i, 0 <7 < n — 2. (The remaining
case when [ divides S between points po,_1, po and p,_1, p, is not optimal, since the points of
S are shifted.) By the construction of S, the diameter of S1 = {Pp(it1)4ns- -+ Pp(0)s - - - » Pp(i) }
identical with the diameter of Sy, is equal to the distance between p,;) and p,1)+n, which
is

\/(sin (@) + ) +sin (2, + @))? + (cos (2),;) + ) + cos (), + @)

for some 0 < 7 < n — 2. After algebraic manipulation we obtain that the diameter is
equal to /(2 + 2cos(z),;, 1) — 7);) and attains its minimum when ¢; = ), ;) — 2 is

the largest. Therefore, to solve the MAX-GAP problem we first solve the corresponding
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Figure 2: Two cases: (a) The optimal bipartition with respect to the area, perimeter or
diameter of the convex hull is defined by MAX-GAP and (b) The optimal pair of the disks
with respect to the radius is defined by the MAX-GAP.

bipartition problem for S that results in finding points x;(i) and x;(
of its difference is the solution to the MAX-GAP problem.

With one extra effort we will show how to prove two remaining cases. In fact, we show
the area case; the perimeter case can be dealt similarly. Note that the optimal bipartition
(S1,S2) defined by a line [ with respect to the perimeter or area function is same as the
the optimal bipartition with respect to the diameter function. (As before, the case when
S1 = {Pp(0)>- - -»Ppn—1)}, S2 = S — Sy is not optimal by definition of S.) The area of the
convex hull of set Sy (S3) is equal one half of the area of the convex hull of S minus the area
of the rectangle with corners at p,.y, Ppit+1)» Po(i)+n> Ppi+1)4n, 0 < @ < n — 2. This area is,
therefore, minimized when the area of the rectangle is maximized, which is equal to

i+1)- The absolute value

\/2—2cos¢>i* \/2+2cosd>i = 2sin ¢;.

In the given interval, this value attains maximum when ¢; = Ilp(z’+1) — x;(i) is maximal.
Therefore, to solve the MAX-GAP problem we can solve the minimum area problem for
the line bipartition problem for S. As a byproduct, this solution produces values x;(i) and
Ziyi+1)- The absolute value of its difference is the solution to the MAX-GAP problem. This
ends the proof. i

Theorem 2 In the algebraic decision-tree model every solution algorithm for the Euclidean
two-center problem (even if all the points are known in advance to lie on a convex hull) has
time complezity Q(nlogn).

Proof. Let 0 < xg,29,...,2,-1 < 1 be an input of the MAX-GAP problem and let S =
{Pp0)s Po(1)s - - - s Pp(n=1)> Pp(0)n> - - - » Pp(n—1)+n} De the corresponding sequence of 2n shifted
points, as described above. By symmetry, each of the two disks d; and ds in the optimal
solution will contain exactly n points of S and disks will be of the same radius (see Figure
2(b)). The disk d; (ds) will be defined by two points p' and p? of S (three points define the
unit circle with all S points). Thus, these two points will define the diameter of each one of
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disks. In that case, the number of points between p' and p? lying on the unit disk (in clockwise
direction) is exactly n; otherwise disk d; (d2) will cover less than n points. Consequently,
these points are p,;11) and p,()4n, for some i, 0 <7 <n —2. (By construction and shifting
of S, the points p,) and pym-1) can not produce an optimal solution.) The diameter of d;

(dy) is equal to \/(2 + 2¢08(T; 1) — Tpy) for some 7, 0 < i <n — 2 and the smallest value

is achieved when x;(iH) — x’p(i) is maximal. Thus, in order to solve the MAX-GAP problem
we can solve the Euclidean two-center problem, which gives us as a part of the solution
i1y and @,y values. The absolute value of its difference is the solution to the MAX-GAP
problem. W

2.2 Square rotation

We will show linear reductions from the MAX-GAP problem to the two covering problem
and from GAP-EXISTENCE problem to the decision variant of the L., discrete two center
problem.

Theorem 3 In the algebraic decision-tree model every solution algorithm for the two cov-
ering problem (even if all the points are known in advance to lie on a convex hull) has time
complezxity Q(nlogn).

