
Low Energy Fault Tolerant Bounded-Hop Broadcast in
Wireless Networks

Hanan Shpungin
∗

Computer Sciences Dept.
Ben-Gurion University of the Negev

Beer-Sheva, Israel
shpungin@cs.bgu.ac.il

Michael Segal
†

Communication Systems Engineering Dept.
Ben-Gurion University of the Negev

Beer-Sheva, Israel
segal@cse.bgu.ac.il

ABSTRACT
This paper studies asymmetric power assignments in wire-
less ad-hoc networks. The temporary and unfixed physical
topology of wireless ad-hoc network is determined by the dis-
tribution of the wireless nodes as well as the transmission
power (range) assignment of each node. We consider the
problem of bounded-hop broadcast under k-fault resilience

criterion for linear and planar layout of nodes. The topology
which results from our power assignment allows a broadcast
operation from a wireless node r to any other node in at
most h hops and is k-fault resistant.

We develop simple approximation algorithms for the two
cases and obtain the following approximation ratios: linear
case – O(k); planar case – we first prove a factor of O(k3),
which is later decreased to O(k2) by a finer analysis. Finally
we show a trivial power assignment with a cost O(h) times
the optimum. To the best of our knowledge these are the
first non-trivial results for this problem.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communications; G.2.2
[Discrete Mathematics]: Graph Theory—Network Prob-

lems
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1. INTRODUCTION
A wireless ad-hoc network consists of several transceivers
(stations), communicating by radio. Each transceiver t is as-
signed a transmission power p(t), which gives it some trans-
mission range, denoted by rt. This is customary to assume
that the minimal transmission power required to transmit
to a distance d is dα, where the distance-power gradient α is
usually taken to be in the interval [2, 4] (see [31]). Thus, a
transceiver t receives transmissions from s if p(s) ≥ d(s, t)α,
where d(s, t) is the Euclidean distance between s and t. The
transmission possibilities resulting from a power assignment
induce a communication graph. Research efforts have fo-
cused on finding power assignments, for which the induced
communication graph satisfies a certain topology property,
while minimizing the total cost. Broadcasting is one of pos-
sible topologies. For a special station r, called the root, we
want to establish a transmission graph where there is route
from r to every other node in the network. In some cases
it is essential to minimize the number of hops from the root
transceiver to other nodes in the network. This is called
bounded-hop broadcasting.

This paper is organized as follows. In the rest of this section
we present the model, previous work and briefly describe
our results. In Section 3 we address the linear case of the
problem. Then in Section 3 we deal with the planar layout
of nodes and prove various approximation factors for the
problem.

1.1 The Model
We are given a set T of n transceivers t1, t2, . . . , tn, posi-
tioned in R

d, d ≥ 1. We define the cost of an undirected
graph G(T ) = (T , E) by

CG =
�

(s,t)∈E

c(s, t).

With edge costs being c(s, t) = d(s, t)α for every (s, t) ∈
E . When each transceiver is assigned a transmission power
p(t) = rα

t , an ad-hoc network is created. A power assign-
ment for T is a vector of transmission powers {p(t) | t ∈ T }
and is denoted by A(T ) (usually abbreviated to A). The re-
sulting (directed) communication graph is denoted by HA =
(T , EA), where EA is the set of directed edges resulting from
the power assignment A(T ):

EA = {(t, s) | p(t) ≥ d(t, s)α} .

That is, there is a directed edge from t to s if t has sufficient
transmission power to reach s. In this paper we refer to



transceivers as nodes. The cost of the power assignment is
defined as the sum of all transmission powers:

CA =
�
t∈T

p(t).

Throughout this paper we address the linear layout of nodes
as well. The transceivers are positioned on a single line in
increasing order from right to left (see Figure 1.a). Note
that in case of the linear layout if there is a path from ti to
tj , where i < j then there is a path from ti to any node tl,
where i < l < j.

For some power assignment A and a root node r, we say that
a communication graph HA is a broadcast graph rooted at r
if for any other node t ∈ T there is a path from r to t in HA.
In the case that the maximal number of hops from r to any
any node t is limited by some constant h, we say that HA is
an h-bounded-hop broadcast graph rooted at r. In this paper
we demand that HA remains a bounded-hop broadcast graph

even with the removal of up to k nodes (the extraction of
a node, removes all edges adjacent to it as well). We refer
to k as the fault resistance parameter. If HA holds the
above, we say that HA is a k-fault resistant h-bounded-hop
broadcast graph rooted at r. In short we would say HA is
a k-h-broadcast graph. Let us formulate the main problem
addressed in this article:

MEkBHB (Minimum Energy k-Fault Resistant h-Bounded-

Hop Broadcast) — Given a set of nodes T in R
d (d = 1, 2),

a fault resistance parameter k and a maximal number of al-
lowed hops h, find a power assignment A(T ) so that HA is
k-fault resistant h-bounded-hop broadcast graph rooted at
r and CA is minimized.

