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Abstract

In this paper we present efficient dynamic algorithms for approximation of k",
1<k< (g) distance defined by some pair of points from a given set S of n points in d-
dimensional space. Our technique is based on the dynamization of well-separated pair
decomposition proposed in [11], computing approximate nearest and farthest neigh-
bors [23, 26] and use of persistent search trees [18].

1 Introduction

Let S be a set of n points in R, d > 1 and let 1 < k < @ Let di < dy < ... < d(n)
2
be the L,-distances determined by the pairs of points in S. In this paper we consider the

dynamic version of the following optimization problem:

e Distance selection. Compute the k-th smallest Euclidean distance between a pair

of points of S.

In the dynamic version of the distance selection problem the points are allowed to be inserted
or deleted and given a number £k, 1 < k < (‘;') one wants to answer efficiently what is the
k-th smallest distance between a pair of points of S (by |S| we denote the cardinality of the
current set of points).

The distance selection problem above received a lot of attention during the past decade.
The solution to the distance selection problem can be obtained using a parametric searching.
The decision problem can be reduced to the following problem. Compute, for a given real r,
the sum X,c5|D,(p) N (S — {p})|, where D,(p) is the closed disk of radius r centered at p.

Thus, we can determine, for each point p in S, the number of points that are at distance at
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most r from p. By summarizing all these values and comparing the resulted value to k£ we can
answer the original decision problem. Agarwal et al. [1] gave an O(ng log% n) expected-time
randomized algorithm for the decision problem, which yields an O(ng 10g§ n) expected-time
algorithm for the distance selection problem. Goodrich [22] derandomized this algorithm, at a
cost of an additional polylogarithmic factor in the runtime. Katz and Sharir [27] obtained an
expander-based O(n*?log*"® n)-time deterministic algorithm for this problem. By applying
a randomized approach Chan [13] was able to obtain an O(n log n4+n*?k"/? 1og®® n) expected
time algorithm for this problem. Bespamyatnikh and Segal [9] considered an approximation
version of the distance selection problem. For a distance d determined by some pair of
points in S and for any fixed 0 < 0; < 1, d9 > 1, the value d' is the (dy, d2)-approzimation
of d, if §;d < d' < 8yd. They [9] present an O(nlog® n/c?) runtime solution for the distance
selection problem that computes a pair of points realizing distance d' that is either (1, 1+¢) or
(1—e¢,1)-approximation of the actual k-th distance, for any fixed € > 0. They also present an
O(nlogn/e?) time algorithm for computing the (1 — ¢, 1+ ¢)-approximation of k-th distance
and show how to extend their solution in order to answer efficiently the queries approximating
k-th distance for a static set of points. Agarwal et al. [1] considers a similar problem, where
one want to identify approximate “median” distance, that is, a pair of points p,q € S with
the property that there exist absolute constants ¢; and ¢, such that 0 < ¢; < % < ¢y < 1 and
the rank of the distance determined by p and ¢ is between ¢; (;) and ¢, (g) They [1] showed
how to solve this problem in O(nlogn) time. Arya and Mount[4] introduced a balanced boz-
decomposition tree (BBD tree) in order to answer efficiently approximate range searching
queries. They obtained O(logn + E%) query time for d-dimensional point sets using linear
space after O(nlogn) preprocessing time. Their results also can be used to solve the decision
version of the distance selection problem with (1 —¢, 1+ ¢)-approximation in O(nlogn+ %)
runtime.

We call an algorithm an almost-linear-time approrimation scheme with almost logarith-
mic update time (ALTAS-LOG) of order (c1,¢3) if it has a preprocessing time of the form
O(nlog n/s), for some constant I; > 0 and update time of the form O(log”n/e%), for
some constant [y > 0 and any fixed £ > 0.

