
Dynami Algorithms for Approximating InterdistanesSergey Bereg� and Mihael SegalyNovember 22, 2004AbstratIn this paper we present eÆient dynami algorithms for approximation of kth,1 � k � �n2� distane de�ned by some pair of points from a given set S of n points in d-dimensional spae. Our tehnique is based on the dynamization of well-separated pairdeomposition proposed in [11℄, omputing approximate nearest and farthest neigh-bors [23, 26℄ and use of persistent searh trees [18℄.1 IntrodutionLet S be a set of n points in Rd ; d � 1 and let 1 � k � n(n�1)2 . Let d1 � d2 � : : : � d(n2)be the Lp-distanes determined by the pairs of points in S. In this paper we onsider thedynami version of the following optimization problem:� Distane seletion. Compute the k-th smallest Eulidean distane between a pairof points of S.In the dynami version of the distane seletion problem the points are allowed to be insertedor deleted and given a number k, 1 � k � �jSj2 � one wants to answer eÆiently what is thek-th smallest distane between a pair of points of S (by jSj we denote the ardinality of theurrent set of points).The distane seletion problem above reeived a lot of attention during the past deade.The solution to the distane seletion problem an be obtained using a parametri searhing.The deision problem an be redued to the following problem. Compute, for a given real r,the sum �p2SjDr(p) \ (S � fpg)j, where Dr(p) is the losed disk of radius r entered at p.Thus, we an determine, for eah point p in S, the number of points that are at distane at�Department of Computer Siene, University of Texas at Dallas, Box 830688, Rihardson, TX 75083,USA. E-mail: besp�utdallas.eduyCommuniation Systems Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel. E-mail: segal�se.bgu.a.il. Preliminary version of this paper has appeared in Interna-tional Colloquium on Automata , Languages and Programming (ICALP), 2003.1



most r from p. By summarizing all these values and omparing the resulted value to k we ananswer the original deision problem. Agarwal et al. [1℄ gave an O(n 43 log 43 n) expeted-timerandomized algorithm for the deision problem, whih yields an O(n 43 log 83 n) expeted-timealgorithm for the distane seletion problem. Goodrih [22℄ derandomized this algorithm, at aost of an additional polylogarithmi fator in the runtime. Katz and Sharir [27℄ obtained anexpander-based O(n4=3 log2+" n)-time deterministi algorithm for this problem. By applyinga randomized approah Chan [13℄ was able to obtain an O(n logn+n2=3k1=3 log5=3 n) expetedtime algorithm for this problem. Bespamyatnikh and Segal [9℄ onsidered an approximationversion of the distane seletion problem. For a distane d determined by some pair ofpoints in S and for any �xed 0 < Æ1 � 1, Æ2 � 1, the value d0 is the (Æ1; Æ2)-approximationof d, if Æ1d � d0 � Æ2d. They [9℄ present an O(n log3 n="2) runtime solution for the distaneseletion problem that omputes a pair of points realizing distane d0 that is either (1; 1+") or(1�"; 1)-approximation of the atual k-th distane, for any �xed " > 0. They also present anO(n logn="2) time algorithm for omputing the (1� "; 1+ ")-approximation of k-th distaneand show how to extend their solution in order to answer eÆiently the queries approximatingk-th distane for a stati set of points. Agarwal et al. [1℄ onsiders a similar problem, whereone want to identify approximate \median" distane, that is, a pair of points p; q 2 S withthe property that there exist absolute onstants 1 and 2 suh that 0 < 1 < 12 < 2 < 1 andthe rank of the distane determined by p and q is between 1�n2� and 2�n2�. They [1℄ showedhow to solve this problem in O(n logn) time. Arya and Mount[4℄ introdued a balaned box-deomposition tree (BBD tree) in order to answer eÆiently approximate range searhingqueries. They obtained O(logn + 1"d ) query time for d-dimensional point