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Abstract—This paper addresses the problem of adaptive wave-
form design for estimation of parameters of linear systems. This
problem arises in several applications such as radar, sonar, or
tomography. In the proposed technique, the transmit/input signal
waveform is optimally determined at each step based on the
observations in the previous steps. The waveform is determined
to minimize the Bayesian Cramér-Rao bound (BCRB) or the
Reuven-Messer bound (RMB) for estimation of the unknown
system parameters at each step. The algorithms are tested for spa-
tial transmit waveform design in multiple-input multiple-output
radar target angle estimation at very low signal-to-noise ratio. The
proposed techniques allow to automatically focusing the transmit
beam toward the target direction. The simulations show that the
proposed adaptive waveform design methods achieve significantly
higher rate of performance improvement as a function of the pulse
index, compared to other signal transmission methods, in terms of
estimation accuracy.

Index Terms—Adaptive waveform design, Bayesian
Cramér-Rao bound (BCRB), cognitive radar (CR),
Reuven-Messer bound (RMB), waveform optimization.

I. INTRODUCTION

W AVEFORM optimization for system parameter es-
timation is an emerging topic in signal processing

with applications in many areas, such as, radar, sonar, or to-
mography. The basic idea is to optimize a criterion such as,
statistical bounds, probability of error, output signal-to-noise
ratio (SNR), and information theoretic measures, with respect
to (w.r.t.) the transmit waveform, in order to achieve better
estimation or detection performance.
Multiple-input multiple-output (MIMO) radar is an emerging

technology that attracts the attention of researchers and prac-
titioners alike [1]–[5]. Unlike a standard phased-array radar,
which transmits scaled versions of a single waveform, a MIMO
radar system can transmit via its antennas multiple probing
signals that may be different from each other. This waveform
diversity offered by MIMO radar enables superior capabilities
compared with a standard phased-array radar. For example,
MIMO radar with colocated transmit and receive antennas has
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been shown to offer higher resolution and sensitivity, better
parameter identifiability and direct applicability of adaptive
array techniques [4]. MIMO radar allows flexibility in the
design of the transmit waveform, and hence opens a doorway
for works in this field.
Waveform design for MIMO radar has been intensively

investigated in the recent years (see e.g. [6]–[19]). Waveform
optimization for MIMO radar target localization using the
Cramér-Rao bound (CRB), was considered in [6] for single
target case. This approach was generalized for the case of
multiple targets in [7]. In [8], [11], waveform design based on
mutual information and minimum mean-square-error (MMSE)
was considered and it was shown that by using optimized
waveforms one can achieve better detection performance and
greater mutual information. In [13], signal design for MIMO
radar based on transmit beampattern was considered and it was
shown that in order to significantly improve the estimation
performance, the transmit beampattern should be focused at
the target direction. In [9] it was shown that maximizing the
mutual information (MI) between the target impulse response
and the observations may enable the radar system a better
capability in characterizing a target in noisy environment. In
[10] some interesting extensions including MI-based waveform
design in the presence of multiple targets were considered. In
[11] space-time code optimization for MIMO radar based on
MI was considered. Other waveform design methods based on
information theoretic measures can be found in [8], [14], [18].
The idea of cognitive radar (CR) was proposed in [20] and

investigated in several works (see e.g. [21]–[24]). A cognitive
radar system adaptively interrogates the propagation channel
using the available information from previous observations,
external databases, and task priorities. This implies that the
transmit waveforms can be sequentially adapted based on the
information collected in the previous observations about the
environment and the targets. In [22] two different waveform
design techniques based on sequential hypothesis testing for
active sensors operating in a target recognition application were
derived. In [23] an algorithm for optimal waveform design
for CR based on maximizing the output SNR and the mutual
information between the target ensemble and observations, was
derived.
Adaptive design and processing of waveforms has been ap-

plied for target tracking applications, for example in [25]–[32].
In [25] an adaptive polarized waveform design for target
tracking based on sequential Bayesian inference was consid-
ered. In [26] adaptive methods for target tracking and active
sensing have been studied in a several contexts. In [27] a wave-
form design algorithm based on MI for MIMO radar target
tracking was derived using wideband orthogonal frequency
division multiplexing (OFDM) signaling scheme. In [28], [29]
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an optimal waveform design technique based on minimum
mean-square tracking error and minimum validation gate,
for single target in white Gaussian noise using conventional
Kalman filter tracker was derived, and generalized to trackers
looking one and two steps ahead in [32]. In [30], [31] op-
timal waveform design based on minimizing the mean-square
tracking error was proposed for linear Gaussian state model
and a nonlinear Gaussian measurement model.
In this paper, we propose a new technique for adaptive

