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tIn this paper we present an 
(n log n) lower bound proofs for a several 
overingproblems in
luding optimal line bipartition problem, min-max 
overing by two axisparallel re
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rete and 
ontinuous two-
enter problems, two-line 
enter prob-lem, et
. Our proofs are based on using \rotational redu
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hnique" and well knownlower bound for the maximal gap problem.Keywords: Lower bounds, redu
tions, Max-gap problem1 Introdu
tionIn this paper we present an 
(n logn) lower bound proofs in the algebrai
 de
ision-treemodel for a several 
overing problems. In parti
ular, we 
onsider the 
ase when we are givena set S of n points in the plane andOptimal line bipartition. We wish to partition S by a line l into two subsets S1 andS2 su
h that max (f(S1); f(S2)g is minimal, where f is some real-valued monotonefun
tion that is de�ned over the 
olle
tion of subsets of S. We 
onsider the 
ase whenf(S 0) de�nes an area, perimeter of the 
onvex hull of S 0 or diameter of S 0.Eu
lidean two-
enter. We wish to �nd a pair of two disks d1 and d2 of smallest possible
ommon radius that 
over S.Two 
overing. We wish to �nd a pair of two axis-parallel re
tangles r1 and r2 thattogether 
over S and minimize the maximum of their perimeters.L1 dis
rete two-
enter. We wish to �nd a pair of dis
rete squares b1 and b2, i.e. squaresthat are 
entered at points of some given set F , that 
over S and minimize the size ofthe largest square.Two-line 
enter We wish to �nd a pair of strips w1 and w2 that 
over S su
h that thewidth of the widest strip is minimized. 1



Smallest rotated en
losing square. We wish to �nd a minimal square s 
entered atsome point q that 
overs S. The square s may rotate.Largest rotated empty square. We wish to �nd a largest square s 
entered at somepoint q that does not 
ontain any point from S. The square s may rotate.Rotated squares. We wish to �nd a pair of side-parallel squares s1 and s2 whose union
ontains S, so as to to minimize the size (perimeter or area) of the largest square.All these problems belong to the �eld of geometri
 optimization and 
overing. There aremany results 
onsidering all the problems des
ribed above. Mit
hell and Wynters [17℄ presentsolutions for the two instan
es of the optimal line bipartition problem, in whi
h f(S 0) is eitherthe perimeter or area of the 
onvex hull of S 0. Their solutions require O(n3) and O(n2) time,respe
tively. Asano et al. [3℄ present an O(n logn) time algorithm for the diameter 
ase.Later, Devillers and Katz [5℄ 
onsidered the restri
ted version of the problem where pointsof S are in 
onvex position and gave O(n logn) time algorithm for all three 
ases. TheEu
lidean two-
enter problem re
eived a lot of attention in the papers [2, 11, 14℄. Megiddo[16℄ gave a linear time algorithm for the 
ase of one disk, and sin
e then only near quadrati
results were a
hieved for two disks. In a major breakthrough, Sharir [19℄ showed that thisproblem 
an be solved in O(n log9 n) time. Sin
e then some improvements were made byusing randomized te
hniques (see, e.g. [7℄) Hershberger and Suri [9℄ 
onsidered two 
overingproblem and solved in O(n logn) runtime the de
ision version of the problem where the valueof perimeter A is given and we want to �nd whether exist two axis-parallel re
tangles of agiven perimeterA that 
over S. Glozman et al. [8℄ su

eeded to obtain an O(n logn) runningtime solution to the original two 
overing problem. Katz et al. [13℄ proposed an O(n log2 n)time solution for L1 dis
rete two-
enter problem that was improved by Bespamyatnikh andSegal [4℄ to O(n logn) running time. We mention here that the 
ase of the squares witharbitrary 
enters 
an be solved in linear time [20℄. The best result for the two-line 
enterproblem was given by Jarom
zyk and Kowaluk [12℄ and runs in time O(n2 log2 n) (see also[8, 14℄). The smallest rotated en
losing square problem has been solved in Katz et al. [13℄with O(n logn) time solution. The largest rotated empty square problem 
an be 
onsideredas some variant of a 
lassi
al \largest empty 
ir
le" problem [18℄. In our 
ase, however,we are given already the 
enter of the square whi
h may rotate. Finally, Jarom
zyk andKowaluk [10℄ showed how to solve the rotated squares problem. They gave O(n2) runtimealgorithm and showed how to generalize it to the 
ase of re
tangles.Little has been done in proving lower bounds for geometri
 optimization and 
overingproblems. In the extended version of paper [20℄ Sharir and Welzl showed a 
(n logn) lowerbound for the L1 4-
enter problem. Woeginger [21℄ proved a 
(n logn) lower bound for therestri
ted Eu
lidean 1-
enter problem. Drysdale and Jarom
zyk [6℄ provided a 
(n logn)lower bound for the maximum area and maximum perimeter k-gon problems. The sameresult was obtained by Avis et al. [1℄ for determining the existen
e of a line stabber for afamily of n line segments in the plane.The main idea of our proofs is to show the redu
tions from the well known problem(MAX GAP). In order to �nd an appropriate redu
tion we will show in Se
tion 2 how touse the \rotational" te
hnique that transforms the instan
es of the MAX-GAP problem to2