Note that k-fault resistance definition above presumes that
there are k-node disjoint paths from r to any node t ∈ T ,
which is not directly reached by r. Since if some node u is
reached by the root, any k − 1 node removals will not effect
the transmission from r to t. On the other hand, if some
node v is node directly reached by r, then there must exist
k node disjoint paths from r to v, otherwise a removal of
k− 1 nodes might result in transmission failure from r to v.
In this work we assume α = 2.

1.2 Previous Work
Topology control in wireless networks is a relatively new
field of interest. Nevertheless a wide area of problems has
already been studied. Most of the problems are aimed at
computing a low energy power assignment that meets global
topological constraints. Kirousis et al. [28] introduced the
MinRange(SC) problem, which is the k-strong connectivity
problem for k = 1. They proved it to be NP-Hard for the
three dimensional Euclidean space for any value of α. The
same paper provided a 2-approximation algorithm for the
planar case and an exact O(n4) time algorithm for the one
dimensional case. In the planar case, the NP-Hardness of
the problem for every α has been proved in [19] and a sim-
ple 1.5-approximation algorithm for the case α = 1 has been
provided in [5]. Ambuhl et al. [4] presented some algorithms
for the weighted power assignment, solving it optimally for
the broadcast, multi-source broadcast and strong connec-
tivity problems for the linear case (they achieved the same

running time for the strong connectivity problem as in [28]).
They also presented some approximation algorithms for the
multi-dimensional case. An excellent survey covering many
variations of the problem is given in [17].

A natural generalization of the strong connectivity require-
ment is k-strong connectivity. These networks also provide
multi-path redundancy for load balancing or transmission
fault tolerance. As power-optimal strong connectivity is
NP-Hard, so is power-optimal k-strong connectivity. Two
versions of the problem arise: symmetric and asymmet-
ric. In the symmetric version for any two nodes t, s ∈ T ,
p(t) ≥ d(t, s)α ⇔ p(s) ≥ d(s, t)α, that is a node t can reach
node s if and only if s can reach node t, we can also refer to
it as an undirected model. The asymmetric version allows
directed links between two nodes. Krumke et al. [29] argued
that the asymmetric version is harder than the symmetric
version. A first non trivial result for planar asymmetric k-
strong connectivity was presented by Shpungin and Segal in
[33]. They derived an approximation factor of O(k2) for the
planar case and some results for the linear case. Carmi et
al. [14] improved the approximation ratio to O(k). Another
possible connectivity property is k-edge connectivity, which
implies that the removal of any k edges results in a discon-
nected graph. In [13], Calinescu and Wan presented vari-
ous aspects of symmetric/asymmetric k-strong connectivity
and k-edge connectivity. They first proved NP-Hardness
of the symmetric two-edge and two-node strong connectiv-
ity and then provided a 4-approximation algorithm for both
symmetric and asymmetric strong biconnectivity (k = 2)
and a 2k-approximation for both symmetric and asymmet-
ric k-edge strong connectivity. Hajiaghayi et al. [25] give
two algorithms for symmetric k-strong connectivity, with
O(k log k) and O(k)-approximation factors and also some
distributed approximation algorithms for k = 2 and k = 3
in geometric graphs. Jia et al. in [27] present various ap-
proximation factors (depending on k) for the symmetric k-
strong connectivity, such as 3k-approximation algorithm for
any k ≥ 3 and 6-approximation for k = 3. Segal and Sh-
pungin [32] extend static algorithms for k-connectivity to
support dynamic node insert/delete operations. Additional
results can be found in [1, 9, 12, 16, 20, 26, 30, 34].

