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Abstract

Swarm formation and swarm flocking may conflict each other. Without explicit commu-
nication, such conflicts may lead to undesired topological changes since there is no global
signal that facilitates coordinated and safe switching from one behavior to the other. More-
over, without coordination signals multiple swarm members might simultaneously assume
leadership, and their conflicting leading directions are likely to prevent successful flocking.
To the best of our knowledge, we present the first set of swarm flocking algorithms that
maintain connectivity while electing direction for flocking, under conditions of no com-
munication. The algorithms allow spontaneous direction requests and support direction
changes.
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1. Introduction

Coordinating motion, cooperative formation, and flocking control of multiple autonomous
entities is of great theoretical and practical interest. One (now classical) approach is
Reynolds’s Boids [17], where each entity updates its movement based on the distances
and velocities of neighboring entities in order to ensure the alignment and cohesion of the
swarm while avoiding unsafe distances between the entities. The three corresponding be-
havioral rules that each entity follows indeed address many practical situations, however
there are still several pathological cases where partition of the swarm is possible. For
example, if it happens that all entities move exactly towards (or away from) their center
of mass, no convergence to stable flocking can occur and it becomes impossible to break
the symmetry without using randomization. In this paper, an intrinsic bounded random
variable is indeed incorporated, though its primary use goes beyond symmetry breaking,
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handling leadership election when no explicit information exchange is allowed between the
swarm’s entities.

Clearly, convergence of a swarm motion while avoiding topological changes like parti-
tioning is possible using explicit (e.g., wireless) communication, and indeed early work has
explored such solutions, in particular when the communication is employed in a predefined
time interval [8, 18, 24]. Later work relaxed the defined time interval to variable-length
intervals [7, 11, 13] or employed probabilistic networks [22]. However, unlike previous work,
we seek to solve these problems in “silent networks”, where there is no explicit communi-
cation between the swarm members beyond passive observation (of position, motion, etc.).
Furthermore, unlike much of the previous work, we are also interested in maintaining ro-
bust convergence results despite uncertainties in both the measurement and execution of
motion. All these conditions mimic constraints of artificial swarms.

Much work on the stability and convergence of flocking in silent swarms has been based
on the use of potential functions. Doing so, several algorithms and convergence results
have been obtained for different flocking mechanisms and various connectivity assumptions
(e.g., [9, 14, 15, 25]). While most effort was put to investigate leaderless swarms, some re-
search has extended this scope, presenting potential field algorithms for safe, connectivity-
preserving flocking in the presence of a single leader. However, thus far no potential func-
tion that guarantees the desired flocking behavior (and in particular, collision avoidance
and connectivity preservation) when multiple leaders may co-exist, is known. Still, the
case of multiple leaders has been considered in several studies, typically employing local
rules and information passing between neighbors [19, 10]. Only few recent papers study
the problem in the scope of “silent networks”. For example, Jiang-Ping and Hai-Wen [10]
show that all agents will flock in the polytope region formed by the leaders. Su et al. [20]
have studied the case of a fixed set of leaders and showed how the swarm will steadily
converge to the dynamical center of mass of the leaders. While suitable under specific
assumptions (e.g., symmetry does not exist) for solving different agreement problems like
swarming, schooling, flocking, or rendezvous, existing methods do not support direction
election. Furthermore, the majority of previous works bear on a strict assumption that
connectivity is preserved and collisions between entities are avoided all the time, while no
technique to satisfy these properties is described.

An important issue related to flocking swarms is their temporal convergence rate to
a stable configuration. Results on this problem have been obtained by Chazelle in [1, 2],
who showed an exponential time bound for the convergence of the motion of a single entity
to a fixed motion vector. Furthermore, the time bound for the convergence of the entire
swarm was shown to be an iterated exponential of height logarithmic in the number of
agents. Since the flocking rules in our model are superset of the rules in the model of
Chazelle [1, 2], we suspect that the convergence rate (denoted later by T ) proved in [1, 2]
is an upper bound on convergence rate in our model.

