
Obnoxious Facility Location:

Complete Service with Minimal Harm

�

Boaz Ben-Moshe, Matthew J. Katz, Michael Segal

Department of Mathematics and Computer Science

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

May 9, 1999

Abstract

We present e�cient algorithms for several instances of the following facility location

problem. (Facilities and demand sites are represented as points in the plane.) Place k

obnoxious facilities, with respect to n given demand sites and m given regions, where

the goal is to maximize the minimal distance between a demand site and a facility,

under the constraint that each of the regions must contain at least one facility.

We also present an e�cient solution to the following planar problem that arises as a

subproblem. Given n transmitters, each of range r, construct a compact data structure

that supports coverage queries, i.e., determine whether a query polygonal/rectangular

region is fully covered by the transmitters.

1 Introduction

We consider several instances of the following generally-stated problem, which has several

applications in, e.g., urban, industrial and military task planning.

Placing Obnoxious Facilities: Let P be a set of n points in the plane (called demand

points), and let R be a set of m, m � n, regions in the plane (called neighborhoods). Let k

be a positive integer (k is the number of facilities, e.g., garbage dumps, to be placed). Find

k sites c

1

; : : : ; c

k

for the k facilities, such that (i) C = fc

1

; : : : ; c

k

g is a piercing set for R,

that is, each of the neighborhoods in R is served by at least one facility that is located in

�

Work by M. Katz has been supported by the Israel Science Foundation founded by the Israel Academy

of Sciences and Humanities.

1

the neighborhood. (ii) The minimal distance between a demand point in P and a site in C

is maximized.

This problem belongs to a class of problems that deal with the location of facilities,

both desirable and undesirable, under various conditions. This class of problems occupies

researches in operations research, especially in the �eld of location science. Some of the more

geometric problems have also been treated in the computational geometry literature. In a

typical facility location problem, we need to �nd a location for some facility, with respect to

a given set of demand sites. Both the demand sites and the facility are represented as points

in the plane. The chosen location should satisfy a given set of conditions, e.g., minimize

the maximal distance to a demand site (known as the 1-center problem). Our problem is

somewhat more complex (though de�nitely realistic) than most of the related problems.

There are several facilities, and the desired locations must satisfy both a piercing condition

and a distance optimization condition.

Most of the facility location problems described in the literature are concerned with

�nding locations for \desirable" facilities. The goal there is to minimize a distance function

between the facilities (e.g., supermarkets) and the demand sites (e.g., customers). However,

just as important are the problems dealing with the location of \undesirable" or obnoxious

facilities (e.g., garbage dumps, dangerous chemical factories or nuclear power plants). In

these problems, instead of, e.g., minimizing the maximal distance between the facility and a

demand point, we want to maximize the minimal distance between the facility and a demand

point. Notice that if the domain of possible locations for the facility is the entire plane, then

the problem becomes impractical and not interesting. Therefore, some constraints on the

location of the facility should be speci�ed, e.g, forcing it to lie in some bounded region R.

In this paper we assume that the regions in R are unit axis-parallel squares (actually,

translated copies of some axis-parallel rectangle). We consider both the L

1

case and the L

2

case. In the L

1

case (resp. L

2

case), we seek the maximal value d

�

for which there exist k

locations such that (i) none of the locations lies in the interior of a square of edge length 2d

�

(resp. in a disk of radius d

�

) centered at a demand point, and (ii) for each of the squares

R 2 R, at least one of the k locations lies in R (in other words, the k locations consist of

a k-piercing set for the set of squares R). We present e�cient solutions for k = 1; 2, both

2

under the L

1

metric and under the Euclidean metric. Our solutions consist of solutions to

the corresponding decision problems to which we apply either the sorted matrices technique

of Frederickson and Johnson [10] or the parametric searching technique of Megiddo [14] to

obtain the maximal value d

�

. For k � 3 we show two examples which in some sense imply

that there is not much hope for a subquadratic solution for k = 3 or for any other value

of k greater than 3. In addition, we also present a solution to the weighted version of the

simplest problem (k = 1 under L

1

), and present a lower bound for its corresponding decision

problem.

Consider for example the decision version of the problem in which we need to place two

facilities, under the Euclidean metric. In this problem, we need to consider all possible

solutions to the 2-piercing problem for R. For each such solution p

1

; p

2

, we must check

whether both p

1

and p

2

are not covered by the n disks of radius d centered at the points of P .