transmit waveform design for target estimation in MIMO radar.
Instead of transmission of a pulse train with predefined wave-
form, each waveform in the pulse train is adaptively determined
based on the previously received data, often referred as memory
or history. The considered observation model is general and
represents any linear system with unknown parameters and
additive Gaussian noise, which is useful in many applications
such as radar, sonar, or tomography. The Bayesian Cramér Rao
bound (BCRB) [33] or the Reuven-Messer bound (RMB) [34]
are used as criteria for waveform optimization. We propose
an approach for transmit waveform design, which adaptively
minimizes the BCRB and the RMB on the system parameter es-
timation based on previous received data. The main advantage
of the proposed method is that it is capable to automatically
focus on the target after a few trials/pulses, at very low SNRs.
We adopt a Bayesian approach, since in general,

non-Bayesian bounds may depend on the unknown parameters
to be estimated and therefore, optimal waveforms with these
criteria may also depend on the unknown parameters (see e.g.
[6]). Furthermore, in many problems, such as tracking, some
prior statistical information on the parameters may be available,
and the use of Bayesian bounds in such problems is natural.
The BCRB criterion provides a simpler procedure for wave-
form design compared to the RMB criterion. However, since
the BCRB considers only small errors, an optimal waveform
under this criterion may result in waveforms which lead to high
sidelobes in the posterior function. Conversely, since the RMB
takes into account the contribution of large errors due to high
sidelobes, its use as a criterion for waveform design allows
controlling the sidelobes based on the posterior distribution,
and therefore, reduces the threshold SNR. It should be noticed
that controlling the sidelobes does not necessarily mean lower
sidelobes in the beampattern, since the criterion may allow high
sidelobes towards directions with low probability of existence
of a target.
The rest of this paper is organized as follows. In Section II,

the system model is described and the problem is formulated.
In Sections III and IV, adaptive transmit waveform design tech-
niques are derived using the optimization criteria BCRB and
RMB, respectively. In Section V, the performance of the pro-
posed techniques are evaluated and compared to other known
waveform design methods for the problem of target localization
by MIMO radar. Finally, our conclusions appear in Section VI.

II. MODEL AND PROBLEM FORMULATION

Consider the following general data model which is useful in
many applications such as radar, sonar, or tomography

(1)

Fig. 1. Cognitive scheme for linear system with additive noise.

where , , and denote
the th snapshot of the data, the transmit/input signal, and the
noise vectors, respectively, at the th step/pulse index, and
is the number of snapshots at each step. The matrix

stands for the system transfer function, which depends
on the unknown random vector with a-priori proba-
bility density function (pdf) . We assume that is a
known function. In radar systems for example, the vector may
consist of targets directions, ranges, complex amplitudes, and
environmental or array parameters.
Equation (1) can be rewritten in matrix form as

(2)

where , , and
. We assume that the columns of are inde-

pendent and identically distributed (i.i.d.) complex circularly
symmetric Gaussian random vectors with zero mean and known
covariance matrix .
We are interested in the design of the transmit signal matrix

at the th step, denoted by , given observations in previous
steps (history), denoted by . Fig. 1
describes the considered cognitive scheme. The transmit signal
energy is constrained, i.e. , where denotes
the total transmit energy at each snapshot, and denotes
the matrix trace operator. This problem can be formulated as
follows

(3)

where denotes the objective or utility function, defined
on the real numbers. In this paper, two utility functions (opti-
mization criteria) are considered; the BCRB and the RMB, on
the estimation performance of from .
In practice, the noise covariance matrix, , may be unknown.

In such a case, a possible ad-hoc method is to estimate the noise
covariance matrix based on the history, and update it from pulse
to pulse. In the following, we assume that is perfectly known.

III. ADAPTIVE WAVEFORM OPTIMIZATION—BCRB

In this section, we propose a new method for adaptive
transmit waveform design for the general model presented in
the previous section. At each step (pulse index), the algorithm
determines the transmit waveform in order to optimize the es-
timation performance in terms of the BCRB. In the following,
we first present the conditional BCRB at the th step, given
previous observations . Then, we determine the transmit
waveform design, which minimizes the conditional BCRB in
the scalar case, i.e. single unknown parameter to be estimated
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. Finally, we generalize the analysis to the case of
unknown random vector .

A. Optimization Criterion

As mentioned above, we are interested in the design of the
transmit signal matrix at the th step, , given history obser-
vations , such that at each step we aim to optimize the
estimation performance of in terms of MSE. Accordingly, we
wish to minimize the following MSE matrix w.r.t.