Wieselthier et al. in [36, 37] were the first to study the
broadcast problem in wireless ad-hoc networks for the 2-
dimensional case and when α = 2. In this work, the perfor-
mances of three heuristics, namely the minimum spanning
tree (MST), the shortest path tree (SPT) and the broad-
casting incremental power (BIP) have been experimentally
compared (one to each other) on the random uniform model
without providing theoretical results. The approach taken
in [36, 37] is to build a source rooted spanning tree by ad-
justing transmit powers of nodes, followed by a sweep oper-
ation to remove redundant transmissions. Wan et al. in [35]
present the first analytical results for this problem by explor-
ing geometric structures of Euclidean MSTs. In particular,
they prove that the approximation ratio of MST is between
6 and 12, for BIP it is between 3

12
and 12 and for SPT it is at

least n
2
, where n is the number of receiving nodes given that

there are no obstacles in the network and that the fixed en-
ergy cost for electronics is negligible. Cagalj et al. [10] give
a proof of NP-Hardness of the minimum-energy broadcast
problem in a Euclidean space. Many researchers provided



analytic results of the minimum-energy broadcast algorithm
based on computing an MST. In [2] Ambuhl et al. proves an
approximation factor of 6, which matches the lower bound
previously known for this algorithm. Flammini et al. [23] es-
tablish improved approximation results on the performance
of BIP. Cartigny et al. in [15] develop localized algorithms
for minimum-energy broadcasting. Segal and Shpungin [32]
develop a general framework for k-fault tolerance in various
topology problems and provide an approximation bound of
O(k2) for the k-broadcast problem. Additional references
and results may be found in [2, 6, 8].

We can also add an additional constraint parameter to the
problem, the bounded diameter h of the induced communi-
cation graph. For the linear case node disposition, Kirousis
et al. [28] develop an optimal power assignment algorithm
in (O(n4) time. In the Euclidean case, [21] obtains con-
stant ratio algorithms for the bounded-hop strong connec-
tivity for well spread instances. Beier et al. [7] discuss the
problem of finding a bounded-hop path between pairs of
nodes with minimized power consumption. They find an
optimal path in O(hn log n) time. In [11] the authors obtain
(O(log n), O(log n)) bicriteria approximation algorithms for
the bounded-hop broadcast, bounded-hop connectivity and
bounded-hop symmetric connectivity problems. In their
output there are at most h log n hops with log n times the
optimal cost for h hops. In [3] the authors present an exact
algorithm for solving the 2-hop broadcast problem with a
running time of O(n7) as well as a PTAS with a running

time of O(nµ) where µ = O((h2/ε)2
h

). Funke and Laue [24]
provide a PTAS for the h-broadcast algorithm in time linear
in n. Additional results for bounded range assignments can
be found in [18, 22].

1.3 Our Contribution
We study the problem of h-bounded broadcasting in con-
junction with k-fault resistance (MEkBHB). We first pro-
vide a O(k) approximation algorithm for the linear layout of
nodes. For the planar case we develop an approximation al-
gorithm, with provable approximation ratio of O(k3), which
is later decreased to O(k2) by a fine analysis. Finally we
show a trivial power assignment with a cost O(h) times the
optimum. All our algorithms run in low polynomial time.

2. LINEAR BOUNDED-HOP BROADCAST
Given n nodes positioned on a single line, we assume they are
located in an increasing order from left to right (see Figure
1.a). We start by solving a special case of the MEkBHB
problem for the linear layout of nodes, when the root node
is r = t1, that is from the leftmost node.

2.1 Broadcast from t1

Let ∆ = max1≤i<n d(ti, ti+1) be maximal distance between
two adjacent nodes and D = d(t1, tn) be the distance from
the leftmost to rightmost nodes. We assume ∆ k ≤ D

h
, that

is if we divide the line into sections of length D/h then each
section will contain at least k nodes. The next Lemma gives
the lower bound for the cost of the optimal power assignment
A∗ under these settings.

Lemma 2.1. CA∗ ≥ D2k
k+h−1

.
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a. Linear nodes positioning. Note ∆ = d(t9, t10)
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b. The lower bound for A∗. The root is assigned the range
x. The remaining distance is covered by k paths with h−1
hops each.
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c. The power assignment Lh
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Figure 1: Linear k-fault resistant bounded-hop

broadcast from t1 for k = 3, h = 4.

Proof. Let ti be the rightmost node reached by t1 in A∗.
Nodes that are not directly reached by t1 must be accessible
by k-node disjoint paths from it. In case of the linear layout,
if there is a path from u to v, then there is a path from u to
any node in between. Therefore in A∗ there must be k node
disjoint traversals to tn originating in nodes ti−k+1, . . . , ti,
since paths originating in earlier nodes will not be optimal.
Let x = d(t1, ti). The distance covered by these paths is
D − x (see Figure 1.b). Note that CA∗ is minimized if all
these paths start at ti and evenly divide the distance D − x
into h− 1 hops. Given that the root node t1 is assigned the
range x we can bound the optimal power assignment by:

CA∗ ≥ x2 + � D − x

h − 1 � 2

k(h − 1).

