
Lower Bounds for Covering ProblemsMihael SegalCommuniation Systems Engineering DepartmentBen-Gurion University of the Negev, Beer-Sheva 84105, IsraelOtober 10, 2001AbstratIn this paper we present an 
(n log n) lower bound proofs for a several overingproblems inluding optimal line bipartition problem, min-max overing by two axisparallel retangles, disrete and ontinuous two-enter problems, two-line enter prob-lem, et. Our proofs are based on using \rotational redue tehnique" and well knownlower bound for the maximal gap problem.Keywords: Lower bounds, redutions, Max-gap problem1 IntrodutionIn this paper we present an 
(n logn) lower bound proofs in the algebrai deision-treemodel for a several overing problems. In partiular, we onsider the ase when we are givena set S of n points in the plane andOptimal line bipartition. We wish to partition S by a line l into two subsets S1 andS2 suh that max (f(S1); f(S2)g is minimal, where f is some real-valued monotonefuntion that is de�ned over the olletion of subsets of S. We onsider the ase whenf(S 0) de�nes an area, perimeter of the onvex hull of S 0 or diameter of S 0.Eulidean two-enter. We wish to �nd a pair of two disks d1 and d2 of smallest possibleommon radius that over S.Two overing. We wish to �nd a pair of two axis-parallel retangles r1 and r2 thattogether over S and minimize the maximum of their perimeters.L1 disrete two-enter. We wish to �nd a pair of disrete squares b1 and b2, i.e. squaresthat are entered at points of some given set F , that over S and minimize the size ofthe largest square.Two-line enter We wish to �nd a pair of strips w1 and w2 that over S suh that thewidth of the widest strip is minimized. 1



Smallest rotated enlosing square. We wish to �nd a minimal square s entered atsome point q that overs S. The square s may rotate.Largest rotated empty square. We wish to �nd a largest square s entered at somepoint q that does not ontain any point from S. The square s may rotate.Rotated squares. We wish to �nd a pair of side-parallel squares s1 and s2 whose unionontains S, so as to to minimize the size (perimeter or area) of the largest square.All these problems belong to the �eld of geometri optimization and overing. There aremany results onsidering all the problems desribed above. Mithell and Wynters [17℄ presentsolutions for the two instanes of the optimal line bipartition problem, in whih f(S 0) is eitherthe perimeter or area of the onvex hull of S 0. Their solutions require O(n3) and O(n2) time,respetively. Asano et al. [3℄ present an O(n logn) time algorithm for the diameter ase.Later, Devillers and Katz [5℄ onsidered the restrited version of the problem where pointsof S are in onvex position and gave O(n logn) time algorithm for all three ases. TheEulidean two-enter problem reeived a lot of attention in the papers [2, 11, 14℄. Megiddo[16℄ gave a linear time algorithm for the ase of one disk, and sine then only near quadratiresults were ahieved for two disks. In a major breakthrough, Sharir [19℄ showed that thisproblem an be solved in O(n log9 n) time. Sine then some improvements were made byusing randomized tehniques (see, e.g. [7℄) Hershberger and Suri [9℄ onsidered two overingproblem and solved in O(n logn) runtime the deision version of the problem where the valueof perimeter A is given and we want to �nd whether exist two axis-parallel retangles of agiven perimeterA that over S. Glozman et al. [8℄ sueeded to obtain an O(n logn) runningtime solution to the original two overing problem. Katz et al. [13℄ proposed an O(n log2 n)time solution for L1 disrete two-enter problem that was improved by Bespamyatnikh andSegal [4℄ to O(n logn) running time. We mention here that the ase of the squares witharbitrary enters an be solved in linear time [20℄. The best result for the two-line enterproblem was given by Jaromzyk and Kowaluk [12℄ and runs in time O(n2 log2 