(4)

where is the MMSE estimator of at the th step. Using the
law of total expectation, (4) can be rewritten as

(5)

The outer expectation of (5) is performed w.r.t. the pdf of
, which is independent of . Therefore, minimization

of (5) w.r.t. can be performed by minimizing the inner term
in the outer expectation of (5) independently for each .
Accordingly, minimizing (4) is equivalent to minimizing the
conditional MMSE matrix, , defined as

(6)

Since it is difficult to obtain an analytical expression for , we
will consider minimization of its lower bound.
The conditional BCRB is a lower bound on the conditional

MSE matrix, and provides a “global bound” that does not de-
pend on the actual value of the unknown parameter . Unlike
the classic BCRB [33], the conditional BCRB [35] utilizes the
information contained in the available history measurements.
The conditional covariance matrix , satisfies [35]

(7)

where and denote the conditional Fisher infor-
mation matrix (FIM), and the conditional BCRB at step ,
respectively, and denotes a positive semidefinite sign.
Let denote the conditional pdf of given

with , and denote the

conditional pdf of given with . The
element of , is given by

(8)

where the last equality stems from Bayes theorem, and
is the data incremental Bayesian Fisher information (IBFI), de-
fined as

(9)

and is the FIM due to the statistical information from
history, defined as

(10)

Note that the expectations in (9) and (10) are performed w.r.t.
the conditional pdf of , and the conditional pdf
of , respectively. For simplicity of notations, we
omit the dependency of and on .
For scalar parameter case considered in the next subsection,

will be given by the BCRB, while for vector
parameter case, considered in Section III-C, we will choose

, where is a weighting
matrix.

B. Scalar Parameter Case

In this subsection, we derive an adaptive transmit waveform
design in the case of scalar unknown parameter to be estimated

. By using the expression for the Fisher information in
case of deterministic signal in Gaussian noise [36], and applying
the law of total expectation, can be written as [37]

(11)

where the expectation in (11) is taken w.r.t. ,

and . For simplicity of notations, we
omit the dependency of on , and of on .
Using (10) and (11), the conditional Fisher information in (8)
can be expressed as

(12)

We aim to find the transmit signal matrix, , which mini-
mizes the BCRB at the th step, . Based on (12), the BCRB
depends on the transmit waveform only through , and
therefore, the optimization will be performed w.r.t. the transmit
signal auto-correlation matrix . By using (7) and noticing
that in (12) is independent of , minimization of

BCRB, , under the total energy constraint can be
stated as

(13)

Let

(14)

Then, by using the singular value decomposition (SVD) of

and : and , the maxi-
mization problem in (13) becomes

(15)
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Denoting , and
, where denotes the diagonal op-

erator, the maximization problem in (15) can be rewritten as

(16)

where . Since are
non-negative, then the objective function in (16) is maximized
by assigning all the available power on the subspace with
maximum , and zero power on the complement sub-
space. The vector which maximizes is given by
the eigenvector corresponding to the maximum eigenvalue of

. Denoting this eigenvector by , the solution of
the maximization problem in (16) is

(17)

where denotes a matrix of size , whose
columns are orthonormal and perpendicular to . Based on
(17), the transmit signal auto-correlation matrix is given by

(18)

C. Vector Parameter Case

We now derive the optimal transmit waveform in the case of
unknown random vector . In Appendix A, it is shown that the
matrix in (9) for the model described in Section II, is
given by

(19)
in which

(20)

where , , and are the real part operator, Hadamard, and
Kronecker products, respectively. The matrix is a

matrix whose elements are equal to one, is an
matrix, defined in (46), and is a matrix, defined
in (51).
The matrix defined in (10), is independent of ,

and by using (7), (8), and (19), we conclude that the BCRB,
, is a function of the transmit waveform only through

the signal auto-correlation matrix. Accordingly, we aim to find
the transmit signal auto-correlation matrix, which “optimizes”
the BCRB at the th step, . Since the BCRB in this
case is a matrix, various optimization criteria can be chosen, e.g.
minimizing the trace, the determinant, or the largest eigenvalue
of the BCRB, w.r.t. the transmit auto-correlation matrix. Note
that according to (19), the data FIM at step is a linear function
of the auto-correlation matrix . Therefore, each one of
the criteria mentioned above, under the constraints ,
and , leads to a convex optimization problem
[38, Ch. 3] that can be solved efficiently (in polynomial time)

TABLE I
ADAPTIVE WAVEFORM DESIGN ALGORITHM BASED ON BCRB

using interior point methods [39]. In the following, we consider
the trace optimization criterion, although other criteria can be
readily considered. Under the considerations described above,
the optimization problem can be stated as