Proof. Given an instance 0 < zg, x9,...,T,_1 < 1 of the MAX-GAP problem, we map each
Z,(;) to four points:

ap(iy = (Tp()s 1= p(i) ), oty = (1=Zp(iy, = pi))s oty = (—Tp(iy, —1+Tp0))s dpiy = (=142 p), Tp(i))

Let A = {a,i) 110+ B = {byiy }io» C = {cpi }imy and D = {d,;)}1=y . All the points of the
set AU B UC UD lie on the edges of the tilted unit square M (see Figure 3). We assume
that the differences between z,,_1) and 1 and between x,¢) and 0 are less than MAX-GAP
solution; otherwise we can perform the similar transformation as we did before.

Define S be a set AU BUC U D plus four more points that correspond to the vertices of
M. Note, that S can be covered by two axis-parallel rectangles r; and ry of perimeter 6 each
one. By symmetry, each of two axis-parallel rectangles r; and r5 in the optimal solution will
contain exactly 2n + 2 points; otherwise we will improve the solution by extending one of
the rectangles and shrinking the other. The vertices of M are the extreme points of S and
they serve as determinators of the smallest axis-parallel rectangle that covers S, that is, the
edges of this rectangle must contain these points. If some rectangle r;, j = 1,2 contains three
determinators then the perimeter of r; is at least 6. It remains to show what happens when
each rectangle has to contain 2 determinators. We might notice, though, that if there is an
index 4 such that any three of the points a,), by@), o), dp) belong to the same covering
axis-parallel rectangle, then the perimeter of this rectangle is greater or equal to 6. In order
to improve the solution, we have to deal with two different cases (see Figure 3(a,b)).

Case (a). Each rectangle takes two adjacent determinators. Then, for each index i, 0 <
i < n — 1 exactly two of a,z), byy, o), dyeiy points are covered by each rectangle and
these two points must lie on the adjacent edges. In this case the perimeter of each
rectangle equals 6 — 2(x(i1+1) — Z,()) for some ¢, 0 <@ <n— 2.
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Figure 3: Min-Max Rectangle Problem: two cases.

Case (b). Each rectangle takes two opposite determinators. Then, for each index i, 0 < i <
n—1 exactly two of a,g), bygi), Cp(i)» dp(i) Points are covered by each rectangle and these
two points must lie on the opposite edges. In this case the perimeter of r; is equal to
8 — 4x,(;+1) and the perimeter of ry is equal to 4 + 4z ;) for some 7, 0 <i < n — 2.

Consider the sum of two perimeters in Case (b). The sum is equal to 12 — 4(z 41y — Zp())-
Thus, either each perimeter is equal to 6 — 2(x,(41) — ;) (which is the same result as in
Case (a)), or one of the perimeters is smaller than 6 — 2(z,(;11) — Z,(;)) and the other greater
than 6 — 2(z,+1) — Zp)). It follows, that the solution obtained in Case (a) is optimal
and attains its minimum when the difference x,;;.1) — 7, is largest. This difference is the
solution to the MAX-GAP problem. i

Theorem 4 In the algebraic decision-tree model every solution algorithm for the Lo, discrete
two-center problem has time complexity Q(nlogn).

Proof. Given an instance 0 < xg, To,...,Tp_1 < 1, § of the GAP-EXISTENCE problem, we
map each x,;) to four points:

ap(iy = (T + 0,1 = Tp(i)), bpiy = (1 — Tpiys —Tp(i))

Cotiy = (—Tpay, =1+ Tpy — 6), di = (=1 + Tp(i), Tp(s))

Let A = {a,i)}1= B = {byi)}izo, C = {cpiy}izq and D = {d,)}i=). Define S be a set
BUD and put F = AUC (as a matter of fact the proof holds for S= AUBUCU D). We
are asking the question whether there are two discrete squares of radius 1 that centered at F
can cover all the points of S7 See Figure 4 above. Let b; be the square of radius 1 centered
at apy) € A, for some 7, 0 <7 < n — 2. Then b, covers all the points b, by1), - - -, bpi)-
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Figure 4: Centers of two discrete squares.

