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Abstract

Object detection and segmentation can be facilitated by the availability of prior

knowledge. This dissertation considers the incorporation of prior shape knowledge

within a segmentation framework. The information about the expected shape of the

object to extract is obtained from another image of the object. In the first part of the

thesis we assume that the object boundaries in the prior image are known. The main

challenge is accounting for projective transformations between the different object

views. We address it by concurrent segmentation and registration processes. This is

accomplished by the construction of a cost functional, where the dynamic variable

is the object boundary represented by the zero level of a level-set function. The

functional is optimized using calculus of variations.

Explicit shape prior is not always available. Consider the simultaneous segmen-

tation of two object views. When neither of the images can be correctly segmented

based on its edges and gray levels alone, the shape of the region extracted in either

of them cannot be used as a reliable prior for the other. We therefore suggest an

alternate minimization framework in which the evolving segmentation of each image

provides a dynamic prior for the other. We call this process mutual segmentation.

When only a single image is given but the object taken is known to be symmetrical,

the symmetry property forms a significant shape constraint and thus can be used to

support segmentation. The third part of this thesis deals with the extraction of

objects with either bilateral or rotational symmetry in the presence of perspective

distortion. The key idea is the use of the symmetrical counterpart image obtained by

a flip or rotation of the source image as another view of the object. The theoretical
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foundation of the proposed method is a theorem, proven in this thesis, showing that

symmetrical counterpart images are related by planar projective transformation.

The methods suggested are demonstrated on a variety of images that were taken

in the presence of noise, shadows, occlusions or clutter. For each of the examples,

accurate extraction of the object boundaries is shown together with the recovery of

the planar projective transformation that relates the object views.

Some of the concepts developed are demonstrated on bio-medical applications.

We show the delineation of uterine fibroids in MR images. Volumetric segmentation

of mouse brain structures from histological data is also presented.
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Chapter 1

Introduction

1.1 Segmentation with prior knowledge

Segmentation can be considered as the task of partitioning the image into foreground

object (or objects) and background regions. Since the concept of object is subjective

and application dependent, segmentation in general is not well defined. Moreover,

even when the object of interest is known, segmentation is challenging. This is so

since in the imaging process the inherent properties of the inspected object may

be corrupted due to noise, occlusion, illumination conditions and more. General

syntactical assumptions such as continuity and smoothness of edges and homogeneity

of semantic regions should thus be complemented with a-priori semantical information

on the objects to be segmented.

The nature of prior knowledge varies, depending on the features that distinguish

the object of interest from its surroundings. Color distribution, texture, motion

and shape or their combinations are commonly used to characterize the regions of

interest given the entire scene. The combination of such high level visual cues with

the low level image features (edges and gray levels) yields a powerful segmentation

framework [112]. Yet, there is a catch. Classically, the partitioning of the image

into meaningful regions is a preliminary step towards image understanding. The

next phase is identifying the segments based on their internal characteristics and

interrelations. Only then, one may have an intelligent say on the ‘world’ depicted

by the camera. The interleaving top-down and bottom-up processes seem to be an

1



CHAPTER 1. INTRODUCTION 2

incompatible flow.

The first argument to support this approach relies on recent research conducted in

neurobiology and psychophysics. The hypothesis about symbiotic relations between

high level cognitive vision and the low level visual processing is supported by explo-

ration of interactions of various cortical visual processing pathways in human and

animal visual systems, e.g. [39].

A possibly stronger claim stems from the fact that in most real-life applications

at least some knowledge is available in advance. Consider for example the images

acquired by medical imaging devices such as MR, CT, Ultrasound etc. There is much

information on the patient (age, gender, medical history, physical conditions); on the

imaged organ and tissue; on the expected pathologies and the normal, healthy states

and also on the imaging modalities used and their limits. Medical imaging analysis

problems are usually difficult but the solutions must be as reliable as possible. The

reasoning is clear. When prior knowledge exists, why not using it?

Mathematical modeling of prior information and its incorporation in segmentation

frameworks is an active field of research. One of the pioneering work in this domain

was done by Borenstein and Ullman for top-down class-based segmentation using

the statistics of image patches [5]. The main difficulty resides in combining the

knowledge about the expected object appearance with the actual image data. This

thesis suggests a variational approach to prior-based segmentation which allows a

convenient way to integrate information from several sources in a coherent manner.

We will therefore relate to variational methods in the forthcoming discussion.

1.2 Variational approaches to segmentation

Intensive image processing research in the last two decades raised up new insights

about the nature of images. Modern segmentation approaches adopted these new

concepts. The most influential observation is that an image can be approximated by

a piecewise smooth function on R2. The essence of this observation, made in 1988 by

Mumford and Shah [70], is that a natural image is composed of homogeneous regions.

The image segments and their delimiting boundaries obey the Gestalt principle of

minimal description length. About a year later, Perona and Malik [79] suggested
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the anisotropic diffusion for image denoising, based on the same concept of piecewise

smoothness. Note that image denoising together with edge detection and integration

were the objectives of the Mumford-Shah framework as well. These image processing

tasks are in many senses complementary to image segmentation.

Partitioning of the image into semantic regions is equivalent to the detection of

the closed contours that bound them. The key assumption behind the region based

segmentation approaches is that meaningful image regions are homogeneous in terms

of their color or texture. The Mumford-Shah functional was the origin of most region-

based segmentation frameworks. Prominent methods include the works of Zhu and

Yuille [128], Paragios and Deriche [78] and Chan and Vese [11].

Classical approaches to segmentation consider the correspondence of the image

edges with the objects boundaries. Various image filters were suggested for edge de-

tection [8]. Yet, the detection of the prominent image gradients had to be followed

by a grouping process to obtain a coherent edge map that is compatible with im-

age contours. The active contour methods originated by the snakes of Kass, Witkin

and Terzopoulos [49] suggest an elegant solution to the problem of edge grouping.

The main principle was the construction of a cost functional that imposes the align-

ment of the segmenting contour with the local maxima of the image gradients while

maintaining its smoothness. The contour evolution was determined by partial dif-

ferential equations (PDEs) derived from the first variation of the functional. The

classical snakes method was elaborated by the introduction of the balloon term by

Cohen and Cohen [13], that controls the direction of the contour propagation. The

geodesic snakes by Caselles, Kimmel and Shapiro [10] and by Kichenassamy, Kumar,

Olver, Tannenbaum and Yezzi [51] suggested a fundamental modification of the edge-

based segmentation functional related to the anisotropic diffusion term of Perona and

Malik [79].

The foundation of this thesis is a unified functional that is composed of edge-based

terms together with a fidelity term based on the piecewise-smoothness assumption.

The latter term is much in the spirit of the Chan-Vese level-set framework [11].
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1.2.1 Level-set representation

The level-set methods introduced by Osher and Sethian [75] are numerical tech-

niques to trace moving interfaces. Similar ideas have been proposed by Dervieux

and Thomasset [25] a decade earlier. Applied to image segmentation problems, they

allow an implicit and non-parametric representation of the propagating contour. The

contour is the intersection of the level-set function with the x − y (image) plane, or

equivalently the zero level of a level-set function defined on the image plane. The

level-set formulation enables automatic change in the contour topology (it can split

or merge) and shows numerical robustness. Level-set functions have a special signifi-

cance in this study, being used here also for the representation of the shape priors.