n) (see also[8, 14℄). The smallest rotated enlosing square problem has been solved in Katz et al. [13℄with O(n logn) time solution. The largest rotated empty square problem an be onsideredas some variant of a lassial \largest empty irle" problem [18℄. In our ase, however,we are given already the enter of the square whih may rotate. Finally, Jaromzyk andKowaluk [10℄ showed how to solve the rotated squares problem. They gave O(n2) runtimealgorithm and showed how to generalize it to the ase of retangles.Little has been done in proving lower bounds for geometri optimization and overingproblems. In the extended version of paper [20℄ Sharir and Welzl showed a 
(n logn) lowerbound for the L1 4-enter problem. Woeginger [21℄ proved a 
(n logn) lower bound for therestrited Eulidean 1-enter problem. Drysdale and Jaromzyk [6℄ provided a 
(n logn)lower bound for the maximum area and maximum perimeter k-gon problems. The sameresult was obtained by Avis et al. [1℄ for determining the existene of a line stabber for afamily of n line segments in the plane.The main idea of our proofs is to show the redutions from the well known problem(MAX GAP). In order to �nd an appropriate redution we will show in Setion 2 how touse the \rotational" tehnique that transforms the instanes of the MAX-GAP problem to2



the instanes of our problems. This tehnique an be viewed as a \double yle rotation",\square rotation" and \quadruple yle rotation". In our ase, the �rst two problems will beproven using \double yle rotation'. The proofs for the two overing and L1 disrete twoenter problems are based on \square rotation" and the result for the rest of the problemsan be obtained by using \four yle rotation". We onlude in Setion 3.2 Lower BoundsIn what follows we mention the MAX-GAP problem and then present our proofs.� MAX-GAP problem: Given real numbers 0 � x0; x2; : : : ; xn�1 � 1 we want to omputethe maximum gap between two suessive numbers in the sorted sequene.In the algebrai deision-tree model, the MAX-GAP problem has a lower bound 
(n logn)[18, 15℄.Remark 1. As was pointed out in the extended version of paper [20℄ there is a 
(n logn)lower bound for the GAP-EXISTENCE problem: Given real numbers 0 � x0; x2; : : : ; xn�1 �1 and a number Æ > 0, �nd whether exist two suessive numbers in the sorted sequenewith a di�erene at least Æ. Using this result one an show that the deision variants of theproblems with a 
(n logn) lower bound based on the redution from MAX-GAP problemhave also a 
(n logn) lower bound.2.1 Double Cyle RotationLet 0 � x0; x2; : : : ; xn�1 � 1 be an instane of the MAX-GAP problem and let � be a sortedpermutation of these numbers. We ompute the minimal element x�(0) and the maximalelement x�(n�1) of this set of numbers. If x�(0) = x�(n�1) then, obviously, MAX-GAP is 0.Thus, we assume that there are at least two distint numbers. The main idea is to mapeah number to the two points onto the unit disk entered at the origin (one point will lieon the upper ar and the other on the lower ar). We subtrat x�(0) from eah numberxi; 0 � i � n� 1. Let x0�(i) = x�(i) � x�(0).De�ne the following mapping: x�(i) orresponds to the two points p�(i) and p�(i)+n withoordinates (os (� � x0�(i)); sin (� � x0�(i))) and (os (x0�(i));� sin (x0�(i))), respetively. Note,that points p�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+n are listed in their lokwise order onthe unit disk starting at the point (�1; 0). We also want to avoid the ase when the distanemeasured along the upper (lower) ar of the disk between the point p�(n�1) (p�(n�1)+n) andthe point (1; 0) ((�1; 0)) is equal or larger than the MAX-GAP solution. In order to preventthis we shift all the points (exept the points (1; 0) and (�1; 0)) on the upper ar (lowerar) to the right (to the left) along this ar. But for how muh? We need to �nd any twosuessive numbers in the sorted sequene of xi numbers, 0 � i � n � 1, ompute the gap > 0 between them and then shift the points along the upper (lower) ar by �, suh that� < � � (x�(n�1) � x�(0)) and  + � > � � (x�(n�1) � x�(0)) � �. The number  an befound by simple sanning the numbers xi; 1 � i � n and looking for the smallest element3
