
Efficient Data Retrieval In Faulty Sensor Networks
Using A Mobile Mule

Harel Yedidsion∗, Aritra Banik†, Paz Carmi∗, Matthew J. Katz∗ and Michael Segal∗
∗ Ben-Gurion University of the Negev, Beer-Sheva, Israel

† Indian Institute of Technology, Jodhpur, India
Email: yedidsio@bgu.ac.il, aritra@iitj.ac.in, carmip@cs.bgu.ac.il, matya@cs.bgu.ac.il, segal@bgu.ac.il

Abstract—In this paper, we study the problem of data gather-
ing in ad-hoc sensor networks using a mobile entity called mule.
The mule traverses the children of failed sensors, to prevent loss
of data. Our objective is to define the optimal communication
tree and the mule’s placement such that the mule’s overall
traveling distance is minimized. We explore this problem in
several network topologies including: unit disc graph on a line
(UDL), general unit disc graph (UDG), and a complete graph
with failing probabilities on the nodes (CGFP). We provide an
optimal solution for the UDL problem and two approximation
algorithms for the UDG problem. For the CGFP problem we
outline the two possible structures of an optimal solution and
provide near optimal approximation algorithms.

I. INTRODUCTION

A wireless ad-hoc sensor network consists of several sen-
sors with communication capabilities. The network’s topology
is determined by the locations and transmission ranges of
the sensors. The ranges determine a directed communication
graph, in which the nodes correspond to the sensors and the
edges correspond to the communication links. A standard
operation for such a network has the sensors monitor their
surroundings, and deliver the information to a base station
using multi-hop communication. A failure in one node may
cause data loss from its neighbors in the graph. A mobile mule
may prevent this lose by visiting and collecting data from
neighboring nodes. In this paper we investigate the optimal
design of the network and the placement of the data mule
as to minimize its overall traveling distance under additional
constraints.

A. Problem definition

Formally, the problem is defined as follows: Let G = (V,E)
be a graph embedded in the Euclidean plane, where V is the
set of wireless nodes, |V | = n, and E is the set of undirected
edges between nodes. Let T be a directed data gathering
tree rooted at root r, spanning the nodes in V , where data
propagates from leaf nodes to r. Consider a mobile entity
with wireless capabilities called mule, that visits a subset of
nodes Vm ⊆ V and collects the information they sense. The
mule can travel anywhere in the plane. Let cd be the mule’s
cost of traversing distance d. This cost is proportional to the
distance traveled. If a sensor v fails, it is undesirable to lose
the data it collected from its children in T , δ(v, T). Thus,
the mule must travel through δ(v, T) and restore the lost

information. The mule’s tour through the children of node v
is defined as t(m, δ(v, T)) where m represents the placement
of the mule. The goal is to find a data gathering tree T
and the placement of the mule m which minimize the total
traveling distance given that any sensor can fail. The mule
can only be positioned on existing nodes. The mule returns
to its initial position after every failure tour. Formally, the
objective is to have: minT,r,m

∑
v∈V |t(m, δ(v, T))|. When

node v’s failing probability is given as pv then the objective
becomes minT,r,m

∑
v∈V |t(m, δ(v, T))| · pv .

II. RELATED WORK

The uses of mobile elements in wireless sensor networks
(WSN) include improving connectivity, cost, reliability and
energy efficiency [5]. A number of papers have explored the
use of mobile elements as a solution to the problem of data
gathering in WSN. Crowcroft et al. [2] define the (α, β)-
Mule problem, where α is the number of simultaneous node
failures and β is the number of traveling mules. They solve this
problem under different network topologies such as arbitrary
graphs, grids and random linear networks and provide optimal
solutions and approximation algorithms. Most relevant to our
work is their 4-approximation of the UDL mule problem for
which we provide an optimal solution. In [6], Levin et al.
study the trade-off between the mules’ traveling distance and
the amount of information uncertainty caused by not visiting
a subset of nodes by the mules. The authors of [8] utilize
autonomous mobile base stations (MBSs) to automatically
construct new routes to recover disconnected infrastructure.
In contrast to our work, it is assumed that MBSs are able to
stop at any position in the network area while we only consider
discrete node locations. The same assumption is used in [1]
where mobile backbone nodes (MBNs) are controlled in order
to maintain network connectivity while minimizing the number
of MBNs that are actually deployed. In [9] a single mule is
scheduled to visit the nodes to collect their data before their
buffers are full. Sensor nodes are sampling at different rates,
in which case some nodes need to be visited more frequently
than others. In [10], the k-TSP approach is used to plan the
data collection routes of k mules. TSP with neighborhood was
applied for the same purpose in [3].