Next we analyze the function f(x) = x2 + (D−x
h−1

)2k(h − 1)
to find the lower bound for the cost of the optimal power
assignment. For x = Dk

k+h−1
, the value of function f(x) is

minimized. As a result,

f � Dk

k + h − 1 � =
D2k2

(k + h − 1)2
+ � D − Dk

k+h−1

h − 1 � 2

k(h − 1)

=
D2k2

(k + h − 1)2
+

D2k(h − 1)

(k + h − 1)2

=
D2k(k + h − 1)

(k + h − 1)2
=

D2k

k + h − 1
,

which completes our proof.

Next we describe our algorithm. We divide the line into h
blocks of length D/h each. Note that due to our assumption,
there are at least k nodes in each block. Let tij be the



rightmost node in the jth block. We assign power as follows.
The root is assigned p(t1) = d(t1, ti1)

2 to reach ti1 . In blocks
1 to h − 2, each of the k rightmost nodes is assigned with
enough power to reach the k rightmost nodes of the next
block. In block h − 1, all k rightmost nodes are assigned
with enough power to reach tn and nodes in the last block are
assigned zero power (see Figure 1.c). Formally for 1 ≤ l ≤ k,

p � tij−k+l � = d(tij−k+l, tij+1−k+l)
2, for 1 ≤ j < h − 1

p � tih−1−k+l � = d(tih−1−k+l, tn)2.

Let Lh
k be the resulting power assignment. Easy to see that

the the induced (directed) communication graph HLh
k

is k-

fault resistant h-bounded-hop broadcast graph rooted at t1.
It is sufficient to show the existence of k-node disjoint paths
from t1 to tn. These paths can be described as,

yl = � t1, ti1−k+l, ti2−k+l, . . . , tih−1−k+l, tn) � , 1 ≤ l ≤ k.

Lemma 2.2. CLh
k
≤ D2

h2 (4k(h − 1) + 1) .

Proof. The root is assigned a transmission range of at
most D/h. A total of k(h−1) nodes are assigned a transmis-
sion range of at most D/h+k∆ each. Recall our assumption
∆ k ≤ D

h
. Therefore,

CLh
k
≤ � D

h � 2

+ k(h − 1) � D

h
+ k∆ � 2

≤ � D

h � 2

+ k(h − 1) � 2D

h � 2

=
D2

h2
(4k(h − 1) + 1) .

This completes our proof.

Finally we can easily derive our main Theorem.

Theorem 2.3. CLh
k
∈ O(k)CA∗ .

Proof. According to Lemmas 2.1 and 2.2 we have CA∗ ≥
D2k

k+h−1
and CLh

k
≤ D2

h2 (4k(h − 1) + 1). Also, since k ≥ 1 and

h ≥ 2 then k + h − 1 ≤ kh. Therefore,

CLh
k

CA∗

≤
D2

h2
(4k(h − 1) + 1)

k + h − 1

D2k

≤
4k(h − 1) + 1

h
≤ 4k + 1.

We conclude CLh
k
∈ O(k)CA∗ .

2.2 Broadcast from any ti

The generalization of our algorithm to broadcast from any
node ti, 1 ≤ i ≤ n is very simple. We use the described algo-
rithm to obtain two power assignments AL and AR; the for-
mer is a power assignment for k-h-broadcast from ti to nodes
to the left of it – namely t1, . . . , ti−1; the latter is for nodes
to the right of it – namely ti+1, . . . , tn. Next we combine the
two power assignments. Let pL(t) and pR(t) be the power as-
signed to t in AL and AR respectively. We define the power
assignment L(i)h

k as follows, p(t) = max{pL(t), pR(t)}.

Clearly the induced communication graph HA is k-fault re-
sistant and h-bounded-hop broadcast from ti. Let A(i)∗

be the optimal power assignment for k-h-broadcast from ti.
Since solving the problem for a subset of adjacent nodes
will produce a cheaper solution, we can use the bound in
Theorem 2.3 and conclude CAL

∈ O(k)CA(i)∗ and CAR
∈

O(k)CA(i)∗ . Therefore CL(i)h
k

∈ O(k)CA(i)∗ . Easy to see

that after sorting the nodes the running time of the algo-
rithm is O(n log n).

