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Abstract

Given a wireless network, we need to assign transmission power to each of the nodes, that
will enable communication between any two nodes (via other nodes). Moreover, due to possible
faults, we would like to have at least k vertex-disjoint paths from any node to any other node,
where k is some fixed integer, depending on the reliability of the nodes. The goal is to achieve
this directed k-connectivity with minimal overall power consumption. The problem is NP-Hard
for any k ≥ 1, already for planar networks. Here we develop an O(k)-approximation algorithm
for the planar case. Next, we address the problem of constructing a k-connected backbone, for
which we present an O(k3)-approximation algorithm.

1 Introduction

A wireless ad-hoc network consists of a set of transceivers, communicating with each other by radio.
Each transceiver t is assigned a transmission power p(t), which gives it some transmission range,
denoted by rt. It is customary to assume that the minimal transmission power required in order
to transmit to a distance d is dα, where the distance-power gradient α is usually taken to be in the
interval [2, 4] (see [30]). Thus, a transceiver s receives transmissions from t if p(t) ≥ d(t, s)α, where
d(t, s) is the Euclidean distance between t and s. The transmission possibilities resulting from a
power assignment induce a communication graph. Research efforts have focused on finding power
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assignments, for which the induced communication graph satisfies a certain connectivity property,
while minimizing the total cost.

In the rest of this section we present the model, discuss previous work, and briefly describe our
contribution.

1.1 The model

We are given a set T of n transceivers t1, t2, . . . , tn, positioned in R
d, d ≥ 1. When each transceiver

is assigned a transmission power p(t) = rα
t , an ad-hoc network is created. A power assignment for

T is a vector of transmission powers {p(t) | t ∈ T } and is denoted by A(T ) (usually abbreviated to
A). The resulting (directed) communication graph is denoted by HA = (T , EA), where EA is the
set of directed edges resulting from the power assignment A(T ):

EA = {(t, s) | p(t) ≥ d(t, s)α} .

That is, there is a directed edge from t to s if t has sufficient transmission power to reach s.
Throughout this paper we refer to transceivers as nodes. The cost CA of the assignment is the sum
of all transmission powers:

CA =
∑

t∈T

p(t).

Recall that a graph G = (V,E) is k-vertex connected if for any two nodes u, v ∈ V there
exist k vertex-disjoint paths connecting u to v. Equivalently, G is k-vertex connected if it remains
connected after omitting any set of up to k − 1 vertices. The problems we consider in this paper
are:

Problem 1.1 (k-vertex connected power assignment).
Input: A set T of transceivers, and a parameter k > 1.
Output: A power assignment A(T ) with minimal possible cost CA, where HA is k-vertex connected.

Problem 1.2 (k-connected backbone).
Input: A set T of transceivers, and a parameter k ≥ 1.
Output: A subset D of T and a power assignment A(D) with minimal possible cost CA, where HA

(restricted to D) is k-vertex connected, and for each t ∈ T \ D, there exist u1, . . . , uk ∈ D, such
that d(ui, t) ≤ rui

, where d(ui, t) is the Euclidean distance between ui and t and rui
is the range

assigned to ui.

1.2 Previous work

Kirousis et al. [26] introduced the MinRange(SC) problem, which is Problem 1.1 with k = 1, and
proved that it is NP-hard in three-dimensional Euclidean space for any value of α ≥ 2. The same
paper provided a 2-approximation algorithm for the planar case, and an exact O(n4)-time algorithm
for the one-dimensional case. The planar case was shown to be NP-hard for any α ≥ 2 by Clementi
et al. [17]. A simple 1.5-approximation algorithm for the case α = 1 was presented in [4]. Some
researchers add an additional constraint parameter to the problem, a bound h on the diameter of
the induced communication graph, see results in [15, 18, 19]. Ambuhl et al. [3] presented some
algorithms for weighted power assignment, solving optimally the broadcast, multi-source broadcast
and strong connectivity problems in the linear case (they achieved the same running time for



the connectivity problem as in [26]). They also presented some approximation algorithms for the
multi-dimensional case. An excellent survey covering many variations of the problem is given in
[16].