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Figure 1: Mapping of MAX-GAP instane.that is larger than x�(0) (by our assumption it exists). Thus, we have a simple inequality(� � x�(n�1) + x�(0) � )=2 < � < � � (x�(n�1) � x�(0)). Shifting of points guarantee usexistene of at least one index i, 0 � i � n� 2, suh that the distane between points p�(i)and p�(i+1)+n is smaller than the distane between points p�(0) and p�(n�1). The situation isillustrated in Figure 1.We are now ready to prove the lower bound for the optimal line bipartition and theEulidean two-enter problems.Theorem 1 In the algebrai deision-tree model every solution algorithm for the optimalline bipartition problem (even if all the points are known in advane to lie on a onvex hull)has time omplexity 
(n logn).Proof. Let 0 � x0; x2; : : : ; xn�1 � 1 be an input of the MAX-GAP problem and let S =fp�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+ng be the orresponding sequene of 2n shiftedpoints, as desribed above. Consider Figure 2(a). We will solve the optimal line bipartitionproblem for S and derive the solution for the MAX-GAP problem for x0; : : : ; xn�1. Note,that by symmetry, in any optimal bipartition (S1; S2) for S the size of eah set is n; otherwise,we an always improve the solution by dereasing the size of one of the sets and inreasingthe size of the other. Consequently, in the optimal solution the partitioning line l divides Sbetween points p�(i); p�(i+1) and p�(i)+n; p�(i+1)+n, for some i, 0 � i � n� 2. (The remainingase when l divides S between points p2n�1; p0 and pn�1; pn is not optimal, sine the points ofS are shifted.) By the onstrution of S, the diameter of S1 = fp�(i+1)+n; : : : ; p�(0); : : : ; p�(i)g,idential with the diameter of S2, is equal to the distane between p�(i) and p�(i+1)+n, whihis q(sin (x0�(i) + �) + sin (x0�(i+1) + �))2 + (os (x0�(i) + �) + os (x0�(i+1) + �))2for some 0 � i � n � 2. After algebrai manipulation we obtain that the diameter isequal to q(2 + 2 os(x0�(i+1) � x0�(i)) and attains its minimum when �i = x0�(i+1) � x0�(i) isthe largest. Therefore, to solve the MAX-GAP problem we �rst solve the orresponding4
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S1 S2p�(i) p�(i+1)

p�(i)+np�(i+1)+nFigure 2: Two ases: (a) The optimal bipartition with respet to the area, perimeter ordiameter of the onvex hull is de�ned by MAX-GAP and (b) The optimal pair of the diskswith respet to the radius is de�ned by the MAX-GAP.bipartition problem for S that results in �nding points x0�(i) and x0�(i+1). The absolute valueof its di�erene is the solution to the MAX-GAP problem.With one extra e�ort we will show how to prove two remaining ases. In fat, we showthe area ase; the perimeter ase an be dealt similarly. Note that the optimal bipartition(S1; S2) de�ned by a line l with respet to the perimeter or area funtion is same as thethe optimal bipartition with respet to the diameter funtion. (As before, the ase whenS1 = fp�(0); : : : ; p�(n�1)g, S2 = S � S1 is not optimal by de�nition of S.) The area of theonvex hull of set S1 (S2) is equal one half of the area of the onvex hull of S minus the areaof the retangle with orners at p�(i); p�(i+1); p�(i)+n; p�(i+1)+n, 0 � i � n � 2. This area is,therefore, minimized when the area of the retangle is maximized, whih is equal toq2� 2 os�i �q2 + 2 os�i = 2 sin�i:In the given interval, this value attains maximum when �i = x0�(i+1) � x0�(i) is maximal.Therefore, to solve the MAX-GAP problem we an solve the minimum area problem forthe line bipartition problem for S. As a byprodut, this solution produes values x0�(i) andx0�(i+1). The absolute value of its di�erene is the solution to the MAX-GAP problem. Thisends the proof.Theorem 2 In the algebrai deision-tree model every solution algorithm for the Eulideantwo-enter problem (even if all the points are known in advane to lie on a onvex hull) hastime omplexity 