3. PLANAR BOUNDED-HOP BROADCAST
The general idea for a power assignment which induces a
k-fault resistant bounded-hop broadcast graph in the plane
s to first obtain a bounded-hop broadcast graph and then
make it k-fault resistant. In [24] the authors present a PTAS
algorithm for the MEkBHB problem with fault resistance
parameter k = 1. We use this construction as a basis for
k-fault resistant bounded-hop broadcast. We first explain
the technique used for k-fault resistant strong connectivity
suggested in [14], that we will use later to obtain k-fault
resistant broadcast tree.

3.1 Planar k-strong connectivity
Let T be a set of n points in the plane (representing n
transceivers). For each node t ∈ T , let Nt ⊆ T be a set
of k-closest nodes to t, and put r∗

t = maxt′∈Nt
d(t, t′). We

now describe the power assignment algorithm. Compute a
minimum spanning tree mst of the Euclidean graph induced
by T . Assign to each node t ∈ T a power p(t) = (r∗

t )2.
As a result, each node can reach its k-closest neighbours.
Denote this initial range assignment by A′. For each edge
e = (t, s) of mst, increase the power of the nodes in Nt ∪Ns

(if necessary), such that each node t′ ∈ Nt can reach all
nodes in Ns, and vice versa. Let Ak denote the resulting
power assignment.

The idea is rather simple, we want to construct k-node dis-
joint paths along the edges of the mst. Think about each Nt

as large intersections containing k intersection points, and
that there are k symmetric links between Nt and Ns iff (t, s)
is an edge in the mst. The range assignment of each node
t should be at least r∗t (otherwise k-strong connectivity is
impossible), and in addition sufficient enough to create the
intersections mentioned above. The following Lemma can
be easily proved (see Figure 2).

Lemma 3.1. Given two nodes t, s ∈ T , let rt,s

t′
be the

range node t′ ∈ Nt has to be assigned in order to reach any

node in Ns including s. Then, rt,s

t′
< r∗t + d(t, s) + r∗s .

We provide a proof sketch for the following Theorem from
[14]. Let A∗

k be an optimal power assignment for the k-
connectivity problem.

Theorem 3.2 (Carmi et al. [14]). CAk
∈ O(k)CA∗

k

Proof sketch. Note that the range assignment of each
node t in Ak must satisfy the following two conditions; (a)
it must reach at least k other nodes (b) it must satisfy the
demands of other nodes, for which it is one of their k-closest
neighbors (i.e. all those nodes s so that t ∈ Ns).
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Figure 2: Node t′ is assigned a range of at most

r∗t + d(t, s) + r∗s to reach all s′ ∈ Ns.

For an edge e = (t, s) in the mst we denote re
t′ = rt,s

t′
. There-

fore each node t′ is assigned a transmission range which is
the maximum between r∗t′ , and its obligation to some node t.
Where t′ ∈ Nt and there is an edge e ∈ mst so that re

t′ > r∗t′
(see Figure 2). Therefore,

CAk
=

�
t′∈T

p(t′) ≤
�
t′∈T

max � r∗t′ , max
e∈mst

{re
t′} � .

From Lemma 3.1 and the fact that geometrical mst has a
bounded degree of 6,

CAk
∈ O(k) � �

t∈T

(r∗t )
2

+
�

e∈mst
|e|2 � .

According to [28] Cmst ≤ CA∗

1
≤ CA∗

k
. We can conclude,

CAk
∈ O(k) 	 CA∗

k
+ Cmst 
 = O(k)CA∗

k
.

3.2 The algorithm
Given a set of nodes T and a root node r, we wish to con-
struct a power assignment Ah

k , so that the induced commu-
nication graph HAh

k
is k-h-broadcast rooted at r. As before,

for each node t ∈ T , let Nt ⊆ T be a set of k-closest nodes
to t, and put r∗t = maxt′∈Nt

d(t, t′). Let Ah be a power
assignment constructed in [24] for some constant h, so that
HAh

is a 1-h-broadcast graph. We are ready to describe the
power assignment algorithm.
We start by constructing a directed spanning tree of HAh

by
running a BFS from the root node r. Denote the resulting
tree by bht′ and by level-i nodes to be the nodes at dis-
tance i from the root. Clearly for each node t ∈ T there is
a unique directed path of at most h hops from r to t in the
bht′. Note that the power assignment Abht′ required to in-
duce this tree has a cost CAbht′

≤ CAh
. Next we decrease

the depth of bht′ to be h−1 by adding a directed edge from
r to every level-2 node and remove all edges between level-1
nodes and level-2 nodes (see Figure 3). Call this tree bht
and by Abht the power assignment required to induce this
tree. Easy to see that CAbht ≤ 2CABHT ′

≤ 2CAh
by using

the following observation.