In this paper we present (what we believe are) the first practical and provable flocking
schemes with silent direction election from several candidate leaders. We develop simple
and efficient algorithms for silent direction election, taking into account (bounded) en-
vironmental and parametric uncertainties, while providing a mechanism for connectivity
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preservation and collision avoidance. These latter capacities are obtained by introducing
the notion of a spring, which resembles a potential function with restrictions and pro-
vides flexibility in the presence of uncertainties. The same mechanism also withstands
temporary coexistence of multiple leaders. We do note that although direction election
techniques do exist in the context of mobile robotics [6, 12], these methods assume explicit
communication between entities, which is outside the scope of our study.

The rest of this paper is organized as follows. Section 2 briefly describes basic settings
and definitions. Section 3 describes the intuition behind our new spring network approach
and proves its effectiveness for direction election in autonomous mobile swarms under
uncertainties, assuming initial connectivity of swarm entities. Section 4 describes a method
for monitoring of swarms motion by every entity and an alternative direction election
approach based on it. Conclusions appear in Section 5.

2. Swarm Settings

We begin our theoretical discussion with several definitions and notions, the first of
which relates to the different swarms configurations that may be considered in the context
of flocking. In particular, we will first consider synchronous swarms, where all entities
perform their measurements at the same points in time based on one global clock. We will
then move to discuss partially asynchronous swarms, which relax the synchronous swarms
assumption to allow each entity to perform its measurements and motion updates after
some arbitrary time phase relative to global time pulses (as the local clocks measure time
periods in the same rate but are not synchronized to hold the same global time). We note
that the case of asynchronous network, where each entity has its own independent clock
and cycle duration, is not considered here.

Definition 2.1 (Cycle). Cycle duration dt is a unit of time used by all entities for their
measurement and position adjustments.

A period is a sequence of numbered cycles starting from 1, and its size is measured
in time slots. As we emphasized in the Introduction, the focus of this paper is silent
swarms, i.e. network of entities without explicit communication of information transfer. In
particular, the only measurement allowed for different entities is the position of neighboring
entities. Let ri be the position vector of entity i. We therefore define:

Definition 2.2 (Distance). Let ri and rj be the position vectors of entities i and j, re-
spectively. The distance rij between the two entities is therefore defined as the Euclidean
norm of the corresponding difference vector rij, i.e. ||ri − rj||.

Due to the measurement errors, the measurement made by entity i for the distance to
its neighbor j may be different from the real value rij

Definition 2.3 (Measured Distance). Let rmi
i and rmi

j be the position vectors of entities
i and j, respectively, measured by entity i. The distance rmi

ij between the two entities is
therefore defined as the Euclidean norm of the corresponding difference vector rmi

ij , i.e.
||rmi

i − rmi
j ||.
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To better support practical applications, we do allow some uncertainty in distance
measurements and the execution of motion commands, and, in particular, we assume that
distance measurement errors (compared to the true distances) are bounded by a known
constant, which includes all possible noise sources, such as a randomization used in all the
algorithms for symmetry breaking, etc. Formally,

Definition 2.4 (Error). Error eij is the difference between the measurement made by
entity i for the distance to its neighbor j and their actual distance. i.e. eij = rmi

ij −rij+RV ,
where RV stands for a random variable value, bounded by a predetermined constant, which
is used to break possible pathological symmetry position of entities. The error is bounded
by some known constant e, i.e. |eij| ≤ e ∀i, j.

Given a swarms of entities, one may associate a graph topology based on distances.
In particular, we define the maximum distance, under which entities can be considered
connected (or neighbors in the swarm graph), and the minimum distance, under which the
safety of entities is compromised.

Definition 2.5 (Connectivity limit). Connectivity limit R between two entities is the
maximal distance where those entities are considered connected to each other (e.g., by
visibility).

Definition 2.6 (Proximity limit). Proximity limit r between two entities is the minimal
safety distance that prevents the entities from collision.

Of course, the connectivity limit entails a neighborhood relationship between entities, i.e.

Definition 2.7 (Neighbors). The set N(i) of all neighbors of entity i is the set of all
entities whose distance from entity i as measured by entity i does not exceed the connectivity
limit value R, i.e. rmi

ij ≤ R.