sets using linearspae after O(n logn) preproessing time. Their results also an be used to solve the deisionversion of the distane seletion problem with (1� "; 1+ ")-approximation in O(n logn+ n"2 )runtime.We all an algorithm an almost-linear-time approximation sheme with almost logarith-mi update time (ALTAS-LOG) of order (1; 2) if it has a preproessing time of the formO(n logl1 n="1), for some onstant l1 > 0 and update time of the form O(logl2 n="2), forsome onstant l2 > 0 and any �xed " > 0.In this paper we show an ALTAS-LOG algorithm of order (2; 2) suh that given numberk, 1 � k � �jSj2 � it outputs in O(logn) time a pair of points realizing distane whih isthe (1 � "2; 1 + ")-approximation (or (1 � "; 1 + "2)-approximation) of kth distane. Morepreisely, we show how to onstrut a data struture in O(n logn="2 + n log4 n=) time thatdynamially maintains a set of n points in the plane in O(log4 n=) time under insertionsand deletions, for any arbitrary �xed  > 0, suh that given number k, 1 � k � �jSj2 � one2



an ompute in O(logn) time a pair of points realizing distane whih is either (1� ; 1+ ")or (1� "; 1 + )-approximation of kth distane. We also show how to obtain dynami (1 �"; 1+")-approximation of kth distane by simpler ALTAS-LOG algorithm of order (2; 0) withslightly faster preproessing time. It should be noted here that approximating the atualk-th distane within the fator 1 + "2 (or 1� "2) is onsiderably harder than getting 1 + "(resp. 1� ") approximation with the same " dependeny in the running time of algorithm.We also generalize our algorithms to work in higher dimensions.For our best knowledge, the dynami problem of maintaining exat and approximate kthdistane is not studied in literature, exept the famous losest pair problem (1st distaneseletion) with optimal O(logn) worst-ase update time [7℄ and diameter problem (farthestpair seletion) with O(n") worst-ase update time [19℄, expeted O(logn) update time [20℄and O(b logn) update time [25℄ that maintains an approximate diameter (the approximationfator depends on the integer onstant b > 0). One may �nd our algorithms useful in para-metri searhing appliations, where a set of andidate solutions is de�ned by the distanesbetween pairs of points of dynami set S. For example, Agarwal and Proopiu [3℄ (see also[2, 14, 29℄) studied various k-enter problems in Rd under L1 and L2 metri: ombinationsof exat and approximate, ontinuous and disrete, unapaitated and apaitated versions.Typially an algorithm performs a searh (for example, binary searh) on the sorted listof interdistanes between data points. Our algorithms provide fast implementation of thesearh if an approximate solution suÆes.The main ontribution of this paper is by developing eÆient approximating dynamialgorithm for the well known distane seletion problem using an approah that based onwell separated pairs deomposition introdued by Callahan and Kosaraju [11℄ (see also [17℄),omputing approximate nearest and farthest neighbors [23, 26℄ and persistent binary searhtrees introdued by Drisoll et al. [18℄.This paper is organized as follows. In the next setion we briey desribe well-separatedpair deomposition. Setion 3 is dediated to the approximating dynami distane seletionproblem. Finally we onlude in Setion 4.2 Well-separated pair deompositionIn this setion we shortly desribe the well-separated pair deomposition proposed by Calla-han and Kosaraju [11℄. Let A and B be two sets of points in d-dimensional spae (d � 1)of size n and m, respetively. Let s be some onstant stritly greater than 0 and let R(A)(resp. R(B)) be the smallest axis-parallel bounding box that enloses all the points of A(resp. B). We say that point sets A and B are well-separated with respet to s, if R(A)3