III. UNIT DISC LINE

In this section, we solve the mule problem on a one
dimensional line topology, common in roadway and waterway
monitoring, where n nodes are placed on a line such that
the maximum distance between adjacent nodes is 1. The
communication model is unit disc, which means that an edge
is formed between two nodes u, v if and only if d(u, v) ≤ 1.
Note that this implies that the graph is connected. We call this
model of unit disc on a line - UDL. Previous work has found
a 4-approximation for this problem [2]. In what follows we
outline the characteristics of an optimal solution and present
a linear time algorithm that finds such a solution. In general,
the optimal solution would have the root at either one of the
endpoint nodes or at one of the endpoint backbone nodes (see
Definition 1). The mule would be placed at the central interval
(see Definition 2). Specifically, the tree built by Algorithm 1
produces an optimal solution for the UDL problem.

Definition 1: A backbone node (BBN) is a node that has
children in T .

Definition 2: Intervals are the segments of the line that lie
between adjacent BBNs or between an endpoint node and an
endpoint BBN.

Definition 3: A One-Sided Tree (OST) is a rooted tree
connecting nodes on a line where except for the root, BBNs
have children only on the side of the BBN which is farther
from the root.

Definition 4: A Two-Sided Tree (TST) is a rooted tree
connecting nodes on a line where BBNs may have children
on both sides of the BBN.

Claim 1: There exists an optimal solution where T is a OST,
i.e. the children of every BBN in T are located on the side of
the BBN which is farther from the root.

Proof: In proving this claim we apply a constructive
method of transforming any tree to OST while maintaining the
solution quality. We show that given a rooted tree T which is
not an OST and vk is a BBN in T (other than the root) which
has children on both sides, then the tree can be transformed to
another tree T , in which a child of vk on the side of vk that
is closer to the root is made a child of another BBN vi, and,
if vi is not the root, then its new child is on the side of vi
which is farther from the root. Moreover, the solution cost of
T is not more than that of T . This transformation is repeated
again and again until the current tree is an OST.

Let nodes vi and vk be BBNs in T . We look at two possible
configurations for T in Figure 1 where the OST and TST are
shown on top and bottom respectively. Node vj is the closest
node to the root in the interval between vi and vk. None vl is
the farthest child from the root of vk. In TST, vj is connected
to vk and in OST it is connected to vi. Other nodes may exit
in between vj and vk and we assume that in OST they are all
connected to vi. Directed edges are drawn as arrows pointing
from son to father to reflect the direction of the data flow.

We will show that the OST solution is as good as the TST
solution, independent of the location of the mule. Let the
distance between vi and vj be a, the distance between vj and

r vi vj vk

r vi vj vk

One-Sided Tree

Two-Sided Tree
a b

vl

vl

c

Fig. 1. Illustration of an OST (top) where BBNs only have children on the
side of the BBN farther from the root, and TST (bottom) where BBNs have
children on both sides i.e., vj is the son of vk .

vk be b and the distance between vk and vl be c. There can be
three cases depending on the location of the mule. The tours
to children of nodes other than vi and vk are not effected so
we only focus on the tours created by failures of vi and vk.

(i) m ∈ (−∞, vj]. W.l.o.g, assume that the mule is in vj
otherwise we can add the distance 2 · (m, vj) to every
tour. In both trees, if vi fails, the mule must travel to vk
and back and if vk fails, to vl and back. In this case, the
total cost is 4b + 2c for both solutions. However, if vk
does not have any children to the right then if vk fails,
in TST the mule would travel almost to vk, but in OST
no movement is required. Thus, in this case, the cost of
OST is smaller or equal to that of TST.

(ii) m ∈ (vj , vk). W.l.o.g, assume that the mule is in vk. In
OST, if vi fails, the mule must travel to vj and back and
if vk fails then the mule must travel to vl and back. In
TST, if vi fails, the mule does not move and if vk fails
then the mule must travel to vj and back and to vl and
back. The cost in both solutions is 2b+ 2c.

(iii) m ∈ (vk, vl). W.l.o.g, assume that the mule is in vl. In
OST, if vi fails, the mule must travel to vj and back and
if vk fails then the mule must travel almost to vk and
back. In TST, if vi fails, must travel to vk and back, and
if vk fails then the mule must travel to vj and back. Thus,
in this case, the cost of OST is smaller than that of TST.

Note that if vi has children in (vi, vj), the analysis does not
change. Hence, independently of the location of the mule, the
OST solution is as good as that of the TST. The claim holds.

Claim 2: There exists an optimal solution for which there
is no crossing of edges.