(21)

where is a positive-definite weighting
matrix, which can be used to weight the MSE bound of each
parameter in , or perhaps to balance the units used for different
parameters.
The waveform optimization problem based on this criterion

can be cast as a semidefinite programming (SDP) [40] using
straight-forward algebraic manipulations. It was shown in [7],
[40] that the minimization problem in (21) can be cast as the
following SDP problem

(22)

where are auxiliary variables, the matrix is given
in (19), which is a linear function of , and denotes the th
column of the identity matrix. Finally, note that the constraints
in the above SDP are either linear matrix inequalities or linear
equalities in the elements of the transmit auto-correlation matrix

.
According to (22), in order to find , the matrix is

required. In Appendix B, it is shown that the matrix is
given by

(23)

where the matrices and are defined in (56) and
(57), respectively.

D. Recursive Computation of Posterior PDF

The construction of (19) and (23), involves calculation of
some conditional expectations w.r.t. the posterior pdf
via , , and defined in (20), (56), and (57), respec-
tively. In order to compute thesematrices, one needs to calculate
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the posterior pdf , which can be recursively updated.
In this subsection, an efficient method for recursive computa-
tion of the posterior pdf is presented.
Proposition 1 (Iterative Calculation of ): Let

and . Then, the posterior pdf
is given by

(24)

where can be recursively computed by

(25)

Proof: Using Bayes theorem, (25) implies that

(26)

Hence, using (26) and Bayes theorem, one obtains

(27)

For evaluation of the recursive equation in (25), one
needs to compute pdf’s of the form . In our
case, it can be easily verified that

. Moreover, note that the de-
nominator in (24) is a normalization factor, independent of

, which only scales the objective function of the minimiza-
tion problem in (21) via both and . Hence, it has
no impact on the optimal solution of (21) and can be ignored.
In addition to the computation of the posterior pdf, evalua-

tion of (20) and (55)–(57) involves some expectations w.r.t. the
posterior pdf . These expectations can be computed
numerically using Monte-Carlo (MC) integration, where sam-
ples of the unknown parameters are obtained from ,
using the component-wise updatingMetropolis-Hastings (MH)
sampling approach [41], [42]. In order to use the MH sampler,
the so-called proposal distribution should be chosen. A popular
choice is the Gaussian distribution with first and second order
statistics which are judiciously determined. In our settings, in
each pulse index the first and second order statistics of the con-
sidered Gaussian proposal distribution were chosen as an esti-
mate of the mean and variance of the samples obtained from
previous pulse indices. The number of samples was heuris-
tically determined to be proportional to the standard deviation
of the samples. That is to say, at the first pulse indices, a large
number of samples are taken into account for the initial uncer-
tainty, and as the pulse index increases and the standard devia-
tion of the samples decreases, a smaller number of samples are
taken.

The proposed adaptive waveform design algorithm is sum-
marized in Table I.

E. Computational Complexity

In this subsection, we analyze the computational com-
plexity of the proposed waveform design technique at the
th pulse index. Following Table I, the computation com-
plexity of the proposed algorithm is approximately equal
to the summation of the following factors. As previously
mentioned, we use a Gaussian proposal for the MH sampler.
Accordingly, at each iteration of the MH sampler (step 1 in
Table I) and for each parameter, the complexity is approxi-
mately [41] which results
from matrix products and summations performed in order to
construct the Gaussian proposal. Since samples are taken
for each one of the parameters, the number of operations
of step 1 is of order .
The complexity of constructing and computing
given in (19) and (23), respectively, using MC integra-
tion (step 2 in Table I) is approximately
[41]. Finally, the computation complexity of constructing
the optimal auto-correlation matrix, , via an SDP op-
timization problem (step 3 in Table I) is approximately

[38]. Summing up the aforementioned factors,
the number of operations due to the significant factors is of
order .

IV. ADAPTIVE WAVEFORM OPTIMIZATION—RMB

The advantage of the BCRB is its simplicity and tightness at
high SNRs or number of observations. However, at low SNRs
and/or number of observations, large errors can occur due to
existence of dominant sidelobes in the posterior pdf. These er-
rors which result in threshold phenomenon, are ignored by the
BCRB. Accordingly, waveform design based on the BCRBmay
result in waveforms with high sidelobes in the posterior pdf.
Large-error bounds, such as RMB and Weiss-Weinstein bound
[43], take into account the contribution of large errors due to
sidelobes, and may predict the threshold phenomenon. The use
of large-error bounds as a criterion for waveform design is ex-
pected to control the sidelobes in the posterior pdf, and result in
better performance, especially at low SNRs or small number of
observations.
In this section, we derive an adaptive transmit waveform de-

sign technique such that at each step the transmit waveform is
determined to optimize the estimation performance in terms of
RMB. As in the previous section, we use the conditional version
of the classic RMB. In the next subsection, we derive the condi-
tional RMB at the th step given previous observations .
Then, the transmit waveform, which optimizes the conditional
RMB, is determined.