A natural generalization of the strong connectivity requirement is k-vertex connectivity. These
networks also provide multi-path redundancy for load balancing or transmission fault tolerance. As
power-optimal strong connectivity is NP-hard, so is power-optimal k-connectivity. Two versions
of the problem arise: symmetric and asymmetric. In the symmetric version for any two nodes
t, s ∈ T , p(t) ≥ d(t, s)α ⇔ p(s) ≥ d(s, t)α, that is a node t can reach node s if and only if s can
reach node t, we can also refer to this version as the undirected model. The asymmetric version
allows directed links between two nodes. Krumke et al. [27] argued that the asymmetric version is
harder than the symmetric version. A first non trivial result for planar asymmetric k-connectivity
was presented by Shpungin and Segal in [31]. They derived an approximation factor of O(k2) for
the planar case and some results for the linear case. Another possible connectivity property is k-
edge connectivity, which implies that the removal of any k edges results in a disconnected graph. In
[8], Calinescu and Wan presented various aspects of symmetric/asymmetric k-vertex connectivity
and k-edge connectivity. They first proved NP-hardness of the symmetric two-edge and two-node
connectivity problems and then provided a 4-approximation algorithm for both symmetric and
asymmetric biconnectivity (k = 2), and a 2k-approximation for both symmetric and asymmetric
k-edge connectivity. Hajiaghayi et al. [23] give two algorithms for symmetric k-connectivity, with
O(k log k) and O(k)-approximation factors and also some distributed approximation algorithms
for k = 2 and k = 3 in geometric graphs. Jia et al. [22] present various approximation factors
(depending on k) for symmetric k-connectivity, such as a 3k-approximation algorithm for any
k ≥ 3 and a 6-approximation for k = 3. Additional results can be found in [2, 6, 7, 12, 18, 24, 28].
It is worth mentioning that unless otherwise specified, all the algorithms are centralized.

Dai and Wu [20] considered a construction of a k-connected k-dominating set as a backbone to
balance efficiency and fault tolerance. They presented a number of localized construction protocols
which lack the analysis of guaranteed performance bounds.

When the transmission ranges are equal and known in advance, the network is modeled as a unit-
disk graph, and the problem of finding a minimum connected dominating set (CDS) in a unit disk
graph has been shown to be NP-hard [13]. The work in [29] proposes a 10-approximation centralized
algorithm for this problem. The work in [11] presents a polynomial-time approximation scheme
that guarantees an approximation factor of (1 + 1/s) with running time nO((s log s)2). Recently, the
distributed construction of a small CDS has attracted a great deal of attention. The currently
best known distributed algorithms are due to [33], with approximation factor of 8, and to [21] with
approximation factor 6.91.

Other relevant work in the area of energy-efficient power assignment includes energy-efficient
broadcasting and multicasting in wireless networks. The problem, given a source node s, is to find
a minimum power assignment such that the induced communication graph contains a spanning
tree rooted at s. This problem was shown to be NP-hard. In [14, 25, 34, 35], authors presented
some heuristic solutions and gave some theoretical analysis. Srinivas and Modiano [32] provided
a polynomial algorithm that optimally finds k node-disjoint paths for a given pair of nodes while
minimizing the total node power needed on these k node-disjoint paths. They also provide a
polynomial algorithm for solving the 2 edge-disjoint paths problem.
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Figure 1: In Ak, each node in Nt reaches all nodes in Ns and vice versa.

1.3 Our contribution

We first present a polynomial-time O(k)-approximation algorithm for the two dimensional instance
of the k-vertex connected power assignment problem. Next, we present an O(k3)-approximation
algorithm for the k-connected backbone problem. For k = 1, we obtain an efficient constant-factor
approximation algorithm.

2 Improved fault-tolerant power assignment

Given a set T of n points in the plane (representing n transceivers) and an integer k ≥ 1, we present
an algorithm that assigns transmission ranges to the nodes in T , such that the resulting (directed)
communication graph is k-vertex connected, and the cost of the assignment of ranges is O(k) times
the cost of an optimal assignment of ranges.

For each node t ∈ T , let Nt ⊆ T be a set of k closest nodes to t, and put r∗t = maxt′∈Nt
d(t, t′).

We now describe the range assignment algorithm. Compute a minimum spanning tree mst of the
Euclidean graph induced by T . Assign to each node t ∈ T the range r∗t . Denote this initial range
assignment by A′

k. For each edge e = (t, s) of mst, increase the range of the nodes in Nt ∪ Ns (if
necessary), such that each node t′ ∈ Nt can reach all nodes in Ns, and vice versa. Let Ak denote
the resulting range assignment (see Figure 1).

It is easy to see that the resulting (directed) communication graph is k-vertex connected. That
is, for any two nodes t1, t2 ∈ T , there exist k vertex-disjoint paths from t1 to t2, that “follow” the
path from t1 to t2 in mst.

Let Et be the set of edges of mst that are adjacent to t. (It is well known that |Et| ≤ 6.) Let A∗
k

be an optimal solution to our problem. Next we analyze the approximation factor of the proposed
algorithm. We begin with the following simple observation, where Cpa denotes the cost of a power
assignment pa, and σ = Σe∈mst|e|

α.

Observation 2.1. CA∗
k
≥ CA′

k
.

The above observation is obvious, since in any solution to our problem, each node must be
assigned sufficient power for it to be able to reach k other nodes. Otherwise the communication
graph is not k-vertex connected.