By adapting a lemma of Katz et al. [11], and employing, in a sophisticated way, a technique

due to Sharir [18] that resembles searching in monotone matrices, we transform the problem

into the following reception problem (with some additional issues that require attention):

Givenm transmitters, each of range d (e.g., the transmitters of some communication system),

construct a compact data structure that supports coverage queries, i.e., determine whether

a query rectangular region is fully covered by the transmitters. In other words, preprocess

a set of m congruent disks, so that, given a query rectangle R, one can quickly determine

whether R is fully contained in the union of the disks. We present a simple, though non-

trivial, solution to this problem, and to the problem where the query regions are constant-size

polygons instead of rectangles. We are not aware of any previous solution to these problem.

Our solution uses the Voronoi diagram of the centers of the disks and data structures for

orthogonal (alternatively, simplex) range searching, and vertical (alternatively, general) ray-

shooting among line segments. The construction time is nearly linear for both rectangular

queries and polygonal queries, the space required is linear, and the query cost is O(log n) for

rectangular queries and roughly O(n

1=2

) for polygonal queries.

The problem in which the n demand points lie in a simple polygon R with at most n

vertices, and one needs to place a single facility in R, such that the minimal Euclidean

distance between a demand point and the facility is maximized, was solved in O(n log n)

3

time by Bhattacharya and Elgindy [4]. If the polygon R is a rectangle, and each of the

demand points p

i

is assigned a weight w

i

, so that the distance between p

i

and a point q 2 R

is w

i

times the L

1

distance between them, then one can apply the O(n log

4

n) solution of

Follert et al. [9]. The latter bound was improved recently to O(n log

2

n) by Bespamyatnikh

et al. [3], who actually consider a slightly more general problem. In their problem each

demand point p

i

is assigned two weights w

x

i

and w

y

i

, and the distance between p

i

and q is

w

x

i

jp

x

i

� q

x

j + w

y

i

jp

y

i

� q

y

j. Brimberg and Mehrez [5] solve the following problem: Find k

locations in the rectangle R (for k facilities), such that (i) the distance between any two

locations is at least some given value d, and (ii) the minimal distance between a demand

point and a facility is at least some given value r. Katz et al. [12] present improved solutions

to this problem.

The paper is organized as follows. In Section 2 we present our solution to the reception

(sub)problem. Section 3 deals with our main problem (placing obnoxious facilities), where

we distinguish between the L

1

case and the L

2

case.

2 The Reception Problem

We consider the following problem: Given n transmitters, each of range r, construct a com-

pact data structure that supports coverage queries, i.e., determine whether a query (rectan-

gular or polygonal) region is fully covered by the transmitters. In other words, preprocess

a set of n congruent disks for coverage queries, i.e., determine whether a query region R is

fully contained in the union of the disks.

We �rst present a solution for polygonal region queries, that is, we assume the query

regions are simple polygons with at most c vertices, for some constant c. Then we show how

the bounds for the preprocessing time and query cost can be improved if the query regions

are axis-parallel rectangles.

2.1 Polygonal region queries

In this subsection we deal with the following problem: Given a set D of n unit disks in the

plane, construct a compact data structure, so that, given a query polygon Q, one can quickly

4

determine whether Q is fully covered by the disks in D. Let P denote the set consisting

of the center points of the disks in D. The main components of our data structure are (i)

the Voronoi diagram VD of P and a corresponding point location data structure, (ii) a data

structure for simplex range searching over a subset of the vertices of VD, and (iii) a data

structure for ray shooting over a set of portions of edges of VD.

The preprocessing phase. The preprocessing phase consists of the following three steps:

1. Construct the Voronoi diagram VD of P , and the corresponding point location data

structure, both in O(n log n) time [2].

2. Compute the set V

0

of all vertices of VD that are not covered by disks inD, by checking,

for each vertex v of VD, whether the distance between v and its corresponding Voronoi

sites is greater or equal to 1. Construct in O(n

1+"

) time a linear-size data structure

for simplex range searching queries over V

0

[13].

3. Compute the set E

0

of the portions of the edges of VD that are not covered by disks in

D. According to the claim below, the size of E

0

is only O(n), and it can be computed

in O(n) time. Construct in O(n

1+"

) time a linear-size data structure for ray shooting

over E

0

[1].