the instan
es of our problems. This te
hnique 
an be viewed as a \double 
y
le rotation",\square rotation" and \quadruple 
y
le rotation". In our 
ase, the �rst two problems will beproven using \double 
y
le rotation'. The proofs for the two 
overing and L1 dis
rete two
enter problems are based on \square rotation" and the result for the rest of the problems
an be obtained by using \four 
y
le rotation". We 
on
lude in Se
tion 3.2 Lower BoundsIn what follows we mention the MAX-GAP problem and then present our proofs.� MAX-GAP problem: Given real numbers 0 � x0; x2; : : : ; xn�1 � 1 we want to 
omputethe maximum gap between two su

essive numbers in the sorted sequen
e.In the algebrai
 de
ision-tree model, the MAX-GAP problem has a lower bound 
(n logn)[18, 15℄.Remark 1. As was pointed out in the extended version of paper [20℄ there is a 
(n logn)lower bound for the GAP-EXISTENCE problem: Given real numbers 0 � x0; x2; : : : ; xn�1 �1 and a number Æ > 0, �nd whether exist two su

essive numbers in the sorted sequen
ewith a di�eren
e at least Æ. Using this result one 
an show that the de
ision variants of theproblems with a 
(n logn) lower bound based on the redu
tion from MAX-GAP problemhave also a 
(n logn) lower bound.2.1 Double Cy
le RotationLet 0 � x0; x2; : : : ; xn�1 � 1 be an instan
e of the MAX-GAP problem and let � be a sortedpermutation of these numbers. We 
ompute the minimal element x�(0) and the maximalelement x�(n�1) of this set of numbers. If x�(0) = x�(n�1) then, obviously, MAX-GAP is 0.Thus, we assume that there are at least two distin
t numbers. The main idea is to mapea
h number to the two points onto the unit disk 
entered at the origin (one point will lieon the upper ar
 and the other on the lower ar
). We subtra
t x�(0) from ea
h numberxi; 0 � i � n� 1. Let x0�(i) = x�(i) � x�(0).De�ne the following mapping: x�(i) 
orresponds to the two points p�(i) and p�(i)+n with
oordinates (
os (� � x0�(i)); sin (� � x0�(i))) and (
os (x0�(i));� sin (x0�(i))), respe
tively. Note,that points p�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+n are listed in their 
lo
kwise order onthe unit disk starting at the point (�1; 0). We also want to avoid the 
ase when the distan
emeasured along the upper (lower) ar
 of the disk between the point p�(n�1) (p�(n�1)+n) andthe point (1; 0) ((�1; 0)) is equal or larger than the MAX-GAP solution. In order to preventthis we shift all the points (ex
ept the points (1; 0) and (�1; 0)) on the upper ar
 (lowerar
) to the right (to the left) along this ar
. But for how mu
h? We need to �nd any twosu

essive numbers in the sorted sequen
e of xi numbers, 0 � i � n � 1, 
ompute the gap
 > 0 between them and then shift the points along the upper (lower) ar
 by �, su
h that� < � � (x�(n�1) � x�(0)) and 
 + � > � � (x�(n�1) � x�(0)) � �. The number 
 