Proof: A crossing occurs when there exist edges (vi, vk)
and (vj , vl), and the nodes are set in the following order
vi > vj > vk > vl or the reversed order. Figure 2 presents the
four possible options of edge crossing in the UDL topology
as depicted in Cases 1-4. The case on the botom termed NC
displays a non-crossing tree on the same node placement. We
demonstrate that a tree with no crossing edges provides a
solution for the UDL mule problem that is as good as that
of any tree with crossing edges regardless of the location of
the root and the mule. In the tree with no crossing edges, NC,

Case 2Case 1

Case 4

No Crossing (NC)

vi vj vk vl

vi vj vk vl

vi vj vk vlvi vj vk vl

a b c

Case 3

vi vj vk vl

Fig. 2. Four possible crossings of edges. Illustration of Claim 2.

nodes vj and vk are children of vi and node vl is a child of
vk. We only focus on proving Case 1 for each root and mule
locations. The analysis for Case 4 is the same as that of Case
1. Regarding Cases 2 and 3, any tree built using these edges
would necessarily have a node with children on both sides.
Since we have already established in Claim 1 that a one sided
tree is as good as a two-sided tree, we can disregard these
two cases. Following the same logic we can ignore any root
location other than at node vi (or to the left of it) in Case 1,
since it would also cause a two sided tree. Therefore, w.l.o.g,
we assume that the root is at node vi and calculate the solution
value for each mule location while partitioning the line to three
areas (i)− (iii):

(i) m ∈ (−∞, vj]. W.l.o.g, assume that the mule is in vj . In
this case in both NC and Case 1, the cost is 2(2b+ c).

(ii) m ∈ (vj , vk]. W.l.o.g, assume that the mule is in vk. In
this case in both NC and Case 1, the cost is 2(b+ c).

(iii) m ∈ (vl,+∞). W.l.o.g, assume that the mule is in vl. In
this case in both NC and Case 1, the cost is 2(b+ c).

Hence, independently of the location of the mule, a tree with
no crossing edges provides a solution that is as good as any
solution by a tree with crossing edges. Consequently, the claim
holds.

At this point we have narrowed the possible solution trees
only to the trees where children nodes are on the side farther
away from the root and have no crossing edges. But, there is
still an exponential number of possibilities to build such trees.

A. Algorithm UDL

We now introduce our algorithm for building a tree with
these properties and show that this tree provides an optimal
solution for the UDL problem given r. The tree is built using
an iterative process. In the first iteration, the node farthest
from the endpoint node within one unit distance is added to
the tree as a BBN. In the next iteration the node farthest from
that BBN within one unit distance is added to the tree as the

next BBN and so on. The process is performed from both
sides alternately until the two sub-trees meet in the middle.
The middle point is also added as BBN. The mule is placed
on the central BBN as explained in the proof of Claim 4. The
location of the root is determined as described in Claim 5 and
the nodes between the BBNs are added as children according
to Claim 1.

Figure 3 shows a tree (T1) built by Algorithm 1 over a set of
n nodes on a line. Nodes v1, v2...vk are BBNs. The intervals
between BBNs are marked by the index of the higher BBN.
The mule is placed at the bk2 c

th
interval and the root is at the

kth BBN.
Definition 5: The distance between the farthest child of

BBNi to BBNi−1 is noted by Ii.
The sum of all the mule tours can be summed up by the
following Equation:

(1)
∑
v∈V
|t(m, δ(v, T))| = 2

(b k2 c∑
i=1

Intervali · i+

k−1∑
i=b k2 c+1

Intervali · (k − i) +
k∑

i=b k2 c+1

Ii

)
.

The equation is comprised of three parts: the first sum
represents the tours to the left of the mule, the second and
third sums represent the tours to the right of the mule. The
tours are multiplied by 2 to account for the return of the mule
to its initial location.

Claim 3: Assuming that the mule is at the bk2 c
th

BBN and
the root is at the kth BBN, a tree built by Algorithm 1 provides
an optimal solution for the UDL mule problem.

Proof: Let T1 be a tree built by Algorithm 1. Tree T1 is
depicted by solid lines in Figure 3. In order to prove that T1
provides as good a solution as any other tree given r and m,
we consider tree T0, whose edges are marked by dashes lines
in Figure 3. Tree T0 represents any other tree over the same set
of n nodes. Since Algorithm 1 chooses the farthest node within
1 unit from the left-most node to be the first BBN, and so on,
any other tree would have to choose either the same BBNs as
in T1 or other nodes farther from the mule to be its BBNs. As
a result, all BBNs in T0 (see nodes in Figure 3 denoted by v∗)
would be either on the same nodes as T1 or on nodes which
are farther away from the mule than their corresponding BBNs
in T1. This leads to a situation where each tour by the mule
to such a BBN on T1 is shorter or equal to the corresponding
tour in T0. Note that any solution with more BBNs than in
T1 produces a lower quality solution as there are more tours
to traverse. Hence, the solution produced by T1 is as good as
any that of any other tree given the root and mule locations.
Therefore, the claim holds.

Claim 4: The optimal position for the mule is at the bk2 c
th

BBN.
Proof: In this proof we show that any placement of the

mule other than the central interval, results in an increase
the number of times that the central interval is traversed. At

rm

Interval1 Interavl2

...
T0

T1

v∗0

v0 v1 v2 vb k
2
c

v∗1 v∗2
v∗b k

2
c

Intervalb k
2
c

Interval1
∗ Interval2

∗ Intervalb k
2
c
∗

vb k
2
c+1 vk

Intervalk+1

Ib k
2
c Ib k

2
c+1 Ik

...

