
Dynami
 Algorithms for Approximating Interdistan
esSergey Bereg� and Mi
hael SegalyNovember 22, 2004Abstra
tIn this paper we present eÆ
ient dynami
 algorithms for approximation of kth,1 � k � �n2� distan
e de�ned by some pair of points from a given set S of n points in d-dimensional spa
e. Our te
hnique is based on the dynamization of well-separated pairde
omposition proposed in [11℄,
omputing approximate nearest and farthest neigh-bors [23, 26℄ and use of persistent sear
h trees [18℄.1 Introdu
tionLet S be a set of n points in Rd ; d � 1 and let 1 � k � n(n�1)2 . Let d1 � d2 � : : : � d(n2)be the Lp-distan
es determined by the pairs of points in S. In this paper we
onsider thedynami
 version of the following optimization problem:� Distan
e sele
tion. Compute the k-th smallest Eu
lidean distan
e between a pairof points of S.In the dynami
 version of the distan
e sele
tion problem the points are allowed to be insertedor deleted and given a number k, 1 � k � �jSj2 � one wants to answer eÆ
iently what is thek-th smallest distan
e between a pair of points of S (by jSj we denote the
ardinality of the
urrent set of points).The distan
e sele
tion problem above re
eived a lot of attention during the past de
ade.The solution to the distan
e sele
tion problem
an be obtained using a parametri
 sear
hing.The de
ision problem
an be redu
ed to the following problem. Compute, for a given real r,the sum �p2SjDr(p) \ (S � fpg)j, where Dr(p) is the
losed disk of radius r
entered at p.Thus, we
an determine, for ea
h point p in S, the number of points that are at distan
e at�Department of Computer S
ien
e, University of Texas at Dallas, Box 830688, Ri
hardson, TX 75083,USA. E-mail: besp�utdallas.eduyCommuni
ation Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel. E-mail: segal�
se.bgu.a
.il. Preliminary version of this paper has appeared in Interna-tional Colloquium on Automata , Languages and Programming (ICALP), 2003.1

most r from p. By summarizing all these values and
omparing the resulted value to k we
ananswer the original de
ision problem. Agarwal et al. [1℄ gave an O(n 43 log 43 n) expe
ted-timerandomized algorithm for the de
ision problem, whi
h yields an O(n 43 log 83 n) expe
ted-timealgorithm for the distan
e sele
tion problem. Goodri
h [22℄ derandomized this algorithm, at a
ost of an additional polylogarithmi
 fa
tor in the runtime. Katz and Sharir [27℄ obtained anexpander-based O(n4=3 log2+" n)-time deterministi
 algorithm for this problem. By applyinga randomized approa
h Chan [13℄ was able to obtain an O(n logn+n2=3k1=3 log5=3 n) expe
tedtime algorithm for this problem. Bespamyatnikh and Segal [9℄
onsidered an approximationversion of the distan
e sele
tion problem. For a distan
e d determined by some pair ofpoints in S and for any �xed 0 < Æ1 � 1, Æ2 � 1, the value d0 is the (Æ1; Æ2)-approximationof d, if Æ1d � d0 � Æ2d. They [9℄ present an O(n log3 n="2) runtime solution for the distan
esele
tion problem that
omputes a pair of points realizing distan
e d0 that is either (1; 1+") or(1�"; 1)-approximation of the a
tual k-th distan
e, for any �xed " > 0. They also present anO(n logn="2) time algorithm for
omputing the (1� "; 1+ ")-approximation of k-th distan
eand show how to extend their solution in order to answer eÆ
iently the queries approximatingk-th distan
e for a stati
 set of points. Agarwal et al. [1℄
onsiders a similar problem, whereone want to identify approximate \median" distan
e, that is, a pair of points p; q 2 S withthe property that there exist absolute
onstants
1 and
2 su
h that 0 <
1 < 12 <
2 < 1 andthe rank of the distan
e determined by p and q is between
1�n2� and
2�n2�. They [1℄ showedhow to solve this problem in O(n logn) time. Arya and Mount[4℄ introdu
ed a balan
ed box-de
omposition tree (BBD tree) in order to answer eÆ
iently approximate range sear
hingqueries. They obtained O(logn + 1"d) query time for d-dimensional point sets using linearspa
e after O(n logn) prepro
essing time. Their results also
an be used to solve the de
isionversion of the distan
e sele
tion problem with (1� "; 1+ ")-approximation in O(n logn+ n"2)runtime.We
all an algorithm an almost-linear-time approximation s
heme with almost logarith-mi
 update time (ALTAS-LOG) of order (
1;
2) if it has a prepro
essing time of the formO(n logl1 n="
1), for some
onstant l1 > 0 and update time of the form O(logl2 n="
2), forsome
onstant l2 > 0 and any �xed " > 0.In this paper we show an ALTAS-LOG algorithm of order (2; 2) su
h that given numberk, 1 � k � �jSj2 � it outputs in O(logn) time a pair of points realizing distan
e whi
h isthe (1 � "2; 1 + ")-approximation (or (1 � "; 1 + "2)-approximation) of kth distan
e. Morepre
isely, we show how to
onstru
t a data stru
ture in O(n logn="2 + n log4 n=
) time thatdynami
ally maintains a set of n points in the plane in O(log4 n=
) time under insertionsand deletions, for any arbitrary �xed
 > 0, su
h that given number k, 1 � k � �jSj2 � one2

