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Abstract— This article addresses a real-life problem - obtaining
communication links between multiple base stations sites, by
positioning a minimal set of fixed-access relay antenna sites on
a given terrain. Reducing the number of relay antenna sites is
considered critical due to substantial installation and maintenance
costs. Despite the potential significant cost saving by eliminating
even a single antenna site, a hardly optimal manual approach is
employed due to the computation complexity of the problem. We
suggest several alternative automated heuristics, relying on terrain
preprocessing to find educated potential points for positioning relay
stations. A large-scale experiment was conducted showing that
the saving potential increases when more BSs are required to be
interconnected and in any case is better than the one obtained by
a human expert.

I. INTRODUCTION

In wireless fixed access networks (WFAN) a set of base
stations (BSs) provide communication services to remote fixed
users. Each BS antenna is planned to serve only its local poten-
tial subscribers. There is no need for continuous coverage of a
given area by the set of BSs, especially in rural areas. However,
interconnections between the BSs are required in order to form
a connected communication network where subscribers are
able to communicate one with each other. Here we assume that
the interconnections between the BSs are obtained partially
by positioning additional relay stations (RSs) at specific sites
and using radio communication links. This work is targeted
especially rural areas with sparse population, where the use of
wired links between BSs is considered impractical.

The installation and maintenance costs of the RSs motivate
the minimization of the number of RSs sites. Despite the
significant cost saving by eliminating even a single antenna
site, a hardly optimal manual approach is employed due
to the computation complexity of the problem (Max-SNP-
hard). Practical solutions to problems of antenna positioning
of WFAN are usually semi-automated. A professional system
designer, experienced in the essentials of installing WFAN,
suggests an antenna-positioning strategy. Interconnecting mi-
crowave antennas (as done in this work) requires both Line Of
Sight (LOS) and a distance limit between any two antennas.
Some antenna types may even work when LOS is broken,
although path loss increases significantly. As the authors are
aware (after long discussion with industrial experts) for a given
rural area of 50 Km2, a preliminary design is obtained in
several days, mixing human and computerized decision. The
final design is obtained after a work of additional several

weeks with much higher human involvement due to the lack
of highly automated decision supporting tools.

An informal definition of the discussed problem follows:
Given a terrain T and a set of BSs, connect all BSs by
positioning the smallest set of RSs. An RS can connect any
number of BS/RS and a BS can also serve as a RS. Terrain
properties need to be considered. This problem is referred to
as CMBS (Connecting Multiple fixed access BSs.)

Some solutions for automation of antenna-positioning prob-
lems in cellular networks were suggested [1], [2], [3], [4], [5].
In addition, the CMBS problem is often raised in the context
of minimizing the number of BSs that can serve all (or most
of) the network clients [6]. Solutions to the problem of serving
a maximum surface of a geographical area with a minimum
number of Base Transceiver Stations were also given [7].

Most of our suggested heuristics are based on variations of
minimal spanning trees, and on shortest paths. These methods
have been studied extensively in the context of facility location
problems [8], [9], [10], [11]. We suggest two other heuristics
based on a new grading scheme defined specifically for solving
the CMBS problem.

The CMBS problem resembles the Steiner Tree Problem
(for summary and references see [12]). The analogous problem
in this paper was to minimize the total number of Steiner
nodes used to solve a Steiner Tree Problem. To the best of
our knowledge there are no previous studies on the CMBS
problem as defined above. However, one should be aware
not to confuse between the CMBS problem and the Steiner
problem in networks. This is discussed in more detail in
section 3.

To solve the design issues that were raised above, the goal
of the present research is to establish a fully-automated an-
tenna positioning algorithm for WFAN, outperforming human
approaches, in terms of both selecting fewer RS antennas,
and achieving this strategy in a much shorter time. One
should notice that solutions of equal number of BSs serving
the same number of subscribers may still be subjected to a
significant difference from their CMBS point of view (i.e.,
the number of RSs). Therefore, we believe that CMBS algo-
rithms should be used as complementary objectives of GIS-RF
applications [13], [14]. Usually, these applications focus on
optimization algorithms that attempt to minimize the number
of BSs antennas while providing service to the subscribers.
However, interconnecting BS antenna sites directly or through
a minimum set of relay stations is not dealt with at all using
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these applications.
The rest of the paper is organized as follows. Section 2

presents a solution for connecting two BS antenna sites using
the smallest set of RSs. Section 3 discusses the NP-hardness
of the CMBS problem. We show that the CMBS problem is
‘set-cover’ hard to approximate. This section is also dedicated
to heuristics that connect multiple (more than two) BSs, as
well as to some examples of the CMBS solver application
we developed; Section 4 provides details of the large scale
experiment we conducted. Recommendations regarding future
work are given in section 5.