Claim 1 The number of edge portions in E

0

is O(n), and E

0

can be computed from VD in

O(n) time.

Proof. Let e be an edge of VD, and let p 2 P be one of the two corresponding Voronoi

sites. Notice that if a point on e is covered by one or more of the disks in D, then this point

is necessarily covered by the disk centered at p. Thus, in order to determine the portions

of e that are not covered by D, it is enough to consider the disk centered at p, ignoring all

other disks. The number of such portions is clearly at most two.

Answering queries. A query with a polygon Q is treated as follows. We �rst partition Q

into a constant number of triangles. (Recall that Q has at most c vertices, for some constant

c.) For each of the triangles �, we perform a range searching query using the simplex range

searching data structure. If the answer obtained to one (or more) of these queries is positive,

5

i.e., one (or more) of these triangles contains points of V

0

, then we conclude that Q is not

fully covered by the disks in D, return \NO" and stop. Otherwise, we proceed as follows.

For each edge e = ab of Q:

� Find the cell C

a

(resp. C

b

) of VD containing the endpoint a (resp. b) of e, using the

point location data structure.

� Calculate the distance d

a

(resp. d

b

) between a (resp. b) and the point of P de�ning

C

a

(resp. C

b

). If d

a

� 1 (resp. d

b

� 1), return \NO" and stop.

� If a and b do not lie in the same cell of VD (i.e., if C

a

6= C

b

), then perform a ray shooting

query with the ray emanating from a and containing e, using the ray shooting data

structure. If the answer obtained is positive and the hitting point is on e, return \NO"

and stop.

If we have reached this point, we may conclude that Q is fully covered by the disks in D

and return \YES".

The algorithm for answering a query is quite simple, however, it is not obvious that it is

correct. In the following theorem we prove that it is indeed correct, that is, it returns \YES"

if the query polygon Q is fully covered by the disks in D, and \NO" otherwise.

Theorem 2 The algorithm is correct; it returns \YES" if the query polygon Q is fully

covered by the disks in D and \NO" otherwise.

Proof. Consider a point in Q, that lies in the Voronoi cell of p. is covered by D

if and only if it is covered by the disk centered at p. Moreover, the disk centered at p is

\responsible" for covering the region Q\C

p

, where C

p

is the Voronoi cell of p. It is therefore

enough to verify that the point in Q\C

p

that is the furthest from p, is at distance less than

1 from p. This point, however, is either a vertex of the boundary of C

p

, or an intersection

point between an edge of the boundary of C

p

and the boundary of Q, or a vertex of Q. The

range searching queries performed in the �rst part of the algorithm take care of points of

the �rst kind; by the answers obtained, we immediately know whether there exist vertices

of VD that lie in Q and are not covered. The second part of the algorithm takes care of

6

points of the two other kinds, by checking whether the boundary of Q is fully covered by D.

Let e be an edge of the boundary of Q. We �rst verify that both its endpoints are covered.

If both endpoints lie in the same Voronoi cell and they are both covered, then clearly the

entire edge is covered. However, if the endpoints lie in di�erent Voronoi cells, it is possible

that portions of the interior of e are not covered. However, this can happen if and only if

e intersects a segment of E

0

, and this will be detected by the ray shooting query performed

for e.

Concerning the complexity of the above algorithm, the preprocessing time is O(n

1+"

),

which is the time required to construct the range searching and ray shooting data structures

[1, 13], the space complexity is O(n), and the query cost, determined by the range searching

and ray shooting queries, is O(n

1

2

+"

). We thus obtain:

Theorem 3 Let D be a set of n unit disks in the plane. It is possible to preprocess D in

time O(n

1+"

), into a linear-size data structure, such that determining whether a constant-size

query polygon Q is fully covered by the disks in D can be done in time O(n

1

2

+"

).

Remark 1: As known, the n

"

factors in the theorem above can be replaced by slightly

smaller factors. Also the standard storage/query tradeo� can be applied to construct a data

structure of size n � m � n

2

with query time O(n

1+"

=m

1=2

). In particular, if the query

polygons are of linear size, then we can construct a data structure of size and query cost

roughly O(n

4=3

).