an befound by simple s
anning the numbers xi; 1 � i � n and looking for the smallest element3
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Xx�(n�1)-x�(0) x�(n�1)-x�(0)+�x�(n�1)-x�(0) x�(n�1)-x�(0)+�
Figure 1: Mapping of MAX-GAP instan
e.that is larger than x�(0) (by our assumption it exists). Thus, we have a simple inequality(� � x�(n�1) + x�(0) � 
)=2 < � < � � (x�(n�1) � x�(0)). Shifting of points guarantee usexisten
e of at least one index i, 0 � i � n� 2, su
h that the distan
e between points p�(i)and p�(i+1)+n is smaller than the distan
e between points p�(0) and p�(n�1). The situation isillustrated in Figure 1.We are now ready to prove the lower bound for the optimal line bipartition and theEu
lidean two-
enter problems.Theorem 1 In the algebrai
 de
ision-tree model every solution algorithm for the optimalline bipartition problem (even if all the points are known in advan
e to lie on a 
onvex hull)has time 
omplexity 
(n logn).Proof. Let 0 � x0; x2; : : : ; xn�1 � 1 be an input of the MAX-GAP problem and let S =fp�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+ng be the 
orresponding sequen
e of 2n shiftedpoints, as des
ribed above. Consider Figure 2(a). We will solve the optimal line bipartitionproblem for S and derive the solution for the MAX-GAP problem for x0; : : : ; xn�1. Note,that by symmetry, in any optimal bipartition (S1; S2) for S the size of ea
h set is n; otherwise,we 
an always improve the solution by de
reasing the size of one of the sets and in
reasingthe size of the other. Consequently, in the optimal solution the partitioning line l divides Sbetween points p�(i); p�(i+1) and p�(i)+n; p�(i+1)+n, for some i, 0 � i � n� 2. (The remaining
ase when l divides S between points p2n�1; p0 and pn�1; pn is not optimal, sin
e the points ofS are shifted.) By the 
onstru
tion of S, the diameter of S1 = fp�(i+1)+n; : : : ; p�(0); : : : ; p�(i)g,identi
al with the diameter of S2, is equal to the distan
e between p�(i) and p�(i+1)+n, whi
his q(sin (x0�(i) + �) + sin (x0�(i+1) + �))2 + (
os (x0�(i) + �) + 
os (x0�(i+1) + �))2for some 0 � i � n � 2. After algebrai
 manipulation we obtain that the diameter isequal to q(2 + 2 
os(x0�(i+1) � x0�(i)) and attains its minimum when �i = x0�(i+1) � x0�(i) isthe largest. Therefore, to solve the MAX-GAP problem we �rst solve the 
orresponding4
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(b)(a)
S1 S2p�(i) p�(i+1)

p�(i)+np�(i+1)+nFigure 2: Two 
ases: (a) The optimal bipartition with respe
t to the area, perimeter ordiameter of the 
onvex hull is de�ned by MAX-GAP and (b) The optimal pair of the diskswith respe
t to the radius is de�ned by the MAX-GAP.bipartition problem for S that results in �nding points x0�(i) and x0�(i+1). The absolute valueof its di�eren
e is the solution to the MAX-GAP problem.With one extra e�ort we will show how to prove two remaining 
ases. In fa
t, we showthe area 
ase; the perimeter 
ase 
an be dealt similarly. Note that the optimal bipartition(S1; S2) de�ned by a line l with respe
t to the perimeter or area fun
tion is same as thethe optimal bipartition with respe
t to the diameter fun
tion. (As before, the 
ase whenS1 = fp�(0); : : : ; p�(n�1)g, S2 = S � S1 is not optimal by de�nition of S.) The area of the
onvex hull of set S1 (S2) is equal one half of the area of the 
onvex hull of S minus the areaof the re
tangle with 
orners at p�(i); p�(i+1); p�(i)+n; p�(i+1)+n, 0 � i � n � 2. This area is,therefore, minimized when the area of the re
tangle is maximized, whi
h is equal toq2� 2 
os�i �q2 + 2 
os�i = 2 sin�i:In the given interval, this value attains maximum when �i = x0�(i+1) � x0�(i) is maximal.Therefore, to solve the MAX-GAP problem we 
an solve the minimum area problem forthe line bipartition problem for S. As a byprodu
t, this solution produ
es values x0�(i) andx0�(i+1). The absolute value of its di�eren
e is the solution to the MAX-GAP problem. Thisends the proof.Theorem 2 In the algebrai
 de
ision-tree model every solution algorithm for the Eu
lideantwo-
enter problem (even if all the points are known in advan
e to lie on a 
onvex hull) hastime 
omplexity 
(n logn).Proof. Let 0 � x0; x2; : : : ; xn�1 � 1 be an input of the MAX-GAP problem and let S =fp�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+ng be the 
orresponding sequen
e of 2n shiftedpoints, as des
ribed above. By symmetry, ea
h of the two disks d1 and d2 in the optimalsolution will 
ontain exa
tly n points of S and disks will be of the same radius (see Figure2(b)). The disk d1 (d2) will be de�ned by two points p1 and p2 of S (three points de�ne theunit 
ir
le with all S points). Thus, these two points will de�ne the diameter of ea
h one of5