an
ompute in O(logn) time a pair of points realizing distan
e whi
h is either (1�
; 1+ ")or (1� "; 1 +
)-approximation of kth distan
e. We also show how to obtain dynami
 (1 �"; 1+")-approximation of kth distan
e by simpler ALTAS-LOG algorithm of order (2; 0) withslightly faster prepro
essing time. It should be noted here that approximating the a
tualk-th distan
e within the fa
tor 1 + "2 (or 1� "2) is
onsiderably harder than getting 1 + "(resp. 1� ") approximation with the same " dependen
y in the running time of algorithm.We also generalize our algorithms to work in higher dimensions.For our best knowledge, the dynami
 problem of maintaining exa
t and approximate kthdistan
e is not studied in literature, ex
ept the famous
losest pair problem (1st distan
esele
tion) with optimal O(logn) worst-
ase update time [7℄ and diameter problem (farthestpair sele
tion) with O(n") worst-
ase update time [19℄, expe
ted O(logn) update time [20℄and O(b logn) update time [25℄ that maintains an approximate diameter (the approximationfa
tor depends on the integer
onstant b > 0). One may �nd our algorithms useful in para-metri
 sear
hing appli
ations, where a set of
andidate solutions is de�ned by the distan
esbetween pairs of points of dynami
 set S. For example, Agarwal and Pro
opiu
 [3℄ (see also[2, 14, 29℄) studied various k-
enter problems in Rd under L1 and L2 metri
:
ombinationsof exa
t and approximate,
ontinuous and dis
rete, un
apa
itated and
apa
itated versions.Typi
ally an algorithm performs a sear
h (for example, binary sear
h) on the sorted listof interdistan
es between data points. Our algorithms provide fast implementation of thesear
h if an approximate solution suÆ
es.The main
ontribution of this paper is by developing eÆ
ient approximating dynami
algorithm for the well known distan
e sele
tion problem using an approa
h that based onwell separated pairs de
omposition introdu
ed by Callahan and Kosaraju [11℄ (see also [17℄),
omputing approximate nearest and farthest neighbors [23, 26℄ and persistent binary sear
htrees introdu
ed by Dris
oll et al. [18℄.This paper is organized as follows. In the next se
tion we brie
y des
ribe well-separatedpair de
omposition. Se
tion 3 is dedi
ated to the approximating dynami
 distan
e sele
tionproblem. Finally we
on
lude in Se
tion 4.2 Well-separated pair de
ompositionIn this se
tion we shortly des
ribe the well-separated pair de
omposition proposed by Calla-han and Kosaraju [11℄. Let A and B be two sets of points in d-dimensional spa
e (d � 1)of size n and m, respe
tively. Let s be some
onstant stri
tly greater than 0 and let R(A)(resp. R(B)) be the smallest axis-parallel bounding box that en
loses all the points of A(resp. B). We say that point sets A and B are well-separated with respe
t to s, if R(A)3

and R(B)
an be ea
h
ontained in d-dimensional ball of some radius r, su
h that thedistan
e between these two balls is at least sr. One
an easily show that for given twowell-separated sets A and B, if p1; p4 2 A, p2; p3 2 B then dist(p1; p2) � (1 + 2s)dist(p1; p3)and dist(p1; p2) � (1 + 4s)dist(p4; p3). (For general Lp metri
 the inequality may di�er bysome multipli
ative
onstant.) Let S be a set of d-dimensional points, and let s > 0. Awell-separated pair de
omposition (WSPD) for S with respe
t to s is a set of pairsf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g su
h that:(i) Ai � S and Bi � S, for all i = 1; : : : ; p.(ii) Ai \Bi = ;, for all i = 1; : : : ; p.(iii) Ai and Bi are well-separated with respe
t to s.(iv) for any two distin
t points r and q in S, there is exa
tly one pair (Ai; Bi) su
h thateither r 2 Ai and q 2 Bi or r 2 Bi and q 2 Ai.The main idea of the algorithm for
onstru
ting WSPD is to build a binary fair split treeT whose leaves are points of S, with internal nodes
orresponding to subsets of S. Morepre
isely, split tree of S is a binary tree,
onstru
ted re
ursively as follows. If jSj = 1, itsunique split tree
onsists of the node of S. Otherwise a split tree is any tree with root Sand two subtrees that are split trees of the subsets formed by a split of S. For any node Ain the tree, denote its parent (if exists) by p(A). The outer re
tangle of A, denoted by R(A)is either an open d-
ube
entered at the
enter of the bounding box of S with the side sizethat equals to the largest side lmax(S) of the bounding box of S (if A is root), or we have asituation when the splitting hyperplane used for the split of p(A) divides R(p(A)) into twoopen re
tangles. Let R(A) be the one that
ontains A. A fair split of A is a split in whi
hthe splitting hyperplane is at distan
e of at least lmax(A)=3 from ea
h of the two boundariesof R(A) parallel to it. A split tree formed using only fair splits is
alled a fair split tree.Ea
h pair (Ai; Bi) in WSPD is represented by two nodes v; u 2 T , su
h that all theleaves in the subtree rooted at v
orrespond to the points of Ai and all the leaves in thesubtree rooted at u
orrespond to the points of Bi. The paper of Callahan and Kosaraju [11℄presents an algorithm that impli
itly
onstru
ts WSPD for a given set S and separation values > 0 in O(n logn + sdn) time su
h that the number of pairs (Ai; Bi) is O(sdn). Moreover,Callahan [10℄ showed how to
ompute a WSPD in whi
h at least one of the sets Ai; Bi ofea
h pair (Ai; Bi)
ontains exa
tly one point of S. In this
ase, the number of pairs in
reasesto O(sdn logn). 4