Observation 3.3. For any x1, x2, . . . , xm ∈ N it holds

� m�
i=1

xi � 2

≤ m

m�
i=1

xi
2.
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Figure 3: Depth decrease of bht′.

Similar to the case of strong connectivity, we would like to
create k-node disjoint paths along the edges of bht, from r
to any node other t ∈ T . We start by assigning the root
node r with a power p(r) = (r∗

r )2, so that it can reach its
k-closest neighbors. Next, for each directed edge e = (t, s)
(from t to s) in bht we increase the power (if required) of
each node t′ ∈ Nt so it could reach all nodes in Ns ∪ {s}.
Let Ah

k denote the resulting power assignment.

It is easy to see that the resulting (directed) communica-
tion graph HAh

k
is k-fault resistant h-bounded-hop broadcast

rooted at r. That is, for any node t ∈ T there are k-node
disjoint paths from r to t, that ”follow” the path from r to
t in bht. And each of these paths has at most h hops.

3.3 Analysis
In order to analyze the cost of the power assignment Ah

k

we need to take a closer look at the power increase stage
of each node. All nodes (except for the root) start with no
power and it is increased if required. The power of t′ ∈ Nt

is increased only to satisfy the demand of some outgoing
edge e = (t, s) from t in bht, that is to reach any node in
Ns ∪ {s}. Since node t′ can be a member in many sets of k-
closest neighbors, it might be required to increase its power
many times, but eventually its power will be dominated by

some outgoing edge et′ = (ti, s), where t′ ∈ Nti . Recall
that for an edge e = (t, s) we denote by re

t′ = rt,s

t′
the range

node t′ has to be assigned to reach s and all the k-closest
neighbors of s.

To simplify the notation, for any node t′i, denote by ei =
(t(i), s(i)) the edge which dominates the power assignment
of t′, where t(i) 6= s(i) are some nodes in T . Note that is
possible that t(i) = t(j) for i 6= j. The root node might
not have a dominating edge since its initial power is greater
than 0. However, we will assume it has one and later show
that it does not influence our analysis at all.



Lemma 3.4. CAh
k
∈ O(k) � �

t∈T

(r∗t )
2

+ CAh � .

Proof. From Lemma 3.1 we have the following inequal-

ity: r
t(i),s(i)

t′
< r∗t(i) + d(t(i), s(i)) + r∗s(i). From Observa-

tion 3.3, p(t′i) ≤ 3 	�� r∗t(i) � 2 + d(t(i), s(i))2 + � r∗s(i) � 2 
 .

Let p′(t) be the power node t is assigned in Abht. Then
p′(t(i)) ≤ d(t(i), s(i))2. We can write,

CAh
k

=

n�
i=1

p(t′i) ≤ 3

n�
i=1

	�� r∗t(i) � 2 + p′(t(i)) + � r∗s(i) � 2 
 .

For any node t ∈ T , only for t′i ∈ Nt we have t(i) = t. For
any node s ∈ T , let es = (ts, s) be an incoming edge of s
in bht. Then only for t′i ∈ Nts we have s(i) = s. As a result,� n

i=1 � r∗t(i) � 2 ≤ k
�

t∈T (r∗t )2 ,
� n

i=1 � r∗s(i) � 2 ≤ k
�

t∈T (r∗t )2

and
� n

i=1 p′(t(i)) ≤ k
�

t∈T p′(t) = k CAbht ≤ 2k CAh
.

Therefore, CAh
k

∈ O(k) � � t∈T (r∗t )2 + CAh � . Note that if

the root has a dominating edge it does not affect the analy-
sis.

Paper [24] proves that given power assignment algorithm
which produces the Ah assignment is PTAS and therefore it
holds CAh

≤ (1 + ε)CAh
1

∗ ≤ CAh
k
∗ , where Ah

1
∗

and Ah
k

∗
are

the optimal power assignments that induce a 1-h-broadcast
and k-h-broadcast communication graphs respectively. In
the next two Lemmas, which prove two different approxima-
tion rations of our algorithm, the cost of CAh

is negligible

in relation to
�

t∈T (r∗t )2.

Theorem 3.5. CAh
k
∈ O(k3)CAh

k
∗ .