1.2.2 Shape based segmentation

Specific information on the segmented object, based on its known characteristics, is

incorporated into the cost functional as additional terms. Model-based approaches

embody common properties of the object class. Refer for example to [40], that ex-

tracts thin structures such as blood vessels, or to [92] that incorporates geometric

information to segment road networks. When the object shape is specified, resem-

blance of the segmented object to the reference shape can also be imposed. The inclu-

sion of prior shape knowledge within the variational framework for segmentation was

pioneered by Leventon, Faugeras, Grimson and Wells [58, 57], Cremers, Kohlberger

and Schnorr [19] and Rousson and Paragios [96]. Shape statistics seems to be an

appropriate approach to deal with the variability in shape appearances. However,

a comprehensive data-base of shapes is usually unavailable. Having only a single

prior, previous works could only account for similarity transformations. Similarity

transformations, however, rarely approximate satisfactorily the actual transformation

between objects taken close to the camera. One of the main novelties of this thesis

is the incorporation of the two-view geometry model in a variational framework for

segmentation to account for planar projective transformation. This was enabled using

a unique shape representation together with a novel dissimilarity measure between

the object to segment and the prior shape.



CHAPTER 1. INTRODUCTION 5

1.2.3 Two view geometry and contour correspondence

The prior representations and the dissimilarity measure between the evolving segmen-

tation and the prior representation are chosen to suit the two view geometry model.

Consider two image planes f and f ′. The rays that intersect the planes f and f ′

at points p and p′ correspondingly, coincides at a single point P at the world plane.

Fig. 3.5 demonstrate the idea. The points p and p′ are related by planar projective

homography. Assuming that a set of world points {P} are coplanar, we can match

their corresponding views by a single homography. Let C ′ denote the prior contour,

such that C ′ ∈ f ′ and p′ ∈ C ′. In the same manner, C denotes the contour being

segmented, C ∈ f and p ∈ C. An assumption made in this thesis is that the object

contour points P ∈ C are approximately coplanar .

The core of the proposed methods is a process of concurrent segmentation and

registration. By the end of the registration process the homography between the

image to segment and the reference is recovered. The use of the planar projective

model is made possible thanks to a special shape dissimilarity measure - introduced

here. We construct a level-set function that defines the prior object. We then look

for the coordinate transformation of the prior that best matches the object domain

in the segmented image. We alternately look for the segmentation that corresponds

the transformed prior. In the proposed formulation the level-set functions are not

restricted to be sign-distance-functions. When a sign distance function undergoes an

affine or a projective transformation it is no longer a sign distance function. This fact

impaired previous approached and limited their ability to deal with transformations

beyhond similarity and scaling. The approach presented here can cope with more

general transformations.

1.2.4 Implicit shape priors

The thesis proceeds to account for the cases where an explicit shape prior is not

available. We consider the concurrent segmentation of two images of the same object

in a framework termed here mutual segmentation. In this setting, the evolving contour

in either of the images provides a dynamic prior for the other. The key idea is the

definition of a biased dissimilarity term that incorporates the semantic knowledge
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gained in the segmentation process of the image pair, accounting for excess or deficient

parts in the estimated object shape.

We then consider the segmentation of symmetrical objects. The replicative form

of the object induced by its symmetry is used as a shape constraint. A related

idea was used in a work by Zabrodsky, Peleg and Avnir [125] for completion of

occluded shapes using (rotational) symmetry. Our approach however is completely

different from previous approaches to symmetry. Using the level-set representation,

the symmetrical object shape is represented by a single entity and not as a collection

of landmarks or feature points. The foundation of our symmetry-based approach is

a coherent set of theoretical results that link between symmetry, two view geometry

and level-set representation.

To the best of our knowledge, variational segmentation with implicit shape priors

has never been considered before.

1.3 Contributions and organization of the thesis

Parts of the work presented here have been published or submitted to publication [3,

86, 84, 85, 87, 90, 83, 89, 91, 88]. The thesis includes seven chapters, where the main

contributions are presented in Chapters 3 to 6.

1.3.1 Level-set based segmentation

Chapter 2 reviews some of the state-of-the-art concepts of level-set based segmenta-

tion. A minor contribution of this thesis is a reformulation of the alignment term

proposed in [53] and [115]. We then construct a cost functional which is composed

of region-based, edge-based and smoothness terms. In section 2.2 a new method for

determining the weights of the energy terms is presented. The effectiveness of the

bottom-up segmentation functional and the underlying gradient descent approach is

demonstrated on a real medical problem - the delineation of uterine fibroids from

MR images of the uterus. We conclude by giving the outline of the shape similarity

measures to be described in details in the forthcoming chapters.
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1.3.2 Segmentation with shape priors

In chapter 3 we present a method to facilitate segmentation given a single reference

object. We assume that the prior shape is related to the shape being segmented by

a planar projective transformation. Generalizing the Chan-Vese level set framework,

we introduce a novel shape-similarity measure and embed the projective homography

between the prior shape and the image to segment within a region-based segmentation

functional. We first introduce the unlevel-sets prior-based segmentation method. The

prior shape is represented by a generalized cone that its base has the shape of the prior

object. The intersections of the cone with the image plane in different orientations

and poses correspond to possible instances of the prior shape under perspective dis-

tortion and scaling. This technique has a nice intuitive geometric interpretation and

a relatively simple mathematical formulation. This method, however, only handles

perspectivity (a six-parameter transformation), and is applicable to the limited class

of star-shaped objects. Nevertheless, it provides the conceptual basis for the method

developed in this chapter. Next, we generalize the algorithm to eight-parameter pro-

jectivity model and remove the restriction to star-shaped objects. We demonstrate

prior-based segmentation algorithms on a variety of images. The transformation pa-

rameters between the object views are recovered and verified when possible.

1.3.3 Mutual segmentation

In chapter 4 we present a variational approach for simultaneous segmentation of

two images of the same object taken from different viewpoints. Due to noise, clut-

ter and occlusions, neither of the images contains sufficient information for correct

object-background partitioning. The evolving object contour in each image provides

a dynamic prior for the segmentation of the other object view. We call this process

mutual segmentation. The foundation of the proposed method is a unified level-set

framework for region and edge based segmentation, associated with a shape similarity

term. The suggested shape term incorporates the semantic knowledge gained in the

segmentation process of the image pair, accounting for excess or deficient parts in the

estimated object shape. Transformations, including planar projectivities, between the

object views are accommodated by a registration process held concurrently with the
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segmentation. The proposed segmentation algorithm is demonstrated on a variety of

image pairs. The homography between each of the image pairs is estimated and its

accuracy is evaluated.

1.3.4 Segmentation with shape symmetry

In chapter 5 we consider the extraction of objects with either bilateral or rotational

symmetry in the presence of perspective distortion. Information on the symmetry

axis of the object and the distorting transformation is obtained as a by-product of

the segmentation process. The key idea is the use of a flip or rotation of the image to

segment as another view of the object. We call this generated image the symmetrical

counterpart image. The theoretical foundation of the proposed method is a theorem,

proven in this thesis, showing that symmetrical counterpart images are related by

planar projective homography. This homography is determined by the unknown pla-

nar projective transformation that distorts the object symmetry. The limits on the

ability to recover the distorting projective transformation from this homography are

stated. The homography that aligns the symmetrical counterpart images is recovered

via a registration process carried out concurrently with the segmentation. Promis-

ing segmentation results of various images of approximately symmetrical objects are

shown.

1.3.5 Application: segmentation of mouse brain atlas

In chapter 6 we present a method for segmentation of anatomical structures in the

mouse brain from histological data. Segmentation is carried out slice-by-slice where

the successful segmentation of one section provides a prior for the subsequent one. In-

tensities and spatial locations of the region of interest and the background are modeled

by three-dimensional Gaussian mixtures. The key idea is a novel region-based energy

term that considers the Kullback-Leibler (K-L) divergence between the probability

density functions (PDFs) of the partitions. This information adaptively propagates

across the sections. Segmentation is inferred by minimizing a cost functional that en-

forces the compatibility of the partitions with the corresponding models together with

the alignment of the boundaries with the image gradients. The algorithm is demon-
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strated on histological images of mouse brain. The segmentation results compare well

with manual segmentation.