3 Approximating k-th distan
e3.1 Computing WSPDOur algorithm
onsists of several stages. At the �rst stage we
ompute a WSPD for S withseparation
onstant s = 6" . From ea
h (Ai; Bi) we take any pair (ai; bi) 2 (Ai; Bi); 1 � i � p,p = O(n). Our task now is to �nd the smallest index j in the sorted list of (ai; bi) pairs ,su
h that the sum of
ardinalities of all pairs (Ai; Bi) that
orrespond to pre�x starting withi = 1 and ending at i = j is at least k. Therefore, we sort the distan
es d0i between ai andbi, 1 � i � p. We assume that the pairs (Ai; Bi) are in order of in
reasing d0i. Next, for ea
hpair (Ai; Bi), 1 � i � p; p = O(n) we
ompute the �i = jAijjBij value, i.e. �i is the totalnumber of distin
t pairs (a; b), a 2 Ai, b 2 Bi. Let� mi = mina2Ai;b2Bi dist(a; b) and� Mi = maxa2Ai;b2Bi dist(a; b)Let also li; 1 � i � p be a number su
h that (1�
)Mi � li �Mi, for arbitrary �xed
 > 0.As we said above, for a parti
ular k we
ompute the smallest j su
h thatPji=1 �i � k. LetM 0 = maxji=1Mi and let l0 = maxji=1 li. We
laim that l0 is the (1�
; 1 + ")-approximationof k-th distan
e.In what follows we prove the
orre
tness of our algorithm and show how to implement iteÆ
iently.Lemma 1 (1�
)dk � l0 � (1 + ")dk.Proof. We observe that the total number of distan
es de�ned by pairs (Ai; Bi), 1 � i � j isat least k be
ause �ji=1�i � k. Sin
e M 0 is the maximum of these distan
es M 0 � dk follows.Thus, from l0 � (1 �
)M 0 it follows that l0 � (1 �
)dk. Our goal now it to prove thatM 0 � (1 + ")dk. We re
all that all possible pairs of points of S are uniquely represented bypairs (Ai; Bi) in WSPD. Consider the set of pairs D = f(a; b)ja 2 Ai; b 2 Bi; i � jg. Thereis an index r, j � r � p su
h that mr is the smallest distan
e de�ned by pairs of D. Thetotal number of pairs in D is larger than �n2� � k. Therefore, dk � mr. Let t, 1 � t � jbe the index su
h that M 0 = Mt. From the observation in previous se
tion it follows thatMt � (1 + 2s)d0t = (1 + "=3)d0t. Thus, M 0 � (1 + "=3)d0j � (1 + "=3)d0r, sin
e the sequen
e d0i,j � i � p is non-de
reasing. It follows that (1 + "=3)d0r � (1 + "=3)(1 + "=3)mr � (1 + ")dk.So, l0 �M 0 � (1 + ")dk. 5