In this paper we show an ALTAS-LOG algorithm of order (2,2) such that given number
kE, 1 <k < (El) it outputs in O(logn) time a pair of points realizing distance which is
the (1 — £2,1 + ¢)-approximation (or (1 — &, 1 + £%)-approximation) of k™ distance. More
precisely, we show how to construct a data structure in O(nlogn/e? +nlog*n/v) time that
dynamically maintains a set of n points in the plane in O(log* n/v) time under insertions

and deletions, for any arbitrary fixed v > 0, such that given number £k, 1 < k < (‘;') one



can compute in O(logn) time a pair of points realizing distance which is either (1 —,1+¢)
or (1 —&,1+ ~)-approximation of k' distance. We also show how to obtain dynamic (1 —
g, 1+¢)-approximation of k™ distance by simpler ALTAS-LOG algorithm of order (2,0) with
slightly faster preprocessing time. It should be noted here that approximating the actual
k-th distance within the factor 1 +&? (or 1 — £?) is considerably harder than getting 1 + ¢
(resp. 1 — ¢) approximation with the same £ dependency in the running time of algorithm.
We also generalize our algorithms to work in higher dimensions.

For our best knowledge, the dynamic problem of maintaining exact and approximate &
distance is not studied in literature, except the famous closest pair problem (1°* distance
selection) with optimal O(logn) worst-case update time [7] and diameter problem (farthest
pair selection) with O(n®) worst-case update time [19], expected O(logn) update time [20]
and O(blogn) update time [25] that maintains an approximate diameter (the approximation
factor depends on the integer constant b > 0). One may find our algorithms useful in para-
metric searching applications, where a set of candidate solutions is defined by the distances
between pairs of points of dynamic set S. For example, Agarwal and Procopiuc [3] (see also
[2, 14, 29]) studied various k-center problems in R? under L., and Ly metric: combinations
of exact and approximate, continuous and discrete, uncapacitated and capacitated versions.
Typically an algorithm performs a search (for example, binary search) on the sorted list
of interdistances between data points. Our algorithms provide fast implementation of the
search if an approximate solution suffices.

The main contribution of this paper is by developing efficient approximating dynamic
algorithm for the well known distance selection problem using an approach that based on
well separated pairs decomposition introduced by Callahan and Kosaraju [11] (see also [17]),
computing approximate nearest and farthest neighbors [23, 26] and persistent binary search
trees introduced by Driscoll et al. [18].

This paper is organized as follows. In the next section we briefly describe well-separated
pair decomposition. Section 3 is dedicated to the approximating dynamic distance selection

problem. Finally we conclude in Section 4.

2 Well-separated pair decomposition

In this section we shortly describe the well-separated pair decomposition proposed by Calla-
han and Kosaraju [11]. Let A and B be two sets of points in d-dimensional space (d > 1)
of size n and m, respectively. Let s be some constant strictly greater than 0 and let R(A)
(resp. R(B)) be the smallest axis-parallel bounding box that encloses all the points of A
(resp. B). We say that point sets A and B are well-separated with respect to s, if R(A)



and R(B) can be each contained in d-dimensional ball of some radius r, such that the
distance between these two balls is at least sr. One can easily show that for given two
well-separated sets A and B, if p1,py € A, pa,p3 € B then dist(py,p2) < (1 + %)dist(pl,pg)
and dist(p1,p2) < (1 + %)dist(m,pg). (For general L, metric the inequality may differ by
some multiplicative constant.) Let S be a set of d-dimensional points, and let s > 0. A

well-separated pair decomposition (WSPD) for S with respect to s is a set of pairs
{(AI; Bl); (AQ, Bg), Ceey (Ap, Bp)} such that:

(i) A; C Sand B;C S, foralli=1,...,p.
(i) ;N B; =0, foralli=1,...,p.
(iii) A; and B; are well-separated with respect to s.

(iv) for any two distinct points r and ¢ in S, there is exactly one pair (A;, B;) such that
either r € A; and ¢ € B; or r € B; and ¢q € A;.