In order to obey behavioral rules such as Reynolds’ cohesion and separation, we propose
to describe the interaction between swarm neighbors via the following intuitive mechanism:
two neighboring entities i and j, such that i ∈ N(j) and j ∈ N(i), are connected by
(virtual) spring, which applies force on its end points (i.e. the entities) based on its length.
Formally,

Definition 2.8 (Spring). Spring is a virtual structure connecting any two neighboring
entities. Spring size, measured by entity i, equals the distance rmi

ij between the two entities
i and j, where r ≤ rmi

ij ≤ R. This important property of the spring states that it can neither
stretch above R, nor shorten under r. Each pair of entities i, j that become neighbors(i.e.
i ∈ N(j) and j ∈ N(i)) obtains a spring. The force that the spring applies on its ends
is proportional to its size, i.e. the force on each end is F i

ij = (rmi
ij − (R + r)/2)/2 and

F j
ij = (r

mj

ij − (R+ r)/2)/2, so the spring attains its equilibrium state in the middle between
R and r.
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Note that the definition above does not necessarily mimic a physical spring. However,
regardless of the implementation, the force applied on each entity by its springs affects it
velocity, which one can define in the standard way, i.e.

Definition 2.9 (Velocity). The velocity vmi
i of entity i is the time derivative of its posi-

tion vector vmi
i = ṙmi

i and it is assumed to be constant within a cycle.

Finally, we note that one of the main purposes of the algorithm described in the bulk
of this paper is to preserve initial connectivity of the swarm network. We therefore define

Definition 2.10 (Connectivity). Let G(V,E) be the graph whose nodes are the swarm
entities and the bidirectional edges are the swarm bidirectional springs (both entities on
the end of the spring are aware of its existence). The swarm is said to be connected if its
corresponding graph is connected.

Definition 2.11 (Non-critical starting point). Non-critical starting point is a suffi-
cient condition to start using direction election algorithms. It states that ∀i, j|j ∈ N(i), r+
2e ≤ rmi

ij ≤ R − 2e that is all the entities are on the safe distance from each other, and
also the swarm is connected.

3. Direction election in silent swarms

3.1. Synchronous Systems

Leadership of an entity in silent swarms can only be expressed by moving in a way that
violates the basic Reynold’s rules. However, such arbitrary motions should be done with
care in order to avoid changes to the connectivity (or more strictly, the graph topology)
of the swarm. We begin our investigation of how this can be done in synchronous swarms,
where all entities share the same global clock and all perform their distance measurements
at the same time (but otherwise exchange no other information by any other means).

3.1.1. Leadership in flocking swarms

By Definitions (2.9) and (2.1), the velocity between subsequent measurements is as-
sumed to be constant. We observe that when an entity j decides to lead, it may move a
distance of at most (R− rmi

ij )/2− 2e in the direction of stretching each one of the springs
connected to it, and (rmi

ij − r)/2 − 2e in the direction of shortening the springs. We note
that the halving distance is necessary because i’s neighbor on the other end of a spring
may decide to lead simultaneously. For the same reason, the error bound e is doubled in
all the equations. Hence, in order to make the movement in the desired direction DIRi,
the leader must obey

r
mnext

i
i ←− rmi

i +min (ST, SH) ·DIRi (1)

where
ST ≤ min

j∈N(i)
((R− rmi

ij )/2− 2e) · uj ·DIRi (2)

5



is the minimal move among all neighbors of entity i in the direction of stretching the spring
(uj is the unit vector in the direction of stretching the spring between entities i and j),
and

SH = min
j∈N(i)

((rmi
ij − r)/2− 2e) · uj ·DIRi (3)

is the minimal move among all neighbors of entity i in the direction of shortening the
spring. Recall that e is the error bound on the measured distance of neighboring entities,
and N(i) is the set of neighbors of entity i. Since this policy is maintained by all pairs of
neighboring entities, we are guaranteed that springs do not stretch over the connectivity
limit R and at the same time do not shorten below the proximity limit r, assuming a
non-critical starting point. Hence, the swarm remains connected and safety distances are
maintained at all times.

