ISIT2007, Nice, France, June 24 — June 29, 2007

Constrained Codes as Networks of Relations

Moshe Schwartz Jehoshua Bruck
Electrical and Computer Engineering California Institute of Technology
Ben-Gurion University 1200 E California Blvd., Mail Code 136-93
Beer Sheva 84105, Israel Pasadena, CA 91125, U.S.A.
schwartz@ee.bgu.ac.il bruck@paradise.caltech.edu

Abstract— We revisit the well-known problem of determining Vardy [13]. For the specific case ¢1, co)-RLL, Calkin and
the capacity of constrained systems. While the one-dimerial  Wilf [3] gave a numerical estimation method using transfer
case is well understood, the capacity of two-dimensional stems matrices. Only for thé1, oo )-RLL constraint on the hexagonal

is mostly unknown. When it is non-zero, except for the(1, co)- . . :
RLL system on the hexagonal lattice, there are no closed-fan lattice, Baxter [1] gave an exabut not ngoroué analytical

analytical solutions known. Furthermore, for the related problem ~ Solution using the corner transfer matrix method.
of counting the exact number of constrained arrays of any gien Other two-dimensional constraints do not fare any better.

size, only exponential-time algorithms are known. _ Halevy et al. [7] considered bit stuffing encoders for the
We present a novel approach to finding the exact capacity yyq.dimensional no-isolated-bit constraint to constructively

of two-dimensional constrained systems, as well as efficity estimate its capacity. Non-constructivelv. Forchhammer and
counting the exact number of constrained arrays of any given : ! pacity. uctively,

size. To that end, we borrow graph-theoretic tools origindy Laursen [6], estimated this capacity using random fields.
developed for the field of statistical mechanics, tools forféiciently The method we present is general enough to encom-

simulating quantum circuits, as well as tools from the theoy of pass a wide variety of constraints (both local and global)
the spectral distribution of Toeplitz matrices. though its expressive power is yet undetermined. We use
|. INTRODUCTION only _mathematically-rigc_)rou_stools to (_)btain exact capacity_

. . ) ) solutions and polynomial-time algorithms. The method is
While most storage devices record information on a tWezseq on a series of reductiod3A constrained system is first
dimensional surface, they emulate a one-dimensional envirqyce to a network of relations in a way which enables us to
ment by spacing tracks of recorded data. The distance betw@8Rnect the number of satisfying assignments to the network
adjacent tracks in common devices is an order of magnitugen the number of constrained array&) This network of
larger than the d_|stance_ between adja(_:ent symbols a_llong {BRitions is transformed to a weighted graph using holographic
track. The next big leap in storage density may be achieved Il@ﬂuctions in such a way that the number of satisfying assign-
reducing the distance between tracks. This in turn, require§n%nts to the network equals the weighted perfect matching
two—dimen.sional' constrained?coding schemfe tq be employe(g:. the graph. This is a many-to-many reduction in which the

A two-dimensional constrained systes, is simply a set i qividual perfect matchings do not correspond in any one-
of n x m arrays over some specified alphabet. The cOmMM@A one way to the original satisfying assignmer@sFinally,
example of such a system is thé k)-RLL constraintin which e \eighted perfect matching of the graph is expressed as
each row and each column of the array has runs of zera@$ratfian of a certain skew-symmetric matrix by using the
whose [ength |s.at Ieadt'and at mos_k. Other two-dimensional gyt (Fisher-Kasteleyn-Temperley) method. The capacity of
constraints forbid certain patterns in the arrays, such as the gQs original constrained system is the limit of the Pfaffian,

isolated-bit constraint in which every bit agrees with at leagfjje the pfaffian itself provides a polynomial-time algorithm
one of its four neighbors in the two-dimensional array. for counting the number of constrained arrays.

~ Animportant measure associated with a constrained systeMpg reqyctions and algorithms are given very briefly due to
is its capacity Introdu_ced k?y Shannon [14], the capacity of §,a severe page limit, while the polynomial-time algorithm is

constrained systerd is defined as not described at all. For the complete results and proofs the
cap(5) def log, |Su,m| reader is gncouraged to read [12]. In Section Il we introduce

1,00 am holographic reductions and the FKT method. We apply these

While the one-dimensional case is well understood theret?OIS n S_ect|on .”I o an example_co_nstramed system. We

. ) . X ' dBnclude in Section IV with a description of further results.

little known about the capacity of two-dimensional systems.

