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Abstract

Let V be a set of points in a d-dimensional lp-metric space. Let s, t ∈ V and let L be a real number.
An L-bounded leg path from s to t is an ordered set of points which connects s to t such that the
leg between any two consecutive points in the set has length of at most L. The minimal path among
all these paths is the L-bounded leg shortest path from s to t. In the s-t Bounded Leg Shortest Path
(stBLSP) problem we are given two points s and t and a real number L, and are required to compute
an L-bounded leg shortest path from s to t. In the All-Pairs Bounded Leg Shortest Path (apBLSP)
problem we are required to build a data structure that, given any two query points from V and a real
number L, outputs the length of the L-bounded leg shortest path (a distance query) or the path itself
(a path query). In this paper we obtain the following results:

1. An algorithm for the apBLSP problem in any lp-metric which, for any fixed ε > 0, computes in
O(n3(log3 n + log2 n · ε−d)) time a data structure which approximates any bounded leg shortest
path within a multiplicative error of (1+ ε). It requires O(n2 logn) space and distance queries are
answered in O(log logn) time.

2. An algorithm for the stBLSP problem that, given s, t ∈ V and a real number L, computes in
O(n · polylog(n)) the exact L-bounded shortest path from s to t. This algorithm works in l1 and
l∞ metrics. In the Euclidean metric we also obtain an exact algorithm but with a running time of
O(n4/3+ε), for any ε > 0.

3. For any weighted directed graph we give a data structure of size O(n2.5 logn) which is capable of
answering path queries with a multiplicative error of (1+ ε) in O(log logn+ ℓ) time, where ℓ is the
length of the reported path.

Our results improve upon the results given by Bose et al. [5]. Our algorithms incorporate several new
ideas along with an interesting observation made on geometric spanners, which is of independent interest.

∗School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: liamr@cs.tau.ac.il
†Communication Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. Partially

supported by REMON (4G) consortium. E-mail: segal@cse.bgu.ac.il.



1 Introduction

The All Pairs Shortest Paths (APSP) problem is one of the most fundamental algorithmic graph problems.
The fastest algorithm for solving the problem in real-weighted directed graphs is due to Pettie [17] and
has a running time of O(mn + n2 log log n). It improves the long-standing bound of O(mn + n2 log n).
Here m and n are the number of edges and vertices, respectively. If fast matrix multiplication can be used
then a faster algorithm is available due to Zwick [20]. For undirected graphs with nonnegative integer edge
weights, a running time of O(mn) can be obtained by running a single source shortest paths algorithm of
Thorup [18] from each vertex of the graph.

Consider now the following interesting problem which is a natural generalization of the classical APSP.
Let the maximal leg of a path be its heaviest edge. Suppose now that there are many different types of
entities that would like to move from one point to another on a shortest path. The entities are divided into
types according to the maximal leg that each of them allows. In such a case, given two points s and t, each
entity may have a different shortest path from s to t. Therefore, there may be as many as

(n
2

)

different
paths between s and t. We now give the formal definition of the problem in geometric settings.

Let V be a set of points in a d-dimensional lp-metric space. Let s, t ∈ V and let L be a real number.
An L-bounded leg path from s to t is an ordered set of points which connects s to t such that the leg
between any two consecutive points in the set is at most L. The minimal path among all these paths is
the L-bounded leg shortest path from s to t. In other words, the L-bounded leg shortest path from s to t
is the shortest path from s to t in the graph G, where the weight of (x, y) is the lp-distance between x and
y or infinity if this distance exceeds L.

In the s-t Bounded Leg Shortest Path (stBLSP) problem we are given two points s and t from V and a
real number L, and are required to compute an L-bounded leg shortest path from s to t. In the All-Pairs
Bounded Leg Shortest Path (apBLSP) problem we are required to build a data structure that, given any
two query points from V and a real number L, outputs the length of the L-bounded leg shortest path (a
distance query) or the path itself (a path query).

A natural motivation for the problem comes from transportation networks. Suppose we wish to drive from
one depot station to another (among n others) and our car is capable of carrying enough fuel only for L
miles. In such a case we must drive on a route whose maximal leg is L. Naturally, we would like to take
the shortest possible route among all routes with a maximal leg L.

The distance from a vertex u to a vertex v in a graph G is denoted by δG(u, v). We say that an estimate
δ̂G(u, v) of the distance δG(u, v) is of stretch c if and only if δG(u, v) ≤ δ̂G(u, v) ≤ c · δG(u, v). We are
especially interested in obtaining stretch 1+ ε estimates, for an arbitrary small ε > 0, as they are, in most
cases, as good as exact distances. (In particular, for distances up to 1/ε, such estimated distances are
exact.)

Previous results

The apBLSP problem was considered first by Bose et al. [5]. According to their terminology, the problem
has been called “the geometric bottleneck shortest path problem”; however, bottleneck shortest path often
means the shortest path whose maximal edge is minimal, thus we prefer to use the term “bounded leg”.
Given two vertices and a real number L, the data structure proposed in [5] returns a (1+ε)-approximation
of the length of the shortest L-bounded leg path. It requires O(n2 log n) space to answer a distance query
and O(n3 log n) space to answer a path query. A distance query takes O(log n) time and a path query
takes O(ℓ + log n) time, where ℓ is the number of edges on the reported path. The time required for the
construction of Bose et al. data structure is O(n5). In addition, for planar graphs, Bose et al. [5] presented
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a data structure of size O(n2.5) which is able to answer path queries. However, the query time deteriorates
to O(

√
n+ ℓ).

The problem of stBLSP was not considered by the authors of [5]; however, they did consider the following
restricted problem. Given two points and a real number L decide whether or not there exists an L-bounded
leg path between them. The running time of their algorithm for this problem is O(n log n). To the best of
our knowledge, the stBLSP problem has not been considered before.

Our contribution

We present a new algorithm for the apBLSP problem that improves upon the result of Bose et al. [5].
For a given set V of n points in a d-dimensional lp-metric space1 we show that a data structure which
approximates any bounded leg shortest path within a stretch of (1 + ε) can be computed in O(n3(log3 n+
log2 n · ε−d)) time. Note that up to a poly-logarithmic factor it is essentially the time needed for only
one all-pairs shortest paths computation. It requires O(n2 log n) space and distance queries are answered
in O(log log n) time. Our algorithm is obtained by combining several new ideas, one of which is careful
examination and analysis, which may be interesting in their own right, of distance information which is
part of any geometric (1+ε)-spanner. In addition, an interested reader may also ask the following question:
”If we allow stretch in the distances, then why not also allow stretch in the leg?”. The answer is quite
simple. Allowing a tiny increase in the leg’s length may lead to significant decrease L-bounded leg shortest
path.