(n logn).Proof. Let 0 � x0; x2; : : : ; xn�1 � 1 be an input of the MAX-GAP problem and let S =fp�(0); p�(1); : : : ; p�(n�1); p�(0)+n; : : : ; p�(n�1)+ng be the orresponding sequene of 2n shiftedpoints, as desribed above. By symmetry, eah of the two disks d1 and d2 in the optimalsolution will ontain exatly n points of S and disks will be of the same radius (see Figure2(b)). The disk d1 (d2) will be de�ned by two points p1 and p2 of S (three points de�ne theunit irle with all S points). Thus, these two points will de�ne the diameter of eah one of5



disks. In that ase, the number of points between p1 and p2 lying on the unit disk (in lokwisediretion) is exatly n; otherwise disk d1 (d2) will over less than n points. Consequently,these points are p�(i+1) and p�(i)+n, for some i, 0 � i � n� 2. (By onstrution and shiftingof S, the points p�(0) and p�(n�1) an not produe an optimal solution.) The diameter of d1(d2) is equal to q(2 + 2 os(x0�(i+1) � x0�(i)) for some i, 0 � i � n� 2 and the smallest valueis ahieved when x0�(i+1) � x0�(i) is maximal. Thus, in order to solve the MAX-GAP problemwe an solve the Eulidean two-enter problem, whih gives us as a part of the solutionx0�(i+1) and x0�(i) values. The absolute value of its di�erene is the solution to the MAX-GAPproblem.2.2 Square rotationWe will show linear redutions from the MAX-GAP problem to the two overing problemand from GAP-EXISTENCE problem to the deision variant of the L1 disrete two enterproblem.Theorem 3 In the algebrai deision-tree model every solution algorithm for the two ov-ering problem (even if all the points are known in advane to lie on a onvex hull) has timeomplexity 
(n logn).Proof. Given an instane 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, we map eahx�(i) to four points:a�(i) = (x�(i); 1�x�(i)); b�(i) = (1�x�(i);�x�(i)); �(i) = (�x�(i);�1+x�(i)); d�(i) = (�1+x�(i); x�(i))Let A = fa�(i)gn�1i=0 ; B = fb�(i)gn�1i=0 ; C = f�(i)gn�1i=0 and D = fd�(i)gn�1i=0 . All the points of theset A [ B [ C [D lie on the edges of the tilted unit square M (see Figure 3). We assumethat the di�erenes between x�(n�1) and 1 and between x�(0) and 0 are less than MAX-GAPsolution; otherwise we an perform the similar transformation as we did before.De�ne S be a set A[B [C [D plus four more points that orrespond to the verties ofM . Note, that S an be overed by two axis-parallel retangles r1 and r2 of perimeter 6 eahone. By symmetry, eah of two axis-parallel retangles r1 and r2 in the optimal solution willontain exatly 2n + 2 points; otherwise we will improve the solution by extending one ofthe retangles and shrinking the other. The verties of M are the extreme points of S andthey serve as determinators of the smallest axis-parallel retangle that overs S, that is, theedges of this retangle must ontain these points. If some retangle rj; j = 1; 2 ontains threedeterminators then the perimeter of rj is at least 6. It remains to show what happens wheneah retangle has to ontain 2 determinators. We might notie, though, that if there is anindex i suh that any three of the points a�(i), b�(i), �(i), d�(i) belong to the same overingaxis-parallel retangle, then the perimeter of this retangle is greater or equal to 6. In orderto improve the solution, we have to deal with two di�erent ases (see Figure 3(a,b)).Case (a). Eah retangle takes two adjaent determinators. Then, for eah index i, 0 �i � n� 1 exatly two of a�(i), b�(i), �(i), d�(i) points are overed by eah retangle andthese two points must lie on the adjaent edges. In this ase the perimeter of eahretangle equals 6� 2(x�(i+1) � x�(i)) for some i, 0 � i � n� 2.6