Remark 1. Using a similar approximation s
heme with de
reasing list of d0i distan
es andby taking Mi = mina2Ai;b2Bi dist(a; b) and li su
h that (1 +
)Mi � li � Mi we
an obtain(1� "; 1 +
)-approximation of the kth distan
e.Remark 2. If, instead of
omputing li, we
hoose d0j as the value returned by the algorithm,we obtain (1 � "; 1 + ")-approximation of the kth distan
e. This is based on fa
t that(1 + ")d0j = max1�i�j(1 + ")d0i � max1�i�j Mi = M 0 � dk.It remains to show how to implement this algorithm eÆ
iently, i.e. how to
ompute thevalues li; �i, 1 � i � p. First we show how to
ompute �i. In other words we need to
ompute the
ardinalities of Ai and Bi, 1 � i � p. Re
all that ea
h pair (Ai; Bi) in WSPDis represented by two nodes vi, ui of the split tree T . The
ardinality of Ai(Bi) equals to thenumber of leaves in the subtree of T rooted at vi(ui). Thus, by postorder traversal of T weare able to
ompute all the required
ardinalities. Bespamyatnikh and Segal [9℄ showed howto
ompute the values mi;Mi, 1 � i � p exa
tly using Voronoi diagrams [6℄ and Bentley's [5℄logarithmi
 method. By assuming that the singleton set of ea
h pair (Ai; Bi) in WSPD isAi = faig they redu
e the original problem of
omputingmi andMi values to the problem of
omputing for ea
h ai, 1 � i � p the nearest and the farthest neighbor in
orresponding Bi.Sin
e the
omputing of all Voronoi Diagrams may lead to undesired O(n2) runtime fa
tor,they maintain dynami
ally Voronoi Diagrams while traversing a split tree T in a bottom-upfashion. Let Sv be a subset of S asso
iated with a node v in T . By traversing a split treeT in a postorder fashion starting from leaves they use a partition Rv of Sv into disjoint setsS1v ; : : : ; Sqv and maintain the Voronoi Diagram V D with
orresponding point lo
ation datastru
ture PL for ea
h set Sjv, 1 � j � q in Rv. The sizes of the sets in Rv are di�erent andrestri
ted to be the powers of two. As a
onsequen
e the number of su
h sets is at mostlogn, i.e. q � logn. It
an be shown that the total time needed to spend for all des
ribedoperations is O(n log3 n).3.2 Dynami
 updatesThe main drawba
k of the above s
heme is the fa
t that during pro
essing of T the VoronoiDiagram data stru
tures are destroyed, so that at the end of the pro
ess we know only theVoronoi Diagram for the entire set S. Suppose that now we insert or delete some leaf fromT . It may have in
uen
e on a number of other internal nodes. How we
an determine nowthe new values of mi and Mi? Basi
ally, we have two major problems. The �rst one is howto store the Voronoi Diagram in ea
h one of the internal nodes of T and the se
ond one ishow to update it qui
kly when T
hanges its stru
ture by insertion of a new point or deletion6

of an existing point from T .Computing minimal and maximal valuesIn order to solve the �rst problem we will use fully persistent binary sear
h tree des
ribed byDris
oll et al. [18℄. A fully persistent stru
ture supports any sequen
e of operations in whi
hea
h operation
an be applied to any previously existing version. The result of the updateis an entirely new version, distin
t from all others. Unfortunately we
annot represent aVoronoi Diagram as a
olle
tion of a sublinear number of binary sear
h trees and therefore,we need to �nd a way of
omputing the values mi and Mi using another strategy. In fa
t weare interested in
omputing the values li. Let us �rst
onsider the L1 metri
. The pointsde�ning Mi should lie on the boundary of the smallest axis-parallel bounding box of setAi [Bi. Re
all that Ai and Bi are well separated and, thus, the L1 diameter of Ai [Bi isde�ned by a pair (p; q) su
h that p 2 Ai and q 2 Bi.The
omputation of mi; 1 � i � p
an be done similarly to the approa
h des
ribedin [8℄. Suppose we use a WSPD with p = O(n logn) and assume Ai = faig, 1 � i � p.For ea
h point ai we need to �nd the
losest neighbor in
orresponding Bi. Consider, forexample, the planar
ase. Let l1 be a line whose slope is 45Æ passing through the ai andl2 be a line whose slope is 135Æ passing through the ai. These lines de�ne four wedges:Qtop; Qbottom; Qleft; Qright. For any point p lying in Qleft [Qright(Qbottom [Qtop) the L1-distan
e to ai is de�ned by the x-distan
e (y-distan
e, resp.) to ai. We perform four rangequeries, using orthogonal range tree [6℄ data stru
ture (in
oordinate system de�ned by linesl1, l2), ea
h of them
orresponding to the appropriate wedge. For ea
h node in a se
ondarydata stru
ture we keep four values xmin; xmax; ymin; ymax (
omputed in the initial
oordinatesystem) of points in
orresponding range. Consider, for example, the wedge Qright. Ourquery
orresponding to Qright marks O(log2 n) nodes. The minimum of xmin values storedin these nodes de�ne the
losest neighbor point to ai lying in Qright. We pro
eed similarlywith the other wedges. We maintain orthogonal range tree data stru
tures dynami
ally ina bottom-up fashion while traversing split tree T . In order to merge two data stru
tures wesimply insert all the points stored in the smaller range tree into the larger one. However,we are interested in the values of mi
omputed for the Eu
lidean metri
. We will use thefollowing two results in order to a

omplish our task. The �rst result has been proposedby Kapoor and Smid [26℄ that �nds, for a given query point p 2 Rd a (1 +
)-approximateL2-neighbor of p in a given set of n points in O(logd�1 n=
d�1) time using a data stru
tureof O(n logd�2 n) spa
e. They [26℄ store a set S in a
onstant number of a range trees,where ea
h range tree stores the points a