......

...

Fig. 3. A comparison of tree T1 built by Algorithm 1 and marked by solid lines to an arbitrary tree T0 marked by dashed lines.

Algorithm 1: Algorithm for building an optimal tree for
the UDL mule problem

Data: A set of n nodes on a line where the maximal
distance between two adjacent nodes is 1 unit. A
root node r.

Result: A tree T over the given n nodes rooted at r
where all edges are at a length of at most 1 unit.

1 Start from the endpoint nodes on both sides and
iteratively add the farthest node within 1 unit distance
as BBN until the two opposing BBNs connect;

2 Add the connecting node as BBN;
3 Place m on the central BBN;
4 Connect BBNs and remaining nodes by directed edges

according to the location of r in OST fashion;
5 Emit T ;

the bk2 c
th

BBN, the mule has bk2 c − 1 tours to the left and
k − bk2 c − 1 tours to the right. In addition, the mule must
travel to Ib k2 c. According to Equation 1, any shift in the
placement of the mule may only worsen the solution quality.
Assume that the mule is moved from the bk2 c

th
BBN to the

BBN to the left of it. In this case, the bk2 c
th

interval would be
removed from bk2 c − 1 tours but added to k − 1− bk2 c tours.
In addition, a tour to Ib k2 c is added. Any further move to the
left of distance d would removed this distance from less tours
than it is added to. The same thing happens if the mule is
moved to the right. In this case, the bk2 c+ 1

th
interval would

be added to bk2 c tours but removed from k − 1− bk2 c and in
addition, a distance of the length Intervalb k2 c−Ib k2 c is added.
Any further move to the right of distance d would removed
this distance from less tours than it is added to. Hence, the
claim holds.

We can run this algorithm for every one of the n nodes
as the root, and choose the one that has the best solution.
However, we have identified that the optimal locations for the
root are either on the endpoint nodes or at one of the nodes
which are the farthest from the endpoint nodes within 1 unit.

Observation 1: The length of any two adjacent intervals

(not including the central bk2 c
th

interval) is greater than 1
unit distance.

Proof: According to Algorithm 1, each BBN is chosen
as the farthest node from the current BBN within 1 unit of
distance. If two adjacent intervals are smaller than 1 unit, then
the algorithm would have considered them as 1 interval and
this is a contradiction. Hence, the claim holds.

Claim 5: If there are less than five intervals, then the optimal
position for the root is at one of the endpoint nodes or at one
of the nodes which are the farthest from the endpoint nodes
within 1 unit. Otherwise, if there are five or more intervals,
the optimal position for the root is at one of the nodes which
are the farthest from the endpoint nodes within 1 unit.

Proof:
(i) (|intervals| < 5). In this case, there are 4 possible

placements for the root. Placing the root at one of the
endpoint nodes, saves the distance from it to its closest
child. This tour can be as small as ε → 0 or as large as
1 unit. Placing the root at one of the nodes which are
the farthest from the endpoint nodes within 1 unit, saves
the tour to the closest child of that node. This tour can
be as small as ε or as large as 1 unit. In addition, this
placements adds the tour from the endpoint node to its
closest child, which can be as small as ε or as large as 1
unit. Any other placement (i.e., the central BBN) provides
no additional savings.

(i) (|intervals| ≥ 5). In this case, the placement of the
root on one of the nodes which are the farthest from the
endpoint nodes within 1 unit, saves the tour to that node.
If there are five or more intervals, that means that this
tour contains at least two adjacent intervals and according
to Observation 1 is greater than 1 unit distance. On the
other hand, this placement adds the distance between the
endpoint node and the next closest node which is at most
1 unit according to the assumption of the model that the
nodes are connected. This means that the movement of
the root from the endpoint node to one of the nodes which
are the farthest from the endpoint nodes within 1 unit,
provides a better solution in any case where there are
five or more intervals.

Claim 6: A tree built by Algorithm 1 provides an optimal
solution for the UDL mule problem.

Proof: Algorithm 1 produces a tree T and mule and
root placements which adhere to all the characteristics of an
optimal solution to the UDL mule problem as described by
Claims 1-6 and therefore, the claim holds.

The complexity of running Algorithm 1 is O(n) since all
of the operations are linear in the number of nodes.

IV. UNIT DISC GRAPH

In this section, we solve the mule problem on a two
dimensional plane. The communication model is unit disc,
which means that an edge is formed between two nodes u, v
if and only if d(u, v) ≤ 1. We assume that the graph is
connected. We call this model of unit disc graph - UDG.
The analysis of our solution to this problem contains two
parts. In each part we present a different trade-off between
the solution’s runtime and its approximation bound.