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x�(i)1-x�(i+1) x�(i)1-x�(i+1)
Figure 3: Min-Max Retangle Problem: two ases.Case (b). Eah retangle takes two opposite determinators. Then, for eah index i, 0 � i �n�1 exatly two of a�(i), b�(i), �(i), d�(i) points are overed by eah retangle and thesetwo points must lie on the opposite edges. In this ase the perimeter of r1 is equal to8� 4x�(i+1) and the perimeter of r2 is equal to 4 + 4x�(i) for some i, 0 � i � n� 2.Consider the sum of two perimeters in Case (b). The sum is equal to 12� 4(x�(i+1) � x�(i)).Thus, either eah perimeter is equal to 6� 2(x�(i+1) � x�(i)) (whih is the same result as inCase (a)), or one of the perimeters is smaller than 6� 2(x�(i+1)�x�(i)) and the other greaterthan 6 � 2(x�(i+1) � x�(i)). It follows, that the solution obtained in Case (a) is optimaland attains its minimum when the di�erene x�(i+1) � x�(i) is largest. This di�erene is thesolution to the MAX-GAP problem.Theorem 4 In the algebrai deision-tree model every solution algorithm for the L1 disretetwo-enter problem has time omplexity 
(n logn).Proof. Given an instane 0 � x0; x2; : : : ; xn�1 � 1, Æ of the GAP-EXISTENCE problem, wemap eah x�(i) to four points:a�(i) = (x�(i) + Æ; 1� x�(i)); b�(i) = (1� x�(i);�x�(i))�(i) = (�x�(i);�1 + x�(i) � Æ); di = (�1 + x�(i); x�(i))Let A = fa�(i)gn�2i=0 ; B = fb�(i)gn�1i=0 ; C = f�(i)gn�2i=0 and D = fd�(i)gn�1i=0 . De�ne S be a setB [D and put F = A[C (as a matter of fat the proof holds for S = A[B [C [D). Weare asking the question whether there are two disrete squares of radius 1 that entered at Fan over all the points of S? See Figure 4 above. Let b1 be the square of radius 1 enteredat a�(i) 2 A, for some i, 0 � i � n � 2. Then b1 overs all the points b�(0); b�(1); : : : ; b�(i).7



Æ111 enter ofb1
Æ 1 1enter ofb2Figure 4: Centers of two disrete squares.Assume that x�(i+1) � x�(i) � Æ. Then 1 � (x�(i+1) � x�(i)) + Æ � 1. It turns out that b1also overs all the points d�(i+1); d�(i+2); : : : ; d�(n�1). Thus, the remaining unovered pointsare D0 = fd�(1); d�(2); : : : ; d�(i)g and B0 = fb�(i+1); b�(i+2); : : : ; b�(n�1)g. If we hoose b2 to beentered at point �(i+1) then b2 overs B0 and D0. This is beause the edge size of b2 is 1and 1� (xi+1� xi) + Æ � 1. If there is no index i, suh that xi+1� xi � Æ then points b�(i+1)and d�(i+1) remain unovered by b2 and there is no enter in F for b2 with the edge size 1that will over them. Thus, the answer to the GAP-EXISTENCE problem, is the same asthe answer for the L1 disrete two-enter problem for the sets S and F .2.3 Quadruple yle rotationGiven an instane 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, we perform a similartransformation as for the �rst two problems onsidered in this paper, with the di�erene thatnow we map eah number to four points, one point per quadrant (we assume that there areat least two distint numbers in the MAX-GAP instane). Let x0�(i); 0 � i � n�1 be de�nedas before. Eah x�(i) orresponds to four points p�(i),p�(i)+n,p�(i)+2n,p�(i)+3n with oordinates:(os (� � x0�(i)); sin (� � x0�(i))), (os (�2 � x0�(i)); sin (�2 � x0�(i))), (os (x0�(i));� sin (x0�(i))) and(os (3�2 � x0�(i)); sin (3�2 � x0�(i))), respetively. In order to guarantee the existene of at leastone index i, 0 � i � n� 2, suh that the distane between points p�(i) and p�(i+1) is smallerthan the distane between points p�(n�1) and p�(0)+n, we shift all the points along the thears of the unit disk, similarly to what we did in the double yle rotation transformation.Clearly, all these steps an be aomplished in linear time.Theorem 5 In the algebrai deision-tree model every solution algorithm for the two-lineenter problem (even if all the points are known in advane to lie on a onvex hull) has timeomplexity 
(n logn).Proof. Given an instane 0 � x0; x2; : : : ; xn�1 � 1 of the MAX-GAP problem, let S bea set of 4n points de�ned above. De�nitely, S an be overed by two strips w1 and w2,8