Naturally, entities that do not wish to lead, should simply follow the regular Reynolds
rules. Formally, in our spring system, this can be expressed in the following manner:

r
mnext

i
i ←− rmi

i + dt2
∑

j∈N(i)

uj · (rmi
ij − (R+ r)/2)/2+ dt

∑
j∈N(i)

vmi
j −

∑
j ̸=i

Correctionj
i r̂

mi
ij , (4)

where
Correctionj

i = max[0, Shortji , Stretch
j
i ] (5)

is the correction in the direction from r̂mi
ij to entity’s i movement in order to prevent the

spring between entity i and entity j to shorten below r or stretch above R. Here we defined
the shortening and stretching spring violations as

Shortji = r + (rmi
ij − r)/2− |rm

next
i

i − rmi
j |+ 2e (6)

Stretchj
i = |r

mnext
i

i − rmi
j | − (R− (R− rmi

ij )/2) + 2e (7)

This way we make sure that entities from both ends of the spring will correct their move-
ments in order to prevent violation of the spring Definition 2.8.

While the above set of behavioral rules for leaders and non leaders guarantees that no
bidirectional edges in the swarm graph are being disconnected, it does allow the formation
of new edges. Formally, each swarm member should update its neighborhood set at all
cycles by executing

∀j rmi
ij > R⇒ Nnext(i)←− N(i)− {j}

∀j rmi
ij ≤ R⇒ Nnext(i)←− N(i) ∪ {j} (8)

Notice, that Eq. 8 is applied only on directed links. It is never applied on bidirectional
links.
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3.1.2. Direction election in swarms with labeled entities

With the basic motion rules for leaders and non leaders formulated above, we are now
ready to deal with direction election. Assume first that all the entities in the swarm are
labeled and aware of their identity. In such cases, entities can be numbered and ordered
by total ordering, and each entity can then be allocated unique time slots in which only
it may become a leader. Let ORDERi be the label of entity i. For fairness, this time
slot allocation can be done via round robin, using the global clock T global to allocate T
consecutive cycles to entity i, such that ORDERi == (T global mod n) + 1, and T is the
convergence rate of a swarm. It is an intrinsic constant in all algorithms presented below
that is used to represent time slot duration.

Following the previous subsection, we hence obtain the following algorithm:

Algorithm 3.1. Direction election for entity i who wants to lead in flocks with n labeled
entities

1: for cycle = 1, . . . , nT do
2: if ORDERi == ⌊(cycle− 1)/T ) + 1⌋ then lead according to eq. (1)
3: else obey Reynolds rules according to eq. (4)
4: update neighbor list according to eq. (8)
5: end
6: go back to step 1.

Note that convergence rate properties are directly dependent on the constant T . In
order to provide each leader with the best possibility to move in any desired leading direc-
tion, we may first wait until all the springs in the system are near their equilibrium. Note
that this is the optimal position to allow each leader to move in any desired direction, since
the equilibrium state of each spring is in the middle between r and R. So, we divide the
time slot of duration T into 2 parts: one for spring network convergence to equilibrium
state, and the second for leadership itself. Naturally, entity that does not want to lead in
its designated time slots, simply obeys Reynolds rules according to Eq. 4.

Bidirectional springs are only allowed to be formed, but they are never removed under
the direction election algorithm. Since the initial swarm graph is assumed connected, and
the connectivity is defined on bidirectional springs only, then connectivity is preserved.
Collisions are avoided by the definition of the unidirectional and bidirectional spring, which
cannot become shorter than the proximity limit distance. Using this reasoning, we can state
the following theorem:

Theorem 3.1. The initial connectivity of a swarm is preserved and collisions between all
entities are avoided under the direction election algorithm 3.1, i.e. there is a path of springs
connecting any pair of entities of a swarm during any stage of the algorithm.

The time of starting the leading period for each entity is predetermined by its label,
i.e. by its sequential number. Such a leader will lead starting from its first designated time
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slot for a duration of T cycles, a time at which the leading opportunity is passed to the
next entity. Since the equilibrium state of all springs is in the middle between R and r,
then any leader will obtain the possibility to move during its leading time slot, when it
leads alone. Hence, the following theorem can be stated:

Theorem 3.2. Direction election algorithm will cause swarm members to move in a single
leading direction for periodic time slots of duration T cycles.