disks. In that 
ase, the number of points between p1 and p2 lying on the unit disk (in 
lo
kwisedire
tion) is exa
tly n; otherwise disk d1 (d2) will 
over less than n points. Consequently,these points are p�(i+1) and p�(i)+n, for some i, 0 � i � n� 2. (By 
onstru
tion and shiftingof S, the points p�(0) and p�(n�1) 
an not produ
e an optimal solution.) The diameter of d1(d2) is equal to q(2 + 2 
os(x0�(i+1) � x0�(i)) for some i, 0 � i � n� 2 and the smallest valueis a
hieved when x0�(i+1) � x0�(i) is maximal. Thus, in order to solve the MAX-GAP problemwe 
an solve the Eu
lidean two-
enter problem, whi
h gives us as a part of the solutionx0�(i+1) and x0�(i) values. The absolute value of its di�eren
e is the solution to the MAX-GAPproblem.2.2 Square rotationWe will show linear redu
tions from the MAX-GAP problem to the two 
overing problemand from GAP-EXISTENCE problem to the de
ision variant of the L1 dis
rete two 
enterproblem.Theorem 3 In the algebrai
 de
ision-tree model every solution algorithm for the two 
ov-ering problem (even if all the points are known in advan
e to lie on a 
onvex hull) has time
omplexity 
(n logn).Proof. Given an instan
e 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, we map ea
hx�(i) to four points:a�(i) = (x�(i); 1�x�(i)); b�(i) = (1�x�(i);�x�(i)); 
�(i) = (�x�(i);�1+x�(i)); d�(i) = (�1+x�(i); x�(i))Let A = fa�(i)gn�1i=0 ; B = fb�(i)gn�1i=0 ; C = f
�(i)gn�1i=0 and D = fd�(i)gn�1i=0 . All the points of theset A [ B [ C [D lie on the edges of the tilted unit square M (see Figure 3). We assumethat the di�eren
es between x�(n�1) and 1 and between x�(0) and 0 are less than MAX-GAPsolution; otherwise we 
an perform the similar transformation as we did before.De�ne S be a set A[B [C [D plus four more points that 
orrespond to the verti
es ofM . Note, that S 
an be 
overed by two axis-parallel re
tangles r1 and r2 of perimeter 6 ea
hone. By symmetry, ea
h of two axis-parallel re
tangles r1 and r2 in the optimal solution will
ontain exa
tly 2n + 2 points; otherwise we will improve the solution by extending one ofthe re
tangles and shrinking the other. The verti
es of M are the extreme points of S andthey serve as determinators of the smallest axis-parallel re
tangle that 
overs S, that is, theedges of this re
tangle must 
ontain these points. If some re
tangle rj; j = 1; 2 
ontains threedeterminators then the perimeter of rj is at least 6. It remains to show what happens whenea
h re
tangle has to 
ontain 2 determinators. We might noti
e, though, that if there is anindex i su
h that any three of the points a�(i), b�(i), 
�(i), d�(i) belong to the same 
overingaxis-parallel re
tangle, then the perimeter of this re
tangle is greater or equal to 6. In orderto improve the solution, we have to deal with two di�erent 
ases (see Figure 3(a,b)).Case (a). Ea
h re
tangle takes two adja
ent determinators. Then, for ea
h index i, 0 �i � n� 1 exa
tly two of a�(i), b�(i), 
�(i), d�(i) points are 
overed by ea
h re
tangle andthese two points must lie on the adja
ent edges. In this 
ase the perimeter of ea
hre
tangle equals 6� 2(x�(i+1) � x�(i)) for some i, 0 � i � n� 2.6