ording to its own
oordinate system using the7

onstru
tion of Yao [32℄. Then, for a given p, they use all the range trees to
ompute L1nearest neighbors of p in all
oordinate systems. One of these L1 neighbors is (1 +
)-approximate L2 nearest neighbor of p. But we still need to
ompute the values of Mi. These
ond result is due to Indyk [23℄ that shows how to
ompute (1�
)-approximate farthestneighbor of a given point p by performing a
onstant number of (1+
)-approximate nearestneighbor queries. The idea is to
onstru
t a set of a
onstant number of
on
entri
 disks(balls) around the origin. Ea
h point is rounded to the nearest
ir
le (sphere). For ea
h disk(ball) we build a (1 +
)-approximate nearest neighbor data stru
ture for the set of pointson
orresponding
ir
le (sphere). Next, for ea
h point p 2 S and ea
h disk (ball) Bi, the\antipode" pi of p with respe
t to Bi is de�ned as follows. Let p1 and p2 be the two pointsof the interse
tion of the
ir
le (sphere) of Bi with the line passing through p and origin.Let hp denote the hyperplane through the origin that is perpendi
ular to the line throughp and origin. The point pi is one of the points p1; p2 whi
h lies on the side of hp di�erentfrom the side
ontaining p. In order to �nd the farthest neighbor of q, we issue (1 +
)-approximate nearest neighbor query with the point qi in the data stru
ture for the pointson ea
h one of the
ir
les (spheres). Among the points found, we return the one farthestfrom q. Prepro
essing time is O(dO(1)n) plus the
ost of initiating a
onstant number of datastru
tures for (1 +
)-approximate nearest neighbor queries. The query time is bounded bythe the query time for the (1 +
)-approximate nearest neighbor query.Making it all persistentThe good thing in the des
ribed algorithms is the fa
t that all of them
an be implementedusing orthogonal range sear
h trees, or in other words, binary sear
h trees. This will allowus to make all of them fully persistent using Dris
oll et al. [18℄ algorithm, thus solving ourtask of storing the appropriate data stru
ture for ea
h of the nodes of T without beingdestroyed. Generally speaking, ordinary data stru
tures are ephemeral in the sense thatmaking a
hange to the stru
ture destroys the old version, leaving only the new one. In afully persistent data stru
ture, past versions of the data stru
ture are remembered and
an bequeried and updated. In [18℄ a method termed node
opying with displa
ed storage of
hangeswas developed that
ould make red-bla
k tree data stru
ture to be
ome fully persistent, inworst-
ase time per operation of O(logn) and worst-
ase spa
e
ost of O(1) per insertion ordeletion. Instead of indi
ating a
hange to an ephemeral node x by storing the
hange inthe
orresponding persistent node x0, Dris
oll et al. [18℄ stores information about the
hangein some possibly di�erent node that lies on the a

ess path to x0 in the new version. Thusthe re
ord of the
hange is in general displa
ed from the node to whi
h the
hange applies.8

The path from the node
ontaining the
hange information to the a�e
ted node is
alledthe displa
ement path. By
opying nodes judi
iously, Dris
oll et al. [18℄ were able to keepthe displa
ement paths suÆ
iently disjoint to guarantee an O(1) worst-
ase spa
e bound perinsertion or deletion while having O(logn) worst-
ase time bound per a

ess, insertion ordeletion.While traversing a tree T , we maintain all the des
ribed data stru
tures for
omputing(1 +
)-approximate nearest neighbor and (1 �
)-approximate farthest neighbor. We useagain Bentley's [5℄ logarithmi
 method as des
ribed before. Noti
e, that ea
h point in S
anbe inserted at most O(logn) times into the data stru
tures while traversing T in a bottom-upfashion. Ea
h insertion takes O(log3 n) time. To give a