Chapter 2

Level-set based Segmentation

2.1 Statistical set up and prior art

2.1.1 General principles

Most segmentation approaches, despite their diversity, are motivated by the same

Gestalt principles of perception, i.e. simplicity (minimum description length), similar-

ity (homogeneity of semantic regions), continuity, proximity and closure. The image

is then partitioned according to a subset of these rules using various mathematical

tools. Commonly, segmentation is obtained by minimizing an objective functional

either by discrete (graph-based) approaches such as Markov Random Fields or by the

continuous formulation of calculus of variations. While in this chapter we use PDEs

to solve segmentation problems, Bayesian statistical inference formulation is used to

set a common language between the discrete and continuous approaches.

Given an image I(x) we would like to infer the delineating curve C between an

object and its background. This is done via the maximization of the probability

distribution function (PDF) P (C | I), using Bayes law:

P (C | I) ∝ P (I | C)P (C) . (2.1)

The prior probability P (C) will be reformulated to have “syntactic” and “seman-

tic” components. Classical active contours methods, such as the snake algorithm

of Kass et al [49] use parametric representation C = C(p). In this formulation

10
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the term − log P (I | C) = −λ
∫ |∇I(C(p))|dp is the “external force”. The term

− log P (C) =
∫

(α|Cp|2 + β|Cpp|2) dp is the “internal force”. The maximization over

all possible separating curves is done by minimizing − log P (C | I). Note that here

the prior is syntactic since it dictates the degree of smoothness of the curve and is

not directly related to the class of images or objects to be segmented. Our main

interest in this work is in a special kind of “semantic” prior that depends on another

image of the object. The segmenting curve C is represented implicitly using the

level-set framework [75, 25]. This approach for curve evolution has been successfully

applied to extract complex object boundaries, allowing an automatic change in the

topology. Moreover, the continuous, parameter-free shape representation, indicated

by the positive levels of the image level-set function, enables a definition of a unique

dissimilarity measure between object views.

In the level set framework for curve evolution [75], an evolving curve C(t) is defined

as the zero level of a level set function φ : Ω → R at time t:

C(t) = {x ∈ Ω| φ(x, t) = 0}. (2.2)

Following [11], we use the Heaviside function of φ

H(φ(x)) =





1 φ(x) ≥ 0

0 otherwise
(2.3)

as an object indicator function, assigning the positive and the negative levels of φ to

the foreground and the background image regions, respectively. As in [11], a smooth

approximation of the Heaviside function Hε, rather than a step function, is used. In

particular,

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)) (2.4)

and its derivative δε(φ) = dH(φ)/dφ is

δε(φ) =
1

π

ε

ε2 + φ2
. (2.5)

Figs. 2.1a-b illustrate Hε and δε near zero. Thus, the evolutionary change of φ,
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(a) (b)

Figure 2.1: Smooth approximation of the Heaviside function Hε (a) and its derivative
δε (b). Adapted from [11].

according to (3.5) is not restricted to its zero level-set. We can now rephrase our

PDF as

P (φ | I) ∝ P (I | φ)P (φ) . (2.6)

Next we elaborate on the conditional probability term P (I | φ).

2.1.2 Region-based data term

Let I : Ω → R+ denote a gray level image, where Ω ⊂ R2 is the image domain.

Let ω ⊂ Ω be an open subset, not necessarily connected, of the image domain Ω.

In the spirit of the Gestalt laws of similarity and proximity, we define a boundary

C = ∂ω that delimits homogeneous regions in Ω. In particular, we use the two-phase

formalism, in which the image is partitioned into foreground and background regions.

Thus, given a feature G, e.g. the average gray level, we look for a curve C that

maximizes the difference between two scalars u+ and u− defined as follows:

u+ = A+

∫

ω

G+(I(x))dx, u− = A−
∫

Ω\ω
G−(I(x))dx. (2.7)

The superscripts + and − correspond to the feature values in ω ⊂ Ω and in Ω/ω, re-

spectively. Hereafter we denote x ≡ (x, y), A+ = 1/
∫

ω
dx and A− = 1/

∫
Ω\ω dx. The

possibly different functions G+ and G− are defined on the object and the background

domains, respectively.

In general, one can use a set of features {Gi} corresponding to two sets of scalars

{u+
i }, {u−i }. The features chosen should be related to the expected image homogene-
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ity. In the work of Chan and Vese [11] the image is approximated by a piecewise

constant function whose values are given by G+
1 (I(x)) = G−

1 (I(x)) = I(x). Hence

u+
1 = Iin and u−1 = Iout are the average gray levels in the object regions and in the

background regions respectively. In that formulation it is assumed that the PDF of

the gray levels in each region is a Gaussian with σ = 1. More elaborate characteri-

zation of the partition can be obtained using color histograms or a Gaussian mixture

model. For texture-based segmentation the Gabor filters may be used as in Sand-

berg et. al. [98] and in Sagiv et. al. [97]. The definition of G(I) could be further

extended as suggested in [119], where u+, u− ∈ C1(R2) are smooth approximations of

the regions in I. In this study we use the average gray levels and the variance [119, 62]:

G+
2 (I) = (I(x)− Iin)2 ; G−

2 (I) = (I(x)− Iout)
2 (2.8)

We may now express the term −logP (I | φ) via a region based cost functional with

a well defined integration domain:

ERB(φ) =
2∑

i=1

∫

Ω

[
(G+

i (I(x))− u+
i )2H(φ) + (G−

i (I(x))− u−i )2(1−H(φ))
]
dx (2.9)

An elegant statistical formulation representing the region-based term was intro-

duced in [128], followed by [78] and reviewed in [20].

The evolving boundary C(t) is derived from φ(t) using (2.2). For a given φ(t) and

{Gi}, the feature values u+
i and u−i are updated at each iteration according to (2.7).

The level set function φ evolves via the gradient descent:

φRB
t = δ(φ)

2∑
i=1

[
G−

i (I(x))− u−i )2−(G+
i (I(x))− u+

i )2
]

, (2.10)

where δ is the derivative of the Heaviside function H.

2.1.3 Geodesic active contour: data part

Following the pioneering work of Kass et al [49], Malladi et al [64] and independently

Caselles et al [9] suggested a non-variational framework for dynamic edge integration.

These works known as the Geometric Active Contours were followed by the Geodesic
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Active Contour (GAC) frameworks of [51] and [10].

Let C(s) = (x(s), y(s)) be the parametric description of a planar contour

C : [0, L] → R2 where s is an arc-length parameter and L is the length of C. We denote

the vector field of the image gradients by ∇I(x, y) = (Ix, Iy)
T =

(
∂I(x,y)

∂x
, ∂I(x,y)

∂y

)T

.

The Geodesic Active Contour (GAC) term integrates an inverse edge indicator func-

tion along the contour:

EGAC(C) =

∫ L

0

gGAC(|∇I(C(s))|)ds. (2.11)

The function gGAC should be chosen such that EGAC(C) is minimized when the curve

C is located on the maxima of the absolute values of the image gradients. As was

shown in [9, 10], gGAC can be any positive strictly decreasing function of the image

gradients r = |∇I| as long as gGAC(r) → 0 as r →∞.

The first variation of the energy term (2.11) is

δE/δC = (〈∇gGAC, ~n〉 − κgGAC)~n (2.12)

where 〈·, ·〉 denotes inner product, ~n(s) = {−ys(s), xs(s)} is the exterior normal to

the curve C and κ is the curvature of C. Using the level set formulation, equation

(2.12) takes the form −div(gGAC
∇φ
|∇φ|)|∇φ| having the relation ~n = ∇φ/|∇φ|.