3.1.3. Flocks of Unlabeled Entities

Assume now that the swarm consists of identical unlabeled entities which cannot be
ordered. Clearly, while leading slots cannot be allocated deterministically in this case,
entities can randomly choose their leading slot. However, this random selection should be
done with care to ensure a similar fair chance to all entities to lead, and to prevent two
entities from leading at the same time.
In our proposed solution, each entity runs the standard direction election algorithm for
flocks with labeled entities, when a sequence of numbers ORDERi is randomly generated
from the uniform distribution on the range (1, . . . , P ), where P is the predetermined size
of a period, whose optimal choice is described in eq. (11) below.

Algorithm 3.2. Direction election for entity i who wants to lead in flocks with n anony-
mous entities

1: Uniformly generate ORDERi on the range [1,P]
2: for cycle = 1, . . . , PT do
3: if ORDERi == ⌊(cycle− 1)/T ) + 1⌋ then lead according to eq. (1)
4: else obey Reynolds rules according to eq. (4)
5: update neighbor list according to eq. (8)
6: end
7: go back to step 1.

Clearly, connectivity is preserved again and network topology is never reduced, hence
we obtain:

Theorem 3.3. The initial connectivity of a swarm is preserved and collisions between
all entities are avoided under the direction election algorithm, i.e. there is a network of
bidirectional springs connecting any pair of entities of a swarm during any stage of the
algorithm.

However, as is, the selection of ORDERi allows a small number of time slots, where
multiple leaders compete for leadership. In such time slots, the swarm will flock according
to the average of the leader directions [20].

Theorem 3.4. Direction election algorithm will cause the swarm to follow a single leader
for periodic time slots of duration T with predetermined probability, given the period dura-
tion P .
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Proof: By construction, the leading starting time of each entity is distributed uniformly in
the range 1, . . . , P . Let us first assume that a particular slot is selected by a single entity.
Then, such a leader will lead by itself, starting from its time slot onward and until the
slot of a next potential leader begins. Hence, in such a case, a single leader is elected and
stable flocking of the swarm is achieved for time slot of duration T .

Of course, it is critical to understand how likely it is for any single candidate leader
to find itself selecting a leading slot without conflicting with others. The number of ways
to distribute k different entities into P different slots, where maximum a single entity is
allowed in any slot is P (P − 1) . . . (P − k + 1). The total number of ways to distribute n
different entities into P different slots is P n. Let us assign Numberaloneleading to the number
of entities that lead alone during the period P . So, the probability that this number is at
least k is:

Prob(Numberaloneleading ≥ k) =
P (P − 1) . . . (P − k + 1)(P − k)n−k

P n
(9)

Increasing P for given n also increases the probability, due to the fact that
limP→∞Prob(Numberaloneleading ≥ k)) = 1. Let us assume that Prob(Numberaloneleading ≥ n) =
1
q
, where q must be determined for each system, as stated below. Then, obviously,

log(1/(1−q))(n) sequential periods are needed to obtain the probability of any particular
entity out of n to lead alone approximately approaching unity. �

Figure 1 gives an example of the increasing probability of all the entities leading alone
as a function of the period P duration in this case, for number of entities n = 1..20. For
the case of n = 1 the probability is exactly 1, and it drops down as n increases.
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Figure 1: Probability of all n entities leading alone vs. period duration P , n = 1..20

In order to choose the period length P consider the following argument:

logProb(Numberaloneleading ≥ k) = logP (P − 1) . . . (P − k + 1)+
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(n− k) log(P − k)− n logP ≥

n log(P − k)− n logP = −n log
P

P − k
≥ − log q (10)

Furthermore, one can choose P according to

P ≥ kq
1
n

q
1
n − 1

(11)

We should choose k = n, since this will reduce the total number of periods needed, as
for larger k the lower bound for P in eq. (10) is less strict.
In order to choose the last unknown variable q in eq. (11) we need to solve the following
optimization problem:

minimizeq[log(1/(1−q))(n)
nq

1
n

q
1
n − 1

] (12)

Taking the derivative of the minimization function with respect to q we realize that
it vanishes at a single minimum of the minimization function (see Figure 2), which is the
desired optimal value.
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Figure 2: Derivative of the minimization function with respect to q, n=10

Figure 2 gives an example of the derivative of the minimization function with respect
to q, for number of entities n = 10.