Proof. Let every node t ∈ T be assigned a transmission
range r∗t . Call this power assignment A1. The induced com-
munication graphs holds the following property, every node

has at least k neighbors. We also claim that A1 is an optimal
power assignment that induces a communication graph with
such a property.

An approximation algorithm for a power assignment An−1
k

which induces a k-(n − 1)-broadcast communication graph
(there is no constant bound on the path length) is given
in Segal and Shpungin [32] and they prove that C

A
n−1

k
∈

O(k2)C
A

n−1

k

∗ , where An−1
k

∗
is the optimal power assignment

for the k-fault resistant unbounded broadcast.

The induced communication graph H
A

n−1

k
maintains the

property that every node has at least k neighbors. There-
fore we can conclude that CA1

≤ C
A

n−1

k
. Easy to see that

C
A

n−1

k

∗ ≤ CAh
k
∗ , since forcing a constant maximal number

of hops increases the power assignment. As a result,�
t∈T

(r∗t )
2

= CA1
∈ O(k2)CAh

k
∗ .

In conjunction with Lemma 3.4 we conclude

CAh
k
∈ O(k) � �

t∈T

(r∗t )
2

+ CAh � = O(k3)CAh
k
∗ .
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Figure 4: Point p covering for k = 2.

Next we present a more delicate analysis in order to improve
the approximation ratio bound.

Theorem 3.6. CAh
k
∈ O(k2)CAh

k
∗ .

We will need the following two Lemmas to prove Theo-
rem 3.6.

Lemma 3.7. Any single point p in the plane can not be

covered by more than 6k+6 disks, so that each disk does not

cover more than k centers of other disks.

Proof. We divide the plane into 6 equal sectors of π/3
and show that at most k + 1 disks that cover p can reside
in each sector so that each disk does not cover more than k
centers of other disks. Suppose, by contrary, that one of the
sectors contains more than k + 1 disks. In Figure 4 there is
a sector β with 4 disk centers (k = 2). Let x be the center
of a disk in β at largest distance most from p. Let Dp be
a disk centered at p with a radius d(p, x). Clearly, all the
other disk centers in the sector β are covered by Dp and
there are at least k + 1 of them. Since we have chosen a
sector β of π/3, all these disk centers belong to Dx∩Dp and
therefore are covered by Dx. Contradiction.

Lemma 3.8. Let S be a set of m > k nodes in the plane

positioned inside disk D of radius r. Let A∗ be the optimal

power assignment so that each node can reach at least k
nodes in S. Then CA∗ ∈ O(k)r2.

Proof. Let p∗(si) be the power node si ∈ S is assigned
in A∗. Let Di be a disk centered at node si as a result of
the power assignment (i.e. the disk is centered at si and

has a radius of 
 p∗(si)). Since A∗ is an optimal power
assignment, then each disk can cover at most k centers of
other nodes. Due to Lemma 3.7 each point inside disk D
can be covered by at most O(k) disks, therefore

m�
i=1

area(Di) ∈ O(k)area(D) ⇒
m�

i=1

p∗(si) ∈ O(k)r2.
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Proof of Theorem 3.6. We construct a power assign-
ment in which each node has at least k neighbors and bound
its cost in a similar manner as in Theorem 3.5. Recall that
An−1

k

∗
is the optimal power assignment for the k-fault re-

sistant unbounded broadcast rooted at r. Note that in the
induced communication graph H

A
n−1

k

∗ , the root reaches at

least k nodes and any other node t 6= r ∈ T is either reached
by r or by at least k different nodes (otherwise we do not
have k-broadcast). Let Rt be a set of all nodes that reach
t by a single hop in H

A
n−1

k

∗ . For all nodes t reached by r

we define Rt = {r}. Let r′t is the range node t has to be
assigned in order to reach all nodes in Rt (see Figure 5).
Let A2 be a power assignment defined as follows. To avoid

confusion, let xr be the radius assigned to r in order to have
k neighbors. Assign each node t ∈ T , t 6= r with a power
p2(t) = (r′t)

2
and p2(r) = (xr)

2. In HA2
the root reaches

at least k nodes and any other node reaches either the root
or at least k different nodes. Let f(t) ∈ Rt, be the most
distant node reached by t 6= r in HA2

, that is d(t, f(t)) = r′
t

(if there are more than one, choose one arbitrarily). Call
this node the target of t.
Let Zu be a set of nodes that share the same target node u,
that is for every t ∈ Zu, f(t) = u. Note that Zr is a set of
all nodes reached by r in a single hop in H

A
n−1

k

∗ . This is be-

cause for every such node t we define Rt = {r}. Let CA2(Zu)

be the total power assigned to nodes of Zu in A2. Easy to
see that sets Zu are disjoint and that �

u∈T Zu = T \{r}.
Note that for any t ∈ Zu it holds p2(t) ≤ p(u), where p(u)
is the power u is assigned in An−1

k

∗
. The cost of A2 is given

by

CHA2
=

�
t6=r∈T

p2(t) + (xr)
2

=
�
u∈T

�
t∈Zu

p2(t) + (xr)
2 =

�
u∈T

CA2(Zu) + (xr)
2 .