We unorthodoxly split the GAC term, Eq. (2.11), into two terms. This splitting

will be justified in subsection 2.1.6 where both terms will appear in the final energy

formulation. The data term (DGAC) is given by

EDGAC(C) =

∫ L

0

gDGAC(|∇I(C(s))|)ds (2.13)

where

gDGAC(|∇I|) = − |∇I|2
1 + |∇I|2 . (2.14)

This term vanishes as the gradient magnitudes decrease to zero and attains −1 asymp-

totically for large gradients. Expressing this term in a level-set framework we obtain

EDGAC =

∫

Ω

gDGAC(|∇I|)|∇H(φ(x))|dx, (2.15)
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with the associated gradient descent equation:

φDGAC
t = δ(φ)div

(
gDGAC(|∇I|) ∇φ

|∇φ|
)

. (2.16)

Adapting the formulation of [11] for the edge-based terms, we use H(φ) instead of

φ in the energy terms (see also equations (2.17, 2.19, 2.21)) and consequently δ(φ)

instead of |∇φ| in the gradient descent equations (also in 2.18, 2.20, 2.22). This

formulation may appear different from the standard convention used in the literature,

yet practically both are almost equivalent.

The GAC functional includes another geometrical term that will be described in

subsection 2.1.5.

2.1.4 Edge alignment term

Segmentation can be refined by constraining the normal direction of the active contour

to align with the directions of the image gradients as suggested by Kimmel and Bruck-

stein [53] and independently by [115]. Fig 2.2 outlines this concept. The edge align-

ment term (EA) defined in [52] takes the form: EEA(C) = − ∫ L

0
|〈∇I(x(s)), ~n(s)〉| ds.

The expression for EEA(C) is an integration of the projection of ∇I on the normal

~n(s) along the curve. A minor contribution of this chapter is the level-set formulation

of the alignment term:

EEA = −
∫

Ω

∣∣∣∣〈∇I,
∇φ

|∇φ| 〉
∣∣∣∣ |∇H(φ)| dx (2.17)

where ∇φ(x)/|∇φ(x)| is normal to the level-set φ in x. The associated gradient

descent equation is

φEA
t = −δ(φ)sign(〈∇φ,∇I〉)∆I , (2.18)

where ∆I is the Laplacian. This equation is similar to the one derived in [52].

2.1.5 Syntactic prior: geometry

The prior probability P (C) in Eq. (2.1) is determined by the minimum description

length criterion (based on the Gestalt principle of simplicity). That is P (C) ∝
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Figure 2.2: The edge alignment term is minimized when the scalar product between
normal direction of the active contour and the image gradient direction is maximal.
Image courtesy of Nir Ben Zadok.

exp(−ν|C|), ν > 0 [20], where |C| =
∫

ds =
∫ |Cp|dp is the curve length. An

equivalent representation, using the level set formulation, takes the form:

|C| = ELEN =

∫

Ω

|∇H(φ(x))|dx (2.19)

This functional measures the length of the curve and usually serves as an indicator

for the curve smoothness [11]. Minimizing (2.19) with respect to φ, we obtain the

associated Euler Lagrange equation for φ:

φLEN
t = δ(φ)div

( ∇φ

|∇φ|
)

. (2.20)

Combining ELEN and EDGAC, (defined in Eq.(2.15)), we get the usual form of the

GAC functional [10, 51],

EGAC =

∫

Ω

gGAC(|∇I|)|∇H(φ(x))|dx, (2.21)

where gGAC = 1 + gDGAC = 1/(1 + |∇I|2). The gradient descent equation is

φGAC
t = δ(φ)div

(
gGAC(|∇I|) ∇φ

|∇φ|
)

. (2.22)

Finite difference method and the relation to the MRF pairwise term

Practically, we use the finite difference method, in which a grid of nodes spaced by

a parameter h is set up over the image domain. The differential operator is approx-

imated by finite difference equations operating on neighboring nodes. Specifically,

the GAC term is discretized and by using the finite difference method for |∇I| , it
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takes the form:
∑

x∈Ω g̃(|I(x + h) − I(x)|). The term x + h denotes a shift of one

pixel from x and obviously x + h ∈ Nx where Nx is the set of nearest neighbors of

x. Using this formulation, it is easy to see the analogy of the GAC term to the MRF

pairwise term (sum of the 2-clique potentials) [32], standing for the inverse logarithm

of the conditional probability function −logP (I | C), for independent and identically

distributed process.

2.1.6 Unified cost functional

A unified cost functional that is based on the data of the images to segment, on general

assumptions with respect to properties of natural images, and on the segmentation

curves both images takes the form:

E(φ) = WRBERB(φ) + W LENELEN(φ) + WDGACEDGAC(φ) + WEAEEA(φ) (2.23)

with equations (2.9), (2.19), (2.15) and (2.17), respectively.

Note that the GAC term (Eq. 2.21) is split into the smoothness term ELEN (Eq.

2.19) and the DGAC term EDGAC (Eq. 2.15) where each has its own weight. This

allows more flexibility in the functional construction, in particular when the edge

based term (DGAC) should be ignored while the smoothness term is most desirable.

The evolution of the level-set functions φ in either of the images, is determined at

each iteration by φ(t+∆t) = φ(t)+φt∆t. The associated gradient descent equations

φt are derived using the first variation of each of the terms in the functional (2.23)

φt = WRBφ̌RB
t + W LENφ̌LEN

t + WDGACφ̌DGAC
t + WEAφ̌EA

t . (2.24)

The terms φ̌TERM
t are obtained by slight modification of the gradient descent terms

φTERM
t determined by equations (2.10), (2.20), (2.16) and (2.18), respectively. This

issue and the determination of the weights WTERM for the different terms in Eq.(2.24)

are discussed in section 2.2.

Refinement of the segmentation results can be obtained for images with multiple

channels, I : Ω → Rn, e.g. color images. The region-based term φRB
t ; the DGAC term

φDGAC
t and the alignment term φEA

t can be presented as the sum of the contributions



CHAPTER 2. LEVEL-SET BASED SEGMENTATION 18

of each color channel Ii. Multi-channel segmentation is particularity suitable when,

for example, the object boundaries are dominant in part of the channels while the

piecewise homogeneity is preserved in others. Figure 5.11 in chapter 5 demonstrates

segmentation of a color image. Further exploration could address the use of Beltrami

flow, introduced by Sochen, Kimmel and Malladi [101].

2.2 Setting the weights of the energy terms

When the solution to an image analysis problem is obtained by minimizing a cost

functional, the issue of setting the relative weights of the energy terms is unavoid-

able. However, in the absence of a satisfying method for the determination of these

parameters, this subject is usually marginalized. A guaranteed but time consuming

approach is to set the weight parameters by an exhaustive search on the parameters

grid, followed by qualitative examination of the solutions obtained. In the context

of image processing, algorithms for setting parameters are considered robust if the

search space can be significantly reduced or if the parameters should be only slightly

tuned for a class of similar images. Being tedious and subjective this heuristic is not

suitable for most real world applications.

In contrast, we propose a heuristic that adaptively determines the relative weight

of the contributions of the terms of the functional to the evolution of the level set

function, as expressed in Eq. (2.24). The proposed heuristic is based on the assump-

tion that the contributions of the energy terms in each iteration should be balanced.

The following observations are considered:

1. The relative weight between the length term and the area terms (region based

terms) is squared as the image size is increased.

2. The weight of region based term is affected by the units of the feature chosen

to characterize the regions. The simplest example is the gray level range which

is usually chosen to be either [0, 1] or [0, 255].

3. The terms that are based on the image gradients may have high dynamic range

due to noise or sharp discontinuities.
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4. All terms are affected by the instantaneous form of the level set function φ which

evolves in time. The dynamics induced by φ should be taken into consideration.