and R(B) an be eah ontained in d-dimensional ball of some radius r, suh that thedistane between these two balls is at least sr. One an easily show that for given twowell-separated sets A and B, if p1; p4 2 A, p2; p3 2 B then dist(p1; p2) � (1 + 2s )dist(p1; p3)and dist(p1; p2) � (1 + 4s )dist(p4; p3). (For general Lp metri the inequality may di�er bysome multipliative onstant.) Let S be a set of d-dimensional points, and let s > 0. Awell-separated pair deomposition (WSPD) for S with respet to s is a set of pairsf(A1; B1); (A2; B2); : : : ; (Ap; Bp)g suh that:(i) Ai � S and Bi � S, for all i = 1; : : : ; p.(ii) Ai \Bi = ;, for all i = 1; : : : ; p.(iii) Ai and Bi are well-separated with respet to s.(iv) for any two distint points r and q in S, there is exatly one pair (Ai; Bi) suh thateither r 2 Ai and q 2 Bi or r 2 Bi and q 2 Ai.The main idea of the algorithm for onstruting WSPD is to build a binary fair split treeT whose leaves are points of S, with internal nodes orresponding to subsets of S. Morepreisely, split tree of S is a binary tree, onstruted reursively as follows. If jSj = 1, itsunique split tree onsists of the node of S. Otherwise a split tree is any tree with root Sand two subtrees that are split trees of the subsets formed by a split of S. For any node Ain the tree, denote its parent (if exists) by p(A). The outer retangle of A, denoted by R(A)is either an open d-ube entered at the enter of the bounding box of S with the side sizethat equals to the largest side lmax(S) of the bounding box of S (if A is root), or we have asituation when the splitting hyperplane used for the split of p(A) divides R(p(A)) into twoopen retangles. Let R(A) be the one that ontains A. A fair split of A is a split in whihthe splitting hyperplane is at distane of at least lmax(A)=3 from eah of the two boundariesof R(A) parallel to it. A split tree formed using only fair splits is alled a fair split tree.Eah pair (Ai; Bi) in WSPD is represented by two nodes v; u 2 T , suh that all theleaves in the subtree rooted at v orrespond to the points of Ai and all the leaves in thesubtree rooted at u orrespond to the points of Bi. The paper of Callahan and Kosaraju [11℄presents an algorithm that impliitly onstruts WSPD for a given set S and separation values > 0 in O(n logn + sdn) time suh that the number of pairs (Ai; Bi) is O(sdn). Moreover,Callahan [10℄ showed how to ompute a WSPD in whih at least one of the sets Ai; Bi ofeah pair (Ai; Bi) ontains exatly one point of S. In this ase, the number of pairs inreasesto O(sdn logn). 4



3 Approximating k-th distane3.1 Computing WSPDOur algorithm onsists of several stages. At the �rst stage we ompute a WSPD for S withseparation onstant s = 6" . From eah (Ai; Bi) we take any pair (ai; bi) 2 (Ai; Bi); 1 � i � p,p = O(n). Our task now is to �nd the smallest index j in the sorted list of (ai; bi) pairs ,suh that the sum of ardinalities of all pairs (Ai; Bi) that orrespond to pre�x starting withi = 1 and ending at i = j is at least k. Therefore, we sort the distanes d0i between ai andbi, 1 � i � p. We assume that the pairs (Ai; Bi) are in order of inreasing d0i. Next, for eahpair (Ai; Bi), 1 � i � p; p = O(n) we ompute the �i = jAijjBij value, i.e. �i is the totalnumber of distint pairs (a; b), a 2 Ai, b 2 Bi. Let� mi = mina2Ai;b2Bi dist(a; b) and� Mi = maxa2Ai;b2Bi dist(a; b)Let also li; 1 � i � p be a number suh that (1� )Mi � li �Mi, for arbitrary �xed  > 0.As we said above, for a partiular k we ompute the smallest j suh thatPji=1 �i � k. LetM 0 = maxji=1Mi and let l0 = maxji=1 li. We laim that l0 is the (1� ; 1 + ")-approximationof k-th distane.In what follows we prove the orretness of our algorithm and show how to implement iteÆiently.Lemma 1 (1� )dk � l0 � (1 + ")dk.Proof. We observe that the total number of distanes de�ned by pairs (Ai; Bi), 1 � i � j isat least k beause �ji=1�i � k. Sine M 0 is the maximum of these distanes M 0 � dk follows.Thus, from l0 � (1 � )M 0 it follows