II. THE POINT-TO-POINT (P2P) CASE

Here we discuss the simplest CMBS case: find a path with
a minimal number of RSs that connects a source BS - BSs to
a target BS - BSt. In spite of the “simplicity” of the problem,
many fundamental issues arise in this problem as well as in
the more general case where more than two BSs should be
interconnected.

A. Terrain Preprocessing

Since the proportion of the terrain models in our problem is
huge (thousands of square km), it is necessary to preprocess
it in order to reduce the input size by an order of magnitude,
before applying various facility location algorithms on it. To
determine whether two antennas, positioned on two arbitrary
points on the map can communicate directly, it is required
to calculate the accumulated path-loss between these two
points and to compare it with the sensitivity threshold of the
receiver. Calculating all pairs of points on a large-scale map
is infeasible. Therefore, we applied a preprocessing algorithm
that attempts to preserve the LOS property between potential
antenna locations.

Two methods for finding potential RSs’ positions were used.
In the first method a network of N × N grids was overlaid
on the map, where N is a user-defined parameter. From each
grid, the two highest grid points among all N2 points in that
square are selected as potential antenna positions. The second
method is based on a variation of using the map as an input
to a convex hull algorithm.

B. Positioning remote stations

The result of terrain preprocessing with one of the methods
described above, and then considering path loss, a visibility
graph V G = (V, E) is constructed, with V is the set of
all potential points for relay stations together with BSs and
BSt. An edge e = (vi, vj) denotes that the Euclidian distance
between nodes vi and vj is smaller then a given threshold and
they maintain a line of sight (LOS).

All the shortest paths are given as suitable alternative
solution to select from, since when testing these paths in the
field, additional constraints, such as restricted military zones,
deep water reservoirs, swamps, etc., which cannot be used or
are impractical for antenna positioning, are posed. The set of
all shortest paths from BSs to BSt is discovered by a combined
variation of the BFS and DFS algorithms, reffered as Breadth
First Depth Next (BFDN) algorithm.

III. ESTABLISHING COMMUNICATION LINKS AMONG
MULTIPLE BS

In this section we deal with solutions to the more general
problem: connecting multiple BSs with a minimal set of RSs
(i.e., CMBS). One should be aware not to confuse between the
CMBS and the minimal Steiner tree problem. The minimal
Steiner tree problem is concerned with finding a tree of
minimal weight that spans a predefined set of terminals (BSs
for our case) with optional additional non-terminal nodes
called Steiner nodes (RSs in our case) [13,14]. The weight
of the tree is the sum of edge weights of the edges in the
tree. The CMBS problem is concerned with minimizing the
number of non terminal nodes. The intractability of the CMBS
problem is proved to be NP-complete with a formal reduction
from the CMBS problem to the general set cover problem.
This reduction shows that the CMBS problem is ‘set cover
hard’. Several heuristics are developed and implemented in an
attempt to resolve the CMBS problem and present solutions
to one scenario using the application we developed for the
present research.

A. NP-Completeness (Max SNP-hard) Proof

The general set-cover problem is defined as follows: let S
be set of all integers from 1 to n, let S∗ = {S1, ..., Sm} be a
set of m subsets of S. Our goal is to find the smallest subset
of S∗ such that its union is S. The k-set cover problem is a
set-cover problem for which the size of the maximal set in
S∗ is bounded by k. The k-set cover problem is known to
be NP complete for k ≥ 3 [15], and unapproximatable within
(1− ε) ln(k) for any fixed ε > 0, that is, MAX SNP-hard [16]
(assuming P is not NP).

Lemma: The CMBS problem can be reduced from the
set-cover problem using a ‘gap-preserving’ reduction that
preserves the approximation ratio (using visibility over the
terrain as a connection condition).