A. First part of the analysis

In this part we assume that the root and the mule locations
are given (alternatively, we can run the algorithm below for
each one of the n2 combinations of root and mule placements,
and find the combination providing the best solution).
Algorithm UDG1

Our approach for the tree construction includes finding
a special minimal connected dominating set (MCDS) and
connecting all remaining nodes as leaves to the closest node
of the MCDS (in such a way that the number of nodes in the
MCDS in a given area is limited). The connected dominating
set problem is defined as follows. Find a subset S of nodes in
graph G, such that the subgraph induced by S is connected,
and each node is either in S, or adjacent to some node in S.
The set has to be minimal is a sense that any removal of a node
from S would cause at least one of the previous requirements
to be violated. The tree T contains the MCDS and the rest of
the nodes as leaves.

In order to bound the performance ratio of Algorithm
UDG1, we introduce Algorithm UDG2 for which we can
find a constant bound to the cost of the optimal solution,
OPT , and show that any solution by Algorithm UDG1 has a
lower or equal cost to any solution by Algorithm UDG2, thus
establishing a constant approximation for Algorithm UDG1
as well. Note that OPT represents the (unknown) optimal
solution given the selected root and mule locations. Since we
iterate over all possible mule/root locations, and choose the
best one, it necessarily maintains a constant bound from the
overall optimal solution.

Definition 6: A backbone node (BBN) is a node that has
children in T . Let q be a BBN in the tree built by Algorithm
UDG1. We denote by c(q) the disc centered at q with radius
1, and by OPT (q), the subset of nodes which have a child
in c(q) according to the optimal tree, thus OPT (q) = {p :
(p, v) ∈ OPT ∧ v ∈ c(q)}.

Let OPT (q)∗ be an extended subset of nodes which in-
cludes all of the children of the nodes in OPT (q) according

1

c(q)

q

OPT (q)

OPT (q)∗

*

* *

**
*

*

* *

*

*

*

Fig. 4. Graphical visualization of the concepts from Definition 6.

to the optimal solution, i.e., OPT (q)∗ = {x : (x, p) ∈
OPT ∧ p ∈ OPT (q))}, where (x, p) is a directed edge
from x to p. Nodes p, v and x represent arbitrary nodes in G.
Figure 4 demonstrates these concepts. Node q is in the center
of the dashed circle c(q). The nodes marked with rings are
members of OPT (q), and the nodes marked with Astrix are
members of OPT (q)∗.
Algorithm UDG2

The tree construction method is detailed below and is
identical in both Algorithm UDG1 and UDG2. However, in
case of a failure of a node in S, each algorithm uses a different
traveling scheme. In Algorithm UDG2, instead of only visiting
the children of the failed node q, we visit OPT (q)∗ which
includes all the children of all the BBNs in OPT that have
a child node within unit distance from the failed node. This
method aids us in approximating the solution of Algorithm
UDG1 compared to the optimal solution. We claim that the
number of times a node may be visited by Algorithm UDG2 is
constant compared to the number of times it would be visited
by the optimal solution. In addition, we show that the solution
cost by Algorithm UDG2 is always greater or equal to that of
Algorithm UDG1 so this constant bound applies to the solution
of Algorithm UDG1 as well.

Tree Construction
Since not every MCDS has the property that the number of

its members bounded by a constant within a certain area, we
introduce the new method for building an Area Constrained
MCDS (ACMCDS). We first construct a dominating set (DS).
The procedure is performed iteratively by choosing at each
step a node that is not in the current DS and is not within any
unit disc of the current members of the DS. The chosen node
is added to the DS until no more nodes can be added. At this
point we have a dominating set which is not connected. The
process of finding the DS takes O(n2) time. The algorithm
continues to connect the DS by adding at most two intercon-
necting nodes for each DS member. The process of connecting
the DS takes O(n2) time. This can be achieved by first finding
for each node its neighbors in the UDG (i.e., within 1 unit)
and neighboring DS members in O(n2) time. The number
of neighboring DS members of each node is constant since
each node can have at most 5 disjoint neighboring dominating
nodes. Each pair of DS members can be connected via one or
two other nodes at most according to Observation 3, and no

0 0.5 1 21.5

Fig. 5. The maximal number of half radius circles in a double radius circle.

pair can be directly connected. We first go over all the nodes
and connect each pair of DS members that can be connected
via one node. Then, for each pair of nodes (n2 pairs), we make
a connection if they connect two DS members in O(n2) time.
We then prune the resulting graph to eliminate cycles in O(n)
time using BFS. Once the set is connected, the rest of the
nodes are connected to the closest member of the ACMCDS
to form the data gathering tree T .

To prove that our solution maintains a constant approxima-
tion to the optimal solution, we claim that any arbitrary node
in the graph can be within a distance of 2 units from a constant
number of nodes from the ACMCDS.

Definition 7: Two nodes x, v are considered neighbors if
their unit discs overlap, or in other words, the distance between
them is less or equal to 2, i.e., |(x, v)| ≤ 2.