The main idea of the algorithm for constructing WSPD is to build a binary fair split tree
T whose leaves are points of S, with internal nodes corresponding to subsets of S. More
precisely, split tree of S is a binary tree, constructed recursively as follows. If |S| = 1, its
unique split tree consists of the node of S. Otherwise a split tree is any tree with root S
and two subtrees that are split trees of the subsets formed by a split of S. For any node A
in the tree, denote its parent (if exists) by p(A). The outer rectangle of A, denoted by R(A)
is either an open d-cube centered at the center of the bounding box of S with the side size
that equals to the largest side l,,4,.(S) of the bounding box of S (if A is root), or we have a
situation when the splitting hyperplane used for the split of p(A) divides R(p(A)) into two
open rectangles. Let R(A) be the one that contains A. A fair split of A is a split in which
the splitting hyperplane is at distance of at least 4, (A)/3 from each of the two boundaries
of R(A) parallel to it. A split tree formed using only fair splits is called a fair split tree.

Each pair (A;, B;) in WSPD is represented by two nodes v,u € T, such that all the
leaves in the subtree rooted at v correspond to the points of A; and all the leaves in the
subtree rooted at u correspond to the points of B;. The paper of Callahan and Kosaraju [11]
presents an algorithm that implicitly constructs WSPD for a given set S and separation value
s >0 in O(nlogn + s%n) time such that the number of pairs (4;, B;) is O(s%n). Moreover,
Callahan [10] showed how to compute a W SPD in which at least one of the sets A;, B; of
each pair (A;, B;) contains exactly one point of S. In this case, the number of pairs increases
to O(s%nlogn).



3 Approximating k-th distance

3.1 Computing WSPD

Our algorithm consists of several stages. At the first stage we compute a WSPD for S with
separation constant s = %. From each (A;, B;) we take any pair (a;,b;) € (A;, B;),1 <i <p,
p = O(n). Our task now is to find the smallest index j in the sorted list of (a;, b;) pairs ,
such that the sum of cardinalities of all pairs (A;, B;) that correspond to prefix starting with
i =1 and ending at ¢ = j is at least k. Therefore, we sort the distances d; between a; and
b;, 1 <i < p. We assume that the pairs (4;, B;) are in order of increasing d;. Next, for each
pair (A;, B;), 1 < i < p,p = O(n) we compute the o; = |A4;||B;| value, i.e. «; is the total
number of distinct pairs (a,b), a € A;, b € B;. Let

e m; = MiNye, pep; dist(a,b) and
e M, = maxuea, pep; dist(a,b)

Let also [;,1 < i < p be a number such that (1 — v)M; < I; < M;, for arbitrary fixed v > 0.
As we said above, for a particular £ we compute the smallest j such that Zgzl a; > k. Let
M’ = max!_, M; and let I’ = max]_, I;, We claim that /" is the (1 — v, 1 + £)-approximation
of k-th distance.
In what follows we prove the correctness of our algorithm and show how to implement it

efficiently.
Lemma 1 (1 —v)d <1I' < (1 +¢)dy.

Proof. We observe that the total number of distances defined by pairs (A;, B;), 1 <i < jis
at least k because X/_,o; > k. Since M’ is the maximum of these distances M’ > dj, follows.
Thus, from I' > (1 —~v)M' it follows that I' > (1 — )dg. Our goal now it to prove that
M' < (1 + ¢)dg. We recall that all possible pairs of points of S are uniquely represented by
pairs (A;, B;) in WSPD. Consider the set of pairs D = {(a,b)|a € A;,b € B;,i > j}. There
is an index r, j < r < p such that m, is the smallest distance defined by pairs of D. The
total number of pairs in D is larger than (’21) — k. Therefore, d, > m,. Let t, 1 <t <
be the index such that M’ = M,;. From the observation in previous section it follows that
M; < (1+ 2)dy = (14 ¢/3)d;. Thus, M’ < (1+¢/3)d; < (14 ¢/3)d,, since the sequence dj,
j <1 < p is non-decreasing. It follows that (1 +¢/3)d. < (1+¢/3)(1+¢/3)m, < (1+ ¢)dy.
So, I' < M' < (1+¢)dy. R



Remark 1. Using a similar approximation scheme with decreasing list of d; distances and
by taking M; = min,e 4, pep, dist(a,b) and [; such that (1 +~y)M; > [; > M; we can obtain
(1 —&,1 + )-approximation of the k' distance.

Remark 2. If, instead of computing [;, we choose d;- as the value returned by the algorithm,
we obtain (1 — &,1 + ¢)-approximation of the k' distance. This is based on fact that
(1 +e)dj = maxy<i<;(1 + €)d; > max,<;<; My = M' > d.