The suggested scheme for automatic and dynamic weight setting is as follows. Let

φ̌TERM
t (x) = B(φTERM

t (x)) =





UB if φTERM
t (x) > UB

LB if φTERM
t (x) < LB

φTERM
t (x) otherwise

(2.25)

where

UB = std(φTERM
t (x)), LB = −UB

Here, std(φt(x)) stands for the standard deviation of φt(x) over Ω. The functional

B(.) operates on φTERM
t to bound its dynamic range. Next, the range of |φ̌TERM

t | is

normalized

WTERM = 1/ max
x
|φ̌TERM

t (x)|. (2.26)

Note that the clipping (Eq. 2.25) affects only extreme values of φTERM
t , that is

φ̌TERM
t (x) = φTERM

t (x) for most x ∈ Ω. Since W is recalculated at each iteration

it is time dependent. This formulation enables an automatic and adaptive determi-

nation of the weights of the energy terms.

2.3 Example: Segmentation of uterine fibroids

2.3.1 General

We present a medical application that exemplifies the principles of level set based

segmentation discussed in this chapter1. The motivation here is the detection of

uterine fibroids in MR images prior to Ultrasound treatment. We found that the

bottom-up segmentation approach is sufficient for accurate segmentation in most of

these cases. Minimizing an energy functional composed of region-based, edge based

and smoothness terms we obtained fibroid boundaries that were in good match with

the delineation performed by an expert.

1This section is based on collaboration with Nir Ben-Zadok [3].
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2.3.2 Background and clinical motivation

Uterine fibroids are the most common benign gynecological pathology of women in

the reproductive age. Magnetic Resonance-guided Focused Ultrasound (MRgFU)

has been demonstrated as a valuable option for effectively treating uterine fi-

broids [27] [106]. The acquired MR images of uterine fibroids are used in order

to plan the treatment and to ensure exact tumor targeting. At the end of the treat-

ment T1 weighted contrast enhanced MR images are acquired, in order to evaluate

treatment efficiency. Fig. 2.3 shows Uterine fibroids and surrounding anatomy of the

uterus . Segmentation is the core task of treatment guidance, as it defines the regions

Figure 2.3: MR image of uterine fibroids and the surrounding anatomy of the uterus

to be ablated during the treatment. There are several factors that turn the task of

segmenting uterine fibroids into a complex and difficult one. First, the visual charac-

teristics of uterine fibroids (such as size, shape, location and intensity) vary between

different patients and also when comparing different MR slices taken from the same

patient (see Fig. 2.5). Second, the partial volume effect (referring to a situation where

a pixel represents more than one kind of tissue type), blurs the intensity-difference

between the fibroids and nearby tissues. We address the extraction of uterine fibroids

in MR images using level-set technique. The required user interaction is minimal.

The automatic processing time is few seconds using non-optimized MATLAB code.

Experimental results on MR sequences, acquired from several patients, are in good

agreement with expert segmentation.
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2.3.3 Algorithm summary

For each image the following steps are carried out:

• Initialization - The user sets a seed point inside each fibroid. The initial level set

function φ0 is generated such that its zero level coincides with a default circle,

encircling each of the seed points marked by the user. For fast convergence, the

user may also set the circle radii (see Fig. 2.4).

• Repeat until convergence

– Compute the values u+ and u− using equation 2.7. These values are the av-

erage gray levels of the object and background regions respectively, defined

by Hε(φ(x, t)).

– Update φ according to the gradient descent equation 2.24.

• The final contour is the zero level of the final level-set function φ.

(a) (b)

Figure 2.4: (a) Initial Level-set function (b) The corresponding initial contour

2.3.4 Experimental results

We exemplify the algorithm presented in subsection 2.3.3 on several clinical abdomen

MR sequences with various forms of fibroids. The MRgFUS therapy procedures

were performed by Insightec’s ExAblate 2000 system, which uses a 1.5T whole-body

system (Genesis Signa; GE Medical Systems, Milwaukee, Wis.) to acquire the MR

image sequences. Fig. 2.5 shows a variety segmentation examples. The segmenting

contours (red) delineate the fibroids in each of the images. The user only marks
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the approximate center of the fibroids. Additional MR image sequences and their

automatic and manual segmentation are available in [3].

2.4 Semantic prior: shape term

In the previous sections we described the edge-based, region-based and smoothness

constraints that control the segmentation based on the image data and on general

assumptions on natural images. We now give an outline of the shape terms, denoted

by ESHAPE that are derived from the semantic knowledge on the object of interest.

Denoting a prior shape representation by φ̃ : Ω → R, the statistical formulation is

then

P (φ, T | I, φ̃) ∝ P (I | φ, φ̃, T )P (φ | φ̃, T )P (T, φ̃) = P (I | φ)P (φ | φ̃, T )P (T )

where T is the transformation that aligns φ and φ̃ and pairwise independence of

I, φ̃ and T is assumed. The logarithm of the inverse conditional probability term

− log P (φ | φ̃, T ) can be substituted by a dissimilarity measure D(φ, T (φ̃)) between

shape representations φ̃ and φ. Some previous approaches, e.g. [57, 58], used:

D(φ, T (φ̃)) =

∫

Ω

(
φ(x)− T (φ̃(x))

)2

dx

where φ and T (φ̃) are signed distance functions. This measure, however, is affected by

the size of the background area Ω \ ω, see [21] and references therein. Moreover, in a

cluttered image, when the weight of this measure in the segmentation functional

is high, objects that do not correspond to the prior shape are ignored [23]. To

avoid these drawbacks several modifications to control the integration domain have

been suggested [21, 23, 96]. In all dissimilarity measures between level-set functions

(represented as signed distance functions) the alignment term T is restricted to be

an isometry. This restriction guarantees that the transformed level-set function φ̃T =

T (φ̃) will preserve the form of a signed distance function.

In chapter 3 we use the square difference between the Heaviside functions of φ

and φ̃ as a dissimilarity measure between the shape representations, where φ and φ̃
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are not necessarily distance functions2.

D(φ, φ̃|T ) =

∫

Ω

[
H(φ(x))−H(T (φ̃(x)))

]2

dx (2.27)

This formulation enables the introduction of the projective alignment term T between

the shapes. Furthermore, D does not depend on the size of the background area Ω\ω.

Denote L = H(φ(x)) and L̃T = H(T (φ̃)). The functions L : Ω → {0, 1} and

L̃T : Ω → {0, 1} are binary labeling functions. We assume that the labeling L and L̃T

are independent and identically distributed. Thus, the conditional probability based

on the proposed dissimilarity measure can be formulated as:

P (φ | φ̃, T ) =
1

N exp(−
∑
x∈Ω

(L(x)− L̃T (x))2),

where N > 0 is a normalizing scalar.

The shape term (2.27) is suitable when the prior φ̃ is perfect and constant in

time. In chapters 4-5, a different dissimilarity measure is suggested, which is more

appropriate when either φ̃ is the evolving (and imperfect) segmentation of the other

image or the symmetrical counterpart of φ.

2A significant gain from not enforcing φ to be a distance function is the elimination of the process
of re-distancing [34, 105].
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(a)

(b)

Figure 2.5: (a) MR images of various types of uterine fibroids (b) Segmentation results
obtained by the level-set based segmentation algorithm.



Chapter 3

Segmentation with Shape Priors

3.1 Background and previous work

The coupled tasks of segmentation and object detection are essential for the extrac-

tion of semantic content from images. Prior knowledge on the shape of interest can

significantly facilitate these processes, particularly when the object boundaries are

not well defined. However the integration of shape information into the segmenta-

tion process is non-trivial. The main difficulty is the need to account for possible

transformations between the prior shape and the shape being segmented.

This problem was studied extensively via template matching techniques, see [37,

45, 46, 59, 67, 117, 118] and references therein. When dealing with contours, regis-

tration via template matching is equivalent to the Hough Transform [104]. Shape is

then commonly represented in a parametric way and the dimension of the represen-

tation grows with the complexity of the shape and its degrees of freedom. Template

matching and Hough transform are known to yield difficult global optimization prob-

lems when the dimension is high, thus incorporation of projective transformations

is difficult to accomplish. Moreover, these methods require a substantial set of cor-

responding points (or features), such that the matched images must have identical

texture, see [47] and reference therein.