2.2 Rectangular region queries

In this subsection we consider the special case where the query regions are axis-parallel

rectangles. This is the case to which we refer in Section 3. For this case, we can obtain

better bounds for the preprocessing time and query cost, by replacing the general range

searching and ray shooting data structures with standard specialized data structures. More

precisely, we use a data structure for orthogonal range searching over the set V

0

[6], and a

data structure for horizontal/vertical ray shooting over the set E

0

[2]. We thus obtain:

7

Theorem 4 Let D be a set of n unit disks in the plane. It is possible to preprocess D in time

O(n log n), into a linear-size data structure, such that determining whether a query rectangle

Q is fully covered by the disks in D can be done in time O(log n).

Remark 2: The bounds for the somewhat simpler problem, where D is a set of unit

axis-parallel squares instead of unit disks remain the same.

3 Obnoxious Facilities

In this section we solve several instances of the Placing Obnoxious Facilities problem stated

in the Introduction. In all the problem instances that we consider, the set of regions R

consists of unit axis-parallel squares. We consider the two problems in which the number of

facilities k is one or two, respectively, under the L

1

metric as well as under the Euclidean

metric. For k � 3 we show two examples which in some sense imply that there is not

much hope for a subquadratic solution for k = 3 or for any other value of k greater than 3.

Obviously, if the set R is not k-pierceable, then there is no solution. Therefore, we assume

that R is k-pierceable. We can check whether R is k-pierceable, 1 � k � 2, in O(m) time

[19].

When solving a problem, we �rst present a solution to the corresponding decision prob-

lem, and then apply the sorted matrices technique of Frederickson and Johnson [10] or the

parametric searching technique of Megiddo [14] to obtain a solution to the original problem.

That is, we �rst solve a problem of the form: Determine whether there exist k locations,

such that, for each of the m unit squares r 2 R, at least one of these locations is in r, and

the minimal distance between the n demand points and these locations is at least d, where

d is a parameter of the problem. We then apply one of the above techniques to obtain the

maximal value d

�

for which the decision problem returns a positive answer.

3.1 The L

1

case

3.1.1 k = 1

In this problem we wish to place only one facility. This problem is relatively easy, and we

present a solution to the weighted version of the problem as well.

8

In the non-weighted version of the problem, we simply compute the L

1

Voronoi diagram

of P restricted to the non-empty rectangle R = \R. It is easy to see that the desired

location is a vertex of the restricted diagram, so, for each of these vertices, we compute its

corresponding distance, and select the vertex with largest distance. Clearly, all this can be

done in O(n log n) time.

In the weighted version of the problem, each point p

i

2 P has two weights associated

with it: w

1

(p

i

) and w

2

(p

i

). Solving the decision problem for d, each point p

i

2 P de�nes a

forbidden region F

i

, where the facility may not reside. F

i

is the rectangle

fq 2 R

2

j d

x

(q; p

i

) < d � w

1

(p

i

) ; d

y

(q; p

i

) < d � w

2

(p

i

)g :

Let U denote the union of the forbidden regions F

1

; : : : ; F

n

. Let R = \R. R is a non-empty

rectangle (since, by assumption, R is 1-pierceable). An allowed location for the facility exists

if and only if U does not completely cover R. Since it is possible to determine whether a

set of n rectangles covers another rectangle R, using a segment tree, in O(n log n) time, we

obtain an O(n log n) solution to the decision problem.

Bespamyatnikh et al. [3] apply a result of Megiddo and Tamir [15] to obtain in O(n log

2

n)

time the maximal value d

�

for which the corresponding decision problem returns \YES". (A

parallel algorithm for the decision problem is presented in [3]; it employsO(n log n) processors

and computes the answer in O(log n) time.) We thus obtain:

Theorem 5 Under the L

1

metric and for k = 1, the problem can be solved in O(n log n)

time, and the weighted version of the problem can be solved in O(n log

2

n) time.

A lower bound. We obtain a lower bound of
(n log n) for the decision problem (of both

the weighted and non-weighted versions), by showing that even the one-dimensional version

of the problem \determine whether a set of n unit squares covers another square" has a

lower bound of
(n log n). Consider the GAP-EXISTENCE problem: Given a set A of n

real numbers A = fa

1

; : : : ; a

n

g, determine whether there exist two consecutive numbers in

the sorted sequence obtained from A, such that the di�erence between them is greater than

1. Sharir and Welzl [19] observed that this problem has a lower bound of
(n log n). We

transform a

i

, i = 1; : : : ; n, to the one-dimensional rectangle [a

i

; a

i

+ 1], thus obtaining a set

9

R of n rectangles. We de�ne R = [min

a

i

2A

a

i

; max

a

i

2A

a

i

]. It is clear that R is not covered

by the rectangles in R if and only if there exist two consecutive numbers as above.