It remains to show how to implement this algorithm efficiently, i.e. how to compute the
values [;,a;, 1 < i < p. First we show how to compute ;. In other words we need to
compute the cardinalities of A; and B;, 1 < i < p. Recall that each pair (4;, B;) in WSPD
is represented by two nodes v;, u; of the split tree T'. The cardinality of A;(B;) equals to the
number of leaves in the subtree of T rooted at v;(u;). Thus, by postorder traversal of T" we
are able to compute all the required cardinalities. Bespamyatnikh and Segal [9] showed how
to compute the values m;, M;, 1 < i < p exactly using Voronoi diagrams [6] and Bentley’s [5]
logarithmic method. By assuming that the singleton set of each pair (A4;, B;) in WSPD is
A; = {a;} they reduce the original problem of computing m; and M; values to the problem of
computing for each a;, 1 < i < p the nearest and the farthest neighbor in corresponding B;.
Since the computing of all Voronoi Diagrams may lead to undesired O(n?) runtime factor,
they maintain dynamically Voronoi Diagrams while traversing a split tree 7" in a bottom-up
fashion. Let S, be a subset of S associated with a node v in T. By traversing a split tree
T in a postorder fashion starting from leaves they use a partition R, of S, into disjoint sets
Sl ..., 5% and maintain the Voronoi Diagram V' D with corresponding point location data
structure PL for each set S, 1 < j < ¢ in R,. The sizes of the sets in R, are different and
restricted to be the powers of two. As a consequence the number of such sets is at most
logn, i.e. ¢ <logn. It can be shown that the total time needed to spend for all described

operations is O(n log® n).

3.2 Dynamic updates

The main drawback of the above scheme is the fact that during processing of T" the Voronoi
Diagram data structures are destroyed, so that at the end of the process we know only the
Voronoi Diagram for the entire set S. Suppose that now we insert or delete some leaf from
T. It may have influence on a number of other internal nodes. How we can determine now
the new values of m; and M,;? Basically, we have two major problems. The first one is how
to store the Voronoi Diagram in each one of the internal nodes of 7" and the second one is

how to update it quickly when 7" changes its structure by insertion of a new point or deletion



of an existing point from 7.

Computing minimal and maximal values

In order to solve the first problem we will use fully persistent binary search tree described by
Driscoll et al. [18]. A fully persistent structure supports any sequence of operations in which
each operation can be applied to any previously existing version. The result of the update
is an entirely new version, distinct from all others. Unfortunately we cannot represent a
Voronoi Diagram as a collection of a sublinear number of binary search trees and therefore,
we need to find a way of computing the values m; and M; using another strategy. In fact we
are interested in computing the values [;. Let us first consider the L., metric. The points
defining M; should lie on the boundary of the smallest axis-parallel bounding box of set
A; U B;. Recall that A; and B; are well separated and, thus, the L., diameter of A; U B; is
defined by a pair (p, q) such that p € A; and g € B;.

The computation of m;,1 < ¢ < p can be done similarly to the approach described
in [8]. Suppose we use a WSPD with p = O(nlogn) and assume A; = {a;}, 1 < i < p.
For each point a; we need to find the closest neighbor in corresponding B;. Consider, for
example, the planar case. Let [; be a line whose slope is 45° passing through the a; and
[ be a line whose slope is 135° passing through the a;. These lines define four wedges:
Qiops Quottoms Qiefts Qrigne- For any point p lying in Qpep U Qright(Qbottom U Qop) the Loo-
distance to a; is defined by the z-distance (y-distance, resp.) to a;. We perform four range
queries, using orthogonal range tree [6] data structure (in coordinate system defined by lines
l1, [3), each of them corresponding to the appropriate wedge. For each node in a secondary
data structure we keep four values Zmin, Tmazs Ymins Ymae (computed in the initial coordinate
system) of points in corresponding range. Consider, for example, the wedge Qign:. Our
query corresponding to rign: marks O(log2 n) nodes. The minimum of z,,;, values stored
in these nodes define the closest neighbor point to a; lying in Q,ign. We proceed similarly
with the other wedges. We maintain orthogonal range tree data structures dynamically in
a bottom-up fashion while traversing split tree 7. In order to merge two data structures we
simply insert all the points stored in the smaller range tree into the larger one. However,
we are interested in the values of m; computed for the Euclidean metric. We will use the
following two results in order to accomplish our task. The first result has been proposed
by Kapoor and Smid [26] that finds, for a given query point p € R? a (1 + )-approximate
Ly-neighbor of p in a given set of n points in O(log® ' n/y?~!) time using a data structure
of O(nlog” ?n) space. They [26] store a set S in a constant number of a range trees,