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Figure 5: The optimal solution is ahieved in the () ase (� = x�(i+1) � x�(i)).eah of width 1. Moreover, if one of the strips ontains any three of four extreme points(0;�1),(�1; 0),(0; 1),(1; 0) then it will have a width at least 1. Thus, we an assume thateah strip ontains only two extreme points. By symmetry, in any optimal solution eahstrip will over exatly 2n points and strips will be of equal width; otherwise we inreasethe width of one of the strips and derease the width of the other. Hene, aording toour onstrution there are only two possible on�gurations. In the �rst on�guration, eahstrip ontains two opposite extreme points; in the seond on�guration, eah strip ontainstwo adjaent extreme points. It is easy to see that for the �rst on�guration the optimalsolution is ahieved when there are exatly n points out of the left side of strip w1 andthere are exatly n points out of right side of w1 (otherwise, one of the strips is wider thanthe other, see Figure 5(a,b)). It means that eah side of strip w1 (resp. w2) in the �rston�guration is de�ned by two points p�(i) and p�(i+1)+n (resp. p�(i)+n and p�(i+1)+2n) forsome i; 0 � i � n � 2. The value of the width of w1 (w2) an be obtained by omputingthe distane between these two points and is equal to q2� 2 sin (x0�(i+1) � x0�(i)) for somei; 0 � i � n� 2. For the seond on�guration, the optimal solution is de�ned by two stripssuh that eah one of them ontains 2n onseutive points along the ar of the unit disk(Figure 5()). In that ase the width of eah strip is equal to q1� sin (x0�(i+1) � x0�(i)), forsome i; 0 � i � n� 2. Thus, we obtain that the solution attains its minimum in the seondon�guration when x0�(i+1)� x0�(i) is the largest. Eah x0�(i) is between 0 and 1 and sinx is aninreasing funtion in the given interval [0; �2 ℄. Hene, to solve the MAX-GAP problem we�rst solve the orresponding two-line enter problem for S and then �nd a solution for theMAX-GAP problem in linear time.Theorem 6 In the algebrai deision-tree model every solution algorithm for the smallestrotated enlosing square (even if all the points are known in advane to lie on a onvex hull)has time omplexity 
(n logn). 9



(a) Op2 � 2 os (x0�(i+1) � x0�(i))
(b) Op2 � 2 sin (x0�(i+1) � x0�(i))

Figure 6: Smallest enlosing square (a) and largest empty insribed square (b).Proof. Let x0; : : : ; xn�1 be an input to the MAX-GAP problem and let S be a set of pointsas in the previous proof. We set q = (0; 0). Obviously, set S an be overed by the enlosingsquare s of size 2. In order to do better we try to shrink s from all its sides till we hitsome point of S, then rotate it, while trying to shrink it more. We repeat this proesstill some side of s will ontain two points (otherwise we are able to ontinue rotate thesquare). See Figure 6(a). These two points should be onseutive on the disk (in a lokwisediretion) beause otherwise square s will miss some point of S. Therefore, these pointsare p�(i) and p�(i+1) for some i, 0 � i � n � 2 and the distane between them is equalto q2� 2 os (x0�(i+1) � x0�(i)) (aording to osines theorem). The total edge length of s is2q1� sin (x0�(i+1) � x0�(i)) +q2� 2 os (x0�(i+1) � x0�(i)) for some i; 0 � i � n � 2 whih is adereasing funtion of its argument x0�(i+1) � x0�(i) in the interval [0; �2 ℄. Thus, in order to�nd a solution to the MAX-GAP problem we �nd the smallest enlosing square s enteredat origin. This square is de�ned by points p�(i+1) and p�(i). The di�erene between valuesx0�(i+1) and x0�(i) is the solution to the MAX-GAP problem.Remark. If we allow s to be entered at any point in the plane, we obtain the same solutionas desribed in the theorem.Theorem 7 In the algebrai deision-tree model every solution algorithm for the largestrotated empty square problem (even if all the points are known in advane to lie on a onvexhull) has time omplexity 