We now turn our attention to the stBLSP problem. For the metrics l1 and l∞ we present an Õ(n) algorithm
which returns the exact L-bounded leg shortest path from s to t. For the Euclidean metric we present an
algorithm with a running time of O(n4/3+ε) which also returns the exact L-bounded leg shortest path from
s to t. Both algorithms are based on a technique developed by Eppstein [12] to maintain the bichromatic
closest pair, which was later used to compute shortest paths by Chan and Efrat in [8]. Furthermore, we
consider another variant in which we are given two points s and t and a real number L, and are required
to produce an L-bounded leg shortest path in terms of the number of edges from s to t; i.e., to find a
path with a minimal number of edges that connects s and t, such that the weight of each edge on the
path is at most L. We call this variant the s-t Bounded Unit Leg Shortest Path (stBULSP) problem. We
show a fast algorithm for the rectilinear stBULSP problem and also propose a linear space solution for
the Euclidean stBULSP problem. Recently, we have learned that using a fully dynamic randomized data
structure proposed by Chan [7] leads to near linear expected runtime algorithm for Euclidean stBULSP
problem. The motivation for this problem rises from wireless multicast transmissions, where one wishes to
keep the energy of each transmission at a low level, and, simultaneously, reach the destination in a shortest
path.

We end the paper by showing how to reduce the space usage when path queries are required. We reduce the
space from O(n3 log n) to O(n2.5 log n) without increasing neither the query time nor the approximation
stretch. This result extends the result of Bose et al. [5] from planar graphs to general graphs. We also
reduce the query time from O(

√
n+ ℓ) to O(ℓ+ log log n).

The rest of this paper is organized as follows. In the next section we describe our new algorithm for
computing the apBLSP. In Section 3 we describe our algorithms for the stBLSP problem. Solutions for
the stBULSP problem are given in Section 4. In Section 5 we show how to reduce the space usage.

1The lp metric, for any fixed p, of a vector z = (z1, z2, · · · , zd) in ℜd is given by ||z||p = (|z1|
p + |z2|

p + · · · + |zd|
p)

1

p ; if
p = ∞, then ||z||∞ = max(|z1|, |z2|, · · · , |zd|).
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2 The all-pairs bounded leg shortest path problem

In this section we start by reviewing and simplifying some of the ideas used by Bose et al. [5]. We then
proceed by showing how to build in O(n3(log3 n + log2 n · ε−d)) time a data structure which supports
distance queries for the apBLSP problem. Our algorithm applies to any complete undirected graph whose
edge weights are distances under any lp-norm metric space.

Let G = (V,E) be a complete weighted undirected graph. Let w1, w2, . . . , wN=(n2)
be the weights of its

edges in increasing order2. Let w(e) be the weight of e and let Gi = (V,E[1,i]), where E[x,y] = {e | wx ≤
w(e) ≤ wy}. We denote by δGi(u, v) the length of the shortest path from u to v in Gi and by δG(u, v) the
length of the shortest path from u to v in G. Similarly, we denote with hGi(u, v) the number of edges on
the shortest path from u to v in Gi and by hG(u, v) the number of edges on the shortest path from u to v
in G.

We now examine the graph sequence G1, G2, . . . , GN=(n2) more carefully. Let c(u, v) be the smallest index
of the graph for which u and v are connected. This implies that any shortest path from u to v must
include an edge of weight at least wc(u,v), thus δG(u, v) ≥ wc(u,v). Any path can have at most n− 1 edges
thus δGc(u,v)(u, v) ≤ (n − 1)wc(u,v). By combining these two inequalities we obtain that δGc(u,v)(u, v) ≤
(n− 1)δG(u, v). Bose et al. [5] showed that it is possible to use only O(n2 log n) space to produce a (1+ ε)-
approximated L-bounded leg shortest path for every pair of vertices and any real number L. Given two
vertices u and v the exact answer to any possible query is one of the values:

δGN (u, v) ≤ δGN−1(u, v) ≤ δGN−2(u, v) ≤ · · · ≤ δGc(u,v)(u, v),

where δGN (u, v) = δG(u, v) and δGc(u,v)(u, v) ≤ (n− 1)δG(u, v).

However, to obtain a space efficient data structure we need to choose a small subset of these values. This
subset must provide a (1 + ε)-approximation to any possible query. This is done in the following manner.
Let j be an integer such that 0 ≤ j ≤ ⌈log1+ε(n − 1)⌉. For every j, Ij(u, v) is the set of indices of the
graphs Gi for which δGi(u, v) satisfies (1 + ε)jδG(u, v) ≤ δGi(u, v) < (1 + ε)j+1δG(u, v). Note that the set
Ij(u, v) may be empty.

Let Ij(u, v) be the minimal index in Ij(u, v). If Ij(u, v) = φ then Ij(u, v) is not defined. Let I(u, v) be
the set of all minimal indices, i.e., I(u, v) = {Ij(u, v) | 0 ≤ j ≤ ⌈log1+ε(n− 1)⌉}. For every i ∈ Ij(u, v) we
use the distance from u to v in the graph GIj(u,v) to produce an approximation for δGi(u, v). Note, that it
is legal to use the graph GIj(u,v) to approximate a distance in Gi since GIj(u,v) is a subgraph of Gi and the
weight of its edges is at most wi. In the next lemma, which is a simplified version of an argument given in
[5], we prove that the stretch of the approximated path is at most 1 + ε.

Lemma 1 Let j ∈ [0, ⌈log1+ε(n− 1)⌉]. If i ∈ Ij(u, v) then δ
GIj (u,v)(u, v) ≤ (1 + ε)δGi(u, v).