In the case of two-dimensiondlf, k)-RLL systems, Ito et Il. BACKGROUND

al. [8] characterized the values @f, k) for which the capacity o Networks of Relations

IS 2€T0. General bounds on the capacny(a}fk)-RLL WeTe e start by introducing networks of relations. For a discussion
given by Kato and Zeger [11], constructive lower bounds

. of the subject see [4] and references therein. Given some
for (d,00)-RLL by Halevy et al. [7], and non-constructive ) [4]
asymptotically-tight bounds fof0, k)-RLL by Schwartz and  1as gaxter notes in [2] page 409: “It is not mathematicallyorigus, in
that certain analyticity properties ...are assumed, anddhelts ... (which
This work was supported in part by the Caltech Lee Center for Aded depend on assuming that various large-lattice limits can tezdhanged) are
Networking. used. However, | believe that these assumptions ...are in fadatd

1-4244-1429-6/07/$25.00 ©2007 IEEE 1386



ISIT2007, Nice, France, June 24 — June 29, 2007

ground sel), arelation onn variablesis a subseR C Q". A Though the notion of networks of relations does not appear
network of relationss a graphG = (V, E) where we associate as such in his work, Valiant shows a many-to-many reduc-
with each vertexv € V a relation R, on deg(v) variables tion from such networks to weighted graphs. This reduction
being the ordered set of incident edges @mnWe can now preserves the total number of solutions, i.e., the number of
assign every edge a value frofd and check whether all the satisfying assignments to the original network of relations
relations are satisfied. We say that an assignmensédisfying equals the weighted perfect matching of the resulting graph.
assignmentf for every v € V, the relationR, is satisfied. The reduction itself is realized by replacing each of the vertices
,?J the original network with a small gadget.

Let G = (V,E) be a graph. Aperfect matchings a subset
of edgesM C E such that every vertex € V is incident to
exactly one of the edges M. The set of all perfect matchings
will be denotedPM(G). We can now assign complex weights
to the edgesw : E — C, and define theneighted perfect

Example 1.Let us take as an example the network of relatio
shown in Figurel. We use the ground s€) = {0,1} and
defineR - to be theall-equal relatioron three variablesk . to
be thenot-all-equal relatioron three variables, anfl, to be
the accept-allrelation on one variable:

X1 x» x3|R-|R matchingof G to be

0 0 0|1 0 def

0 0 1 0 1 PerfMatch(G) = (e).

0 1 0 0 1 x1 | Py Me PM(G)e€

0 1 1|0 1 0] 1 Our aim is to replace vertices in the network of relations,
1 0 0] 0 1 1] 1 with gadgets which somehow capture the original relations.
1 0 1|0 1 The gadgets are calledatchgatesand the resulting graph is

1 1 0] 0 1 called amatchgrid At this point, just like in [18], we require

1 1 1] 1 0 the graphG to be planar as well as all the matchgates we

use, resulting in a planar matchgrid graph. This is perhaps the
most restrictive requirement we face during the process. We
are, however, able to use non-planar graphs, though at a cost
of increased computational complexity. We omit the details of
the holographic reduction and the intuition behind it.

Example 2. We complete the matchgrid for the network of rela-
tions of Examplel. The resulting matchgrid is shown in Figure

2 (where the arrows on the edges are to be disregarded at the
moment). Each gray circle represents the place of the original
vertex in the network of relations which is now occupied with a
matchgate subgraph gadget. The skeptical reader is encouraged
to verify that the weighted perfect matching of this graph is
indeedb, as is the total number of satisfying assignments]

C. The FKT Method

The FKT method gives a simple expression for the weighted
perfect matching of certain graphs which is also computable
efficiently. It was developed independently and concurrently
Figurel. The network of relations of Example 1 by Fisher and Temperley [15], [5], and by Kasteleyn [9].

Let G be a graph with weights on the edges, and let
A = (a;;) be itsn x n adjacency matrix where; ; is the
weight of the edge between verticésand j. Since we are

(e1,...,e5)€{(0,0,0,0,1),(0,0,0,1,0),(0,0,0,1,1), interested in graphs with perfect matchings we assunig

(1,1,1,0,0),(1,1,1,0,1),(1,1,1,1,0)}. even. Anorlentatmn qf th(=T an undirected grap@ is simply
an assignment of a direction to each of the edges of the graph.

If we wanted to be completely accurate, we should hawhe solution given by Kasteleyn requires a special orientation
included a numbering of the incident edges to each vertex&filed aPfaffian orientation(for more details see [9]). Given a
Figure 1. However, since all the relations in this example afrgeighted graptG, and a Pfaffian orientation of its edges, we

We can easily see that there are exaétlyistinct satisfying
assignments to this network which we list below:

symmetric, this is unnecessary. O build a modified skew-symmetric adjacency matfix= (a; ;)
B. Holographic Reductions as follows: ' ‘
Holographic reductions were introduced by Valiant in [18] to 0 !’10. edg'e betweenand j

show certain counting problems may be solved in polynomial aij =  w(ei;) ifi—j

time, and in [17] to simulate quantum circuits efficiently. —w(e;;) ifj—i
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when removing the edges with @ all the vertices remain
with degree eithed or 2.