ess to the persistent stru
ture, thea

ess pointers to the roots of the various versions must be stored in a balan
ed sear
h tree,ordered by index. The total time for maintaining the range trees and
omputing li, 1 � i � pis O(n log4 n), sin
e p = O(n logn), ea
h query takes O(log2 n) time and ea
h node
ontainsa logarithmi
 number of the related data stru
tures. The above
omputation
an also begeneralized to d-dimensional spa
e, d > 2. Thus, we haveTheorem 2 Given a set S of n points in Rd , a number k, 1 � k � �n2�, " > 0,
 > 0 a pairof points realizing (1 �
; 1 + ") ((1 � "; 1 +
))-approximation of dk
an be determined inO(n logn="d + n logd+2 n=
d�1) time.Remark 3. Noti
e that we
an obtain better running time (by logarithmi
 fa
tor) usingorthogonal range trees with the fra
tional
as
ading te
hnique [16℄. However, in order toallow persisten
e for the future dynami
 updates we use orthogonal range trees avoiding thiste
hnique.Remark 4. We
an use a simpler strategy in order to
ompute the Mi values. We maintainthe bounding boxes for sets of points
orresponding to the nodes of T . The new boundingbox
an be
omputed in O(1) time using the information from the previous steps. It resultsin a very fast algorithm with (1 � 1p2 ; 1 + ")-approximation of kth distan
e whi
h
an bemade dynami
 fairly easy.Remark 5. The runtime of the algorithm presented in [9℄ and the approximation fa
tora
hieved by that algorithm is better than in Theorem 2 for d = 2. Moreover, we should notethat there is a more eÆ
ient algorithm even for d > 2. Instead of using Kapoor and Smid datastru
ture [26℄ for querying approximate nearest neighbor, we
an use either Kleinberg [28℄ orIndyk and Motwani [24℄ or Kushilevitz et al. [30℄ or Chan's [15℄ data stru
tures for the samepurpose. For example, using the result by Chan [15℄ that gave an ALTAS-LOG algorithmof order (d�12 ; d�12) that a
hieves (1 + ")-approximation for nearest neighbor query insteadof Kapoor and Smid [26℄ ALTAS-LOG algorithm of order (d� 1; d� 1) we obtain a better9

runtime of the entire algorithm. Unfortunately, the algorithm in [9℄ and also [15, 24, 28, 30℄data stru
tures
annot be made dynami
 with a polylogarithmi
 update time. As we willsee later, the result in Theorem 2
an be extended to deal with the dynami
 point sets.Following Remark 2 we also
an
on
ludeTheorem 3 Given a set S of n points in Rd , a number k, 1 � k � �n2�, " > 0, a pair ofpoints realizing (1� "; 1 + ")-approximation of dk
an be determined in O(n logn="d) time.DynamizationIt remains to
he
k what happens with the tree T when a new point is inserted or someexisting point is deleted. By �(v), v 2 T we denote the subset of points asso
iated withv at some instan
e in the sequen
e of updates. If v has two
hildren w1 and w2 then�(v) = �(w1) [�(w2). If v is a leaf, then j�(v)j = 1. Sin
e the fair split property dependson the value of lmax(�(v)), ea
h time we insert a new point, this may in
rease the value oflmax(�(v)) for all its an
estors in T , and the fair split property may be violated. Deletionof a point will not in
rease the value of lmax(�(v)) for any of its an
estors, and hen
e
anbe performed on any fair split tree without restru
turing. Callahan [10℄ shows that we
andeal with the updates by maintaining a labeled binary tree T in whi
h ea
h node satis�esthe following invariants:1. For all internal nodes v with
hildren w1 and w2, there is a fair
ut that partitionsR(v) into two re
tangles R1 and R2, su
h that �(w1) = �(v) \R1, �(w2) = �(v) \R2,R(w1)
an be
onstru
ted from R1 by applying a sequen
e of fair splits and R(w2)
anbe
onstru
ted from R2 by applying a sequen
e of fair splits.2. For all leaves v, �(v) = fpg, and R(v) = p.To insert a point p into this stru
ture, we �rst retrieve the deepest internal node v inT su
h that p 2 R(v), ignoring the
ase in whi
h p lies outside the re
tangle at the rootnode. Let R1 and w1 have the same meaning as in the �rst invariant. Assume w.l.o.g. thatp 2 R1. The way we
hose v guarantees that p 62 R(w1). Now we introdu
e a new internalnode u, whi
h repla
es w1 as a
hild of v. We insert w1 along with its subtree as a
hild ofu, and insert a new leaf u0 as the other
hild of u, where �(u0) = fpg. Finally we
onstru
ta re
tangle R(u) satisfying the �rst invariant. To delete the point p, we simply �nd the leafv su
h that �(v) = fpg, delete v, and
ompress the internal node p(v). Callahan [10℄ provesthat on
e we have determined where to insert a point p, we may perform su
h an insertion10