Any valid solution to the CMBS problem implies a valid
solution to the original set cover problem, moreover any
subset of S1, ..., Sm which does not connect all S (i.e.,
not a valid CMBS solution), also does not cover all S. To
conclude, if there was an algorithm, which has a constant
factor approximation for the CMBS problem; it could have
been used to compute a constant factor approximation for the
set-cover problem – contradiction.

Theorem: (proof ommited) the CMBS problem is MAX-
SNP-hard, and therefore cannot have an approximation ratio
better than O(1) ln(k) (where k is the maxima over the size
of subsets S1, ..., Sm. Namely, the CMBS is set-cover hard.

B. Heuristics for the CMBS problem

We will address the CMBS problem in terms of graph
theory: given a set B = {b1, ..., bn} of n BSs and a set of
R = r1, ..., rm of RSs, select the smallest subset SRS ⊆ R,
such that bi ∈ B, are in a single connected component.



3

C. Minimal Spanning Tree Based Heuristics
The first class of heuristics that we developed and tested

was based on minmal spanning tree (MST) like algorithms. In
some of these heuristics we calculate on VG all the shortest
paths of potential RSs between any two BSs using BFDN, as a
basis for our solution. Simplicity, ease of implementation and
short running time are the main advantages of these heuristics.

Trivial Minimal Spanning Tree (T -MST): Start with the
minimal shortest path distance (in terms of number of RSs
in the path) among any two BSs. Then select the BS with the
shortest path to any of the already connected BS nodes. Add
that distance to the total sum of the distances and add the new
BS to the set of connected BSs. Repeat adding unconnected
BSs in an order of increasing shortest paths until all BS nodes
are connected. The result is an upper bound for the number of
required RS, because the summation of distances includes RS
positioned on more than one of the shortest paths more than
once. T-MST is used as a fast upper-bound approximation for
the number (not positions) of RSs required to solve the CMBS
problem.

The following set of heuristics for the CMBS problem are
concerned with the positioning of the RSs.

The Simple Minimal Spanning Tree (S-MST) is the first
heuristic that actually allows to position RS antennas on the
given terrain. The S-MST has three variations:

1) Select a predefined initial BS to begin with. Then
calculate the shortest path to its nearest neighbor. If several
such paths are available, pick the first one on the list. In each
step henceforth, connect the first BS closest to the already
connected component (any already connected RS or BS). 2)
The same as variant 1 with the following distinctions: instead
of predefining the initial BS, select it randomly, and, if more
than one shortest path to the closest connected component
exists, randomly select one of these shortest paths. 3) This
variation resembles the second variation, however, rather than
connecting the entire shortest path to the already connected
component, add only a single RS to the solution, until all BS
are connected.

Random Batch (RB-MST): RB-MST simply apply the S-
MST heuristic several times: each time the initial BS, one of
the shortest paths or the added RS and are selected randomly.
RB-MST returns the best results.

Greedy Improvement (GI-MST): Start with a randomly
selected BS (e.g., BSa) and find all the shortest paths to
its nearest BS (e.g., BSb) using the BFDN algorithm. Iterate
through these shortest paths, one at a time, and grade these
paths where all the RSs on that path are considered as BSs.
The greedy grading function can be the number of required
RS by using T -MST, S-MST or a combination of them. The
highest graded is selected.

Since the number of shortest paths can be large in practical
problems another shorter version of GI-MST was imple-
mented, where the grading function is carried out only on
the RS-min-cut set between any two BSs on VG.

Greedy & Random (GR-MST): GR-MST runs GI-MST sev-
eral times, selecting the GI-MST parameters at random. The
initial BS, which RS-min-cut is set to select if there are several
of the same size, the BS destination to apply GI-MST if several

shortest paths reach more than one BS, serve as examples to
the random selection we can make. In general, whenever a
selection is made, it is done randomly. GR-MST returns the
best results.

D. Relay Stations Grading (RSG) Heuristics

The other class of heuristics that was developed and tested
is based on grading RSs. The following two heuristics are
based on the fact that the optimal solution might contain a
RS, which does not reside on any of the shortest paths from
any BS to any other (closest) BS (see Figure 1).