3.1.2 k = 2

Assuming R is 2-pierceable (but not 1-pierceable), we need to determine whether there exist

two points p

1

; p

2

, such that fp

1

; p

2

g is a piercing pair for R, and neither p

1

nor p

2

lie in the

interior of U , where U is the union of the squares of edge length 2d centered at the points

of P . Assume fp

1

; p

2

g is a piercing pair for R, then we can divide the squares in R into

two disjoint subsets R

p

1

and R

p

2

, such that p

1

2 R

1

= \R

p

1

and p

2

2 R

2

= R

p

2

. (If some

of the squares in R are pierced by both p

1

and p

2

, then there are many ways to do this.)

Therefore, we could search for a \good" piercing pair fp

1

; p

2

g (i.e., a piercing pair such that

both points are not in the interior of U) by considering all possible partitions of R into

two subsets R

1

;R

2

such that the rectangles R

1

= \R

1

and R

2

= \R

2

are non-empty. For

each such partition, we would have to check for each of the corresponding two rectangles

whether it contains a point that is not covered by U . However, this method is very ine�cient.

Fortunately, the following lemma that is taken from [11] allows us to restrict our search to

a quadratic number of partitions. Denote by X

R

the centers of the squares in R, sorted by

their x-coordinate (left to right), and by Y

R

the centers of the squares in R, sorted by their

y-coordinate (low to high).

Lemma 6 ([11]) If p

1

and p

2

are a piercing pair for R, then R can be divided into two

subsets R

1

and R

2

, p

1

2 \R

1

, p

2

2 \R

2

, such that R

1

can be represented as the union of

two subsets R

x

1

and R

y

1

(not necessarily disjoint, and one of them might be empty), where

the centers of squares of R

x

1

form a consecutive subsequence of the list X

R

, starting from its

beginning, and the centers of squares of R

y

1

form a consecutive subsequence of Y

R

, starting

from the list's beginning.

According to the lemma it is enough to consider partitions in which one of the subsets

is obtained by taking the i

x

leftmost squares in R together with the i

y

bottommost squares

in R, 0 � i

x

; i

y

� n. (In [11] the lemma is proven under the assumption that the piercing

10

points p

1

and p

2

are centers of squares in R. However, it is easy to see that the lemma is

also true without this assumption.)

We further restrict our search by employing a technique, due to Sharir [18], that resembles

searching in monotone matrices; for a recent re�nement of this technique and applications

see [7, 11]. Let M be an (m+1)� (m+ 1) matrix, whose rows (skipping row 0) correspond

to X

R

and whose columns (skipping column 0) correspond to Y

R

. An entry M

xy

in the

matrix is de�ned as follows. Let D

x

be the set of squares in R such that the x-coordinate of

their centers is smaller or equal to x, and let D

y

be the set of squares in R such that the y-

coordinate of their centers is smaller or equal to y. Let D

l

xy

= D

x

[D

y

and D

r

xy

= (R�D

l

xy

),

and let R

l

xy

= \D

l

xy

and R

r

xy

= \D

r

xy

.

M

xy

=

8

>

>

>

<

>

>

>

:

`Y Y

0

if R

r

xy

6� U and R

l

xy

6� U

`YN

0

if R

r

xy

6� U but R

l

xy

� U

`NY

0

if R

r

xy

� U but R

l

xy

6� U

`NN

0

if R

r

xy

� U and R

l

xy

� U

where we assume of course that the empty set is contained in U . It follows that the answer

to our decision problem is \YES" if and only if M contains a `YY' entry.

In order to apply Sharir's technique the lines and columns ofM

1

must be non-decreasing

(assuming `Y' > `N'), and the lines and columns of M

2

must be non-increasing, where M

i

is the matrix obtained from M by picking from each entry only the i'th letter, i = 1; 2. In

our case this property clearly holds, since, for example, if for some x

0

and y

0

, M

1

x

0

;y

0

=`Y',

then for any x

0

� x

0

and y

0

� y

0

, M

1

x

0

;y

0

=`Y'. Thus we can determine whether the implicit

matrix M contains an entry `YY' by inspecting only O(m) entries in M , advancing along a

connected path within M [7]. For each entry along this path, we need to determine whether

R

z

xy

is fully covered by U , z 2 fl; rg. This can be done in O(log n) time by dynamically

maintaining the intersection \D

z

xy

, and by utilizing the data structure of Section 2.2 (see

Remark 2 there). Thus in O(n log n) time we can determine whether M contains a `YY'

entry.