Proof: The set Ij(u, v) contains both i and Ij(u, v). This implies that δ
GIj (u,v)(u, v) < (1+ ε)j+1δG(u, v)

and that (1 + ε)jδG(u, v) ≤ δGi(u, v). Altogether we obtain that δ
GIj (u,v)(u, v) ≤ (1 + ε)δGi(u, v) �

For every pair of vertices u, v ∈ V and for every i ∈ I(u, v) the values i, δGi(u, v) and wi are saved. The
total number of values saved with each pair (u, v) is O(log n). Thus, the size of the data structure is
O(n2 log n). Bose et al. [5] described how to build the above data structure in O(n5) time. Their distance
query time is O(log n). In order to answer path queries Bose et al. [5] save with every pair of vertices
u, v ∈ V and i ∈ I(u, v) a path of length δGi(u, v), increasing the size of the data structure to O(n3 log n).

2For the simplicity of the representation we assume that all the weights are distinct; however, this assumption can be
removed easily.
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algorithm apBLSP(G, ε)

for every pair of vertices u, v ∈ V do

for j ← 1 to ⌈log1+ε n⌉
X ← δG(u, v)(1 + ε)j

Ij(u, v) = Search(u, v,X, 0, N)

algorithm Search(u, v,X,Left,Right)

if Right ≤ Left return Left

m← ⌊Left+Right
2 ⌋

if (X > SP (u, v, wm))

return Search(u, v,X,Left,m − 1)

else

return Search(u, v,X,m + 1, Right)

Figure 1: Computing all-pairs bounded leg shortest paths using binary search

As a first step we show how to reduce the query time to O(log log n). Given a query on u, v ∈ V and a real
number L, Bose et al. [5] search for i such that wi ≤ L < wi+1. They then do a binary search to find the
largest Ij(u, v) ∈ I(u, v) which satisfies Ij(u, v) ≤ i. In order to reduce the query time, with each index
from I(u, v) we also save its weight. Given L we perform a binary search to find the largest weight w
which satisfies w ≤ L. The index associated with this weight is the desired index which we use to produce
the approximation. As |I(u, v)| = O(log n), this search takes only O(log log n) time.

A trivial way to build the above data structure is by doing N =
(n
2

)

computations of APSP where the i-th

computation is performed on the graph Gi. This gives a running time of Õ(n5), as Bose et al. [5] presented.
Once the distance matrix of every graph in the sequence G1, G2, . . . , GN is known, finding I(u, v) for every
pair of vertices u and v, is trivial. We can accelerate the running time to O(n4) using a fairly standard
technique. Note that the only difference between Gi and Gi+1 is a single edge. Let this edge be (u, v).
We compute the shortest paths tree of u and v in Gi. We then check for every pair of vertices x, y ∈ V
whether the value δGi(x, u) + w(u, v) + δGi(v, y) is smaller than δGi(x, y). If so, we update the distance
matrix of Gi+1 accordingly. Note that this approach will work also for weighted directed graphs.

In what follows we show how to build a (1+ ε) apBLSP data structure in time O(n3(log3 n+ log2 n · ε−d))
for a set of points V in a d-dimensional lp metric space. This running time equals to a poly-logarithmic
number of APSP computations.

Our improved algorithm relies on the following observation. Let u, v ∈ V and let I(u, v) be the set of
minimal indices we wish to find. Let Ij(u, v) ∈ I(u, v). In order to find Ij(u, v) we do not need to
find the set Ij(u, v): by the choice of Ij(u, v) we know that δ

GIj (u,v)(u, v) < (1 + ε)j+1δG(u, v) and that

δ
GIj (u,v)−1(u, v) ≥ (1+ε)j+1δG(u, v). We use the value (1+ε)j+1δG(u, v), which we can compute in advance,

to search for the index Ij(u, v).

A straightforward approach to find Ij(u, v) is a binary search on the graph sequence G1, G2, . . . , GN . We
start from the middle and compute a shortest paths tree for u. We check if (1+ε)j+1δG(u, v) is larger than

δ
G

1
2N (u, v), and if so, we proceed to the graph G

1
4
N ; otherwise we proceed to the graph G

3
4
N . The cost of

computing δ
G

1
2N (u, v) is O(n2). After O(log n) steps we find the value of Ij(u, v). The total cost of this

search is O(n2 log n). We need to repeat this process for every j in the range [0, ⌈log1+ε(n − 1)⌉] and for
every pair of vertices. The total running time will be O((n4 log2 n)/ε) which is roughly the same running
time as the running time of the simple improvement presented above. The apBLSP algorithm based on
binary search is given in Figure 1. In order to obtain a running time of O(n3(log3 n + log2 n · ε−d)) more
involved ideas are needed. Using these ideas we reduce the time needed to find each of the O(n2 log n)
values from O(n2 log n) to O(n log2 n+ n · ε−d log n). The main tool that we use is a sparse representation
of the distances with only O(n ·ε−d) edges. Based on this representation, we compute (1+ε)-approximated
shortest paths in O(n log2 n+ n · ε−d log n) time.
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Forbidden

Required

(b)(a)

Graph edge

Spanner edge

(1 + ǫ

2
)Lǫ

2
L

L+ η

L L
L L L

u

(1 + ǫ

2
)L

ǫ

2
L

v

x y

x2 x5

xt+1xt w(xt, xt+1)

w(x, y)

Figure 2: (a) Two edges of weight (1 + ε
2 )L one is required and the other is forbidden (b) The graph edge

(x, y) which is approximated by the path x1, · · · , xℓ.

The sparse representation, mentioned above, is obtained by using a spanner. A (1+ ε)-spanner is a sparse
subgraph of a complete undirected graph whose vertices are points in a d-dimensional lp-metric space with
only O(ε−dn) edges. Beside being sparse the spanner also preserves the distances up to a multiplicative
error of (1+ ε). Vaidya [19] showed how to construct such a spanner in O(n log n+ ε−d log(1/ε)n) time for
any lp-metric space (for more details on spanners see Eppstein [13]) . We denote the spanner byH = (V, F ),
where F is its set of edges and V is the original set of points. Let H [x,y] = (V, F [x,y]) be the subgraph of
the spanner H with F [x,y] = F ∩E[x,y].

In the next lemma we give a somewhat surprising existence proof of a good approximation of any bounded
leg shortest path in spanners. This lemma will be used later on by our algorithm and is crucial for its
correctness. We note that this is the only place in which we use the fact that the distances are lp-distances.