We cannot bound the cost of H2 just yet. Moreover, not
every node necessarily has k neighbors (nodes reached by r
in An−1

k

∗
might have less than k neighbors). We would like

to bound the costs CA2(Zu) and ensure that all nodes have
at least k neighbors. Let A3 be a power assignment defined
as follows. For every Zu we consider two cases:
Case 1: If |Zu| < k then CA2(Zu) ≤ k p(u), so for every
t ∈ Zu we assign p3(t) = p2(t) (remains as in A2).
Case 2: If |Zu| ≥ k then there are at least k + 1 nodes
inside of a disk created by the power assignment of u. The
nodes Zu ∪{u} are inside of a disk centered at u with radius
 p(u). For every node t ∈ Zu assign p3(t) to be the minimal
power required for t to reach its k closest neighbors in Zu.
According to Lemma 3.8,

�
t∈Zu

p3(t) ∈ O(k)p(u). The
root is assigned as before with a power to reach its k closest
neighbors p3(r) = p2(r) = (xr)

2.

Let CA3(Zu) be the total power assigned to nodes of Zu in
A3. If we combine the two cases we obtain for every u ∈ T ,
CA3(Zu) ∈ O(k) p(u). Therefore we can conclude,

CA3
=

�
u∈T

CA3(Zu)+(xr)
2 ∈ O(k)

�
u∈T

p(u) = O(k)CH
A

n−1

k

∗
.

We claim every node in HA3
has at least k neighbors. Easy

to see that the root has k neighbors. Note that |Zr| ≥
k, because the root necessarily has at least k neighbors in
An−1

k

∗
. For any other node t:

Case 1: If |Zu| < k then u 6= r and necessarily |Rt| ≥ k.
Also p3(t) = p2(t) and therefore node t reaches all the nodes
in Rt.
Case 2: If |Zu| ≥ k then it is assigned to reach k different
nodes in Zu.

We have obtained a power assignment A3 so that the in-
duced communication graph HA3

satisfies the property that
every node has at least k neighbors. As a result, CA1

≤ CA3
.

We showed that CA3
∈ O(k)CH

A
n−1

k

∗
. Similarly to the proof

of Theorem 3.5 and in conjunction with Lemma 3.4 we con-
clude that

CAh
k
∈ O(k) � �

t∈T

(r∗t )
2

+ CAh � = O(k2)CAh
k
∗

It takes linear time to construct HAh
. Easy to see that our

algorithm runs in a total of O(n2) time.

A simple O(h) approximation for very high fault re-

sistance - Instead of forming k-node disjoint paths from
r to any other node, we could simply assign the root with
enough power to reach all nodes in a single hop. Clearly
such a power assignment is very fault resistant since the
transmission between r and any other node does not rely on
relay nodes.

Lemma 3.9. Let t be the most distant node from r. Let

Ar be a power assignment where the root is assigned p(r) =
d(r, t)2. Then CAr ∈ O(h)CAh

k
∗ .

Proof. There is a path y = (r = u1, u2, . . . , ul+1 = t) of
at most l ≤ h hops from r to t in HAh

. Let ru be the range

assigned to node u in Ah. Clearly p(r) ≤ 	 � l

i=1 rui 
 2

and� l

i=1 (rui)
2 ≤ CAh

. According to Observation 3.3 we have

p(r) ≤ 	 � l

i=1 rui 
 2

≤ l 	 � l

i=1 rui 
 2

≤ hCAh
. We conclude

CAr ∈ O(h)CAh
and as a result CAr ∈ O(h)CAh

k
∗ .

4. CONCLUSIONS
In this paper we showed numerous results for the fault tol-
erant bounded hop broadcast topology problem in wireless
networks. A possible interesting direction would be to im-
prove the analysis of the approximation ratios obtained in
this work or show a ratio which is k,h-dependent. It might
be also of interest to develop a distributed approach for such
a problem.
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