in
onstant time, while preserving the invariants of the tree. Using the dire
ted topologytree of Frederi
kson [21℄, Callahan has been able to maintain T in O(logn) time, where nis the
urrent size of the point set. Generally speaking only O(logn) nodes of T
an bea�e
ted during insertion or deletion of a point and therefore we
an maintain the persistentstru
tures asso
iated with these nodes at sublinear
ost.Another problem that we have to deal with is the fa
t that introdu
tion of a singlenew point
an require the
reation of many new pairs. Callahan [10℄ proposed an idea topredi
t all but a
onstant number of the new pairs ahead of time. The way to do it is tointrodu
e dummy points where appropriate. Let �S be a set of dummy points. Su
h pointswill not be
ounted in �(v) for any v 2 T , but the tree T will have the same stru
ture andre
tangle labels as a fair split tree of S [�S. For eÆ
ien
y we introdu
e only a
onstantnumber of dummy points for ea
h well-separated pair fv; wg, su
h that �(v) and �(w) arenot-empty. Sin
e the number of new pairs is
onstant we
an
ompute and maintain therelevant persistent stru
tures eÆ
iently.QueryThe only missing thing is how to perform a query, i.e. how, for a given value of k, we
an �nd the approximate kth distan
e? We maintain a balan
ed binary sear
h tree T 0 fordistan
es d0i as de�ned before. Suppose that we build a binary tree T 0 with the leaves
orresponding to d01; : : : ; d0p. Ea
h internal node v 2 Tr will keep three values: �q2i=q1�i,�q3i=q2+1�i, where �q1 ; : : : ; �q2 (�q2+1; : : : ; �q3) are the values that
orrespond to the leaves ofthe left subtree (resp. right subtree) of a tree rooted by v, and the third value Lv = maxq3i=q1 li(or Rv = minq3i=q1 ri, (1 +
)mi � ri � mi). Clearly, the
onstru
tion of this tree T 0 with theaugmented values
an be
omputed in O(p) time. We asso
iate with ea
h node v 2 T 0 anindex jv, su
h that d0jv
orresponds to the rightmost leaf in the subtree rooted at v. Given avalue k, we traverse T 0 starting from the root towards its
hildren. We need to �nd a nodeu, with the smallest ju su
h that �jui=1�i � k. It
an be done in O(logn) time, by simplykeeping the total number of nodes to the left of the
urrent sear
hing path. At ea
h nodewhere the path goes right, we
olle
t the value Lv(Rv) stored in the left subtree. At theend, we report the maximal (minimal) of the
olle
ted Lv(Rv) values. If T 0 is implementedas a balan
ed binary sear
h tree then the update of the values ri and li
an be done inlogarithmi
 time. Moreover, while updating T new pairs may appear (and the previouspairs may disappear). Thus, we need to update the
orresponding d0i values in T 0 togetherwith Li; Ri; �i values. The whole pro
ess
an be a

omplished in O(log4 n) time sin
e wehave a logarithmi
 number of a�e
ted nodes in T , ea
h query/update takes O(log2 n) time11

and ea
h node
ontains at most logarithmi
 number of asso
iated data stru
tures.Therefore we
an
on
lude the following.Theorem 4 Given a set S of n points in Rd , " > 0,
 > 0 we
an
onstru
t a data stru
turein time O(n logn="d+n logd+2 n=
d�1) and O(n logn="d) spa
e with O(logd+2 n=
d�1) updatetime for insertions/deletions of points su
h that given a number k, 1 � k � �n2�, a pair ofpoints realizing (1�
; 1+") ((1�"; 1+
))-approximation of dk
an be determined in O(logn)time.Theorem 5 Given a set S of n points in Rd , " > 0, we
an
onstru
t a data stru
ture intime O(n logn="d) and O(n="d) spa
e su
h that given a number k, 1 � k � �n2�, a pair ofpoints realizing (1� "; 1 + ")-approximation of dk
an be determined in O(logn) time underinsertions and deletions of points.4 Con
lusionsWe studied the dynami
 problem for
omputing k-th Eu
lidean interdistan
e between npoints in Rd . The dynamization makes the problem more
ompli
ated. We are not aware ofany other algorithms for exa
t or approximate solutions. We designed two eÆ
ient algorithmsfor maintaining a set of points and answering distan
e queries. The algorithms are based onthe well-separated pair de
omposition by Callahan and Kosaraju [11℄ and persistent datastru
tures for approximate nearest/farthest neighbor. Both algorithms answer the queriesin O(logn) time. The �rst algorithm provides (1� "; 1 + ") approximation and the se
ondone provides a two-parameter approximation (1� "; 1 +
) (or (1 �
; 1 + ")). It would beintersting to redu
e the dependen
e of runtime and spa
e of our algorithms on " and
.Referen
es[1℄ P. Agarwal, B. Aronov, M. Sharir, S. Suri, \Sele
ting distan
es in the plane", Algorith-mi
a, 9, pp. 495{514, 1993.[2℄ P. Agarwal, M. Sharir, E. Welzl \The dis
rete 2-
enter problem", Pro
. 13th ACMSymp. on Computational Geometry, pp. 147{155, 1997.[3℄ P.K. Agarwal and C.M. Pro
opiu
, \Exa
t and Approximation Algorithms for Cluster-ing", in Pro
. SODA'98, pp. 658{667, 1998.[4℄ S. Arya and D. Mount, \Approximate range sear
hing", in Pro
. 11th ACM Symp. onComp. Geom., pp. 172{181, 1995.[5℄ J. Bentley, \De
omposable sear
hing problems", Inform. Pro
ess. Lett., 8, pp. 244{251,1979. 12