Lemma 2 Let u, v ∈ V and let L be a real number. Let b and c be indices which satisfy wb ≤ L < wb+1

and wc ≤ L(1 + ε) < wc+1 (see Figure 3(a)). Let H = (V, F ) be a (1 + ε)-spanner of G. There exists a
path u = u1, · · · , uℓ = v in H [1,c] such that δGb(u, v) ≤

∑ℓ−1
i=1 w(ui, ui+1) ≤ (1 + ε)δGb(u, v).

Proof: Let u = x1, x2, · · · , xt = v be the vertices on the shortest path from u to v in Gb. Every edge on
this path represents a distance between its endpoints. This distance must be approximated by the spanner
H. Let xi = ui1 , · · · , uℓ(i) = xi+1 be the shortest path in H from xi to xi+1, where ℓ(i) is the number of

vertices on this path. From the triangle inequality we get that w(xi, xi+1) ≤
∑ℓ(i)−1

j=i1
w(uj , uj+1). From

the fact that H is a spanner we get that
∑ℓ(i)−1

j=i1
w(uj , uj+1) ≤ (1 + ε)w(xi, xi+1). Now looking at the

concatenation of the paths that approximate the edges (xi, xi+1) we get:

δGb(u, v) =

t−1
∑

i=1

w(xi, xi+1) ≤
t−1
∑

i=1

ℓ(i)−1
∑

j=i1

w(uj , uj+1) ≤ (1 + ε)

t−1
∑

i=1

w(xi, xi+1) = (1 + ε)δGb(u, v) .

Moreover, for every edge (xi, xi+1), the heaviest edge on the path that approximates it in H is of weight
at most (1 + ε)w(xi, xi+1), otherwise it will not have a stretch of (1 + ε). Thus, the concatenated path is
in H [1,c]. �

In Lemma 2 we showed that given u, v ∈ V and a real number L there exists a (1 + ε)-approximated path
in H [1,c]. However, the existence of such a path is not enough - we must be able to find it. There might be
many paths from u to v in the spanner. Moreover, there might be spanner edges in F [b+1,c] which create a
path which is much shorter than the shortest L bounded leg shortest path (which can only use edges from
E[1,b]). Our target is to build a sparse graph based on the spanner which includes edges from F [b+1,c] only
if the path between their endpoints in Gb is of length at most (1+ ǫ)L. The weight of an edge from F [b+1,c]
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Spanner edge

Graph edge
a b′ ca+ 1

L
1+ǫ L L(1 + ǫ)

b b+ 1 c+ 1

2n

. . .

(i− 1)n1 n 2n

. . .

(i− 1)n1 n

E[i(n−1),i·n] F [1,i·n]

G H

(i+ 1)n(i− 1)n i · n

(x, y)

E[a+1,b]
F [b+1,c]

(xt, xt+1)

i · n i · n

(a)

(b)

Figure 3: (a) The indices a,b and c and edges to be classified (b) The edges used to compute Mi.

is strictly larger than L, thus, the shortest path in this special constructed graph can be shorter than the
path it approximates only by a factor of 1 + ǫ.

For example, let the distance between u and v be L + η, where η is very small, and let the L-bounded
leg shortest path from u to v be composed from 5 edges of weight L. The spanner approximates every
distance, thus, it must have a path from u to v of length at most (1 + ε)(L + η). It might be that the
heaviest edge on this path will be of weight at most (1 + ε)L. In such a case the shortest path from u to
v in H [1,c] is of length at most (1 + ε)(L + η). This situation is depicted in Figure 2(a). In the picture
there are two edges both of weight (1 + ε

2 )L; one is required, as it is used to approximate the L-bounded
leg shortest path from u to v whereas the other is forbidden, as it creates a path which is shorter than the
L-bounded leg shortest path from u to v.

We dedicate the rest of this section to explain how to distinguish between forbidden edges and those
edges which are required for the approximation. While doing this process of classifying edges we create
(based on the spanner H) a sparse graph with only O(n · ε−d) edges. By using this graph we obtain in
O(n · ε−d + n log n) time a (1 + ε)-approximation of the L-bounded leg shortest path from u to v. The
following two corollaries which stem from Lemma 2 are crucial for the edge classification.

Corollary 3 Let a and b be indices which satisfy wa ≤ L
1+ε < wa+1 and wb ≤ L < wb+1 (see Figure 3(a)).

Every edge from E[1,a] is approximated by a path in H [1,b].

Proof: Apply Lemma 2 with L
1+ε instead of L. �

Corollary 4 Let L be a real number. Let a, b and c be indices which satisfy wa ≤ L
1+ε < wa+1, wb ≤

L < wb+1 and wc ≤ L(1 + ε) < wc+1. Let (x, y) ∈ E[a+1,b] and let ε ≤ 1/3. Every path in H [1,c] which
approximates (x, y) has at most one edge of weight wa+1 or more.

Proof: From Lemma 2 we know that there must be a path x = x1, x2, · · · , xℓ = y in H [1,c] which
approximates the distance between x and y. Suppose that there are two edges of weight at least wa+1.
The total length of the path will be at least 2wb

1+ε . We know that w(x, y) ≤ wb, thus the stretch of the path
is at least 2/(1+ ε), and for ε ≤ 1/3 this is larger than (1+ ε). We conclude that there is at most one edge
whose weight is wa+1 or more on this path. �

From Corollary 3 we know that the portions of the L-bounded leg shortest path from u to v which use
edges from the set E[1,a] are approximated by H [1,b]. Thus, our problem is only with those edges on the
path that belong to the set E[a+1,b]. Paths in H [1,c] which approximate these edges may require the use of
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algorithm apBLSP(G, ε)

ε′ ← ε/3

H(V,E)← Spanner(G, ε′/3)

for i← 1 to N/n

Mi ← min(Mi−1, APSP (G(V,E[(i−1)n,i·n] ∪ F [1,i·n]))

for every pair of vertices u, v ∈ V do

for j ← 1 to ⌈log1+ε′ n⌉
X ← δG(u, v)(1 + ε′)j

Ij(u, v) = Search(u, v,X, 0, N)

algorithm SP(u, v, wb)

F ′ ← F [1,b]

if (b− a ≤ n) then

F ′ ← F ′ ∪E[a,b]

else

b′ ← ⌊ bn⌋n
F ′ ← F ′ ∪E[b′,b]

for every (p, q) ∈ F [b+1,c] do

if Mb′ [p, q] ≤ (1 + ε′)wb then

F ′ ← F ′ ∪ {(p, q)}
return (1 + ε′/3)δH′(u, v)

Figure 4: Computing all-pairs bounded leg shortest paths

spanner edges from the set F [b+1,c]. However, as we already explained before, some of the edges of F [b+1,c]

may create a path which is shorter than the L-bounded leg shortest path from u to v.