Optimization. We show how to �nd the smallest value d

�

for which the matrix M above

contains a `YY' entry. It is easy to verify that d

�

is either (i) half the di�erence between

the x-coordinates (alternatively, y-coordinates) of a pair of points in P , or (ii) the horizontal

(respectively, vertical) distance between a vertical (respectively, horizontal) edge of a square

11

in R and a point in P . All these potential values can be represented by four (implicit) sorted

matrices; two matrices for each axis.

We de�ne the two sorted matrices corresponding to the x-axis. Let L

x

be the sorted

list consisting of the x-coordinates of the points in P and the x-coordinates of the vertical

edges of the squares in R. Entry (i; j) in matrix M

1

stores the value (x

j

� x

i

)=2, where

x

i

; x

j

are the i-th and j-th elements in L

x

, and entry (i; j) in the matrixM

2

stores the value

(x

j

� x

i

). Clearly, these matrices contain several values that do not belong to the set of

potential solutions, but this does not a�ect the running time. We de�ne the two sorted

matrices M

3

and M

4

corresponding to the y-axis analogously.

We now apply the Frederickson and Johnson technique [10] to each of the four matrices

in order to �nd the smallest value in these matrices for which the decision algorithm returns

\Yes". We thus obtain:

Theorem 7 Under the L

1

metric and for k = 2, the problem can be solved in O(n log

2

n)

time. The corresponding decision problem can be solved in O(n log n) time.

3.1.3 k � 3

The largest integer l for which there exists a linear-time algorithm that determines whether

R is l-pierceable (and, if yes, computes an l-piercing set) is 3 [16, 17, 19]. This fact caused

us to believe that Lemma 6 is also true for a piercing triplet. That is, if p

1

; p

2

; p

3

is a

piercing triplet for R, then R can be divided into three subsets, such that one of them can

be represented as the union of two subsets as in Lemma 6. Unfortunately, we came up with

a counterexample that is depicted in Figure 1(a). All piercing triplets for the 8 squares of

Figure 1(a) must consist of a point from each of the three black rectangles, and it is easy to

verify that we cannot divide the set of squares as required.

Figure 1(a) is not, however, a counterexample for k � 4. Since by adding squares

and increasing the number of piercing points, the desired property might reappear. For

completeness, we also provide a counterexample for k � 4 depicted in Figure 1(b). Assume

that each of the four pairs in the �gure lies near the corresponding corner of some huge square

region s. Then we can add any number of squares around the middle of s and increase the

number of piercing points accordingly, without ruining the counterexample.

12

P

1

P

2

P

3

1

2

3

4

5

6

7

8

A

B

C

D

E

G

F

H

(a)

area for additional squares and piercing points

(b)

Figure 1: Lemma 6 is false for k � 3

The above counterexamples provide, in some sense, evidence that it is apparently impos-

sible to obtain subquadratic solutions for k � 3.

3.2 The L

2

case

3.2.1 k=1

As in the L

1

case, we can solve this problem in O(n log n) time by computing the Voronoi

diagram of P restricted to the non-empty rectangle R = \R. We thus obtain:

Theorem 8 Under the L

2

metric and for k = 1, the problem can be solved in O(n log n)

time.

3.2.2 k=2

The decision algorithm is identical to the decision algorithm in the L

1

case (Section 3.1.2),

except for the component that deals with queries of the form: determine whether a query

rectangle is fully contained in U . Now U is the union of n disks, each of radius d, so we use

our solution to the Reception Problem with axis-parallel rectangular queries (Section 2.2).

We obtain an O(n log n)-time decision algorithm.

13

We apply the parametric searching technique to obtain in O(npolylog n) time the max-

imal value d

�

for which the decision problem returns \YES"; we omit the details from this

version. (The problematic set of potential values is the one consisting of the radii of all

circles that pass through three points in P . This set is also one of the sets of potential

values in the planar 2-center problem, solved by Sharir [18] with parametric searching in

O(npolylog n) time. Sharir's solution has been improved by Eppstein to randomized ex-

pected time O(n log

2

n) [8].) We thus obtain:

Theorem 9 Under the L

2

metric and for k = 2, the problem can be solved in O(npolylog n)

time. The corresponding decision problems can be solved in O(n log n) time.