that l0 � (1 � )dk. Our goal now it to prove thatM 0 � (1 + ")dk. We reall that all possible pairs of points of S are uniquely represented bypairs (Ai; Bi) in WSPD. Consider the set of pairs D = f(a; b)ja 2 Ai; b 2 Bi; i � jg. Thereis an index r, j � r � p suh that mr is the smallest distane de�ned by pairs of D. Thetotal number of pairs in D is larger than �n2� � k. Therefore, dk � mr. Let t, 1 � t � jbe the index suh that M 0 = Mt. From the observation in previous setion it follows thatMt � (1 + 2s)d0t = (1 + "=3)d0t. Thus, M 0 � (1 + "=3)d0j � (1 + "=3)d0r, sine the sequene d0i,j � i � p is non-dereasing. It follows that (1 + "=3)d0r � (1 + "=3)(1 + "=3)mr � (1 + ")dk.So, l0 �M 0 � (1 + ")dk. 5



Remark 1. Using a similar approximation sheme with dereasing list of d0i distanes andby taking Mi = mina2Ai;b2Bi dist(a; b) and li suh that (1 + )Mi � li � Mi we an obtain(1� "; 1 + )-approximation of the kth distane.Remark 2. If, instead of omputing li, we hoose d0j as the value returned by the algorithm,we obtain (1 � "; 1 + ")-approximation of the kth distane. This is based on fat that(1 + ")d0j = max1�i�j(1 + ")d0i � max1�i�j Mi = M 0 � dk.It remains to show how to implement this algorithm eÆiently, i.e. how to ompute thevalues li; �i, 1 � i � p. First we show how to ompute �i. In other words we need toompute the ardinalities of Ai and Bi, 1 � i � p. Reall that eah pair (Ai; Bi) in WSPDis represented by two nodes vi, ui of the split tree T . The ardinality of Ai(Bi) equals to thenumber of leaves in the subtree of T rooted at vi(ui). Thus, by postorder traversal of T weare able to ompute all the required ardinalities. Bespamyatnikh and Segal [9℄ showed howto ompute the values mi;Mi, 1 � i � p exatly using Voronoi diagrams [6℄ and Bentley's [5℄logarithmi method. By assuming that the singleton set of eah pair (Ai; Bi) in WSPD isAi = faig they redue the original problem of omputingmi andMi values to the problem ofomputing for eah ai, 1 � i � p the nearest and the farthest neighbor in orresponding Bi.Sine the omputing of all Voronoi Diagrams may lead to undesired O(n2) runtime fator,they maintain dynamially Voronoi Diagrams while traversing a split tree T in a bottom-upfashion. Let Sv be a subset of S assoiated with a node v in T . By traversing a split treeT in a postorder fashion starting from leaves they use a partition Rv of Sv into disjoint setsS1v ; : : : ; Sqv and maintain the Voronoi Diagram V D with orresponding point loation datastruture PL for eah set Sjv, 1 � j � q in Rv. The sizes of the sets in Rv are di�erent andrestrited to be the powers of two. As a onsequene the number of suh sets is at mostlogn, i.e. q � logn. It an be shown that the total time needed to spend for all desribedoperations is O(n log3 n).3.2 Dynami updatesThe main drawbak of the above sheme is the fat that during proessing of T the VoronoiDiagram data strutures are destroyed, so that at the end of the proess we know only theVoronoi Diagram for the entire set S. Suppose that now we insert or delete some leaf fromT . It may have inuene on a number of other internal nodes. How we an determine nowthe new values of mi and Mi? Basially, we have two major problems. The �rst one is howto store the Voronoi Diagram in eah one of the internal nodes of T and the seond one ishow to update it quikly when T hanges its struture by insertion of a new point or deletion6