Observation 2: Any node in graph G can be a neighbor of
at most 19 nodes of the dominating set built by Algorithm
UDG1. Note that the node itself may by part of the DS.

Proof: Our algorithm for building the DS ensures that
there is a constant number of member nodes of the ACMCDS
that can be neighbors of any other node in the graph. Since we
are considering two virtual trees over the same set of nodes, it
is possible for a node in one tree to be a neighbor of the same
node in another tree. What we are looking for is how many
nodes in the tree we are building can have in their unit disc
children of a node in the optimal tree. So we do consider the
node itself when counting the number of neighboring nodes.
We prove it by considering a circle of radius 2 centered around
an arbitrary node v in the graph. Only nodes within the double
radius circle are neighbors of v. The DS is built in such a way
that no two nodes are contained in each other’s unit disc. If we
reduce the radius of each unit disc by half, then we can assure
that no two discs overlap at all. The area of the double radius
disc can accommodate at most 19 centers of non overlapping
half radius discs according to [4]. Figure 5 demonstrates this
extreme situation where 19 centers of non-overlapping half-
radius circles fit into a double radius circle.

Observation 3: Any node in the DS built by algorithm
UDG1 can be connected to one of its neighboring nodes in
the DS by two other nodes.

Proof: The premise of this work is that the graph is
connected. Hence, any node v in the DS has at least one other
node x such that d(v, x) ≤ 1. If x is within one unit from one
of v’s neighbors from the DS, then the connection between v
and this node can be made via x. If not, at least one node in
v’s unit disc must have a connection with at least one node
outside of v’s unit disc to maintain the connectivity of the
graph. The outer node must be connected to another member
of the DS. In this case it would take two nodes to connect the
two neighboring DS members.

Claim 7: The solution of Algorithm UDG2 would visit the
nodes in OPT at most 57 times.

Proof: We have established in Observation 2 that there
can be at most 19 neighboring DS members to any node in
G, and in Observation 3 that at most two nodes are required
to connect a node from the DS to one of its neighbors in the
DS to form the ACMCDS. Hence, there can be potentially at
most 57 nodes in the ACMCDS that neighbor any node in
G. According to Algorithm UDG2, in case of a failure of a
node in the ACMCDS, all the children of all the neighboring
BBNs in OPT are visited. Therefore, any node that is visited
by the optimal solution would be visited at most 57 times by
Algorithm UDG2.

A practical approach for calculating the TSP tours may use
a heuristic algorithm for this procedure, for example the 1+ ε
TSP approximation method that runs in O(n log n) time for
each of the n nodes [7].

Since we are using a 1+ ε approximation algorithm for the
traversal route as described in [7], the final approximation ratio
is 57 + ε. According to Algorithm UDG1, in case of a failed
node in the ACMCDS, only its children are visited. These
children are included in the nodes visited by Algorithm UDG2.
Therefore, any approximation ratio achieved by Algorithm
UDG2 also applies to Algorithm UDG1.

The computational complexity of Algorithm UDG1 is com-
prised of going over n2 combinations of root and mule where
n is the number of nodes in G. For every root position, the
direction of the edges is determined in O(n). In addition, for
each combination, the TSP tours must be calculated for at most
K tours (where K is the number of BBNs in the ACMCDS).
Each tour containing ki nodes, i ∈ {1...K}. Notice that the
sum of all nodes in all the tours equals n + K since every
tour also includes the mule’s node, i.e.,

∑
i ki = n + K.

The 1 + ε approximation for the TSP route of tour ki is
calculated in O(ki log ki) time according to [7]. As a result,
calculating K TSP routes for all the tours can be done in
O(
∑

i(ki log ki) ≤ O(
∑

i(ki log n) ≤ O(n log n). The DS is
built once in O(n2) and connected in O(n2) time and does not
effect the overall complexity. So, the final complexity of our
first approach is O(n3 log n) achieving a 57+ε approximation.

B. Second part Of the analysis

In this part of the analysis, in order to speed up the
runtime, we run the same tree building method used in the
first approach but we relax the assumption that the root and the
mule locations are given. Instead of checking all possible n2

position combinations, we only check n combinations in which
the root is located at the position of the mule. We show that
by locating the root at the mule’s position, the approximation
ratio is doubled. However, this approximation only holds for
the case that the tree built by algorithm UDG1 has more than
two BBNs. For the case that there are two or less BBNs,
the solution quality cannot be bounded since in this case the
tour could be infinitely small compared to the distance that
the root is moved by. Therefore, in applying our approach,
we distinguish between two cases. For the case that there are
two or less BBNs we develop a near optimal solution based
on the optimal solution presented in [2] to the mule problem
on a fully connected graph. In order to find the diameter of
the tree we simply count the number of BBNs chosen in the
process of building the tree.

Observation 4: If the diameter of the graph is greater than
2, by moving the root from its original position to the position
of the mule, the distance that the mule travels would increase
by at most a factor of 2.