In the one-dimensional case the graphis simply the
one-dimensional lattice with vertice8 = {vg,v1,...,v,}
and edgesE = {(v;,vi41) | 0<i<n—1}. It is easily
seen that a valid PC assignment of values to edges is any
assignment which does not contain two adja@stThus, the
one-dimensional PC constraint is the famous one-dimensional
(0,1)-RLL constraint (and with bit-flipping, thé1, co)-RLL
constraint). The capacity in this case is known tdde, [(1 +
V/5)/2] = 0.69424 . ...

Turning to two-dimensions, we choose a the two-
dimensional triangular grid as the gragh we tile the plane
with regular triangles, place a vertex at the center of each
triangle, and draw an edge between vertices whose triangles
share a face. Again, we assign eithed ar a1 to the edges
of the graph such that after removing the edges assigried a
all the remaining vertices are of degree eitheor 2.

There is a multitude of possible reductions of the con-
strainedn x n array on the plane, to a network of relations. We
show a simple reduction for which the constrained arrays are
in an “almost” one-to-one correspondence with the satisfying
assignments to the network.

wherei — j denotes the edge between vertideand j is We think of the triangular grid as drawn on a plane. We

oriented fromi to j. Note thatA is not the adjacency matrix "éPlace each vertex of the grid with the relatiin. on three
of the graphG in the usual sense. Using this constructio?{a”ables' This relation makes sure that the three adjacent cells

Figure 2. The complete matchgrid for the network of relations from Egbem
1 with a Pfaffian orientation of the edges

Kasteleyn [9] showed that do not contain the same bit, i.e., the forbidden pattern of PC. It
is easy to be convinced that, if we ignore the perimeter of the
PerfMatch(G) = + Pf(A) = + /det(A) array, every constrained array induces exactly one satisfying

assignment and vice versa. The resulting network of relations

where, Pf(A) is the Pfaffian ofA and det(A) is the deter- IS Shown in Figure 3. _
minant of A. Since in most cases we know the sign of the We do however have to take care of the perimeter of the
outcome, thet may be easily fixed. array as well. To do so, we connect dangling edges to extra
It now remains a matter of finding out which graphs allow ¥E"tices of the accept-all relatiah, . Each such vertex has the
Pfaffian orientation. Such graphs are caliddffian orientable potential of m“'t'p'y'”g the number of satisfying asmgpments
In his later work, Kasteleyn [10] showed that all planaP¥ @ factor of2. But since we have onlp)(n) such vertices,
graphs are Pfaffian orientable, which is the reason we requiretf does not change t'he capacity as calculated by counting
matchgrids to be planar in the previous section. For plan tOt"_"I number of saﬂsfym_g a;s,lgnments. The extra accept-
graphs, it was shown in [10], that if we orient the edges su@{ Vertices are also shown in Figure 3. I
that every clockwise walk on a face of the graph has an odd't_'s easily seen that thg network of relations we built is bi-
number of edges agreeing, then that orientation is a Pfaﬁi,ﬁﬂrt'te by .notlng that upnght triangles are connected only to
orientation. As a result, a simple polynomial time algorithrHwerted triangles, and vice versa. Conveniently for us, for the

which finds such an orientation is also shown. A P1‘affia'ﬁ1ain bulk of the network we have just one type of relation,
orientation for Example 1 is shown in Figure 2. but we do have to specify some as recognizers and some as

generators. We arbitrarily choose to build a gener&grin
inverted triangles, and a recognizRr, in upright triangles.
For the perimeter of the network we need to implemént
Most constrained systems are easily defined by a finite $eith as a generator and as a recognizer.

of forbidden patterns. For our example we choose a constrainFinding a Pfaffian orientation for the graph is an easy
we call thePath-Cover Constraint (PC Constraingnd which task. The orientation is not necessarily unique. The extremely
we motivate by first examining its one-dimensional version. tegular nature of the graph suggests the existence of a simple
we are given a grapls = (V, E), a path-cover for the graph orientation. If we closely examine the network of relations in
is a set of simple paths (open or closed) of positive lengtRigure 3, we see that, apart from the perimeter of the array,
which are vertex disjoint, and which cover all the vertices. At is made up of a singléasic blockand its translations.
alternative way of stating this constraint is that given a grapihe simplest basic block is just a recogniz&y vertex and

we assign either @ or a1 to each of the edges, such that generatorR.. vertex. This basic block may be oriented

Ill. THE CAPACITY
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N
/

Finally, we also have to orient the edges which correspond
to the ¢ matchgates which lie on the perimeter of the array.
Those matchgates do not contain any inner face themselves,
and do not form an inner face with the rest of the graph. Thus,
they may be oriented arbitrarily.