Let Amst be the power assignment where each node t ∈ T is assigned the transmission range
maxe∈Et

|e|. Kirousis et al. [26] proved that σ ≤ CA∗
1

and CAmst
≤ 2σ, where A∗

1 is an optimal



solution to our problem with k = 1. This implies that CAmst
≤ 2CA∗

1
≤ 2CA∗

k
. Now we are ready

to prove the main theorem.

Theorem 2.2. CAk
= O(k) · CA∗

k
.

Proof. For each edge e = (t, s) of mst, put Nt,s = Nt ∪Ns and r = max{r∗t , r
∗
s}. In Ak each of the

(at most) 2k nodes in Nt,s is assigned (due to the edge e) a transmission range of at most |e|+ 2r.
We distinguish between two cases (see Figure 2):
Case 1: |e| ≤ r ⇒ |e| + 2r ≤ 3r (Figure 2(a)). Notice that at least one of the nodes t, s, say t,
must have a transmission range of at least r in A∗

k. We thus charge the assignment (in Ak) of range
at most 3r to the nodes in Nt,s to t. Since the degree of t in mst is at most 6, t is charged in this
way only O(k) times.
Case 2: |e| > r ⇒ |e| + 2r < 3|e| (Figure 2(b)). Notice that since e is an edge adjacent to t in
mst, the range that is assigned to t in Amst is at least |e|. We thus charge the assignment (in Ak)
of range at most 3|e| to the nodes in Nt,s to t. Again, since the degree of t in mst is at most 6, t
is charged in this way only O(k) times.
From the above it follows that the cost of Ak is bounded by O(k) times the sum CA∗

k
+ CAmst

≤
3CA∗

k
, that is CAk

= O(k) · CA∗
k
.

r = r∗t r = r∗t

r∗s

r∗st′ t′

e

e

s′

s′t t

s

s

(a) maxt′∈Nt,s′∈Ns
d(t′, s′) ≤ 3r (b) maxt′∈Nt,s′∈Ns

d(t′, s′) < 3|e|

Figure 2: Proof of Theorem 2.2.

3 Power assignment for k-connected backbone

In this section we consider the k-connected backbone problem. Given a set T of n points in the
plane (representing n transceivers), find a subset D ⊆ T and assign ranges to the points in D, such
that

1. In the resulting (directed) communication graph, D is k-vertex connected. That is, for each
u, v ∈ D, there exist k vertex-disjoint paths from u to v.

2. For each t ∈ T \ D, there exist k transceivers u1, . . . , uk ∈ D that can reach t. That is, for
each 1 ≤ i ≤ k, d(ui, t) ≤ rui

, where d(ui, t) is the Euclidean distance between ui and t and



rui
is the range assigned to ui, i.e., there is a directed edge from ui to t in the communication

graph.

3. Σu∈Dr2
u is minimized.

Let Ak be the range assignment that was computed in Section 2. Ak assigns a range ru to each
u ∈ T . Clearly Ak (i.e., the set of transceivers T together with the ranges assigned to them) is also
a k-connected backbone; that is, it satisfies requirements 1 and 2 above. We prove that Ak is an
O(k3)-approximation; that is, CAk

= O(k3) · Coptk
, where CAk

=
∑

u∈T r2
u is the cost of Ak and

Coptk
is the cost of an optimal solution optk to the k-connected backbone problem.

We shall construct from optk a connected backbone B, and show that (i) CB ≤ c ·Coptk
, and

(ii) CAk
≤ O(k3) · CB, implying that CAk

≤ O(k3) · Coptk
, where c is an appropriate constant.

optk consists of a subset of transceivers Doptk
together with the ranges rO

v assigned to the
transceivers in Doptk

. For each transceiver t ∈ T \ Doptk
, we associate t with any one of the

transceivers in Doptk
that can reach t. Denote by Tv the set of transceivers that were associated

with v, for v ∈ Doptk
. Now, for each v ∈ Doptk

, compute a minimum spanning tree mstv of the
(Euclidean graph induced by the) points in Tv ∪ {v}; see Figure 3(a). We are now ready to define
B. B consists of the set of all transceivers T . For each t ∈ T that is in Doptk

, we set rB
t to be rO

t ,
and for each t ∈ T that is not in Doptk

, we set rB
t to be the length of the longest edge in mstv

that is adjacent to t, where v is the transceiver in Doptk
with which t is associated; see Figure

3(b).

rO
v rB

v = rO
v

vv

MSTv

(a) MSTv (b) Defining B

t1

t2
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t2

= rB
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Figure 3: The connected backbone B.