(n logn).Proof. For a given instane x0; : : : ; xn�1 of the MAX-GAP problem, let S and q be as in theprevious theorem. There is an insribed empty square s with the edge size equals p2 andverties at extreme points of S. We try to extend the boundary of s from all its sides till wehit some point of S, then rotate s, while trying to extend it more. This proess is repeatedsimilarly to the previous ase till some edge of s ontains two points. It follows, by symmetry,that there are exatly n� 2 points between these two points (See Figure 6(b). Opposite tothe previous theorem these two points are p�(i) and p�(i+1)+3n for some i, 0 � i � n� 2. Thedistane between them is equal to q2� 2 sin (x0�(i+1) � x0�(i)). Thus, the total edge length of10



s is q2� 2 sin (x0�(i+1) � x0�(i)) + 2q1� os (x0�(i+1) � x0�(i)) for some i; 0 � i � n � 2 whihis inreasing funtion of its argument x0�(i+1) � x0�(i) argument in the interval [0; �2 ℄. Hene,in order to �nd a solution to the MAX-GAP problem we �nd the largest empty insribedsquare s entered at origin for a set S. This square is de�ned by points p�(i) and p�(i+1)+3n.The di�erene between values x0�(i+1) and x0�(i) is the solution to the MAX-GAP problem.Theorem 8 In the algebrai deision-tree model every solution algorithm for the rotatedsquares problem has time omplexity 
(n logn).Proof. Let x0; : : : ; xn�1 be an instane of the MAX-GAP problem. Let S be a set of pointsas used in the last theorem. We dupliate set S, obtaining a set S 0 of 4n points. We translateall the points of S 0 in the plane by vetor ~a = (5; 0), i.e. we add 5 to the x-oordinate ofevery point in S 0. Let S 00 = S [ S 0. We want to �nd two mutually parallel squares s1 ands2 that over S 00, so as to minimize the edge size of the largest square. Obviously, S 00 anbe overed by two axis-parallel squares s1 and s2 with edge size 2; square s1 overs S andsquare s2 overs S 0. In the better solution, s1 (s2) annot ontain any point of S 0 (S) sine itwould lead to the inreasing edge size. Thus, the only possibility to make s1 and s2 smalleris to rotate them around S and S 0, respetively. Sine a set S 0 is a translated opy of a setS, the squares s1 and s2 will be of the same size and remain mutually parallel in the optimalsolution. Aording to the remark after theorem 6, the best possible plaement of s1 (ands2) is de�ned by two points are p�(i) and p�(i+1) for some i, 0 � i � n � 2. As was pointedout before, the edge length of s1 is 2q1� sin (x0�(i+1) � x0�(i)) + q2� 2 os (x0�(i+1) � x0�(i))for some i; 0 � i � n � 2 whih is dereasing funtion of its argument x0�(i+1) � x0�(i) in theinterval [0; �2 ℄. This funtion ahieves its minimum when the di�erene x0�(i+1) � x0�(i) is thelargest. Then, after we �nd the solution to the rotated squares problem, we an �nd pointsp�(i+1) and p�(i) that de�ne square s1. The di�erene between values x0�(i+1) and x0�(i) is thesolution to the MAX-GAP problem.3 ConlusionsIn this paper we have presented lower bounds for a number of di�erent overing and opti-mization problems. All the proofs are based on a linear time redutions from MAX-GAPproblem. The ruial property of the redutions is that they an be obtained by mappingthe numbers from the MAX-GAP instane to the points on the irle or tilted square andtheir subsequent rotations. The hallenging questions remaining are how to narrow a gapbetween the existing algorithms for a several problems mentioned in this paper and theirlower bounds.Referenes[1℄ D. Avis, J. Robert and R. Wenger \Lower bounds for line stabbing", in Inf. Proess. Lett., 33(1990), pp. 59{62.[2℄ P. K. Agarwal and M. Sharir, \Planar geometri loation problem and maintaining the widthof a planar set", in Pro. 2nd ACM-SIAM Symp. on Disrete Algorithms, pp. 449{458, 1991.11
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