where each range tree stores the points according to its own coordinate system using the



construction of Yao [32]. Then, for a given p, they use all the range trees to compute L,
nearest neighbors of p in all coordinate systems. One of these L., neighbors is (1 4 7)-
approximate Ly nearest neighbor of p. But we still need to compute the values of M;. The
second result is due to Indyk [23] that shows how to compute (1 — 7)-approximate farthest
neighbor of a given point p by performing a constant number of (14 7)-approximate nearest
neighbor queries. The idea is to construct a set of a constant number of concentric disks
(balls) around the origin. Each point is rounded to the nearest circle (sphere). For each disk
(ball) we build a (1 + 7)-approximate nearest neighbor data structure for the set of points
on corresponding circle (sphere). Next, for each point p € S and each disk (ball) B;, the
“antipode” p’ of p with respect to B, is defined as follows. Let p; and p, be the two points
of the intersection of the circle (sphere) of B; with the line passing through p and origin.
Let h, denote the hyperplane through the origin that is perpendicular to the line through
p and origin. The point p’ is one of the points p;, p, which lies on the side of h, different
from the side containing p. In order to find the farthest neighbor of ¢, we issue (1 + 7)-
approximate nearest neighbor query with the point ¢’ in the data structure for the points
on each one of the circles (spheres). Among the points found, we return the one farthest
from q. Preprocessing time is O(d°n) plus the cost of initiating a constant number of data
structures for (1 + 7)-approximate nearest neighbor queries. The query time is bounded by

the the query time for the (1 + 7)-approximate nearest neighbor query.

Making it all persistent

The good thing in the described algorithms is the fact that all of them can be implemented
using orthogonal range search trees, or in other words, binary search trees. This will allow
us to make all of them fully persistent using Driscoll et al. [18] algorithm, thus solving our
task of storing the appropriate data structure for each of the nodes of T" without being
destroyed. Generally speaking, ordinary data structures are ephemeral in the sense that
making a change to the structure destroys the old version, leaving only the new one. In a
fully persistent data structure, past versions of the data structure are remembered and can be
queried and updated. In [18] a method termed node copying with displaced storage of changes
was developed that could make red-black tree data structure to become fully persistent, in
worst-case time per operation of O(logn) and worst-case space cost of O(1) per insertion or
deletion. Instead of indicating a change to an ephemeral node x by storing the change in
the corresponding persistent node 2/, Driscoll et al. [18] stores information about the change
in some possibly different node that lies on the access path to z’ in the new version. Thus

the record of the change is in general displaced from the node to which the change applies.



The path from the node containing the change information to the affected node is called
the displacement path. By copying nodes judiciously, Driscoll et al. [18] were able to keep
the displacement paths sufficiently disjoint to guarantee an O(1) worst-case space bound per
insertion or deletion while having O(logn) worst-case time bound per access, insertion or
deletion.

While traversing a tree T', we maintain all the described data structures for computing
(1 + v)-approximate nearest neighbor and (1 — v)-approximate farthest neighbor. We use
again Bentley’s [5] logarithmic method as described before. Notice, that each point in S can
be inserted at most O(logn) times into the data structures while traversing 7" in a bottom-up
fashion. Each insertion takes O(log®n) time. To give access to the persistent structure, the
access pointers to the roots of the various versions must be stored in a balanced search tree,
ordered by index. The total time for maintaining the range trees and computing [;, 1 < i <p
is O(nlog*n), since p = O(nlogn), each query takes O(log®n) time and each node contains
a logarithmic number of the related data structures. The above computation can also be

generalized to d-dimensional space, d > 2. Thus, we have

Theorem 2 Given a set S of n points in R, a number k, 1 < k < (;’), e>0,v>0 apair
of points realizing (1 —,1 +¢) ((1 — &,1 + 7))-approzimation of dy can be determined in
O(nlogn/e 4+ nlog™? n/y41) time.