(b)(a)
x�(i)1-x�(i+1) x�(i)1-x�(i+1)
Figure 3: Min-Max Re
tangle Problem: two 
ases.Case (b). Ea
h re
tangle takes two opposite determinators. Then, for ea
h index i, 0 � i �n�1 exa
tly two of a�(i), b�(i), 
�(i), d�(i) points are 
overed by ea
h re
tangle and thesetwo points must lie on the opposite edges. In this 
ase the perimeter of r1 is equal to8� 4x�(i+1) and the perimeter of r2 is equal to 4 + 4x�(i) for some i, 0 � i � n� 2.Consider the sum of two perimeters in Case (b). The sum is equal to 12� 4(x�(i+1) � x�(i)).Thus, either ea
h perimeter is equal to 6� 2(x�(i+1) � x�(i)) (whi
h is the same result as inCase (a)), or one of the perimeters is smaller than 6� 2(x�(i+1)�x�(i)) and the other greaterthan 6 � 2(x�(i+1) � x�(i)). It follows, that the solution obtained in Case (a) is optimaland attains its minimum when the di�eren
e x�(i+1) � x�(i) is largest. This di�eren
e is thesolution to the MAX-GAP problem.Theorem 4 In the algebrai
 de
ision-tree model every solution algorithm for the L1 dis
retetwo-
enter problem has time 
omplexity 
(n logn).Proof. Given an instan
e 0 � x0; x2; : : : ; xn�1 � 1, Æ of the GAP-EXISTENCE problem, wemap ea
h x�(i) to four points:a�(i) = (x�(i) + Æ; 1� x�(i)); b�(i) = (1� x�(i);�x�(i))
�(i) = (�x�(i);�1 + x�(i) � Æ); di = (�1 + x�(i); x�(i))Let A = fa�(i)gn�2i=0 ; B = fb�(i)gn�1i=0 ; C = f
�(i)gn�2i=0 and D = fd�(i)gn�1i=0 . De�ne S be a setB [D and put F = A[C (as a matter of fa
t the proof holds for S = A[B [C [D). Weare asking the question whether there are two dis
rete squares of radius 1 that 
entered at F
an 
over all the points of S? See Figure 4 above. Let b1 be the square of radius 1 
enteredat a�(i) 2 A, for some i, 0 � i � n � 2. Then b1 
overs all the points b�(0); b�(1); : : : ; b�(i).7



Æ111 
enter ofb1
Æ 1 1
enter ofb2Figure 4: Centers of two dis
rete squares.Assume that x�(i+1) � x�(i) � Æ. Then 1 � (x�(i+1) � x�(i)) + Æ � 1. It turns out that b1also 
overs all the points d�(i+1); d�(i+2); : : : ; d�(n�1). Thus, the remaining un
overed pointsare D0 = fd�(1); d�(2); : : : ; d�(i)g and B0 = fb�(i+1); b�(i+2); : : : ; b�(n�1)g. If we 
hoose b2 to be
entered at point 
�(i+1) then b2 
overs B0 and D0. This is be
ause the edge size of b2 is 1and 1� (xi+1� xi) + Æ � 1. If there is no index i, su
h that xi+1� xi � Æ then points b�(i+1)and d�(i+1) remain un
overed by b2 and there is no 
enter in F for b2 with the edge size 1that will 
over them. Thus, the answer to the GAP-EXISTENCE problem, is the same asthe answer for the L1 dis
rete two-
enter problem for the sets S and F .2.3 Quadruple 
y
le rotationGiven an instan
e 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, we perform a similartransformation as for the �rst two problems 
onsidered in this paper, with the di�eren
e thatnow we map ea
h number to four points, one point per quadrant (we assume that there areat least two distin
t numbers in the MAX-GAP instan
e). Let x0�(i); 0 � i � n�1 be de�nedas before. Ea
h x�(i) 
orresponds to four points p�(i),p�(i)+n,p�(i)+2n,p�(i)+3n with 
oordinates:(
os (� � x0�(i)); sin (� � x0�(i))), (
os (�2 � x0�(i)); sin (�2 � x0�(i))), (
os (x0�(i));� sin (x0�(i))) and(
os (3�2 � x0�(i)); sin (3�2 � x0�(i))), respe
tively. In order to guarantee the existen
e of at leastone index i, 0 � i � n� 2, su
h that the distan
e between points p�(i) and p�(i+1) is smallerthan the distan
e between points p�(n�1) and p�(0)+n, we shift all the points along the thear
s of the unit disk, similarly to what we did in the double 
y
le rotation transformation.Clearly, all these steps 
an be a

omplished in linear time.Theorem 5 In the algebrai
 de
ision-tree model every solution algorithm for the two-line
enter problem (even if all the points are known in advan
e to lie on a 
onvex hull) has time
omplexity 
(n logn).Proof. Given an instan
e 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, let S bea set of 4n points de�ned above. De�nitely, S 
an be 
overed by two strips w1 and w2,8