Recall that our target is to compute (1 + ε)-approximate shortest paths in O(n · ε−d + n log n) time. The
algorithm which performs this task is given in Figure 4, in procedure SP . We separate the solution into
two different cases. The first one is when |E[a+1,b]| ≤ n. In this case we can compute the shortest path
from u to v in the graph H ′ = (V, F [1,b] ∪ E[a+1,b]). Clearly, the running time is O(n · ε−d + n log n) and
every edge from the set E[a+1,b] is included in the graph so there is no need to include edges from the set
F [b+1,c].

The second, and more subtle case, is when |E[a+1,b]| > n. In this case, edges from the set F [b+1,c] must
be used. In order to distinguish between those edges of F [b+1,c] which are required and those which are
forbidden, we do the following preprocessing stage. We partition the distances into at most N/n sets of
size n according to their order. For the i-th set we compute all the pairs of shortest paths in the graph
H i = (V,E[(i−1)n,i·n] ∪ F [1,i·n]) (see Figure 3(b)). We then update the distance information in the matrix
Mi. For every pair u, v ∈ V we set Mi[u, v] with min(Mi−1[u, v], δHi (u, v)). This process is done only once
before performing the actual search. It appears in Figure 4 in procedure apBLSP .

When searching for a specific L-bounded leg shortest path we classify the edges as follows. Let a,b and c
be the same indices as before (See Figure 3(a)). Let b′ be the largest multiple of n which is smaller than
or equal to b. We initialize the set of edges F ′ with F [1,b] ∪ E[b′+1,b]. A spanner edge (p, q) ∈ F [b+1,c] is
added to F ′ if and only if Mb′ [p, q] ≤ (1 + ε)wb. Note that, although we add edges to F ′, the total number
of edges is still O(|F |). We now claim the main lemma of this section:

Lemma 5 Let u, v ∈ V and let L be a real number. Let a, b and c be indices which satisfy wa ≤ L
1+ε <

wa+1, wb ≤ L < wb+1 and wc ≤ L(1 + ε) < wc+1. Let H ′ = (V, F ′), where F ′ = {(p, q) | ((p, q) ∈ F [1,b] ∪
E[b′+1,b])∨ ((p, q) ∈ F [b+1,c]∧Mb′ [p, q] ≤ (1+ε)wb)}. Then, δGb(u, v)/(1+ε) ≤ δH′(u, v) ≤ (1+ε)δGb(u, v).

Proof: By Corollary 3, the edges of E[1,a] are properly approximated by the edges of F [1,b]. The set
E[b′+1,b] is added to F ′ without effecting its size (there are at most n edges in E[b′+1,b]). Thus, it is only
left to show how to approximate the edges in E[a+1,b′] (see Figure 3(b)). Let (x, y) ∈ E[a+1,b′] and let
w(x, y) be its weight. Let x = x1, x2, · · · , xℓ = y be the path in H [1,c] which approximates the distance
between x and y (see Figure 2(b)). Let (xt, xt+1) be the heaviest edge on this path, and assume that
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its weight is more than wb (otherwise the whole path is in H [1,b]). This kind of edges is the kind we
would like to have in the graph H ′, on which we compute an approximated shortest path, although their
weight is more than wb. It follows from Corollary 4 that every other edge on the path from x to y in
H [1,c] is of weight at most wa. We now consider the path xt, xt−1, · · · , x, y, · · · , xt+2, xt+1 from xt to xt+1.
Every edge on this path besides the edge (x, y) is a spanner edge which belongs to the set F [1,b]. Let
(x, y) ∈ E[(i−1)n,i·n]. By the choice of b′, it follows that i · n ≤ b′. When computing Mi[xt, xt+1] using the
graph H i = (V,E[(i−1)n,i·n] ∪F [1,i·n]), all the edges on the path xt, xt−1, · · · , x, y, · · · , xt+2, xt+1 are part of
H i. Thus, the distance between xt and xt+1, which we find and update in Mi[xt, xt+1], is bounded by the
length of this path. Our next target is to bound δHi(xt, xt+1). Note that the path x = x1, x2, · · · , xℓ = y
is of length at most (1 + ε)w(x, y) and the edge (xt, xt+1) is its heaviest edge. The only change between
this path and the path xt, xt−1, · · · , x, y, · · · , xt+2, xt+1 is that instead of the edge (xt, xt+1) the path from
xt to xt+1 contains the edge (x, y) whose weight w(x, y) is less than w(xt, xt+1) (see Figure 2(b)). Thus,
δHi(xt, xt+1) is at most (1 + ε)w(x, y). Therefore, the spanner edge (xt, xt+1) will be added to F ′. This
completes the first part of the proof since all the edges needed from the spanner by Lemma 2 to get a
(1+ε)-approximation for δGb(u, v) are added to F ′. We now need to bound the approximation from below.
We show that edges that were added from the range F [b+1,c] do not create paths which are shorter than
δGb(u, v)/(1 + ε). Let (p, q) ∈ F [b+1,c] be a spanner edge that was added to F ′. Suppose that its weight is
wb + η, for some small η > 0. There is a path from p to q in the graph Gb of length at most (1 + ε)wb.
This implies that any edge, that we may use while computing a shortest path in H ′, can reduce the length
of any path by a factor of at most 1 + ε. Thus, the shortest path from u to v in H ′ = (V, F ′) is of length
at least δGb(u, v)/(1 + ε). �

In Figure 4 we present our algorithm. The main procedure of the algorithm is apBLSP . We start by
computing Mi for every 1 ≤ i ≤ n. The running time of this stage is O(n3(log n+ ε−d)). We then proceed
by doing O(n2⌈log1+ε n⌉) binary searches, each at a cost of O(n log n(log n+ ε−d)). The Search procedure
is identical to the one given in Figure 1. The change is in the algorithm used to compute the shortest
path. Instead of computing the exact shortest path in O(n2) time, we use the algorithm SP given also in
Figure 4, whose running time is O(n(log n+ ε−d)).