3.2. Semi-synchronous networks

Consider a relaxed version of our synchronous network, in which time slots of differ-
ent entities are allowed to have unknown, but bounded size, phase shifts. We argue that
the direction election algorithm for flocks with labeled entities 3.1 described in subsection
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3.1 as well as direction election algorithm for flocks with anonymous entities described in
subsection 3.2 work when no synchronization between entities exists, while an additional
synchronization part in time slot T should be devoted, in order to preserve the probabilis-
tic properties of these algorithms. So, the structure of the time slot T contains now: the
convergence part, as earlier, the synchronization part that is equal to the maximal allowed
phase shift, and the leading part.
Indeed, allowing entities to lead only after the additional synchronization part of the
time slot T , we obtain the leadership for duration T , while no two entities with differ-
ent ORDERi values can compete for leadership. In addition, eq. (5) implies that no
spring violations can occur when cycle size dt is constant among different entities and only
the measurement time starts with a different phase. But note that this situation is covered
by the synchronous case, since here the maximal possible movement size is less than the
similar quantity in the synchronous case.

Theorem 3.5. Direction election algorithm 3.1 preserves connectivity and avoids collision
between entities for partially asynchronous systems.

Proof: We show that by running the synchronous direction election algorithm in partially
asynchronous system no violation of the spring Definition 2.8 happens. Here, each entity
performs its measurements with the same time periods dt, but with different starting time
phase. In particular, let us assume, without loss of generality that entity i performs its
measurements at time sequence {0, dt, 2dt, ..., kdt, ...}, while entity j performs its measure-
ments at time sequence {ph, dt + ph, 2dt + ph, ..., kdt + ph, ...}, where 0 < ph < dt stands
for the phase shift of entity j. Phase shifts may affect the algorithm only in two situations:
when making a movement as a leader, and while obeying Reynolds rules. In both cases,
the maximal movement for entity i starting at time 0 is (R − rmi

ij )/2 in the direction of
stretching the spring between i and j, and (rmi

ij − r)/2 in the direction of shortening the
spring between i and j, where rmi

ij is the length of the spring at time 0 measured by entity
i. By Definitions (2.9) and (2.1) the velocity between subsequent measurements is assumed
to be constant. Thus, until the time ph entity i passes a distance of

Sph
i =

ph

dt
(R− rmi

ij )/2 (13)

in the direction of stretching the spring between i and j, and

sphi =
ph

dt
(rmi

ij − r)/2 (14)

when it takes the direction which shortens the spring. Then, entity j makes its movement,
according to the measurement at time ph. Entity j made until the time dt a distance of
exactly

Sdt
j =

dt− ph

dt
([R− ph

dt
(R− rmi

ij )/2]− rmi
ij )/2 (15)
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in the direction of stretching the spring between i and j, or

sdtj =
dt− ph

dt
([rmi

ij −
ph

dt
(rmi

ij − r)/2]− r)/2 (16)

unit distance if it takes the direction which shortens the spring. Thus, at time dt, after a
complete cycle of entity i, the difference between R and the maximal length of the spring
between i and j is

NV dt = R− Ldt = R− {rmi
ij + (R− rmi

ij )/2 +
dt− ph

dt
([R− ph

dt
(R− rmi

ij )/2]− rmi
ij )/2} ≥

≥ (R− rmi
ij )/2− ([R− ph

dt
(R− rmi

ij )/2]− rmi
ij )/2 =

ph

dt
(R− rmi

ij )/4 ≥ 0 (17)

It means that the length of the spring between i and j is less or equal to R for this
case. Also, at time dt, after a complete cycle of entity i, the difference between the minimal
length of the spring between i and j and r is

nvdt = ldt − r = rmi
ij − (rmi

ij − r)/2− dt− ph

dt
([rmi

ij −
ph

dt
(rmi

ij − r)/2]− r)/2− r ≥

≥ (rmi
ij − r)/2− ([rmi

ij −
ph

dt
(rmi

ij − r)/2]− r)/2 =
ph

dt
(rmi

ij − r)/4 ≥ 0 (18)

Thus, the spring’s length between i and j is larger than or equal to r for this case.
Proceeding by mathematical induction, the spring size between i and j is less than or equal
to R and greater or equal to r after any number of cycles. The same is true for all other
springs in the network, since the spring between i and j has been chosen arbitrarily. �

Theorem 3.6. Given P, direction election algorithm 3.2 will make the swarm follow a
single leader at least k times in a period P for periodic time slots of duration at least T
with predetermined probability.