A different approach focuses on landmark based analysis, in which a training shape

set, sampled and aligned, is assumed. In particular, the Active Shape Model [17]

and Active Appearance Model [16], that use Principal Component Analysis (PCA)

25
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of landmarks to model shape variability, gained popularity for their simplicity and

efficiency. However, these methods are semi-automatic, require prior shape analysis

and are parameterization dependent.

Variational methods solve segmentation problems by means of energy minimiza-

tion, integrating top-down and bottom-up information, see [1] and references therein.

Specifically, the level-set framework [75] for curve evolution has been successfully

applied to extract complex object boundaries, allowing an automatic change in the

topology. Prior-based segmentation methods incorporate a representation of a ref-

erence shape within the energy functional. Thus, the recovered object boundary

should resemble the expected contour, in addition to being constrained by length,

smoothness and compatibility with the image gray levels and gradients.

In order to introduce prior shape knowledge and a given group of transformations

in the level-set formulation, a shape dissimilarity measure should be provided. Sev-

eral works, for example [23, 26, 96, 110], use the distance function as the level-set

and the square difference between level-sets as the shape dissimilarity measure. A

symmetric and unbiased modification of this shape distance (called pseudo distance)

has been recently suggested by Cremers and Soatto [21]. However, these similarity

measures only account for isometric transformations and scaling, since more general

transformations (such as non-isotropic scaling or perspectivity) do not preserve the

characteristics of distance functions.

The statistical methodology [12, 19, 42, 58, 57, 96, 110] accounts for transforma-

tions beyond similarity and for small non-rigid deformations by using a comprehensive

training set. It characterizes the probability distribution of the shapes and then mea-

sures the similarity between the evolving object boundary (or level-set function) and

representatives of the training data. It is important to note that there is no distinction

in this method between transformation-based and deformation-based shape variation.

The modes of variation have to account for both. Moreover, the performance depends

on the size and coverage of the training set.

None of the existing methods accounts for projective transformations between the

prior shape and the shape of interest. The inability to deal with projective transfor-

mations is significant. In the presence of projectivity, neither similarity nor (even)

the affine model provide reasonable approximation for the transformation between
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the prior shape and the shape to segment. Figs. 3.1b-c show the best registration

of a prior contour of the object shown in Fig. 3.1a to a given image, assuming sim-

ilarity and affine transformations respectively. The apparent mismatch inhibits the

segmentation process and prohibits accurate reconstruction of the missing parts. In

contrast, the registration example in Fig. 3.1d demonstrates that planar projective

transformation is a good approximation even though the elephant shape contour is

roughly planar.

We suggest a novel variational approach to prior-based segmentation, that ex-

plicitly accounts for planar projective transformation, using a single reference object.

The segmentation process is carried out concurrently with the registration of the

prior shape to the shape of interest. The outcomes of the algorithm include the de-

tection of the object of interest and correct extraction of its boundaries. The planar

projective transformation between the two object views is accurately recovered as

well. Neither point correspondence nor direct methods [43] are used, thus color or

texture compatibility between the prior and the segmented image is needless. This

is accomplished by introducing a novel shape-similarity measure, that admits a wide

range of transformations, beyond similarity, and using it to generalize the Chan-Vese

level-set framework [11]. The proposed region-based segmentation functional includes

an explicit expression of the projective homography between the prior shape and the

shape to segment.

Employing the parameterization-free shape description, enabled by the level-

set formulation, we gain a significant advantage over landmark-based and template

matching techniques that represent shapes by collections of points or features. The

suggested distance function between the level-set representations of the matched

shapes is well defined and is not depend on shapes sampling. Moreover, transfor-

mations applied on the domains of the level-set functions, transform the represented

shapes correspondingly. This results in an elegant and powerful mathematical for-

mulation to align the prior and the evolving shape, minimizing their dissimilarity

measure with respect to the transformation parameters. The graceful merge of the

image data with that of the projectively registered prior is the essence of the proposed

contribution.

The suggested algorithm is demonstrated on a variety of images, in the presence of
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perspective distortion. The successful segmentation results and the reliable estimation

of the transformation parameters suggest this method as a promising tool for various

segmentation and registration applications.

This chapter is organized as follows. In section 3.2 we review the segmentation

framework of Chan and Vese [11], and outline our prior shape model, in particular

the novel shape similarity measure. We first (section 3.3) introduce the unlevel-sets

prior-based segmentation method. The prior shape is represented by a generalized

cone that its base has the shape of the prior object. The intersections of the cone with

the image plane in different orientations and poses correspond to possible instances

of the prior shape under perspective distortion and scaling. This technique has a nice

intuitive geometric interpretation and a relatively simple mathematical formulation.

This method, however, only handles perspectivity (a six-parameter transformation),

and is applicable to the limited class of star-shaped objects. Nevertheless, it provides

the conceptual basis for the method developed in this chapter. Next, we generalize the

algorithm to eight-parameter projectivity model and remove the restriction to star-

shaped objects. Fundamental concepts from two-view geometry that are necessary

to accomplish this generalization are presented in section 3.4. The embedding of the

transformation model within the variational framework, and the minimization of the

resulting functional, are considered in section 3.5. Experimental results using the

eight-parameter model are provided in section 3.6.

3.2 Variational framework

3.2.1 Chan-Vese two-phase model

A general form of the region-based energy term has been derived in subsection 2.1.2

of the previous chapter. This chapter extends the two-phase segmentation functional

proposed by Chan and Vese [11]. We will hereby review the Chan-Vese framework.

The Mumford and Shah [70] functional is based on the asumption that a gray

level image I : Ω → R where Ω ⊂ R2 is the image domain, can be fairly approximated

by a piecewise smooth function u. The functional minimizer is the collection of the
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(a) (b)

(c) (d)

Figure 3.1: Registration, by the proposed method, of the contour of the object shown
in (a) image using : (b) Similarity model (4 transformation parameters). (c) Affine
model (6 transformation parameters). (d) Planar projective homography (8 transfor-
mation parameters). Note the mismatch in (b) and (c) despite the relatively small
change in the camera view. Registration results of (b) and (c) are the best possible
with similarity and affine transformations.They have been obtained after an exten-
sive search of the respective parameter spaces. The corresponding transformation
parameters are displayed in the last two rows of Table 3.3.

image edges C.

E(u,C) =
1

2

∫

Ω

(I − u)2dx + λ
1

2

∫

Ω−C

|∇u|2dx + ν|C| , (3.1)

where λ and ν are positive scalars and x = (x, y). Minimizing this functional is far

from being trivial since the unknown function C appears in the integration domain.

A reduced form of this functional is simply a restriction of u to a piecewise constant

approximation of I, such that each connected component Ωi, where ∪iΩi = Ω and

Ωi ∩Ωj = ∅, has a constant gray level value ui. This leads to the minimum partition
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problem, where the functional takes the form:

E(u,C) =
1

2

∑
i

∫

Ωi

(I − ui)
2dx + ν|C| (3.2)

Using the level-set formulation, C is the zero level of a level-set function φ : Ω → R:

C = {x ∈ Ω| φ(x) = 0}. Chan and Vese [11], inspired by the segmentation model of

Mumford and Shah (3.1), suggested to segment an input image I using the Heaviside

function of the evolving level-set function H(φ) as an indicator for the image object

and background regions. The contour length was used as a regularization term. For

the two-phase case the Chan-Vese functional takes the form:

ECV =

∫

Ω

[
(I − u+)2H(φ) + (I − u−)2 (1−H(φ))

+ ν|∇H(φ)|] dx. (3.3)

The scalars u+ and u− are alternately updated with the evolution of the level-set

function. They take the average gray level values of the input image in the regions

indicated by φ ≥ 0 and φ < 0.

u+ =

∫
I(x)H(φ)dx∫

H(φ)dx
u− =

∫
I(x) (1−H(φ)) dx∫

(1−H(φ))dx
(3.4)

Note that the integration domain of the reformulated functional (3.3) is now well-

defined and known. The gradient descent equation for the evolution of φ is derived

using the Euler-Lagrange equations for the functional (3.3):

∂φ

∂t
= δ(φ)

[
ν div

( ∇φ

|∇φ|
)
− (I − u+)2 + (I − u−)2

]
. (3.5)

The energy functional (3.3) can be extended by adding a prior shape term [22]:

E(φ, u+, u−) = ECV (φ, u+, u−) + µEshape(φ), µ ≥ 0. (3.6)

The inclusion of this shape term within the energy functional leads to three related

questions:

1. What should be the representation of the prior shape?
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2. What should be the similarity measure between the prior shape and the evolving

segmented shape?