Conclusion

We have considered several instances of the Placing Obnoxious Facilities problem, to which

we have presented e�cient solutions. A natural question that arises is is it possible to devise

subquadratic solutions for instances with values of k greater than 2.

The dual problem, where the facilities are \friendly" or desirable, is also interesting. For

k = 2 and under the L

1

(resp. L

2

) metric, this problem (actually, its corresponding decision

problem) becomes: Find a pair of points which serves as a piercing pair for both the set R of

unit squares and the set of squares (resp. disks) of radius d centered at the demand points.

In the L

1

case, this can be done by simply �nding in O(n) time a piercing pair for the union

of the two sets of squares. In the Euclidean case, we would like to employ Lemma 6 in a

sophisticated way, as we did in Section 3.1.2. Here, we need to determine, for each pair of

rectangles that is generated, whether the set of disks can be pierced by choosing a point in

each of the two rectangles. This can be done apparently by adopting Sharir's solution to the

(decision problem of the) planar 2-center problem [18] (see also [8]). We are still working on

the details.

References

[1] P.K. Agarwal and J. Matou�sek \Ray shooting and parametric search" SIAM J. Computing 22

(1993), 794{806.

14

[2] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf Computational Geometry:

Algorithms and Applications, Springer-Verlag, Berlin, 1997.

[3] S. Bespamyatnikh, K. Kedem and M. Segal \Optimal facility location under various distance

functions" Tech. Report 98-07, Dept. of Math and Comp. Science, Ben-Gurion University.

[4] B. Bhattacharya and H. Elgindy \An e�cient algorithm for an intersection problem and an

application" Tech. Report 86-25, Dept. of Comp. and Inform. Sci., University of Pennsylvania,

1986.

[5] J. Brimberg and A. Mehrez \Multi-facility location using a maximin criterion and rectangular

distances" Location Science 2 (1994), 11{19.

[6] B. Chazelle \Filtering search: a new approach to query-answering" SIAM J. Computing 15

(1986), 703{724.

[7] O. Devillers and M. Katz \Optimal line bipartitions of point sets" Int. J. Comput. Geom. and

Appls , to appear.

[8] D. Eppstein \Faster construction of planar two-centers" in Proc. 8th ACM-SIAM Sympos.

Discrete Algorithms, pp. 131{138, 1997.

[9] F. Follert, E. Sch�omer and J. Sellen \Subquadratic algorithms for the weighted maximin

facility location problem" in Proc. 7th Canad. Conf. Comput. Geom., pp. 1{6, 1995.

[10] G.N. Frederickson and D.B. Johnson \Generalized selection and ranking: sorted matrices"

SIAM J. Computing 13 (1984), 14{30.

[11] M.J. Katz, K. Kedem and M. Segal \Constrained Square-Center Problems" in 6th Scandina-

vian Workshop on Algorithm Theory, Lecture Notes in Computer Science 1432, pp. 95{106,

1998.

[12] M.J. Katz, K. Kedem and M. Segal \Improved algorithms for placing undesirable facilities"

manuscript.

[13] J. Matou�sek \E�cient partition trees" Discrete Comput. Geom. 8 (1992), 315{334.

[14] N. Megiddo \Applying parallel computation algorithms in the design of serial algorithms"

Journal of ACM 30 (1983), 852{865.

[15] N. Megiddo and A. Tamir \New results on the complexity of p-center problems" SIAM J.

Comput. 12(4) (1983), 751{758.

[16] D. Nussbaum "Rectilinear p-Piercing Problems" in Proc. 1997 International Symposium on

Symbolic and Algebraic Computation, pp. 316{323, 1997.

[17] M. Segal \On the piercing of axis-parallel rectangles and rings" in Proc. 5th European Symp.

on Algorithms , Lecture Notes in Computer Science (1284), pp. 430{442, 1997.

[18] M. Sharir \A near-linear algorithm for the Planar 2-center problem" Discrete Comput. Geom.

18 (1997), 125{134.

[19] M. Sharir and E. Welzl \Rectilinear and polygonal p-piercing and p-center problems" In Proc.

12th ACM Symp. on Computational Geometry, pp. 122{132, 1996.

15