Assume that z,11) — Zps > 0. Then 1 — (@,441) — T,6)) +0 < 1. It turns out that by
also covers all the points d,1), dpiy2), - - -, dpm—1). Thus, the remaining uncovered points
are D' = {dpn1y, dp2)s - -, dpiy} and B' = {byi41), Dp(it2), - - -, bpmn—1)}- If we choose by to be
centered at point c,i41) then by covers B' and D'. This is because the edge size of by is 1
and 1 — (w41 — ;) + 6 < 1. If there is no index i, such that x;; —z; > § then points b(;11)
and d,;4+1) remain uncovered by by and there is no center in F' for b, with the edge size 1
that will cover them. Thus, the answer to the GAP-EXISTENCE problem, is the same as
the answer for the L., discrete two-center problem for the sets S and F. W

2.3 Quadruple cycle rotation

Given an instance 0 < xy, Z2,...,2T,_1 < 1 of the MAX-GAP problem, we perform a similar
transformation as for the first two problems considered in this paper, with the difference that
now we map each number to four points, one point per quadrant (we assume that there are
at least two distinct numbers in the MAX-GAP instance). Let x;(i), 0 <7 <n-—1 be defined

as before. Each x,; corresponds to four points p,(),Pp(i)-£n>Pp(i)+2n Pp(i)+3n With coordinates:
(cos (1 — a;)),sin (1 — 2,;))), (cos (5 — @), sin (5 — 2),))), (cos (), —sin (z),))) and
(cos (3F — Thiy)» SID (& - i), respectively. In order to guarantee the existence of at least
one index 4, 0 <4 < n — 2, such that the distance between points p,;) and p,41) is smaller
than the distance between points p,,—1) and p,gy4+n, we shift all the points along the the
arcs of the unit disk, similarly to what we did in the double cycle rotation transformation.

Clearly, all these steps can be accomplished in linear time.

Theorem 5 In the algebraic decision-tree model every solution algorithm for the two-line
center problem (even if all the points are known in advance to lie on a conver hull) has time
complexity Q(nlogn).

Proof. Given an instance 0 < zg,x9,...,2, 1 < 1 of the MAX-GAP problem, let S be
a set of 4n points defined above. Definitely, S can be covered by two strips w; and ws,
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Figure 5: The optimal solution is achieved in the (c) case (@ = Z,(i11) — Zp())-

each of width 1. Moreover, if one of the strips contains any three of four extreme points
(0,-1),(—=1,0),(0,1),(1,0) then it will have a width at least 1. Thus, we can assume that
each strip contains only two extreme points. By symmetry, in any optimal solution each
strip will cover exactly 2n points and strips will be of equal width; otherwise we increase
the width of one of the strips and decrease the width of the other. Hence, according to
our construction there are only two possible configurations. In the first configuration, each
strip contains two opposite extreme points; in the second configuration, each strip contains
two adjacent extreme points. It is easy to see that for the first configuration the optimal
solution is achieved when there are exactly n points out of the left side of strip w; and
there are exactly n points out of right side of w; (otherwise, one of the strips is wider than
the other, see Figure 5(a,b)). It means that each side of strip w; (resp. ws) in the first
configuration is defined by two points p,;) and pyii1)4n (reSp. Dpgiy4n and Pp(it1)+2n) for
some 7,0 < i < n — 2. The value of the width of w; (wy) can be obtained by computing

the distance between these two points and is equal to \/2 — 25sin (x;)(iﬂ) — x’p(i)) for some

1,0 <17 < n — 2. For the second configuration, the optimal solution is defined by two strips
such that each one of them contains 2n consecutive points along the arc of the unit disk
(Figure 5(c)). In that case the width of each strip is equal to \/1 — sin (@, 1) — Thp)s for

some 7,0 < ¢ < n — 2. Thus, we obtain that the solution attains its minimum in the second
configuration when ;. — @), is the largest. Each x/; is between 0 and 1 and sinz is an
increasing function in the given interval [0, 5]. Hence, to solve the MAX-GAP problem we
first solve the corresponding two-line center problem for S and then find a solution for the
MAX-GAP problem in linear time. H

Theorem 6 In the algebraic decision-tree model every solution algorithm for the smallest
rotated enclosing square (even if all the points are known in advance to lie on a conver hull)
has time complezity Q(nlogn).
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Figure 6: Smallest enclosing square (a) and largest empty inscribed square (b).