Proof: By moving the root r from its original position ro
to the position of the mule m, the only mule’s tours that are
effected are the ones on the direct path between the mule and
ro. We denote this path Pro,m. All the other tours remain the
same and are not effected by the move since their direction
of the edges and their tree structure remains the same. On
Pro,m however, the direction of the edges changes as does
the tree structure. When r is moved from ro to a neighboring
child x, the directed edge from x to ro reverses its direction
and ro becomes a child of x. This implies that when x fails,
the mule must travel to ro in addition to all of x’s original
children. Thus the tour is increased by the length of d(x, ro).
This is true for every edge in Pro,m and as a consequence,
the path Pro,m is added to the original mule’s tours. In case
there are more than two BBNs, this path can be as long as
the entire original mule’s tour in the worst case, so we can
approximate this addition as doubling the original tour.

Claim 8: If the diameter of T is less than or equal to 2,
the optimal solution for the UDG mule problem consists of
a tree with a star formation. In this case we get a (1 + ε)
approximation of the optimal solution.

Proof: If the diameter of T is less than or equal to 2,
we create a star formation. This formation has been proven
to be optimal for a fully connected graph in [2]. As in the
fully connected graph, the optimal place for the root, is the
node whose distance to its closest neighbor is the largest. This
location minimizes the mules tour since this root’s node is
never visited by the mule. Unlike the fully connected graph
where all the other nodes can be connected to the root, in
UDG the center of the star is a node which can be within 1
unit distance at most from all the other nodes. Our assumption
on the connectivity of the graph implies that such a node exists.
The mule is located at the center of the star so that if the root
fails no movement is required and if the central node fails,
a traversal of all the other nodes except the root is required.
The solution we get is a (1+ ε) approximation of the optimal

solution due to the TSP heuristic.
Claim 9: If the diameter of T is greater than 2, the solution

that our second approach achieves has an approximation ratio
of (114 + ε) ·OPT.

Proof: Following Observation 4 we can now argue that
the approximation ratio for the second approach is double that
of the first approach and equals (114 + ε) · OPT . However,
the runtime of this approach is improved to O(n2 log n).

V. COMPLETE GRAPH WITH FAILING PROBABILITIES

In this section we assume that each node has a weight
associated with its probability of failing. Here too the mule can
be placed on one of the nodes and it must visit the children
of any failing node. Unlike the previous sections, here the
underlying topology of the graph from which we choose the
data gathering tree is a complete graph with different failing
probabilities for each node (CGFP). Our goal is to find the
optimal topology for the directed data gathering tree and the
root and mule placements as to minimize the sum of all
possible tours. We note by pv the probability (weight) of node
v failing. Formally, the goal function is:
minT,r,m

∑
v∈V |t(m, δ(v, T))| · pv.

Previous work on a similar problem with a complete graph
in which all the nodes have the same probability of failing
showed that the optimal topology of T is a star [2]. We
show that this is not always the case in CGFP by providing a
counter example. We further illustrate the two possible optimal
configurations for the mule problem in CGFP.

r

vjvi vk

10x x

0.4 0.2 0.8

m

Fig. 6. An example of an optimal data gathering tree which is not a star in
a complete graph with failing probabilities.

Figure 6 presents an example of a data gathering tree created
from a CGFP with three nodes vi, vj and vk,. The nodes
weights are the numbers displayed near the nodes and the
distances between nodes are displayed on the edges. The root
is located at node vi and the mule is located at node vj . If
node vi fails, the mule must visit node vj , and if node vj
fails, the mule must visit node vk. Node vk has no children
so there is no need to visit any other nodes in case it fails.
Since the mule is located at vj , the objective function equals
0.4 · 0+ 0.2 · x+0.8 · 0 = 0.2x. In this case, if we move to a
star-formation, where vk is directly linked to vi, the objective
function would increase to 0.4 · x + 0.2 · 0 + 0.8 · 0 = 0.4x.
Note that in a complete graph with equal probability of failing
both solutions would yield the value of x. Any other root-mule
configuration would yield a higher cost solution.

Definition 8: Denote by t(V \vi) the tour of all the nodes
in V except for node vi.

Denote by vTmin the node for which t(V \vi) is the minimal
length tour of all nodes vi ∈ V, i ∈ 1...n.

Denote by vPmin
the node with the minimal weight.

Claim 10: A tree that has the following properties along
with the stated mule and root placements presents an optimal
solution for the CGFP mule problem:

1) The root should be the node vTmin
.

2) The tree should have a star configuration. The central
node would be vPmin having the smallest probability
minv∈V Pv .