It is easy to verify that B is a connected backbone. Let ti, tj be two transceivers in T . If ti is
not in Doptk

, then there exists a directed transmission path from ti to the transceiver vi ∈ Doptk

with which ti is associated. If tj is not in Doptk
, then vj , the transceiver in Doptk

with which tj
is associated, can reach tj. Finally, we can advance from vi to vj along transceivers of the optimal
backbone. We first prove inequality (i).

Claim 3.1. CB ≤ c · Coptk
, for some constant c.

Proof. Let Dp(r) denote the disk of radius r centered at p. Let v ∈ Doptk
and notice that

Tv ⊆ Dv(r
O
v ). Carmi et al. [9] have shown that if one draws, for each edge e ∈ mstv, a disk De



whose diameter is e, then Σe∈mstv
area(De) ≤ 5area(∪e∈mstv

De). (Ábrego et al. [1] have shown
that the constant 5 can be replaced by 3, with a significantly more delicate argument. Their result
appeared in an earlier (unpublished) draft of their manuscript.) This implies that

Σu∈Tv
area(Du(ru)) = O(area(∪u∈Tv

Du(ru))) .

Now, observe that the length of the longest edge in mstv is smaller or equal to rO
v . Thus,

area(∪u∈Tv
Du(ru)) ≤ area(Dv(2rv)) = O(area(Dv(rv)) .

Putting together the last two equalities, we get that

Σu∈Tv
area(Du(ru)) = O(area(Dv(rv))) .

Applying the above computation to each v ∈ Doptk
, we obtain

Σv∈Doptk

Σu∈Tv
area(Du(ru)) = O(Σv∈Doptk

area(Dv(rv))) .

We conclude that CB = O(Coptk
), since the right side of the equation above is equal to O(Coptk

),
and the left side of this equation is equal to O(CB − Coptk

).

We now prove inequality (ii) above. We already showed that B is a connected backbone.
But, actually, B defines a feasible range assignment to the transceivers in T (i.e., an assignment of
ranges to the transceivers in T , such that the resulting communication graph is strongly connected).
Kirousis et al. [26] showed that the range assignment, Amst, induced by mst (where a transceiver t
is assigned the length of the longest edge in mst adjacent to t) is feasible and is a 2-approximation
of a minimum range assignment (where one wants in addition to minimize the sum of the ranges
squared). Therefore,

CAmst
≤ 2CA∗

1
≤ 2CB ,

where, as in the previous section, A∗
1 is a minimum range assignment.

Consider the complete graph induced by T . We assign weights to the edges of the graph, such
that the weight w(e) of an edge e is |e|2. Let G2 denote this graph. Andreae and Bandelt [5]
compute a tsp tour T ∗ in G2, such that w(T ∗) ≤ c′ · w(MSTG2), where MSTG2 is the minimum
spanning tree of G2 and c′ is some constant. (Notice that, w(MSTG2) = O(CAmst

).)
We apply the algorithm of Shpungin and Segal [31] for assigning transmission ranges to the

transceivers in T so that the resulting (directed) communication graph is k-vertex connected. For
convenience we briefly describe their algorithm. For each transceiver t ∈ T , assign t sufficient power
so that it can reach the k/2 nodes preceding it in the tour T ∗ and the k/2 nodes succeeding it in
T ∗. Shpungin and Segal prove that the assignment obtained, Atsp, is an O(k2)-approximation of
an optimal solution for the problem considered in Section 2. Moreover, they prove that the sum of
the powers in Atsp is O(k2) times the sum of the edge weights in T ∗. Therefore, we get

CAtsp
≤ O(k2) · w(T ∗) ≤ O(k2) · CAmst

.

From Section 2 and the paragraph above we have

CAk
≤ O(k) · CA∗

k
≤ O(k) · CAtsp

,



where A∗
k is an optimal solution for the problem of Section 2. Putting everything together we get

CAk
≤ O(k) · CA∗

k
≤ O(k) · CAtsp

≤ O(k3) · w(T ∗) ≤

O(k3) · CAmst
= O(k3) · CA∗

1
= O(k3) · CB = O(k3) · Coptk

.

The following theorem summarizes the result of this section.

Theorem 3.2. Ak is an O(k3)-approximation for the k-connected backbone problem.

Remark: If k = 1, then we get the standard connected backbone problem, and A1 is a constant-
factor approximation for it. In a preliminary version of this paper [10], we proved that the following
somewhat simpler algorithm also computes a constant-factor approximation for the standard back-
bone problem. Compute a minimum spanning tree mst of the Euclidean graph induced by T . Let
DI be the set of all internal nodes of mst, i.e., all nodes of mst of degree at least 2. For each
u ∈ DI , assign to u the range ru, where ru is the length of the longest edge in mst that is adjacent
to u. Then the subset DI together with the ranges ru is a connected backbone.
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