A. Conditional RMB

We now derive a criterion based on the RMB on the estima-
tion MSE of the unknown random vector . The classic RMB
utilizes only the statistical information on the history obser-
vations. Since history observations, , are available at
the th step, we are interested in the conditional RMB given

.
Proposition 2 (Conditional RMB): Let be an observation

space of points , and let be the parameter space. The
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TABLE II
TRANSMIT AUTO-CORRELATION CALCULATION BASED ON RMB

conditional RMB for estimating at the th step, given previous
observations, , is defined as

(28)

where the matrix contains the test points
, such that . The element of the

matrix , is given by

(29)

where

(30)

(31)

in which

(32)

and is a functional on , defined by

(33)

Proof: The proof is identical to the proof of the classic
RMB presented in [34], except for changing the pdfs and the
expectations to be conditioned on the history observations

.
In Appendix C, it is shown that under the model described in

Section II, the element of the matrix is given by

(34)

where

(35)

B. Waveform Optimization

We aim to find the transmit auto-correlation matrix at the th
step, which “minimizes” the RMB. As discussed in the pre-
vious section, one can consider several optimization criteria,
and again, we consider the minimization of the trace of the
bound with a weighting matrix. When using a sparse set of
test-points, the matrix in (28) is chosen such that the bound
is maximized. However, in this approach the “optimal” set of
test-points depend on which needs to be determined. An
alternative and efficient approach is choosing a reasonably large
dense set of test points distributed over the parameter space cor-
responding to the major sidelobes of the ambiguity function [5],
[44]. Assuming a given set of test points, , the minimization
problem can be stated as

(36)

where is a positive-definite weighting
matrix. Unfortunately, this optimization problem is not convex.
In the following, the steepest descent method [38], [41] is used
to iteratively solve the above minimization problem, which in
our case turns into an SDP problem.
Let denote the objective function in (36), i.e.

(37)

where . In general, descent methods produce
a minimizing sequence , , having the form

, where and
denotes the step size, and the descent direction at the th iter-
ation, respectively. The descent direction , is a matrix
that decreases the objective function (toward a local minimum),
which satisfies , where
stands for the inner product between two matrices , and
, i.e. , and denotes the gradient

operator of the scalar function w.r.t. the matrix , whose
element is given by .

The algorithm starts with initialization of the matrix sat-

isfying the energy and semi-definite constraints, i.e.

, and . Given , the goal is to find a ma-

trix , which is closer to a local minimum of the objective

function, . The matrix should also satisfy the energy and
semi-definite constraints. In order to find the descent direction
at the th iteration, the following minimization problem is con-
sidered [41, Ch. 3]

(38)

The constrained minimization in (38) is an SDP optimiza-
tion problem, that can be solved efficiently. After finding the
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descent direction , we perform a line search to compute

the step size, , that determines how far should move
along that direction. Mathematically, the line search minimiza-
tion problem is given by [38, Ch. 9.2]

(39)

where denotes the space of nonnegative real numbers, and
the minimization is performed for values of that maintain

. After finding the optimal step size,

we update . Note that since the
problem given in (36) is not convex, the transmit auto-corre-
lation matrix obtained from the aforementioned linearization
technique, may be a local and not global maximizer of (36).
Moreover, typically to linearization techniques, the solution de-
pends on the initial choice of the covariance matrix. However,
simulations show that in our considered scenarios the algorithm
is not very sensitive to the initial choice. In the simulations, a
diagonal covariance matrix is chosen as an initial point.
Implementation of (38) involves computation of the gradient

of the objective function . The partial derivative of the ob-
jective function in (37) w.r.t. the element of the matrix

, is given by (40), shown at the bottom of the page, where
the first equality is obtained using the chain rule and the iden-
tity , and the second equality
is obtained using the identity ,
where the operator concatenates the columns of a ma-
trix. Using (34), the element of the matrix is given
by

(41)

Finally, note that (40) can be written in matrix form as

(42)

where denotes an identity matrix of size , and the
block of is given by for

.
The calculation of (41) involves computation of a multi-

variate integral, which can be performed numerically using
MC integration along with MH sampling technique similarly
as in Section III-D. In summary, the steps of the waveform op-
timization method based on RMB at the th step are described
in Table II.