In light of the previous sections, the capacity of the con-
strained systen$ we are now examining is given by

cap(S) = lim log, |Pf(A)] — lim log, \/det(A)
n—o0 n 1n—00 3n2
where A is the skew-symmetric adjacency matrix of the
matchgrid corresponding to thex n constrained array. The
3 in the denominator comes from the fact that a basic block
contains three bit storage positions (three edges from the
original network to be assigned a value).

A derivation of an expression for the exact capacity largely
depends on the ease of manipulating the ma#ixWe first
simplify it by noting that the matchgates fap, contain
just one edge which must be taken in any perfect matching,
which also forces the edge connecting the matchgate to its
single neighboring matchgate to be dropped. Since the weight
of the edge is a constant, and since we have ddly:)
such matchgates along the perimeter, we may ignore them

Figure3. The top image shows part of a network of relations for the P‘éltogether without changing the resulting capacity calculation.

constraint. Each filled circle represents tRe relation. The gray triangles
show the original cells of the triangular grid. The bottom imahows the
top left corner of the array with the filled squares represeritie ¢ relation.

So from now on, by abuse of notation, l&tdenote the skew-
symmetric adjacency matrix with thg, matchgates and their
connecting edges removed.

The components for a compact representatiod aire the

as shown in Figure 4. It is also easy to verify Kaste|eyn§kew-symmetric matrix for the basic block (where the vertices
orientation rule for planar graphs: every clockwise walk on &€ indexed as in Figure 4),

inner face has an odd number of edges agreeing. This may be 0 -1 1
verified both for the inner faces of the block, and the inner

faces created by the joining of a few blocks.

A

Figure4. A Pfaffian orientation of the basic block. The dotted edgetien
the edges between translations of the basic block. The numbesguares
index the vertices.

-2 -1 0 0 0
1 0 -1 -y 0 0 0 0
-1 1 0 -3y 0 0 0 0

p—|1 1 1 0 0 0 0 0|

1 0 0 0 0 -1 1 2
o 0 0 0 1 0 -1 2
o 0 0 0 -1 1 0 2
o 0 0 0 -2 -2 -20

and the matrixA; ; (of the same dimensions & which is
all zeroes except for positiofy, j) which is 1. Furthermore,
we needl, then x n identity matrix, and the: x n matrix U
which is all zeroes except for positiofis i + 1) which arel.

We have am x n array of basic blocks which we order in
the natural way. This part of the graph is represented by the
skew-symmetric adjacency matriy @ I,, ® B. We still have
to represent the edges between basic blocks in the same row,
L QURAgp — 1 ® ure Agz, and the edges between basic
blocks in different rowsU @ I, ® Ay3 — U @ I, ® A%.
Thus, we get an expression for the skew-symmetric adjacency
matrix A,

A:In®1n®B+In®U®A6,2*IH®UT®A£2
FUR L @A U 0L, ©AL,. ()

For the last step we rely on the theory of spectral distribution
of Toeplitz matrices (see Tilli [16]). For natural numbers
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IV. CONCLUSION

We presented a general method for calculating the exact
capacity of two-dimensional constrained systems. Through a
series of reductions, such systems are transformed to networks
of relations, then to a limit of a Pfaffian, and by the theory of
Toeplitz determinants, to a double integral. This method may
be also adapted to provide, to our knowledge, the first poly-
nomial time algorithm for counting the number constrained
arrays of a given dimension. For more results the reader is
referred to [12].

Many open questions remain regarding the parameters of
the method which were not introduced in detail. The main
question is that of the expressive power of this method and
the systems which may be amenable to this kind of treatment.

p,k > 1, let an integrablep-variate functionf : [—m, 7]F —
CHk and a multi-indexn = (n1,...,np), n; > 1 be given.
The p-level Toeplitz matrixT, (f) is defined as

71171 np_l

LOE S oy

j1=—m1+1 jp=—np+1

@1 @a, 0 (f)

where ],Sf) denotes the matrix of ordew whosei,; entry
equalsl if j —i = and equals zero otherwise, and where

def 1 /[ v f(x)e_i(jlx1+~~+jpxr:)dx

aj,,..j,(f) = 2P

is a matrix inCk** andi = /—1.
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