Proof: A time of starting the leading slot for each leader is uniformly generated upon the
range 1, . . . , P . Such a leader will lead alone starting from its time slot on, until the next
leader in the sequence wants to lead. Hence, single leader is elected and stable flocking of
the swarm is achieved for time slot of duration T . The probability that at least k entities
lead alone is equal to the probability in eq. (11), since exactly the same probabilistic rule is
applied in this case. Since the equilibrium state of all springs is in the middle between R and
r, then after the spare part of the time slot T , dedicated for spring network convergence,
all the springs will stay near their equilibrium in the middle between r and R. Then any
leader will obtain the possibility to move during its leading time slot, when it leads alone. �
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3.2.1. Real semi-synchronous networks

In the semi-synchronous networks, entities can start counting period P at different
times. The liveness of an algorithm ensures that all system constraints stay inviolated
when algorithm is applied to the system. The next theorem shows that synchronous
direction election algorithm 3.2 is also applicable for this case.

Since the statement of liveness for networks with nonsynchronized clocks Theorem 3.5
and its proof do not depend on the period starting time, we obtain:

Theorem 3.7. Liveness for networks with nonsynchronized clocks Theorem 3.5 is appli-
cable for Semi-synchronous Networks.

Theorem 3.8. Progress for synchronous network with time shift Theorem 3.6 is applicable
for semi-synchronous networks.

Proof: Let us assume without loss of generality that entity i starts counting its period P
from a time t = −ε. Its ORDERi value is uniformly distributed on the range [1− ε, P − ε]
that is Prob(ORDERi = o, o ∈ [1 − ε, P − ε]) = 1

P
. Immediately after the period of

duration P , another period of duration P starts, where ORDERi value of entity i is also
uniformly distributed that is Prob(ORDERi = m,m ∈ [P − ε, 2P − ε]) = 1

P
. Then

ORDERi value of entity i must be uniformly distributed on the range [1, P ]. Indeed,
Prob(ORDERi = q, q ∈ [1, P ]) = 1

P
. The same is true for every entity in the system.

Since the only assumption on period P was the uniform distribution of ORDERi value of
each entity on the range [1, P ] in the statement and the proof of theorem 3.4, then it is
also applicable for Semi-synchronous Networks. �

4. Monitoring and leader following

Let us show that all the proposed direction election algorithms allow all flock members
monitor the movement of the swarm in the leadership direction, while they perform fast
convergence to the leader velocity. We base this conclusion on the fact that the movement
of the center of mass of the system is affected by leading external force alone, while all other
internal forces in the system cancel each other. This reasoning will bear on the symmetry
properties of any heavily populated network around its center of mass.

It can be realized that due to the possible measurement errors, the newly created
network edges may not be bidirectional. In this situation, these new edges can be broken
by the unawared neighbor. Note that this case is not worse than the case without the newly
created directed neighborship as the connectivity is maintained by the links for which both
endpoint entities measure distance less than R.

For heavily populated networks, a reasonable assumption one can make is that entities
are located uniformly around the center of mass of the system. Due to this fact, we obtain
symmetry properties regarding the unidirectional springs formation in any direction in
the system. These properties lead to the conclusion that in the case of a single leader
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the overall additional external force induced by the unidirectional springs vanishes. So,
practically, only the leading force is applied to the center of mass of the system.

To conclude this elementary case, we do note that an upper bound for the convergence
rate of a swarm to a single leader may permit slight deviation from the exact speed and
direction of the leader. Furthermore, in many practical situations, explicit convergence
of all entities to the exact velocity of the leader is not crucial, but the movement of the
swarm’s center of mass in the direction of a leader, up to a small predetermined deviation,
is sufficient. While the limits r and R are not approached, which is prohibited by the
spring definition, the center of mass of the swarm is given under the external leading force
only, as stated above. In this ideal case, the convergence of entities to the approximate
leader velocity (up to an error) will happen immediately, because they are given under the
single leading force only. Due to the real system symmetry imperfections, the convergence
should take time, which might be polynomial in heavily populated networks.