C. Computational Complexity

In this subsection, we analyze the computational complexity
of the proposed waveform design technique at the th pulse
index. In the following, denotes the number of itera-
tions carried out by the steepest descent method. According
to Table II, the computation complexity of the proposed
algorithm is approximately equal to the summation of the
following factors. Similarly to the calculation in Section III-E,
the MH sampler complexity (step 1 in Table II) is approxi-
mately . The following
complexity factors are attributed to step 2 in Table II. The com-
plexity of constructing the matrix using MC integration
is approximately equal to [41].
The complexity of constructing is approximately equal to

[45] which results from matrix
products and summations. The complexity of constructing
the matrix and the gradient in (42) are approximately

and , respectively. Finally, the
complexity of constructing the descent direction via an SDP
optimization problem (step 3 in Table II) is approximately

[38], and the line search algorithm (step
4 in Table II) complexity is approximately ,
where is the grid size partition of the line search [41]. In
the simulations, the values of and are both bounded
above by . Summing up the aforementioned factors, the
number of operations due to the significant factors is of order

.
Compared to the complexity of the BCRB waveform design

technique, it can be seen that the RMB waveform design tech-
nique is much heavier. The main reason is the use of the it-
erative steepest descent method which adds further dimension
to the complexity, as opposed to the BCRB waveform design
technique.
In the next section, the superiority of the RMB-based over

the BCRB-based waveform design will be demonstrated. This
superiority is significant mainly for low pulse indices, and it is
achieved because unlike the BCRB, the RMB is able to con-
trol the sidelobes such that the probability of large errors is re-
duced. As the pulse index increases, the performances of the
two methods coincide. Accordingly, in such case, it is preferred
to use the BCRB instead of the RMB as the optimization crite-
rion. In practice, a criterion should be invoked to decide when
the algorithm should switch from using the RMB technique to
the BCRB technique.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
adaptive waveform design methods via several examples and

(40)
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Fig. 2. Optimal transmit beampatterns (first and third rows) and posterior pdf’s (second and fourth rows) versus for various pulse steps using BCRB waveform
optimization, assuming unknown amplitude with and , using .

demonstrate their advantages compared to fixed transmit wave-
form, space-reversal technique [30], and transmitting sum beam
steered at the MMSE estimate of the target direction.
The model presented in (2) is general and suitable for

various signal processing problems. In this section, we con-
sider a MIMO radar as a useful application. MIMO radar is
an emerging technology that attracts the attention of many
researchers and practitioners alike [1]–[4].
Consider a mono-static radar consisting of two co-located ar-

rays of transmitters and receivers. The received signal
model in the presence of targets can be expressed as [4, Ch.
4]

(43)

where are the complex attenuation, direc-
tion, propagation delay, and Doppler frequency shift of the th
target, respectively, and are
the steering vectors for the receive and transmit arrays, respec-
tively. In case of known propagation delay, it can be readily
seen that the th sample of the data model in (43) is identical
to the model given in (1), and thus the proposed waveform de-
sign methods can be used. The case of unknown range/delay

can also be treated using the techniques described in this paper,
since the delay is a linear operation. In particular, the model in
(43) in the frequency domain can be expressed as the model in
(1). In the simulation study, we consider a signal model with
known range-Doppler, which can be expressed as [2]

(44)

The receive and transmit arrays are uniform and linear with
elements, with half wavelength inter-element

spacing for both transmit and receive arrays, and .
The transmit beamwidth in the considered scenario is approxi-
mately 34 . In the simulations, we consider a uniform a-priori
distribution for the targets directions, i.e.
for . Notice that the BCRB does not exist for
uniform prior distribution since the regularity conditions are
not satisfied. Accordingly, we assume that is constant over

, which is an artificial, but reasonable assumption. Also,
we consider a circular complex Gaussian a-priori distribution
with zero mean and variance for the targets complex am-
plitudes, i.e. for . In the sim-

ulations, the values of are chosen to be arbitrarily
large reflecting lack of prior statistical information on the am-
plitudes. The elements of the unknown vector parameter



HULEIHEL et al.: COGNITIVE MIMO RADAR 5083

Fig. 3. Optimal transmit beampatterns (first and third rows) and posterior pdf’s (second and fourth rows) versus for various pulse steps using RMB waveform
optimization, assuming unknown amplitude with and , using .

where and
, are considered to be statistically independent.