of an existing point from T .Computing minimal and maximal valuesIn order to solve the �rst problem we will use fully persistent binary searh tree desribed byDrisoll et al. [18℄. A fully persistent struture supports any sequene of operations in whiheah operation an be applied to any previously existing version. The result of the updateis an entirely new version, distint from all others. Unfortunately we annot represent aVoronoi Diagram as a olletion of a sublinear number of binary searh trees and therefore,we need to �nd a way of omputing the values mi and Mi using another strategy. In fat weare interested in omputing the values li. Let us �rst onsider the L1 metri. The pointsde�ning Mi should lie on the boundary of the smallest axis-parallel bounding box of setAi [ Bi. Reall that Ai and Bi are well separated and, thus, the L1 diameter of Ai [ Bi isde�ned by a pair (p; q) suh that p 2 Ai and q 2 Bi.The omputation of mi; 1 � i � p an be done similarly to the approah desribedin [8℄. Suppose we use a WSPD with p = O(n logn) and assume Ai = faig, 1 � i � p.For eah point ai we need to �nd the losest neighbor in orresponding Bi. Consider, forexample, the planar ase. Let l1 be a line whose slope is 45Æ passing through the ai andl2 be a line whose slope is 135Æ passing through the ai. These lines de�ne four wedges:Qtop; Qbottom; Qleft; Qright. For any point p lying in Qleft [ Qright(Qbottom [ Qtop) the L1-distane to ai is de�ned by the x-distane (y-distane, resp.) to ai. We perform four rangequeries, using orthogonal range tree [6℄ data struture (in oordinate system de�ned by linesl1, l2), eah of them orresponding to the appropriate wedge. For eah node in a seondarydata struture we keep four values xmin; xmax; ymin; ymax (omputed in the initial oordinatesystem) of points in orresponding range. Consider, for example, the wedge Qright. Ourquery orresponding to Qright marks O(log2 n) nodes. The minimum of xmin values storedin these nodes de�ne the losest neighbor point to ai lying in Qright. We proeed similarlywith the other wedges. We maintain orthogonal range tree data strutures dynamially ina bottom-up fashion while traversing split tree T . In order to merge two data strutures wesimply insert all the points stored in the smaller range tree into the larger one. However,we are interested in the values of mi omputed for the Eulidean metri. We will use thefollowing two results in order to aomplish our task. The �rst result has been proposedby Kapoor and Smid [26℄ that �nds, for a given query point p 2 Rd a (1 + )-approximateL2-neighbor of p in a given set of n points in O(logd�1 n=d�1) time using a data strutureof O(n logd�2 n) spae. They [26℄ store a set S in a onstant number of a range trees,where eah range tree stores the points aording to its own oordinate system using the7



onstrution of Yao [32℄. Then, for a given p, they use all the range trees to ompute L1nearest neighbors of p in all oordinate systems. One of these L1 neighbors is (1 + )-approximate L2 nearest neighbor of p. But we still need to ompute the values of Mi. Theseond result is due to Indyk [23℄ that shows how to ompute (1� )-approximate farthestneighbor of a given point p by performing a onstant number of (1+)-approximate nearestneighbor queries. The idea is to onstrut a set of a onstant number of onentri disks(balls) around the origin. Eah point is rounded to the nearest irle (sphere). For eah disk(ball) we build a (1 + )-approximate nearest neighbor data struture for the set of pointson orresponding irle (sphere). Next, for eah point p 2 S and eah disk (ball) Bi, the\antipode" pi of p with respet to Bi is de�ned as follows. Let p1 and p2 be the two pointsof the intersetion of the irle (sphere) of Bi with the line passing through p and origin.Let hp denote the hyperplane through the origin that is perpendiular to the line throughp and origin. The point pi is one of the points p1; p2 whih lies on the side of hp di�erentfrom the side ontaining p. In order to �nd the farthest neighbor of q, we issue (1 + )-approximate nearest neighbor query with the point qi in the data struture for the pointson eah one of the irles (spheres). Among the points found, we return the one farthestfrom q. Preproessing time is O(dO(1)n) plus the ost of initiating a onstant number of datastrutures for (1 + )-approximate nearest neighbor queries. The query time is bounded bythe the query time for the (1 + )-approximate nearest neighbor query.Making it all persistentThe good thing in the desribed algorithms is the fat that all of them an be implementedusing orthogonal range searh trees, or in other words, binary searh trees. This will allowus to make all of them fully persistent using Drisoll et al. [18℄ algorithm, thus solving ourtask of storing the appropriate data struture for eah of the nodes of T without beingdestroyed. Generally speaking, ordinary data strutures are ephemeral in the sense thatmaking a hange to the struture destroys the old version, leaving only the new one. In afully persistent data struture, past versions of the data struture are remembered and an bequeried and updated. In [18℄ a method termed node opying with displaed storage of hangeswas developed that ould make red-blak tree data struture to beome fully persistent, inworst-ase time per operation of O(logn) and worst-ase spae ost of O(1) per insertion ordeletion. Instead of indiating a hange to an ephemeral node x by storing the hange inthe orresponding persistent node x0, Drisoll et al. [18℄ stores information about the hangein some possibly di�erent node that lies on the aess path to x0 in the new version. Thusthe reord of the hange is in general displaed from the node to whih the hange applies.8



The path from the node ontaining the hange information to the a�eted node is alledthe displaement path. By opying nodes judiiously, Drisoll et al. [18℄ were able to keepthe displaement paths suÆiently disjoint to guarantee an O(1) worst-ase spae bound perinsertion or deletion while having O(logn) worst-ase time bound per aess, insertion ordeletion.While traversing a tree T , we maintain all the desribed data strutures for omputing(1 + )-approximate nearest neighbor and (1 � )-approximate farthest neighbor. We useagain Bentley's [5℄ logarithmi method as desribed before. Notie, that eah point in S anbe inserted at most O(logn) times into the data strutures while traversing T in a bottom-upfashion. Eah insertion takes O(log3 n) time. To give aess to the persistent struture, theaess pointers to the roots of the various versions must be stored in a balaned searh tree,ordered by index. The total time for maintaining the range trees and omputing li, 1 � i � pis O(n log4 n), sine p = O(n logn), eah query takes O(log2 n) time and eah node ontainsa logarithmi number of the related data strutures. The above omputation an also begeneralized to d-dimensional spae, d > 2. Thus, we haveTheorem 2 Given a set S of n points in Rd , a number k, 1 � k � �n2�, " > 0,  > 0 a pairof points realizing (1 � ; 1 + ") ((1 � "; 1 + ))-approximation of dk an be determined inO(n logn="d + n logd+2 n=d�1) time.Remark 3. Notie that we an obtain better running time (by logarithmi fator) usingorthogonal range trees with the frational asading tehnique [16℄. However, in order toallow persistene for the future dynami updates we use orthogonal range trees avoiding thistehnique.Remark 4. We an use a simpler strategy in order to ompute the Mi values. We maintainthe bounding boxes for sets of points orresponding to the nodes of T . The new boundingbox an be omputed in O(1) time using the information from the previous steps. It resultsin a very fast algorithm with (1 � 1p2 ; 1 + ")-approximation of kth distane whih an bemade dynami fairly easy.Remark 5. The runtime of the algorithm presented in [9℄ and the approximation fatorahieved by that algorithm is better than in Theorem 2 for d = 2. Moreover, we should notethat there is a more eÆient algorithm even for d > 2. Instead of using Kapoor and Smid datastruture [26℄ for querying approximate nearest neighbor, we an use either Kleinberg [28℄ orIndyk and Motwani [24℄ or Kushilevitz et al. [30℄ or Chan's [15℄ data strutures for the samepurpose. For example, using the result by Chan [15℄ that gave an ALTAS-LOG algorithmof order (d�12 ; d�12 ) that ahieves (1 + ")-approximation for nearest neighbor query insteadof Kapoor and Smid [26℄ ALTAS-LOG algorithm of order (d� 1; d� 1) we obtain a better9