(a) (b) (
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Y XO �Y XO
Y XO ��

Figure 5: The optimal solution is a
hieved in the (
) 
ase (� = x�(i+1) � x�(i)).ea
h of width 1. Moreover, if one of the strips 
ontains any three of four extreme points(0;�1),(�1; 0),(0; 1),(1; 0) then it will have a width at least 1. Thus, we 
an assume thatea
h strip 
ontains only two extreme points. By symmetry, in any optimal solution ea
hstrip will 
over exa
tly 2n points and strips will be of equal width; otherwise we in
reasethe width of one of the strips and de
rease the width of the other. Hen
e, a

ording toour 
onstru
tion there are only two possible 
on�gurations. In the �rst 
on�guration, ea
hstrip 
ontains two opposite extreme points; in the se
ond 
on�guration, ea
h strip 
ontainstwo adja
ent extreme points. It is easy to see that for the �rst 
on�guration the optimalsolution is a
hieved when there are exa
tly n points out of the left side of strip w1 andthere are exa
tly n points out of right side of w1 (otherwise, one of the strips is wider thanthe other, see Figure 5(a,b)). It means that ea
h side of strip w1 (resp. w2) in the �rst
on�guration is de�ned by two points p�(i) and p�(i+1)+n (resp. p�(i)+n and p�(i+1)+2n) forsome i; 0 � i � n � 2. The value of the width of w1 (w2) 
an be obtained by 
omputingthe distan
e between these two points and is equal to q2� 2 sin (x0�(i+1) � x0�(i)) for somei; 0 � i � n� 2. For the se
ond 
on�guration, the optimal solution is de�ned by two stripssu
h that ea
h one of them 
ontains 2n 
onse
utive points along the ar
 of the unit disk(Figure 5(
)). In that 
ase the width of ea
h strip is equal to q1� sin (x0�(i+1) � x0�(i)), forsome i; 0 � i � n� 2. Thus, we obtain that the solution attains its minimum in the se
ond
on�guration when x0�(i+1)� x0�(i) is the largest. Ea
h x0�(i) is between 0 and 1 and sinx is anin
reasing fun
tion in the given interval [0; �2 ℄. Hen
e, to solve the MAX-GAP problem we�rst solve the 
orresponding two-line 
enter problem for S and then �nd a solution for theMAX-GAP problem in linear time.Theorem 6 In the algebrai
 de
ision-tree model every solution algorithm for the smallestrotated en
losing square (even if all the points are known in advan
e to lie on a 
onvex hull)has time 
omplexity 
(n logn). 9



(a) Op2 � 2 
os (x0�(i+1) � x0�(i))
(b) Op2 � 2 sin (x0�(i+1) � x0�(i))

Figure 6: Smallest en
losing square (a) and largest empty ins
ribed square (b).Proof. Let x0; : : : ; xn�1 be an input to the MAX-GAP problem and let S be a set of pointsas in the previous proof. We set q = (0; 0). Obviously, set S 
an be 
overed by the en
losingsquare s of size 2. In order to do better we try to shrink s from all its sides till we hitsome point of S, then rotate it, while trying to shrink it more. We repeat this pro
esstill some side of s will 
ontain two points (otherwise we are able to 
ontinue rotate thesquare). See Figure 6(a). These two points should be 
onse
utive on the disk (in a 
lo
kwisedire
tion) be
ause otherwise square s will miss some point of S. Therefore, these pointsare p�(i) and p�(i+1) for some i, 0 � i � n � 2 and the distan
e between them is equalto q2� 2 
os (x0�(i+1) � x0�(i)) (a