[6℄ M. de Berg, M. van Kreveld, M. Overmars, O. S
hwarzkopf, \Computational Geometry:Algorithms and Appli
ations", Springer-Verlag, 1997.[7℄ S. Bespamyatnikh, \An Optimal Algorithm for Closest-Pair Maintenan
e", Dis
reteComput. Geom., 19, pp. 175{195, 1998.[8℄ S. Bespamyatnikh, K. Kedem, M. Segal and A. Tamir \Optimal Fa
ility Lo
ation underVarious Distan
e Fun
tion", in Workshop on Algorithms and Data Stru
tures'99, pp.318{329, 1999.[9℄ S. Bespamyatnikh and M. Segal \Fast algorithm for approximating distan
es", Algo-rithmi
a, 33(2), pp. 263{269, 2002.[10℄ P. Callahan \Dealing with higher dimensions: the well-separated pair de
ompositionand its appli
ations", Ph.D thesis, Johns Hopkins University, USA, 1995.[11℄ P. Callahan and R. Kosaraju \A de
omposition of multidimensional point sets withappli
ations to k-nearest neighbors and n-body potential �elds", Journal of ACM, 42(1),pp. 67{90, 1995.[12℄ P. Callahan and R. Kosaraju \Faster Algorithms for Some Geometri
 Graph Problemsin Higher Dimensions", in Pro
. SODA'93, pp. 291{300, 1993.[13℄ T. Chan \On enumerating and sele
ting distan
es", International Journal of Computa-tional Geometry and Appli
ations, 11, pp. 291{304, 2001.[14℄ T. Chan \Semi-online maintenan
e of geometri
 optima and measures", in Pro
. 13thACM-SIAM Symp. on Dis
rete Algorithms, pp. 474{483, 2002.[15℄ T. Chan \Approximate nearest neighbor queries revised", Dis
rete and ComputationalGeometry, 20, pp. 359{373, 1998.[16℄ B. Chazelle and L. Guibas, \Fra
tional Cas
ading: I. A data stru
turing te
hnique, II.Appli
ations", Algorithmi
a, 1, pp. 133{162, 163{192, 1986.[17℄ S. Govindarajan, T. Lukovzski, A. Maheshwari and N. Zeh, \I/O EÆ
ient Well-Separated Pair De
omposition and its Appli
ations", In Pro
. of the 8th Annual Euro-pean Symposium on Algorithms, pp. 220{231 , 2000.[18℄ J. Dris
oll, N. Sarnak, D. Sleator and R. Tarjan \Making data stru
tures persistent",Journal of Computer and System S
ien
es, 38, pp. 86{124, 1989.[19℄ D. Eppstein, \Dynami
 Eu
lidean minimum spanning trees and extrema of binary fun
-tions", Dis
rete and Computational Geometry, 13, pp. 111{122, 1995.[20℄ D. Eppstein, \Average
ase analysis of dynami
 geometri
 optimization", in Pro
. 5thACM-SIAM Symp. on Dis
rete Algorithms, pp. 77{86, 1994.[21℄ G. Frederi
kson \A data stru
ture for dynami
ally maintaining rooted trees", in Pro
.4th Annu. Symp. on Dis
. Alg., pp. 175{184, 1993.[22℄ M. Goodri
h, \Geometri
 partitioning made easier, even in parallel", Pro
. 9th Annu.ACM Sympos. Comput. Geom., pp. 73-82, 1993.[23℄ P. Indyk, \High-dimensional
omputational geometry", Ph.D. thesis, Stanford Univer-sity, pp. 68{70, 2000. 13

[24℄ P. Indyk and R. Motwani \Approximate nearest neighbors: towards removing the
urseof dimensionality", in Pro
. 30th ACM Symp. Theory of Comput., 1998.[25℄ R. Janardan, \On maintaining the width and diameter of a planar point-set online",Int. J. Comput. Geom. Appls., 3, pp. 331-344, 1993.[26℄ S. Kapoor and M. Smid, \New te
hniques for exa
t and approximate dynami

losest-point problems", SIAM J. Comput., 25, pp. 775{796, 1996.[27℄ M. Katz and M. Sharir, \An expander-based approa
h to geometri
 optimization",SIAM J. Comput., 26(5), pp. 1384{1408, 1997.[28℄ J. Kleinberg \Two algorithms for nearest-neighbor sear
h in high dimensions", in Pro
.29th ACM Symp. Theory of Comput., pp. 599-608, 1997.[29℄ D. Krznari
 \Progress in hierar
hi
al
lustering and minimum weight triangulation",Ph. D. thesis, Lund University, 1997.[30℄ E. Kushelevitz, R. Ostrovsky and Y. Rabani \EÆ
ient sear
h for approximate nearestneighbor in high dimensional spa
es", in Pro
. 30th ACM Symp. Theory of Comput.,1998.[31℄ J. Salowe, \L1 interdistan
e sele
tion by parametri
 sear
hing", Inf. Pro
ess. Lett., 30,pp. 9{14, 1989.[32℄ A. C. Yao \On
onstru
ting minimum spanning trees in k-dimensional spa
es and relatedproblems", in SIAM Journal on Computing, 11, pp. 721{736, 1982.

14