runtime of the entire algorithm. Unfortunately, the algorithm in [9℄ and also [15, 24, 28, 30℄data strutures annot be made dynami with a polylogarithmi update time. As we willsee later, the result in Theorem 2 an be extended to deal with the dynami point sets.Following Remark 2 we also an onludeTheorem 3 Given a set S of n points in Rd , a number k, 1 � k � �n2�, " > 0, a pair ofpoints realizing (1� "; 1 + ")-approximation of dk an be determined in O(n logn="d) time.DynamizationIt remains to hek what happens with the tree T when a new point is inserted or someexisting point is deleted. By �(v), v 2 T we denote the subset of points assoiated withv at some instane in the sequene of updates. If v has two hildren w1 and w2 then�(v) = �(w1) [ �(w2). If v is a leaf, then j�(v)j = 1. Sine the fair split property dependson the value of lmax(�(v)), eah time we insert a new point, this may inrease the value oflmax(�(v)) for all its anestors in T , and the fair split property may be violated. Deletionof a point will not inrease the value of lmax(�(v)) for any of its anestors, and hene anbe performed on any fair split tree without restruturing. Callahan [10℄ shows that we andeal with the updates by maintaining a labeled binary tree T in whih eah node satis�esthe following invariants:1. For all internal nodes v with hildren w1 and w2, there is a fair ut that partitionsR(v) into two retangles R1 and R2, suh that �(w1) = �(v) \R1, �(w2) = �(v) \R2,R(w1) an be onstruted from R1 by applying a sequene of fair splits and R(w2) anbe onstruted from R2 by applying a sequene of fair splits.2. For all leaves v, �(v) = fpg, and R(v) = p.To insert a point p into this struture, we �rst retrieve the deepest internal node v inT suh that p 2 R(v), ignoring the ase in whih p lies outside the retangle at the rootnode. Let R1 and w1 have the same meaning as in the �rst invariant. Assume w.l.o.g. thatp 2 R1. The way we hose v guarantees that p 62 R(w1). Now we introdue a new internalnode u, whih replaes w1 as a hild of v. We insert w1 along with its subtree as a hild ofu, and insert a new leaf u0 as the other hild of u, where �(u0) = fpg. Finally we onstruta retangle R(u) satisfying the �rst invariant. To delete the point p, we simply �nd the leafv suh that �(v) = fpg, delete v, and ompress the internal node p(v). Callahan [10℄ provesthat one we have determined where to insert a point p, we may perform suh an insertion10



in onstant time, while preserving the invariants of the tree. Using the direted topologytree of Frederikson [21℄, Callahan has been able to maintain T in O(logn) time, where nis the urrent size of the point set. Generally speaking only O(logn) nodes of T an bea�eted during insertion or deletion of a point and therefore we an maintain the persistentstrutures assoiated with these nodes at sublinear ost.Another problem that we have to deal with is the fat that introdution of a singlenew point an require the reation of many new pairs. Callahan [10℄ proposed an idea topredit all but a onstant number of the new pairs ahead of time. The way to do it is tointrodue dummy points where appropriate. Let �S be a set of dummy points. Suh pointswill not be ounted in �(v) for any v 2 T , but the tree T will have the same struture andretangle labels as a fair split tree of S [ �S. For eÆieny we introdue only a onstantnumber of dummy points for eah well-separated pair fv; wg, suh that �(v) and �(w) arenot-empty. Sine the number of new pairs is onstant we an ompute and maintain therelevant persistent strutures eÆiently.QueryThe