A. Single Target

In this subsection, we consider waveform optimization in the
presence of single target , with unknown angle
and unknown complex amplitude . In this case, the unknown
vector parameter is . In the minimiza-
tion problem (22), we choose and
. In the simulations, we assume that the target is located at
unknown direction with array signal-to-noise ratio
(ASNR) defined as .
Figs. 2 and 3 show the optimized transmit beampatterns (first

and third rows), defined as , and
the posterior pdf’s (second and fourth rows), as a function of
and pulse index, using the BCRB and RMB based waveform

design methods, respectively. It can be seen that as the pulse
index increases, the beampattern peak location appears closer to
the target direction, as expected, and the posterior pdf’s become
focused with reduced spread, which implies better estimation
performance. Also, it is evident that at least for the first pulse
iterations, the RMB-based waveform design technique better
focuses on the target direction, compared to the BCRB-based
waveform design technique. These figures illustrate the auto-
focusing capability of the proposed adaptive waveform design
techniques.

In the next examples, we evaluate and compare the estimation
performance of the following waveform design methods; (1)
fixed uncorrelated waveforms, i.e. ,
(2) space-reversal technique [30], where as each pulse
index the conjugate of the received signal is transmitted
(with power normalization), (3) transmitting sum-beam
steered at the MMSE estimate of the target direction, i.e.

, where
is the MMSE estimator of at the th pulse index based on

, and the proposed adaptive waveform design methods
based on (4) BCRB and (5) RMB. In order to estimate the
parameter of interest , the root mean-square-error (RMSE) of
the MMSE estimator is evaluated using 500 independent trails.
Fig. 4 presents the RMSE for estimation of using the above
methods as a function of the pulse index for .
It can be seen that the proposed waveform design techniques
result in significantly better performance compared to the other
tested methods. Also, in accordance to the previous figures,
slightly better results for the RMB-based waveform design
technique is evident, compared to the BCRB-based waveform
design technique, for the first pulse iterations. Note that the
relatively good performance obtained with is
due to the increase of the effective SNR achieved by integration
over several pulses, and due to the array gain at the transmitter.
The SNR increase due to 6 pulses is about 7.8 dB, and assuming
a focused beam during all these pulses, the array gain is about
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Fig. 4. RMSE versus pulse index, with , using
.

Fig. 5. RMSE versus pulse index, with , using and
.

8.4 dB. This means that the total effective SNR after 6 pulses is
about 10.2 dB, which allows reasonable estimation accuracy.
However, before the target is detected, its location is unknown
to the transmitter and therefore, in practice, it cannot perfectly
focus its beams toward the target. The proposed approach
allows earning part of the transmit array gain before the target
is detected, and in fact performs beamforming-before-detect
(BBD) in an adaptive manner.
In order to illustrate the advantage of using the RMB upon

the BCRB for waveform design, we will consider another array
configuration with ambiguity nature in which the receive and
transmit arrays are uniform and linear with and
elements, with half wavelength inter-element spacing for the
transmit array and three wavelength inter-element spacing for
the receive array. Fig. 5 presents the RMSE for estimation of
as a function of the pulse index for . Note

that the RMSE for the space-reversal technique is not presented,
since it can not be applied in case of different number of el-
ements in the transmit and receive arrays. It can be seen that
the RMB-based waveform design technique results in signifi-
cantly better performance compared to the other methods. Fig. 6
presents the RMSE for estimation of as a function of the
ASNR at pulse index . This figure shows that by using

Fig. 6. RMSE versus ASNR, at pulse index, using and
.

the RMB-based waveform design technique, the threshold SNR
is significantly lower compared to BCRB-based waveform de-
sign technique and to the other methods. This improvement is
obtained since the RMB takes into account the contribution of
large errors due to sidelobes in the posterior function, and there-
fore, it is capable to control the sidelobes, while, the BCRB
ignores the contribution of these sidelobes, and may result in
waveforms with high ambiguity level. Figs. 7 and 8 show the
optimized transmit beampatterns (first and third rows), and the
posterior pdf’s (second and fourth rows), as a function of and
pulse index, using the BCRB and RMB based waveform design
methods, respectively. These figures are consistent with the pre-
vious figure.

B. Two Targets

In this subsection, we consider waveform optimization for
two targets , assuming unknown angles and
with unknown complex amplitudes and , respectively. In
the minimization problem stated in (22), we choose

and for . In the simulations, we
assume that the targets are located at unknown directions

, and , amplitudes satisfying with an
overall .
Fig. 9 shows the optimal transmit beampattern, under BCRB

and RMB criteria, as a function of for various pulse indices.
Again, this figure illustrates the auto-focusing capability of the
proposed waveform design methods also in case of multiple tar-
gets. Also, it can be seen that the proposed algorithms allocate
more energy toward the direction of the second target, which is
weaker. This feature is desirable, since according to the objec-
tive function, the parameters of both targets are of interest.