Note that in order to obtain a (1 + ε)-approximation we have to perform our inner computations in a
slightly more accurate fashion. When searching for the value δG(u, v)(1 + ε)j we compute approximated
paths. Thus, we can only conclude that δ

GIj (u,v)−1(u, v) > δG(u, v)(1 + ε)j−1 and cannot conclude that

δ
GIj (u,v)−1(u, v) > δG(u, v)(1 + ε)j as before. Recall that, for every i ∈ Ij(u, v), we use the distance from

u to v in the graph GIj(u,v) to produce an approximation for δGi(u, v). However, we can bound δGi(u, v)
from below only with δG(u, v)(1 + ε)j−2. Thus the stretch is (1 + ε)2 instead of (1 + ε). To overcome this
difficulty, we run the algorithm with ε/3. Another accuracy issue is the following: in order to ensure that
every approximated path is not smaller than the shortest path it approximates, we multiply every distance
found in the graph H ′ with 1 + ε. As a result, the stretch factor that we get is (1 + ε)2 ≤ 1 + 3ε. For the
above reasons, we compute a (1 + ε/9)-spanner.

The following theorem is derived from the above lemmas and discussion:

Theorem 6 Let V denote a set of points in a d-dimensional lp-metric space. A data structure which
approximates any bounded leg shortest path with a stretch of (1 + ε) can be computed in O(n3(log3 n +
log2 n · ε−d)) time. The size of the data structure is O(n2 log n). Given u, v ∈ V and a real number L a
distance query is answered in O(log log n) time.
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3 Near-linear algorithm for s-t bounded leg shortest path

Let V be a set of points in a d-dimensional space. Let s, t ∈ V and let L be a real number. In the s-t
Bounded Leg Shortest Path (stBLSP) problem we are given two points s and t and a real number L and
we are required to produce an L-bounded leg shortest path from s to t.

In this section we present efficient algorithms for the exact stBLSP problem in the plane for norms l∞(l1)
and l2. The main target in such problems is to obtain a sub-quadratic running time. In particular, for l∞
and l1 metrics we obtain an algorithm with a running time of O(n log7 n) and for l2 metric we obtain an
algorithm with a running time of O(n4/3+ε), for arbitrary ε > 0.

algorithm Dijkstra(G, s, t)

d[s] = 0, d[v] =∞ ∀v 6= s, S = {s}, T = P \ {s}
while t 6∈ S do

choose a pair (u, v) ∈ S × T that minimizes d[u] + w(u, v)
d[v]← d[u] + w(u, v)
S ← S ∪ {v}, T ← T \ {v}

Figure 5: Dijkstra’s algorithm.

Both algorithms are based on a clever observation made by Chan and Efrat in [8]. They pointed out
that the problem of computing a shortest path from s to t can be reduced to the problem of dynamic
maintenance of bichromatic closest-pair, see Figure 5 above. In the bichromatic closest-pair problem we
are given two sets of points S and T and we are required to compute the closest pair of points (u, v)
such that u ∈ S and v ∈ T . Chan and Efrat showed also that using a general technique of Eppstein [12]
the problem can be further reduced into the problem of designing two dynamic nearest neighbors data
structures. Let δG(p, q) = d[p] +w(p, q), where d[p] is some weight of the point p. The exact computation
of d[p] is given in Figure 5. The first data structure is used to find, given a point p, a point q ∈ T minimizing
δG(p, q). The second data structure is used to find, given a point q, a point p ∈ S minimizing the function
δG(p, q)). If both data structures support queries, insertions and deletions in amortized time of O(T (n))
then the dynamic bichromatic closest-pair problem can be solved with O(T (n) log n) amortized insertion
time and O(T (n) log2 n) amortized deletion time. In order to apply this reduction to our problem we use
the following distance function:

δG(p, q, L) =

{

δG(p, q) w(p, q) ≤ L
∞ w(p, q) > L

This function captures also the bound on the leg. It stems from the function definition that if the closest
pair is at distance of ∞ then we can stop the algorithm since no L-bounded leg path exists between s and
t. We only left to show how to create two data structures as required above which work with respect to
the distance function δG(u, v, L).

3.1 Fast shortest weighted rectilinear path: l∞

We start by describing the first data structure in which we are given a point from S and we need to find
the closest point to it from T . Note that in this case, as a result of the fact that p ∈ S is fixed, the
function δG(p, q, L) degenerates to w(p, q). This slightly simplifies the data structure. We then proceed to
the second data structure in which the function is in its general form and more complicated techniques are
needed.
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Figure 6: Division into four wedges. The triangle Qp
RIGHT is shaded.

Let p ∈ S be the query point. Let ly and lx be lines passing through p whose slopes are 45◦ and 135◦,
respectively. These lines define four wedges which contain the triangles: Qp

TOP, Q
p
BOTTOM, Q

p
LEFT, Q

p
RIGHT

(see Figure 6). The l∞-distance from any point q which lies in Qp
LEFT ∪Qp

RIGHT (Qp
BOTTOM ∪Qp

TOP) to p is
defined by the x-distance (y-distance, respectively) to p. We will use orthogonal range tree [11] to maintain
the points of T . We construct the tree in the coordinate system defined by the lines lx and ly. The data
structure is composed from two levels. The main level is a binary search tree build on the lx coordinate.
Any node in this tree contains a binary search tree build on the ly coordinate for all points which belong
to its subtree. We refer to this tree as the secondary tree. In order to obtain the closest point we keep with
every node in the secondary tree two points from its subtree, the point with the minimal x-coordinate and
the point with the minimal y-coordinate in the original coordinate system. It is well known fact, see [2],
that such a data structure can be build in O(n log n) time, using O(n log n) space. A range query reports
all the points in a given rectangular in O(log2 n + k) time, where k is the number of reported points. We
will use the range tree to preform four queries one for each wedge.