only missing thing is how to perform a query, i.e. how, for a given value of k, wean �nd the approximate kth distane? We maintain a balaned binary searh tree T 0 fordistanes d0i as de�ned before. Suppose that we build a binary tree T 0 with the leavesorresponding to d01; : : : ; d0p. Eah internal node v 2 Tr will keep three values: �q2i=q1�i,�q3i=q2+1�i, where �q1 ; : : : ; �q2 (�q2+1; : : : ; �q3) are the values that orrespond to the leaves ofthe left subtree (resp. right subtree) of a tree rooted by v, and the third value Lv = maxq3i=q1 li(or Rv = minq3i=q1 ri, (1 + )mi � ri � mi). Clearly, the onstrution of this tree T 0 with theaugmented values an be omputed in O(p) time. We assoiate with eah node v 2 T 0 anindex jv, suh that d0jv orresponds to the rightmost leaf in the subtree rooted at v. Given avalue k, we traverse T 0 starting from the root towards its hildren. We need to �nd a nodeu, with the smallest ju suh that �jui=1�i � k. It an be done in O(logn) time, by simplykeeping the total number of nodes to the left of the urrent searhing path. At eah nodewhere the path goes right, we ollet the value Lv(Rv) stored in the left subtree. At theend, we report the maximal (minimal) of the olleted Lv(Rv) values. If T 0 is implementedas a balaned binary searh tree then the update of the values ri and li an be done inlogarithmi time. Moreover, while updating T new pairs may appear (and the previouspairs may disappear). Thus, we need to update the orresponding d0i values in T 0 togetherwith Li; Ri; �i values. The whole proess an be aomplished in O(log4 n) time sine wehave a logarithmi number of a�eted nodes in T , eah query/update takes O(log2 n) time11



and eah node ontains at most logarithmi number of assoiated data strutures.Therefore we an onlude the following.Theorem 4 Given a set S of n points in Rd , " > 0,  > 0 we an onstrut a data struturein time O(n logn="d+n logd+2 n=d�1) and O(n logn="d) spae with O(logd+2 n=d�1) updatetime for insertions/deletions of points suh that given a number k, 1 � k � �n2�, a pair ofpoints realizing (1�; 1+") ((1�"; 1+))-approximation of dk an be determined in O(logn)time.Theorem 5 Given a set S of n points in Rd , " > 0, we an onstrut a data struture intime O(n logn="d) and O(n="d) spae suh that given a number k, 1 � k � �n2�, a pair ofpoints realizing (1� "; 1 + ")-approximation of dk an be determined in O(logn) time underinsertions and deletions of points.4 ConlusionsWe studied the dynami problem for omputing k-th Eulidean interdistane between npoints in Rd . The dynamization makes the problem more ompliated. We are not aware ofany other algorithms for exat or approximate solutions. We designed two eÆient algorithmsfor maintaining a set of points and answering distane queries. The algorithms are based onthe well-separated pair deomposition by Callahan and Kosaraju [11℄ and persistent datastrutures for approximate nearest/farthest neighbor. Both algorithms answer the queriesin O(logn) time. The �rst algorithm provides (1� "; 1 + ") approximation and the seondone provides a two-parameter approximation (1� "; 1 + ) (or (1 � ; 1 + ")). It would beintersting to redue the dependene of runtime and spae of our algorithms on " and .Referenes[1℄ P. Agarwal, B. Aronov, M. Sharir, S. Suri, \Seleting distanes in the plane", Algorith-mia, 9, pp. 495{514, 1993.[2℄ P. Agarwal, M. Sharir, E. Welzl \The disrete 2-enter problem", Pro. 13th ACMSymp. on Computational Geometry, pp. 147{155, 1997.[3℄ P.K. Agarwal and C.M. Proopiu, \Exat and Approximation Algorithms for Cluster-ing", in Pro. SODA'98, pp. 658{667, 1998.[4℄ S. Arya and D. Mount, \Approximate range searhing", in Pro. 11th ACM Symp. onComp. Geom., pp. 172{181, 1995.[5℄ J. Bentley, \Deomposable searhing problems", Inform. Proess. Lett., 8, pp. 244{251,1979. 12
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