Remark 3. Notice that we can obtain better running time (by logarithmic factor) using
orthogonal range trees with the fractional cascading technique [16]. However, in order to
allow persistence for the future dynamic updates we use orthogonal range trees avoiding this
technique.

Remark 4. We can use a simpler strategy in order to compute the M; values. We maintain
the bounding boxes for sets of points corresponding to the nodes of T. The new bounding
box can be computed in O(1) time using the information from the previous steps. It results
in a very fast algorithm with (1 — %, 1 + £)-approximation of k' distance which can be
made dynamic fairly easy.

Remark 5. The runtime of the algorithm presented in [9] and the approximation factor
achieved by that algorithm is better than in Theorem 2 for d = 2. Moreover, we should note
that there is a more efficient algorithm even for d > 2. Instead of using Kapoor and Smid data
structure [26] for querying approximate nearest neighbor, we can use either Kleinberg [28] or
Indyk and Motwani [24] or Kushilevitz et al. [30] or Chan’s [15] data structures for the same
purpose. For example, using the result by Chan [15] that gave an ALTAS-LOG algorithm

d—1 d—1

of order (%=, %=) that achieves (1 + ¢)-approximation for nearest neighbor query instead

of Kapoor and Smid [26] ALTAS-LOG algorithm of order (d — 1,d — 1) we obtain a better

9



runtime of the entire algorithm. Unfortunately, the algorithm in [9] and also [15, 24, 28, 30]
data structures cannot be made dynamic with a polylogarithmic update time. As we will

see later, the result in Theorem 2 can be extended to deal with the dynamic point sets.

Following Remark 2 we also can conclude

Theorem 3 Given a set S of n points in R, a number k, 1 < k < (g), e >0, a pair of

points realizing (1 — &, 1 + €)-approzimation of dj, can be determined in O(nlogn/e?) time.

Dynamization

It remains to check what happens with the tree 7" when a new point is inserted or some
existing point is deleted. By o(v), v € T we denote the subset of points associated with
v at some instance in the sequence of updates. If v has two children w; and wy then
o(v) = o(wy) Uo(wsy). If v is a leaf, then |o(v)| = 1. Since the fair split property depends
on the value of [,,4.(0(v)), each time we insert a new point, this may increase the value of
Imaz (0 (v)) for all its ancestors in 7', and the fair split property may be violated. Deletion
of a point will not increase the value of l;,q,(c(v)) for any of its ancestors, and hence can
be performed on any fair split tree without restructuring. Callahan [10] shows that we can
deal with the updates by maintaining a labeled binary tree 7" in which each node satisfies

the following invariants:

1. For all internal nodes v with children w; and w,, there is a fair cut that partitions
R(v) into two rectangles Ry and Ry, such that o(w;) = o(v) N Ry, o(ws) = o(v) N Ry,
R(w;) can be constructed from R; by applying a sequence of fair splits and R(ws) can

be constructed from Ry by applying a sequence of fair splits.
2. For all leaves v, o(v) = {p}, and R(v) = p.

To insert a point p into this structure, we first retrieve the deepest internal node v in
T such that p € R(v), ignoring the case in which p lies outside the rectangle at the root
node. Let R; and w; have the same meaning as in the first invariant. Assume w.l.o.g. that
p € R;. The way we chose v guarantees that p ¢ R(w;). Now we introduce a new internal
node u, which replaces w; as a child of v. We insert w; along with its subtree as a child of
u, and insert a new leaf u' as the other child of u, where o(u') = {p}. Finally we construct
a rectangle R(u) satisfying the first invariant. To delete the point p, we simply find the leaf
v such that o(v) = {p}, delete v, and compress the internal node p(v). Callahan [10] proves

that once we have determined where to insert a point p, we may perform such an insertion

10



in constant time, while preserving the invariants of the tree. Using the directed topology
tree of Frederickson [21], Callahan has been able to maintain 7" in O(logn) time, where n
is the current size of the point set. Generally speaking only O(logn) nodes of T can be
affected during insertion or deletion of a point and therefore we can maintain the persistent
structures associated with these nodes at sublinear cost.