Consider, for example, the triangle Qp
RIGHT. In order to perform a query that corresponds to Qp

RIGHT,
we ignore the side of Qp

RIGHT that is parallel to y-axis and determine all the points lying in the wedge
containing Qp

RIGHT by selecting O(log2 n) nodes with disjoint canonical subsets of points located in their
subtrees. Among the O(log2 n) nodes we find the node which contains in its subtree the point with the
minimal x-coordinate. This point is the closest neighbor of p in Qp

RIGHT. We need to check, additionally,
whether the difference between the minimum selected x-coordinate and x(p) does not exceed L. If it does,
we discard the selected minimum from being a candidate for a closest neighbor of p. We proceed similarly
with the other triangles and their corresponding wedges. At the end, we pick the closest point to p among
at most 4 candidates. We want to point out that using fractional cascading we can slightly improve the
query and the update time as was done in [15]. We now proceed to the second data structure which is an
extension of the first one.

Similarly to the first data structure we build an orthogonal range tree data structure for points in S in the
coordinate system defined by the lines lx, ly. However, the previous approach will not work. Recall that
in the first data structure the query point was from S, thus, its weight was not needed in order to find the
closest neighbor. When the given query point is from T and we need to find the closest point from S we
must consider the weight of the points of S. In other words we need to find a way to express the function
δG(u, v, L) defined earlier.

As we already mentioned, if q is a query point its l∞-distance to a point in Qq
RIGHT is defined by the x-

distance. In order to express the function δG(u, v, L), we make the following observation for a given query
triangle Qq

RIGHT (the same holds for the rest of triangles). We consider the set of functions F = {fi(q) =
δG(pi, q, L) | pi ∈ Qq

RIGHT} and observe that this value is attained at the lower envelope of 4|F | segments
at point x(q). The corresponding y value (and therefore the closest neighbor of q in Qq

RIGHT) can be found
by a simple binary search over the vertices of the lower envelope.
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When we query our orthogonal range tree data structure with the wedge containing triangle Qq
RIGHT, we

select O(log2 n) nodes and their respective subtrees with points such that their l∞-distance to a query
point q is defined by the original x-distance to q. It may happen that few of them are of distance larger
than L from q. Thus, we augment the secondary data structure by keeping, for each node w, a binary
search tree Tw for original x-coordinates of the points corresponding to the nodes in the subtree rooted at
w. (For wedges containing triangles Qq

TOP and Qq
BOTTOM, the tree Tw is built for original y-coordinates of

points). Also, each node u in Tw will contain a data structure for lower envelope of functions fi(q) such
that the original x-coordinate of point pi is located in the subtree rooted at u.

A data structure for maintaining the lower envelope of n segments under deletions only was given by
Chazelle [9] and Hershberger and Suri [14]. It has an amortized deletion time of O(log n). It can be
transformed to handle insertions as well by a standard Bentley and Saxe binary-counting trick [4] (see
also [6]) which leads to a slow down in additional logarithmic factor in updates time, i.e. insertions and
deletions of points can be performed in O(log2 n) amortized time.

In order to find a closest neighbor to q in Qq
RIGHT we proceed as following. First we determine the O(log2 n)

nodes corresponding to points located at the wedge containing Qq
RIGHT. Next, for every w belonging to

the selected set of nodes we find a set U of O(log n) nodes in Tw corresponding to points at the wedge at
distance at most L from a query point q. It is done by a binary search over Tw looking for a value x(q)+L.
For every u ∈ U we perform a binary search over the stored lower envelope of segments at u as described
above. The closest neighbor of q is the one with the minimal value that we obtain.

Every insertion or deletion requires O(log5 n) time, since we have O(log3 n) nodes to update. Using the
result of Eppstein [12], we obtain that the dynamic bichromatic closest-pair problem in our case can be
solved in O(log6 n) amortized insertion time and O(log7 n) amortized deletion time. Putting it all together
we obtain a O(n log7 n) runtime solution for our problem, since each iteration of Dijkstra’s algorithm
requires O(log7 n) amortized time. The above algorithm can be easily generalized to work in any Rd, d > 2
with running time O(n logd+5 n). We notice that at the same time we can produce the actual path by
keeping at each iteration the closest-pair information. We also should point out that we have not made a
serious attempt to improve the performance of the above searching procedure, because our main interest
was in obtaining a near-linear solution of the problem.

Remark: For l2 metric we can use both data structures developed in [8] that are produced by the technique
of Agarwal et al. [1]. The first data structure is obtained by considering the lower envelope of the bivariate
functions {gi(p) = w(p, qi)|qi ∈ T} ∪ {g′(p) = L}. The function g′(p) corresponds to restriction that
w(p, qi) ≤ L. The second data structure is obtained by considering the lower envelope of the bivariate
functions {fi(q) = δG(pi, q, L)|pi ∈ S}∪{f ′

i(q) = d[pi]+L|pi ∈ S}. The restriction w(pi, q) ≤ L is expressed
by functions f ′

i(q). Both data structures have T (n) = O(n1/3+ε) query and update times which leads to
overall O(n4/3+ε) runtime for the entire problem, since we have O(n) deletions and insertions.

We end this section with the following Theorem:

Theorem 7 There exists an algorithm for the stBLSP problem in l1 and l∞ metrics that, given s, t ∈ V
and a real number L, computes in O(n · polylog(n)) time the exact L-bounded shortest path from s to t.

4 Bounded unit leg shortest path

In order to find the shortest unweighted path under the restriction that the longest edge can have weight
at most L we designed more efficient algorithms in terms of runtime and space. In what follows we show
how to obtain either faster runtime or linear space solutions. The presented solutions are for planar case
and can be easily generalized to deal with d-dimensional point sets, d > 2.
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4.1 Bounded unit leg shortest rectilinear path

We apply a BFS-based scheme in order to determine the required path. We start with point s and look for
all points in S that are of distance at most L from s. In order to find these points we draw a square Q of side
length 2L, centered at s and ask a question “Which points are inside of Q?”. After locating all the relevant
points we put all of them into the BFS queue and continue the same process until we meet t. The problem
with this approach is that a large number of points can reappear in the queue many times, thus, leading to
quadratic time algorithm. To avoid this problem, we will again make a use of standard orthogonal range
trees for two dimensional range searching. However, we do not apply the fractional cascading technique
for speed up the algorithm, since it does not allow to perform a marking process efficiently as described
below.