3. What is the group of transformations that can be accommodated by the above

similarity measure?

The current work provides a comprehensive and innovative solution to these questions.

Let Ω̃ ⊂ R2 be the reference image frame. The representation of the prior shape within

the energy functional (3.6) is a 3D function φ̃ : Ω̃ → R that embeds the contour C̃

of the known shape:

C̃ = {x ∈ Ω̃ | φ̃(x) = 0}, (3.7)

Positive and the negative values of φ̃ correspond to object and background regions

in Ω̃ respectively. We suggest two alternative representations of φ̃, that are discussed

and compared in the subsequent sections. The formulation of φ̃ leads to a definition

of a dissimilarity measure with respect to the evolving segmentation. It is a weighted

sum of the non-overlapping positive and negative regions of φ and φ̃:

Eshape(φ) =

∫

Ω

(
Hε(φ(x))−Hε(φ̃(x))

)2

dx (3.8)

This extension to the functional adds the following term to the evolution equa-

tion (3.5):

δε(φ)
(
Hε(φ)−Hε(φ̃)

)
(3.9)

Thus, at each time step, φ will be modified in image regions where there is incon-

sistency between the object-background areas indicated by Hε(φ) and Hε(φ̃). The

change in φ is weighted by δε, which is illustrated in Fig. 2.1b for several values of

ε. The shape-term is further extended to incorporate possible transformations be-

tween the prior shape and the shape of interest. This is approached by applying a

3D transformation Tp : R3 → R3 to φ̃:

Eshape(φ, T ) =

∫

Ω

(
Hε(φ(x))−Hε(T (φ̃(x)))

)2

dx (3.10)
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The reformulated energy functional becomes:

E(φ) =

∫

Ω

{(I − u+)2Hε(φ) + (I − u−)2 (1−Hε(φ))

+ ν|∇Hε(φ)|+µ[Hε(φ)−Hε(T (φ̃))]2}dx (3.11)

The extended gradient descent equation for the evaluation of φ is:

∂φ

∂t
= δε(φ)

[
(I − u−)2 − (I − u+)2 + ν div

( ∇φ

|∇φ|
)

+ µ
(
Hε(φ)−Hε(T (φ̃)

)]
. (3.12)

Note that we do not enforce the evolving level-set function φ to resemble T (φ̃). In-

stead, we demand similarity of the regions within the respective contours. Thus,

φ is not necessarily a distance function. Therefore T can be used to accommodate

for planar projective transformations between the prior contour C̃ and the evolving

segmenting contour C.

In section 3.3 we introduce the six-parameter model. It is based on a unique

representation of the prior shape φ̃, which simplifies its perspective mapping to the

shape of interest. The eight-parameter model, presented in section 3.4, generalizes

the framework to projectivity.

3.3 Perspectivity

3.3.1 Cone of rays

Consider a set of rays, defined by an object in 3D space and a camera center. An

image is obtained by the intersection of these rays with a plane. This set is usually

referred to as a cone of rays, although it is not a cone in the classical sense [38]. Now,

suppose that this cone of rays is intersected by two planes, as shown in Fig. 3.2. Then,

there exists a perspective transformation H mapping one image onto the other. This

means that the images obtained by the same camera center may be mapped to one

another by a plane projective transformation [28, 29, 38].

Let f and f ′ be the image planes of two cameras, having the same camera center,
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Figure 3.2: The cone of rays. An image is defined by the intersection of this set of
rays with a plane. A ray between the camera center CC and a 3D world point P
intersects the plane in the image points p ∈ f and p′ ∈ f ′. The relation between all
such image points is a perspective mapping: p′ = Hp. Adapted from [38].

with projection matrices M and M ′ respectively. For simplicity, the coordinate system

of the first camera is chosen to coincide with the world coordinate system, so that

M = K[ I | 0 ], where K is the 3× 3 camera calibration matrix and I is the identity

matrix. The projection matrix of the second camera is M ′ = K ′[ R | 0 ], where K ′ is

the calibration matrix and R is the relative rotation between the coordinate systems

of the cameras.

Consider two image points p ∈ f and p′ ∈ f ′ of a 3D world point P . Let x, x′

and X be their corresponding homogeneous coordinates. Thus, x = K[ I | 0 ]X,

x′ = K ′[ R | 0 ]X and the mapping between x and x′ is x′ = K ′RK−1x = Hx,

with H = K ′RK−1. This relation can be simplified by working with a normalized

coordinate system1. When K and K ′ only differ by their focal length, K ′K−1 =

diag(k, k, 1) where k is the ratio of the focal lengths.

The transformations of zoom and camera rotation can be expressed as a move-

ment of the image plane while maintaining the camera center fixed. Note that these

are particular cases of perspectivity. Handling displacements between the centers of

the cameras (without parallax) requires extension of the geometric model. These

steps are considered in following subsections. We proceed to introduce a prior shape

representation derived from the cone of rays.

1Internal camera calibration is beyond the scope of this work. Therefore, we will present the
internal camera parameters in terms of pixels, assuming square pixels. Moreover, the origin of
coordinates in the image plane is set at the camera’s principal point. The term normalized coordinate
system is adopted from [29].
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3.3.2 Generalized cone

A generalized cone2 or a conical surface, is a ruled surface generated by a moving

line (the generator) that passes through a fixed point (the vertex) and continually

intersects a fixed planar curve (the directrix) [15]. Let Pv = (Xv, Yv, Zvertex) denote

the cone vertex, and let pv = (xv, yv) be the projection of the vertex on the directrix

plane. We set, without loss of generality, Xv = xv and Yv = yv. Now, consider a

directrix, C = p(s) = (x(s), y(s)) which is a closed contour, parameterized by arc-

length s, of an object shape in the plane Z = Zplane = 0. The generalized cone surface

is defined by:

φ̃(r, s) = φ̃((1− r)p(s) + rpv) = (1− r)Zplane + rZvertex (3.13)

where r varies smoothly from 1, that corresponds to the vertex, via 0, the directrix,

to some convenient negative value.

When the vertex of the generalized cone is located at the camera center, the defi-

nition of the generalized cone coincides with that of the cone of rays, presented in sub-

section 3.4. It follows that by planar slicing of the generalized cone, one can generate

new image views as though they had been taken with a camera under the perspective

model3. Note, however that the construction of the generalized cone (3.13), implies

that the first image plane is perpendicular to the principal axis. Extension of the

allowable transformation between corresponding image points x′ and x to translation

is possible if the object contour is planar and parallel to the first image plane.

3.3.3 Formulation of the transformation

We will now consider the representation of the transformation T (φ̃) of the prior shape

in the energy functional. The recovery of the transformation parameters, given the

2The concept of generalized cone (or cylinder) in computer vision has been introduced to model
3D objects [4, 66]. Its geometrical properties have been intensively investigated, see [31, 81] and
references therein.