Basic Relay Station Grading (B-RSG): B-RSG enables
to locate RSs that are not necessarily on any shortest path
(between two BSs). B-RSG grades candidate RSs based both
on their reuse property and on their path distances. The fact
that the number of paths on which the RS can be used
improves its grade and allows it to break loose from shortest
path based solutions. Several grading functions were tested and
compared. The result of this comparison following to provide
the required effect.

The B-RSG algorithm works as follows:
While all BSs are not yet connected:

1) Initialize the grades of all RSs.
2) Grade all RSs.
3) Select the best-graded RS for the solution.
4) In the next iteration, connect the stations that were

directly connected to the best-graded RS

Fig. 1. Four BSs (big circles) and 11 RS (small circles) example:
The optimal solution is 5 (using the middle RS), while any solution
based on shortest path like method is 6 (using the outer RSs).

It should be noted that B-RSG usually selects RSs lying
on shortest paths, in which case it does not improve the
MST-based heuristics (but rather produce similar results). In
addition, its run-time is longer than MST-based heuristics.
However, B-RSG is exceptionally useful in rare situations
where a solution can be found on none of shortest paths.

Hybrid-RSG Heuristic (H-RSG): H-RSG combines both
B-RSG and GI-MST heuristics. It is based on the idea that
the B-RSG can serve as a filtering mechanism to select a
relatively small and meaningful set of candidates (e.g. the RS
whose grade is greater than a given percentage of the highest
grade). Then, the GI-MST is applied on that small set of RS
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candidates. Both grades are weighted and the RS with the
highest weighted grade is marked as an RS in the solution.
This grading method is repeated and terminates when all BS
are connected. As with other random based heuristics, this
heuristic also runs several times and returns the best results.
When more than one RS receives the same weighted grade we
use a partial version of the “Branch & Bound” algorithm [17].
Figure 2 illustrates how the VG is displayed with and without
a DEM background. Figure 3 displays a single scenario with
25 BSs and the solutions obtained by each heuristic.

Fig. 2. VG of 450 RSs (10m antenna heights and 10 km transmission
range). On the left: VG displayed over 100 × 100km2 DEM (the
lighter the higher). On the right: the same VG displayed with the
DEM hidden.)

IV. LARGE-SCALE EXPERIMENT

A. Experiment Description

The objectives of the experiment were to test whether the
suggested heuristics actually work, and to compare the results
they obtained. An experiment scenario is described by a vector
of one permutation of the scenario parameters (i.e., number of
BS, number of potential RSs, antenna heights and transmission
ranges). Many different possible sets of scenarios were tested.
The experiment consisted of a total of approximately 7,000
scenarios (about one quarter of the possible permutations)
using all the heuristics detailed in Section 3. Non-realistic
cases were eliminated.

17 high-resolution elevation maps (100 × 100 km2), each
representing a different type of terrain: flat, hills, dunes,
mountains, lakes, etc. were used. We positioned the selected

Fig. 3. An example of a single scenario solved by all the suggested
heuristics

number of BSs on the map either by selecting a subset of the
potential RSs (which is a reasonable strategy, because BSs
are usually positioned on high altitude points) or at random.
For each permutation of the parameters we tested 10 different
positions for BSs.

B. Experimental Results

In order to compare between the performances of the
heuristics a useful method was implemented, called the Best
Of All (BOA). BOA picks out for each scenario the best result
obtained by any of the heuristics. Using this method we can
compare results obtained by each heuristic to the minimal
number of RSs obtained by any of the other heuristics.

A reasonable assumption is the decrease in the average
number of required RSs per BS while increasing the number
of BSs. The rational behind this assumption is the decrease in
the average distance between BSs and also because BSs can
also serve as RSs.

Comparing between Heuristics: To compare between heuris-
tics we calculated the normalized effectiveness of each heuris-
tic solution for each scenario. Normalization can be performed
because both upper and lower solution bounds are available
(T -MST and BOA, respectively). We used Grade(h) = 1 −
(RS(h) − RS(BOA))/(RS(T-MST) − RS(BOA)) as the grading
function, where h denotes a heuristic and RS(x) denotes the
number of RS obtained by the parenthesized heuristic. This
grading scheme ensures that the more RSs in a heuristic’s
solution, the lower the grade it gets. The grades of the best
and worst heuristics are always 1 and 0, respectively. Then,
we calculated the Cumulative Density Function (CDF), with
the random variable X being the grade.