Proof. Let g, ...,r,_1 be an input to the MAX-GAP problem and let S be a set of points
as in the previous proof. We set ¢ = (0,0). Obviously, set S can be covered by the enclosing
square s of size 2. In order to do better we try to shrink s from all its sides till we hit
some point of S, then rotate it, while trying to shrink it more. We repeat this process
till some side of s will contain two points (otherwise we are able to continue rotate the
square). See Figure 6(a). These two points should be consecutive on the disk (in a clockwise
direction) because otherwise square s will miss some point of S. Therefore, these points
are p,i) and pp41y for some i, 0 < i < n — 2 and the distance between them is equal

to \/2 — 2c0s (2),;41) — T);) (according to cosines theorem). The total edge length of s is

2\/1 — sin (2;,1) — Tpy) + \/2 — 208 (T}, 1) — T);)) for some 4,0 < < n — 2 which is a
decreasing function of its argument 7, ., — 2, in the interval [0, 3]. Thus, in order to
find a solution to the MAX-GAP problem we find the smallest enclosing square s centered
at origin. This square is defined by points p,41) and p,;). The difference between values

i1y and ;) is the solution to the MAX-GAP problem. il

Remark. If we allow s to be centered at any point in the plane, we obtain the same solution
as described in the theorem.

Theorem 7 In the algebraic decision-tree model every solution algorithm for the largest
rotated empty square problem (even if all the points are known in advance to lie on a convex
hull) has time complezity Q(nlogn).

Proof. For a given instance xy, ..., x, 1 of the MAX-GAP problem, let S and ¢ be as in the
previous theorem. There is an inscribed empty square s with the edge size equals v/2 and
vertices at extreme points of S. We try to extend the boundary of s from all its sides till we
hit some point of S, then rotate s, while trying to extend it more. This process is repeated
similarly to the previous case till some edge of s contains two points. It follows, by symmetry,
that there are exactly n — 2 points between these two points (See Figure 6(b). Opposite to
the previous theorem these two points are p,;) and p,(it1)4+3, for some 7, 0 <7 < n —2. The

distance between them is equal to \/2 — 25sin (x’p(iﬂ) — x;(i)). Thus, the total edge length of
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s is \/2 — 2sin (2);,1) — T))) + 2\/1 — €08 (T),(;41) — T)y(;)) for some ¢,0 < i < n — 2 which
is increasing function of its argument x7,;,,) — ), argument in the interval [0, £]. Hence,
in order to find a solution to the MAX-GAP problem we find the largest empty inscribed
square s centered at origin for a set S. This square is defined by points p,;) and pyiiy1)+3n-

The difference between values x;(iﬂ) and x;(i) is the solution to the MAX-GAP problem. B

Theorem 8 In the algebraic decision-tree model every solution algorithm for the rotated
squares problem has time complezity Q(nlogn).

Proof. Let xq,...,r,_1 be an instance of the MAX-GAP problem. Let S be a set of points
as used in the last theorem. We duplicate set S, obtaining a set S’ of 4n points. We translate
all the points of S’ in the plane by vector @ = (5,0), i.e. we add 5 to the z-coordinate of
every point in S’. Let S” = SUS’. We want to find two mutually parallel squares s; and
so that cover S”, so as to minimize the edge size of the largest square. Obviously, S” can
be covered by two axis-parallel squares s; and s, with edge size 2; square s; covers S and
square sg covers S’. In the better solution, s; (s2) cannot contain any point of S’ (S) since it
would lead to the increasing edge size. Thus, the only possibility to make s; and sy smaller
is to rotate them around S and S’, respectively. Since a set S’ is a translated copy of a set
S, the squares s; and sy will be of the same size and remain mutually parallel in the optimal
solution. According to the remark after theorem 6, the best possible placement of s; (and
s9) is defined by two points are p,i) and p,gy1) for some 4, 0 < i < n — 2. As was pointed

out before, the edge length of s; is 2\/1 — sin (2,;,1) — Ty;) + \/2 — 208 (T} ,1) — Th)
for some ¢,0 < ¢ < n — 2 which is decreasing function of its argument z; ) — @, in the
interval [0, 7]. This function achieves its minimum when the difference 7, ;,, — ;) is the
largest. Then, after we find the solution to the rotated squares problem, we can find points

Poii+1) and pyg;y that define square s;. The difference between values x;(iH) and x’p(i) is the
solution to the MAX-GAP problem. i

3 Conclusions

In this paper we have presented lower bounds for a number of different covering and opti-
mization problems. All the proofs are based on a linear time reductions from MAX-GAP
problem. The crucial property of the reductions is that they can be obtained by mapping
the numbers from the MAX-GAP instance to the points on the circle or tilted square and
their subsequent rotations. The challenging questions remaining are how to narrow a gap
between the existing algorithms for a several problems mentioned in this paper and their
lower bounds.
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