The idea is to mark relevant nodes (in secondary data structure of orthogonal range tree) when querying
and reporting points, that will prevent from points to reappear over and over in the BFS queue. Recall
that the orthogonal range tree is composed from two levels. The main level is a binary search tree build
on the x coordinate. Any node in this tree contains a binary search tree (secondary data structure) build
on the y coordinate for all points which belong to its subtree. Notice that the number of secondary data
structure tree is O(n). For a current query, square Q, first we compute the canonical subsets the represent
our output set of points. Overall we might have O(log2 n) such subsets each one representing a subtree of
some secondary data structure. Next, for each node u that is a root of some canonical set Uc, we check
whether u or some of its ancestors in the tree it belongs to is marked. If yes, we can throw out the entire
subtree Uc since we know that the points belonging to this set already have been appeared in the BFS
queue. Otherwise, we mark u as visited and insert all the points from Uc to the BFS queue. Notice, that
since the depth of the primary tree and each one of the secondary data structure trees is at most O(log n),
every point can reappear in the BFS queue at most O(log2 n) times. The additional time to be spend per
each of O(log2 n) roots of canonical subtrees in the secondary data structures is O(log n) when checking
up ancestors. Thus, we conclude that the total runtime of the proposed scheme is O(n log5 n).

4.2 Linear space shortest Euclidean path

The basic algorithm remains the same; the query, however, transforms from square with side length 2L
to disk of radius L. We use the following useful observation that is crucial in our algorithm. The range
searching with balls in Rd can be formulated as an instance of halfspace range searching in Rd+1. The
technique is called linearization and in general, balls in Rd admit a linearization of dimension d + 1,
see [2]. The halfspace range searching problem in Rd is defined as follows. Given a set of n points in
d-dimensional space, build a data structure that allows us to determine efficiently how many points lie in
a query halfspace. We will use a data structure, called partition tree, being proposed by Matoušek [16]
that is based on simplicial partition for a set of points, can be build in O(n log n) time and O(n) space and
answers queries in O(n1−1/d+ε+k) time. We notice, that there are more efficient data structures with faster
optimal O(log n+k) query time, see [10, 3]; however the output produced by these data structures can not
be represented as a collection of disjoint canonical subsets which is a main ingredient of our algorithm. In
contrary, in our case, for a query halfspace h in R3, a partition tree allows to select a set W of O(n2/3)
nodes from the tree with the property that the subset of points in h is the disjoint union of the canonical
subsets of the selected nodes. The basic idea in construction of partition tree for a given set of n points
is to find a division of the plane into several regions, each of which contains at least a constant fraction
of the points, and such that any line misses one (or several) of the regions. Given a query halfplane,
we can then treat the points in the regions missed by its boundary line very efficiently: They either all
lie inside our halfplane, or all outside. Thus it remains to handle the points in the regions intersected
by the boundary line of the query halfplane. To this end, the partition scheme is applied recursively for
subsets in each of the regions, until we reach trivially small subsets (of a constant size). Matoušek [16] has
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shown that it is possible to construct a partition tree of depth O(log log n) such that query selects at most
O(n2/3) disjoint canonical subtrees of the partition tree. Therefore, as in previous case, we can perform a
BFS-like algorithm with marking nodes by taking into account that the depth of partition tree is at most
O(log log n). The overall running time stands at O(n5/3+ε).

Remark: All algorithms described in this section can be easily transformed to deal with a lower bound
constraint on the edges of the required path, i.e. the path should contain edges of weight at least L′.

5 Space efficient data structure for answering path queries

We now turn to show how using only Õ(n2.5) space instead of Õ(n3) it is still possible to produce a path
of stretch (1 + ε). This result applies also to weighted directed graphs. However, the running time for
this special construction is Õ(n4). Let Ij(u, v) ∈ I(u, v). We augment the information that we already
save with Ij(u, v) with the following: If h

GIj (u,v)(u, v) ≤
√
n we simply keep the whole path from u to

v in GIj(u,v). If h
GIj (u,v)(u, v) >

√
n then we slice the path into intervals of

√
n vertices and save only

those vertices that separate two consecutive intervals. Additionally, in this case, we take the minimal index
i ∈ Ij(u, v) such that hGi(u, v) ≤ √n and save the shortest path from u to v in the graph Gi. Note that
such an index does not necessarily exists.

We now describe how to produce a path of stretch (1 + ε) using the data structure described above.

Let u, v ∈ V and let L be a real number. Let i be the index that satisfies wi ≤ L < wi+1. Let Ij(u, v)
be the index of the graph used to approximate the L-bounded leg shortest path from u to v in the graph
Gi. If h

GIj (u,v)(u, v) ≤
√
n then we simply output the path that we have saved with Ij(u, v). The more

subtle case is when h
GIj (u,v)(u, v) >

√
n. Let u = x1, x2, · · · , xℓ = v be the vertices saved with Ij(u, v). By

definition we know that h
GIj (u,v)(xk, xk+1) ≤

√
n, for every k ∈ [1, l). Let Ijk(xk, xk+1) be the largest index

in I(xk, xk+1) which is smaller than Ij(u, v). In other words, we find the set Ijk(xk, xk+1) which contains
Ij(u, v). By Lemma 1 we get δ

GI
jk (xk,xk+1)

(xk, xk+1) ≤ (1 + ε)δ
GIj (u,v)(xk, xk+1). Summing it up we get:

ℓ−1
∑

k=1

δ
GI

jk (xk,xk+1)
(xk, xk+1) ≤ (1 + ε)

ℓ−1
∑

k=1

δ
GIj (u,v)(xk, xk+1) = (1 + ε)δ

GIj (u,v)(u, v)

Thus, we get that using the vertices x1, x2, · · · , xℓ we can obtain a path of length (1+ε)δ
GIj (u,v)(u, v). And

in total we have a path of length (1 + ε)2δGi(u, v). However, we are not done yet. Two issues need to be
addressed. The first issue is how to obtain the index Ijk(xk, xk+1) for every k ∈ [1, l). This is done in a
similar manner to the query procedure. Given the index Ij(u, v) we do a binary search among the values
of I(xk, xk+1) at a cost of O(log log n). The second issue is which path we actually output for every pair of

vertices xk and xk+1. It is possible that the path from xk to xk+1 in GIjk (xk,xk+1) contains more than
√
n

edges. But recall that in such a case we save with Ijk(xk, xk+1) a path from the graph Gr where r is the
minimal index in Ijk(xk, xk+1) which satisfies hGr(u, v) ≤ √n. We know that such an index must exists
since Ij(u, v) ∈ Ijk(xk, xk+1) and hI

j(u,v)(xk, xk+1) ≤
√
n.
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