Another problem that we have to deal with is the fact that introduction of a single
new point can require the creation of many new pairs. Callahan [10] proposed an idea to
predict all but a constant number of the new pairs ahead of time. The way to do it is to
introduce dummy points where appropriate. Let S be a set of dummy points. Such points
will not be counted in o(v) for any v € T, but the tree T" will have the same structure and
rectangle labels as a fair split tree of S U S. For efficiency we introduce only a constant
number of dummy points for each well-separated pair {v,w}, such that o(v) and o(w) are
not-empty. Since the number of new pairs is constant we can compute and maintain the

relevant persistent structures efficiently.

Query

The only missing thing is how to perform a query, i.e. how, for a given value of k, we
can find the approximate k** distance? We maintain a balanced binary search tree T for

distances d; as defined before. Suppose that we build a binary tree 7" with the leaves

corresponding to dj,...,d,. Each internal node v € T, will keep three values: E?iqlai,
S i1y where g, .., Qg (Qgyq1, - -+, Q) are the values that correspond to the leaves of

q3 )
1=q1 lz

ri, (L +5)m; > r; > m;). Clearly, the construction of this tree 7" with the

the left subtree (resp. right subtree) of a tree rooted by v, and the third value L, = max
(or R, = min® |
augmented values can be computed in O(p) time. We associate with each node v € T" an
index j,, such that d; corresponds to the rightmost leaf in the subtree rooted at v. Given a
value k, we traverse T" starting from the root towards its children. We need to find a node
u, with the smallest j, such that Egilai > k. It can be done in O(logn) time, by simply
keeping the total number of nodes to the left of the current searching path. At each node
where the path goes right, we collect the value L,(R,) stored in the left subtree. At the
end, we report the maximal (minimal) of the collected L,(R,) values. If T" is implemented
as a balanced binary search tree then the update of the values r; and [; can be done in
logarithmic time. Moreover, while updating 7" new pairs may appear (and the previous
pairs may disappear). Thus, we need to update the corresponding d; values in 7" together
with L;, R;, a; values. The whole process can be accomplished in O(log4 n) time since we

have a logarithmic number of affected nodes in T, each query/update takes O(log2 n) time
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and each node contains at most logarithmic number of associated data structures.

Therefore we can conclude the following.

Theorem 4 Given a set S of n points in R?, £ > 0, v > 0 we can construct a data structure
in time O(nlogn/c?4nlog™? n/v4=1) and O(nlogn/c?) space with O(log*™* n/v*") update
time for insertions/deletions of points such that given a number k, 1 < k < (g), a pair of
points realizing (1—v,14+¢) ((1—¢, 1+7))-approzimation of dy, can be determined in O(logn)

time.

Theorem 5 Given a set S of n points in RY, ¢ > 0, we can construct a data structure in
time O(nlogn/e?) and O(n/e?) space such that given a number k, 1 < k < (}), a pair of
points realizing (1 — e, 1 + €)-approzimation of dy, can be determined in O(logn) time under

insertions and deletions of points.

4 Conclusions

We studied the dynamic problem for computing k-th Euclidean interdistance between n
points in R¢. The dynamization makes the problem more complicated. We are not aware of
any other algorithms for exact or approximate solutions. We designed two efficient algorithms
for maintaining a set of points and answering distance queries. The algorithms are based on
the well-separated pair decomposition by Callahan and Kosaraju [11] and persistent data
structures for approximate nearest/farthest neighbor. Both algorithms answer the queries
in O(logn) time. The first algorithm provides (1 — £,1 + £) approximation and the second
one provides a two-parameter approximation (1 —e,1+4 ) (or (1 —~,1+¢)). It would be

intersting to reduce the dependence of runtime and space of our algorithms on ¢ and ~.
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