3) If the optimal node for the root vTmin
also happens to be

the node with the smallest weight, vPmin then the root
would be placed in the center of the star and the mule
would be placed on one of the other nodes. Otherwise, if
vTmin

does not have the smallest weight, the mule would
be placed at vPmin

in the center of the star.
Proof: Regarding the root location, in CGFP, as in the

equal probability case, each node except for the root must be
visited at least once. Therefore, the root must be located at
the node that minimizes the mules traversal to all other nodes
except that node and that is vTmin

.
Regarding the shape of the tree, every tour starts from

the mule’s initial location and the mule must return to this
location. In order to minimize the number of travels from there
and back, we can minimize the number of tours to only one
by shaping the tree in a form of a star. It has been shown
in the fully connected graph with equal probabilities that, to
minimize the mule’s tour, T should have the shape of a star.
Furthermore, in CGFP we also have to make sure that the
probability of the tour being taken is also minimized. This is
done by choosing the node with the smallest weight as the
center of the star.

To prove this notion, for contradiction, consider a tree T̂
where not all the nodes are children of vPmin

. For simplicity,
assume there is a node ni, that is a child of vPmin

that also
has children in T̂ . We show that tree T in which all the
nodes are children of vPmin has a better solution than T̂ .
The solution to T̂ includes two tours pi(|t(m, δ(ni, T)|) +
Pmin(|t(m, δ(vPmin

, T)|) while in T the solution only in-
cludes one tour Pmin(|t(m, δ(vPmin

, T)|). Since the two TSP
tours of T̂ both include m, these tours can be merged into one
as in T , by eliminating one movement from and back to m
and thus shortening the total traveled distance. In addition,
the probability of taking the tour does not increase since
Pmin ≤ pi. Thus, the solution of T is smaller than T̂ .

Finally, We distinguish between two cases:
(a) vTmin

= vPmin
In this case, the root is also the center of

the star so we would choose the mule’s placement at one
of the leaf nodes.

(b) vTmin
6= vPmin

In this case the root is not at the center
of the star so we would choose the mule’s placement at
the center of the star to prevent any additional traversal
to that node if the root fails.

Figure 7 presents an example of the two possible optimal
configurations in a CGFP. Note that finding the optimal vTmin

r m r
m

(a) (b)

Fig. 7. An example of two possible optimal configurations in CGFP.

demands calculating the optimal TSP tour of t(V \vi) for all
the nodes in V . Using the 1 + ε TSP approximation method
that runs in O(n log n) time for each of the n nodes [7], we get
a near optimal solution for the CGFP mule problem may be
obtained in O(n2 log n) time and provide a 1+ε approximation
of the optimal solution.

VI. CONCLUSION

In this paper we advance the research on the mule approach
for increasing network resiliency to communication failures.
Our contributions include:

1) Improving the previously found 4-approximation bound
for the UDL mule problem to optimal. The proposed
algorithm runs in O(n log n).

2) Providing two solution methods for the UDG mule prob-
lem:

a) (57 + ε)-approximation in O(n3 log n).
b) (114 + ε)-approximation in O(n2 log n).

3) Finding two possible optimal solution structures for the
CGFP mule problem, and providing a (1+ε) approxima-
tion algorithm for constructing them in O(n2 log n).

VII. ACKNOWLEDGMENTS

The research was been supported by the following sources:
1) Israel Science Foundation (grant No. 317/15).
2) IBM Corporation.
3) The Israeli Ministry of Economy and Industry.

REFERENCES

[1] S. Anand, G. Zusseman, and E. Modiano. Construction and maintenance
of wireless mobile backbone networks. IEEE/ACM Transactions on
Networking, 17.1:239–252, 2009.

[2] J. Crowcroft, L. Levin, and M. Segal. Using data mules for sensor
network data recovery. Ad Hoc Networks, 40:26–36, 2016.

[3] D. Kim et al. Minimizing data collection latency in wireless sensor
network with multiple mobile elements. INFOCOM, 2012 Proceedings
IEEE. IEEE, 2012.

[4] F. Fodor. The densest packing of 19 congruent circles in a circle.
Geometriae Dedicata, 74.2:139–145, 1999.

[5] M. Di Francesco, S. K. Das, and A. Giuseppe. Data collection in wireless
sensor networks with mobile elements: A survey. ACM Transactions on
Sensor Networks (TOSN), 8.1:7–38, 2011.

[6] L. Levin, A. Efrat, and M. Segal. Collecting data in ad-hoc networks
with reduced uncertainty. Ad Hoc Networks, 17:71–81, 2014.

[7] Satish B Rao and Warren D Smith. Approximating geometrical graphs
via spanners and banyans. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 540–550. ACM, 1998.

[8] T. Rui, H. Li, and R. Miura. Dynamic recovery of wireless multi-hop
infrastructure with the autonomous mobile base station. IEEE Access,
4:627–638, 2016.

[9] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile
element scheduling for efficient data collection in wireless sensor
networks with dynamic deadlines. 2004.

[10] O. Tedas, V. Isler, J. h. Lim, and A. Terzis. Using mobile robots to
harvest data from sensor fields. IEEE Wireless Communications, 16.1:22,
2009.