C. Computation Time

Fig. 10 compares the computation time between the BCRB
and RMB based waveform design techniques, under the sce-
nario considered in Fig. 2. The processing time is obtained by
running the algorithms using Matlab on an 3.8 GHz Intel core
i7 3930 K processor and memory of 8 GB 1600 MHz DDR3. It
can be seen that the computational complexity of the waveform
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Fig. 7. Optimal transmit beampatterns (first and third rows) and posterior pdf’s (second and fourth rows) versus for various pulse steps using BCRB waveform
optimization, assuming unknown amplitude with and , using and .

design technique based on the RMB criterion is higher com-
pared to the BCRB criterion, which is consistent with the com-
putational complexity analysis performed in Sections III-E and
IV-C. For practical purposes the computation time for both al-
gorithms is in the order of typical values of the pulse repetition
time used in typical surveillance radar systems.

VI. CONCLUSION

In this paper, we proposed new techniques for adaptive wave-
form optimization. Instead of transmission of identical wave-
forms, in the proposed techniques, the waveform is determined
at each step, in order to minimize the BCRB or the RMB for
system parameters estimation w.r.t. the transmit/input wave-
form. The proposed techniques were tested via simulations for
adaptive spatial transmit waveform design in the presence of
single and multiple targets with a very weak ASNR. The simu-
lations show that the proposed techniques enable a significantly
higher rate of reduction in the RMSE, compared to other wave-
form transmission techniques.
The waveform design methods described in this paper, refer

to any time-varying linear system in which the input signal
can be controlled. Accordingly, it can be used for adaptive

space-time waveform design for MIMO radar. The simulations
in this paper assumed known range and Doppler information.
Further research can focus on performance analysis of the pro-
posed method without prior knowledge of range and Doppler
information.
Finally, in case of moving target in which the target loca-

tion/parameters vary with , the algorithm should be modified
in order to consider the dynamics of the unknown parameters
with some prior distribution on the change rate of the param-
eters. In the proposed techniques, the prior distribution at each
step is taken as the posterior distribution from the previous step.
In the presence of moving target, at each step, the prior distri-
bution should be modified to take into account the uncertainties
due to the dynamics of the target. Thus, by using well-known
tracking methods, the proposed algorithm can be readily ex-
tended to cover also dynamic scenarios.

APPENDIX A
DERIVATION OF EQUATION (19)

Using the expression for the FIM in case of deterministic
signal in Gaussian noise [33], and applying the law of total
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Fig. 8. Optimal transmit beampatterns (first and third rows) and posterior pdf’s (second and fourth rows) versus for various pulse steps using RMB waveform
optimization, assuming unknown amplitude with and , using and .

expectation, the element of the matrix , defined in
(9), for the data model presented in (2), can be expressed as

(45)
where and

(46)

Then the matrix can be expressed as

(47)

Using (47), (45) can be rewritten as

(48)

The matrix can be represented by a combination of unit vec-
tors in the following form

(49)

where and denote the th column of the identity ma-
trix of dimensions and , respectively. By denoting

, substituting (49) in (48), and using the lin-
earity of the trace and real operators, one obtains (50), shown
at the bottom of the following page, where the last equality
follows from the definitions of and , and by denoting

. Equation (50) can
be interpreted as taking non-overlap blocks from the

matrix , then multiplying each entry by
the corresponding entry of (Hadamard product), and finally
summing all the entries of the obtained matrix. In order to de-
rive a closed-form expression for the IBFI, let us define

(51)

Using (50) and (51), simple algebraic steps reveals that the IBFI
can be written as (19).
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Fig. 9. Transmit beampatterns versus for various pulse steps using BCRB (first row) and RMB (second row) waveform optimizations, assuming unknown
amplitudes with , , , and , using .

APPENDIX B
DERIVATION OF EQUATION (23)

Using Bayes theorem, the posterior pdf can be
written as

(52)

(53)

where is a normalization constant, independent of . Hence,
according to (10) and using (53), the element of the matrix

can be written as

(50)
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Fig. 10. Computation time versus pulse index using BCRB and RMB wave-
form design techniques.

(54)

where the last equality reveals simply after calculating the term

. In accordance to the matrix representation
given by (19), (54) can be written in matrix form as

(55)

where the element of the matrix is given by

(56)

and the element of the matrix is given by

(57)

where .

APPENDIX C
DERIVATION OF EQUATION (34)

Under the statistics and model assumptions de-
scribed in Section II, it can be concluded that

. Let

. The integrand of
in (30) can be expressed as

(58)

in which

(59)

(60)

where is a normalization constant. The integral of the left
exponential term (and the constant ) in (58) over , is equal
to one (follows from the integral of pdf over the entire space).
Therefore, we obtain

(61)

and according to (29), is given by

(62)
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