Figure 4 presents a bar-chart showing the mean number
of RSs required to connect 10, 25, 50 and 100 BSs. The
graph compares between results obtained by each heuristic
(not ordered by their presentation order in Section 3, but
rather by their mean effectiveness). The graph indicates that H-
RSG was the most effective heuristic and is only slightly less
effective than the BOA. B-RSG produced almost always the
best results compared to all the single iteration based heuristics
(T-MST, S-MST and GI -MST). However, B-RSG also suffers
from the longest runtime among the single iteration based
heuristics. It takes the same time to run B-RSG once or to
run RB-MST many times and usually obtain better results. A
reasonable assumption is the decrease in the average number of
required RSs per BS while increasing the number of BSs, for
the same given area under investigation. The rational behind
this assumption is the decrease in the average distance between
base stations and also because BSs also serve as RSs. This
assumption was found accurate, using all heuristics.

Figure 5 indicates that for example, S-MST grade is lower
than 30% in approximately 70% of the cases, whereas H-
RSG grade is lower than 90% in approximately 30% of the
cases (suggesting the more meaningful notion that in the
complementary 70%, its grade is greater than 90%). In general,
a heuristic whose line is lower is better. An interesting notion is
that B-RSG and GI-MST intersect at a grade of approximately
80%, though B-RSG seems better for most of the tested cases.
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Mean number of RS required to connect 10, 25, 50 and 100 BS 
(comparison between heuristics)
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Fig. 4. Mean number of RSs required to connect 10, 25, 50 and 100
BSs - comparison between heuristics.

This, however, might explain the fact that for connecting 50
BSs, the solution obtained by B-RSG required 0.1 more RSs
than the solution obtained by GI-MST (that was the only
case where B-RSG required more RSs than GI-MST). The
grades of the random heuristics were the highest, and H-
RSG is the best of them all (which correlates to the fact
that it required the lowest number of RSs for any number
of BSs to connect. Potential Savings: The results suggest that
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a significant saving potential can be obtained by applying the
presented heuristics for positioning RS antennas. For example,
in positioning RSs to support communication between 50 BSs,
there was an average difference of up to 10.1 RSs when
comparing positioning strategies of T -MST and BOA (potential
saving of approximately 20% in the number of RSs). Table
1 summarizes the average running time (in mSec) of the
different algorithms for various numbers of BSs and various
number of potential RSs positions. As can be seen, even
the best algorithm that iterates multiple times (i.e., H-RSG),
finishes its computation for the most demanding task in about
6 seconds. Thus, running time is not serving as a limiting
factor.
Analysis Usefulness: We wish to emphasize that the analysis
suggested in this article provided solutions to approximately
98% of the tested cases. This statement is valid even when BSs
are located randomly We usually do not find a solution, when
we use too little potential RS with low antenna heights and
short transmission ranges. Using more RSs, higher antennas
or longer transmission ranges usually overcomes this problem.

Algorithm Number of BSs/Number of potential RSs
10/500 25/1000 50/2500 100/5000

S-MST < 10 < 30 52 140
GI-MST 35 107 287 532
B-RSG 72 183 530 1236
RB-MST 402 1255 2743 5943
GR-MST 393 1214 2717 5901
H-RSG 424 1250 2813 6012

TABLE I
Comparison of running times of the different proposed algorithms
for different cases of number of BSs and number of potential RSs.

V. FUTURE WORK

Further research may include additional heuristics and fine-
tuning to the ones suggested here. Generalizing the CMBS
problem to a weighted CMBS problem, in which the objec-
tive function is weighted, subject to the same constraint of
connecting all BS seems as a good direction for research.
One obvious application for this generalization is to solve
the CMBS problem while minimizing the installation cost, for
example by assuming different costs to different RS types. We
also think that the algorithm for selecting potential RS antenna
positions can be improved in terms of runtime complexity and
approximation factor. Another aspect of the CMBS problem
is to compute a lower bound for a given input by employing
continuous linear programming based methods.
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