In Figure 3 the leader applies the leading force F for the time t1 until the velocity of
the flock attains the desired value. Another entity is moving between the most extremal
possible positions under the influence of internal forces in the network. Still, the measure
of self velocity of this last entity converges to the velocity of center of mass as time passes.

Figure 3: Relative error bound change with time

While using the spring network abstraction, real masses and, therefore, accelerations of
different entities are not taken into account, but only their effective values and inter-entity
distances. The movement of a particular entity is limited only by its physical character-
istics. Let us assume that due to physical limitations the maximal allowed acceleration is
amax, so that that the maximal force each entity can apply is limited by F and its effective
mass is thus meff . Here, F = meffamax. Recall that only the leader’s force affects the
center of mass of the system. Using this fact, our algorithm allows monitoring of move-
ment of the swarm in the desired direction by all its members. Indeed, from Figure 3 we
conclude that the relative angular error in the leadership direction measurement by any
entity is bounded by 2X

L
, where X is the maximal deviation of an entity from the center

of mass, and L is the way passed by the center of mass in the direction of the leadership.
We note that the relative error decreases with increase in L. Let us assume the total mass
of the network to be one unit. By regular laws of accelerated motion,

L = V0t0 + Ft21 + V leadert (19)
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where V leader is the desired leadership velocity. X by itself is bounded by nR, since no
spring can stretch beyond R by definition. Hence, the relative angular error is bounded by

2nR

Ft21 + V leadert
≈ 2nR

V leadert
(20)

Thus, after a predetermined time period each entity can infer the leadership direction and
speed, up to a known error bound.

The stated above possibility of monitoring the leading direction by every entity gives
an opportunity of the most wanted direction election (which has been chosen majority
of entities during the algorithm) by among different leading directions. All the potential
leaders may be allowed to lead simultaneously for a given period of time, while monitoring.
After this time period, swarm’s velocity will attain, up to a bounded error, the most wanted
velocity direction among all leaders. So, the leader with closest leading goal (in other words,
the leader with the direction that is closest to the most wanted direction) will obtain the
maximal possibility to lead.

Clearly, the algorithm outlined so far would operate in the presence of multiple leaders,
but it does not guarantee that these leaders would not conflict each other to stall the swarm
as a whole or to act in a diverging behavior forever.

5. Conclusions

In this work we enhance Reynolds Boids rules to enable symmetry breaking, handle
measurement errors and support direction election. We prove correctness and believe that
the schemes presented can be used in practice. The constant value T that is used in our
algorithms can be experimentally (or using simulations) measured for the specific swarm
settings; as we pointed out we suspect that the value of T proved in [1, 2] is an upper bound
on convergence rate in our model. The algorithms presented can be tuned for the cases in
which various threats or flocking goals with different urgencies coexist in the system. To
address this scenario we can introduce priority mechanism. The priority variable NP will
have a predetermined scale of values, dividing the priority to different scenarios present
in the system. Then, direction election is influenced by the priority value of each entity.
For this scheduler, we have that for a random generation of ORDERi a period of P is
multiplied by the priority category number NP , starting from NP = 1 for the highest
priority.

The priority of each entity should be calculated asynchronously at the time of an appro-
priate scenario arrival to the entity. Each entity would perform such priority calculations
all the time according to a predetermined formula. At this moment, new period starts for
this entity, and the period duration for it is influenced appropriately.

Using the following reasoning, we argue that all presented direction election algorithms
will preserve their properties under this new priority scheme. In particular, they will make
the swarm to follow a single leader for periodic time slots of duration T with arbitrarily
high predetermined probability, since the time of starting the leading time slot for each
leader is uniformly generated upon the range 1, . . . , NPP . Such a leader will lead alone
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starting from his time slot on, until the next leader in the sequence wants to lead. This
may happen when another leader was previously scheduled or the priority scheduling took
place. So, single leader is elected and stable flocking of the swarm is achieved, for time slot
of duration T .

Also, the probability that at least k entities lead alone is greater or equal to the prob-
ability in eq. (11), since exactly the same probabilistic rule is applied in the case, where
all entities have equal priority, otherwise, the probability is higher, since the number of
entities in each period P is less than n.
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