ording to 
osines theorem). The total edge length of s is2q1� sin (x0�(i+1) � x0�(i)) +q2� 2 
os (x0�(i+1) � x0�(i)) for some i; 0 � i � n � 2 whi
h is ade
reasing fun
tion of its argument x0�(i+1) � x0�(i) in the interval [0; �2 ℄. Thus, in order to�nd a solution to the MAX-GAP problem we �nd the smallest en
losing square s 
enteredat origin. This square is de�ned by points p�(i+1) and p�(i). The di�eren
e between valuesx0�(i+1) and x0�(i) is the solution to the MAX-GAP problem.Remark. If we allow s to be 
entered at any point in the plane, we obtain the same solutionas des
ribed in the theorem.Theorem 7 In the algebrai
 de
ision-tree model every solution algorithm for the largestrotated empty square problem (even if all the points are known in advan
e to lie on a 
onvexhull) has time 
omplexity 
(n logn).Proof. For a given instan
e x0; : : : ; xn�1 of the MAX-GAP problem, let S and q be as in theprevious theorem. There is an ins
ribed empty square s with the edge size equals p2 andverti
es at extreme points of S. We try to extend the boundary of s from all its sides till wehit some point of S, then rotate s, while trying to extend it more. This pro
ess is repeatedsimilarly to the previous 
ase till some edge of s 
ontains two points. It follows, by symmetry,that there are exa
tly n� 2 points between these two points (See Figure 6(b). Opposite tothe previous theorem these two points are p�(i) and p�(i+1)+3n for some i, 0 � i � n� 2. Thedistan
e between them is equal to q2� 2 sin (x0�(i+1) � x0�(i)). Thus, the total edge length of10



s is q2� 2 sin (x0�(i+1) � x0�(i)) + 2q1� 
os (x0�(i+1) � x0�(i)) for some i; 0 � i � n � 2 whi
his in
reasing fun
tion of its argument x0�(i+1) � x0�(i) argument in the interval [0; �2 ℄. Hen
e,in order to �nd a solution to the MAX-GAP problem we �nd the largest empty ins
ribedsquare s 
entered at origin for a set S. This square is de�ned by points p�(i) and p�(i+1)+3n.The di�eren
e between values x0�(i+1) and x0�(i) is the solution to the MAX-GAP problem.Theorem 8 In the algebrai
 de
ision-tree model every solution algorithm for the rotatedsquares problem has time 
omplexity 
(n logn).Proof. Let x0; : : : ; xn�1 be an instan
e of the MAX-GAP problem. Let S be a set of pointsas used in the last theorem. We dupli
ate set S, obtaining a set S 0 of 4n points. We translateall the points of S 0 in the plane by ve
tor ~a = (5; 0), i.e. we add 5 to the x-
oordinate ofevery point in S 0. Let S 00 = S [ S 0. We want to �nd two mutually parallel squares s1 ands2 that 
over S 00, so as to minimize the edge size of the largest square. Obviously, S 00 
anbe 
overed by two axis-parallel squares s1 and s2 with edge size 2; square s1 
overs S andsquare s2 
overs S 0. In the better solution, s1 (s2) 
annot 
ontain any point of S 0 (S) sin
e itwould lead to the in
reasing edge size. Thus, the only possibility to make s1 and s2 smalleris to rotate them around S and S 0, respe
tively. Sin
e a set S 0 is a translated 
opy of a setS, the squares s1 and s2 will be of the same size and remain mutually parallel in the optimalsolution. A

ording to the remark after theorem 6, the best possible pla
ement of s1 (ands2) is de�ned by two points are p�(i) and p�(i+1) for some i, 0 � i � n � 2. As was pointedout before, the edge length of s1 is 2q1� sin (x0�(i+1) � x0�(i)) + q2� 2 
os (x0�(i+1) � x0�(i))for some i; 0 � i � n � 2 whi
h is de
reasing fun
tion of its argument x0�(i+1) � x0�(i) in theinterval [0; �2 ℄. This fun
tion a
hieves its minimum when the di�eren
e x0�(i+1) � x0�(i) is thelargest. Then, after we �nd the solution to the rotated squares problem, we 
an �nd pointsp�(i+1) and p�(i) that de�ne square s1. The di�eren
e between values x0�(i+1) and x0�(i) is thesolution to the MAX-GAP problem.3 Con
lusionsIn this paper we have presented lower bounds for a number of di�erent 
overing and opti-mization problems. All the proofs are based on a linear time redu
tions from MAX-GAPproblem. The 
ru
ial property of the redu
tions is that they 
an be obtained by mappingthe numbers from the MAX-GAP instan
e to the points on the 
ir
le or tilted square andtheir subsequent rotations. The 
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