3There is, however, one exception to this analogy. The intersection of a cone and a plane is
either a closed curve, an open curve or a point. In projective geometry terminology, the latter two
correspond to projection of finite points in the first image plane to infinity. We do not consider
ideal points and planes at infinity. Phrasing it explicitly, our only concern is the mapping of a given
closed curve to another closed curve.
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(a) (b)

(c) (d)

Figure 3.3: (a) A generalized cone is sliced by three planes, at Z = 0.3, Z = 0 and
Z = −0.3. (b) The resulting intersections. (c) A generalized cone is intersected by
an inclined plane: ax + by + cz + d = 0. (d) The resulting contour.

prior contour and the curve generated by the zero-crossing of the estimated level-set

function, is described subsequently.

The reference level-set function φ̃ embeds the prior contour according to (3.13).

For simplicity, the vertex height Zvertex, which corresponds to the focal length, will

be set to 1. The prior contour C̃ is the cone’s directrix.

In order to minimize the energy functional (3.11), one has to apply a gradient

descent process that calls for the evaluation of φ simultaneously with the recovery of

the transformation T of the function φ̃. We demonstrate this for transformations T

that consist of translation and rotation of the generalized cone, and correspond to

scaling, translation, rotation and perspective distortion in the image.
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Scaling and general translation

Assume first that the focal length is changed. This approximately corresponds to

translation of the image plane along the optical axis. In the image, the effect is

scaling. Figs. 3.3a-b illustrate this notion: as the planar section of the generalized

cone is closer to its vertex, the cross-section shape is smaller. Equivalently, the

generalized cone can be displaced in the direction of the Z axis, while the intersecting

plane remains stationary at Z = 0. Formally, in this case, T (φ̃) = φ̃ + tz.

To account also for translation in the image, we displace the generalized cone by

t = (tx, ty, tz)
T . The corresponding shape term in the energy functional is then

Eshape(φ) =

∫

Ω

(H(φ)(x, y)−H(φ̃(x + tx, y + ty) + tz))
2dx.

Rotation and compound motion

Consider a tilted planar cut of the generalized cone, as shown in Figs. 3.3c-d. The

resulting contour is perspectively deformed, as a function of the inclination of the

intersecting plane and its proximity to the vertex of the cone. Equivalently, one

may rotate the generalized cone around its vertex, and zero-cross to get the same

perspective transformation.

We denote by γ, β and α the Euler rotation angles around the Z,Y and X axes re-

spectively, in that order of rotation. They determine the relative orientation between

the first and the second camera coordinate systems. The rotation matrix R ∈ R3×3

operating on a vector (x, y, z)T takes the form:

R =




cβcγ cβsγ −sβ

sαsβcγ−cαsγ sαsβsγ + cαcγ sαcβ

cαsβcγ+sαsγ cαsβsγ−sαsγ cαcβ


 (3.14)

where sα is shorthand for sin(α) and cα for cos(α). General rotation and translation

of the generalized cone by R and t is expressed as (x′, y′, T (φ̃)) = R(x, y, φ̃) + t.
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Explicitly,

x′ = cβcγx + cβsγy − sβ + tx (3.15)

y′ = (sαsβcγ−cαsγ) x+(sαsβsγ+cαcγ) y+sαcβ+ty

z′ = (cαsβcγ+sαsγ) x+(cαsβsγ−sαcγ) y+cαcβ+tz

where z = φ̃ and z′ = T (φ̃).

3.3.4 The six-parameter algorithm

We summarize the six-parameter algorithm for image segmentation and recovery of

the transformation between the current and prior object instances, assuming the

following setup.

The input consists of two image frames f and f ′ of the same object, taken with

the same camera, but under different viewing conditions. The boundary C̃ of the

object in f is known. The image f ′ has to be segmented. The world plane is assumed

to be parallel to the first image plane f , and f is assumed to be at distance 1 from

the camera center. The second image plane f ′ is tilted and shifted relative to the first

one.

1. Given the contour C̃, construct a generalized cone φ̃, using (3.13) with Zvertex =

1.

2. Choose some initial level-set function φ, for example a right circular cone. Its

zero-level set is the initial segmenting contour.

3. Set initial values (e.g. zero) for α, β , γ , tx, ty and tz.

4. Compute the average gray levels of the current object and background regions,

u+ and u−, using (3.4). Recall that the gray level function of the image frame

f ′ is I.

5. Translate (by t) and then rotate (by R) the prior shape representation φ̃, using

the coordinate transformation (3.15) with the current estimate of the transfor-

mation parameters.
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6. Update φ using the gradient descent equation (3.12).

7. Update the transformation parameters α, β, γ, tx, ty and tz using the derivatives

of the cost functional (3.11) with respect to each parameter.

8. Repeat steps 4-7 until convergence.

The algorithm is exemplified in Fig. 3.4. The prior image is shown in Fig. 3.4a;

its segmentation is known. Fig. 3.4b shows a new instance of the mannequin head,

rotated and translated with respect to the reference pose. The hat creates signifi-

cant occlusion. Note that the head is placed on a plastic base of a similar grey-level.

The initial segmenting contour, obtained by zero-crossing the initial level-set function

(right circular cone) is shown. Successful segmentation using the six-parameter algo-

rithm is shown in Fig. 3.4c. Note the precise tracing of the profile and the recovery

of the occluded crown, despite the perspective distortion. Fig. 3.4d is the generalized

cone that represents the prior shape (a). The final state of the level-set function φ

is presented in Fig. 3.4e. Note that φ and Tp(φ̃) resemble in terms of their Heaviside

functions - that is by their zero-crossings (the final contour), but not in their entire

shapes. Since the actual transformation was not measured, the recovered transforma-

tion parameters are confirmed in Fig. 3.4f by comparing the final segmenting contour

with the prior shape, transformed according to the recovered parameters.

3.4 From six to eight parameters

3.4.1 Planar projective homography

To generalize the admissible geometric relation between two corresponding shape

contours we review the concept of planar projective homography. The equivalence

of geometric projectivity and algebraic homography is supported by the theorems of

Desargues [102]. Planar projective homography (projectivity) is a mapping H : P2 →
P2 such that the points pi are collinear if and only if H(pi) are collinear (projectivity

preserves lines) [38, 102].

The relation between corresponding views of points on a plane Π (world plane)

in a 3D space, as is illustrated in Fig. 3.5, can be modeled by a planar homography
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Segmentation results of a mannequin head image. (a) Prior image (man-
nequin head). (b) The image to be segmented. The mannequin head is rotated,
translated and partly occluded. The initial contour is shown. (c) Successful seg-
mentation using the six-parameter algorithm. (d) The generalized cone based on the
prior contour of (a). Only the positive part of the cone is shown. (e) The final state
of the level-set function φ. (f) Validation: The dark shape is the prior silhouette,
transformed according to the recovered transformation parameters. Shown red is the
final contour, as in (c).

induced by the plane. An explicit expression for the induced homography can be

derived as follows: Let p and p′ be two views of a world point P ∈ Π, in two camera

frames f and f ′ respectively. Let x, x′ and X be their corresponding homogeneous

coordinates. As in subsection 3.3.1, M and M ′ are the projection matrices of the

respective cameras, where M = K[ I | 0 ]. However, since the cameras generally

do not have a common center, M ′ = K ′[ R | t ], where t is the relative translation

between the cameras. Thus, x = K[ I | 0 ]X and x′ = K ′[ R | t ]X.

Let n be the unit normal vector to the plane Π, and let d > 0 denote the distance

of Π from the optical center of the first camera. The linear transformation from x to
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Figure 3.5: The homography induced by a plane. The ray that intersects the first
image plane at a point p meets the world plane Π at a point P . The point P is
projected to a point p′ in the second image plane. The mapping from p to p′ is the
homography, denoted by H, induced by the plane Π. Illustrated after [38]. In this
research, the corresponding points p and p′ are on corresponding planar contours.

x′ can be expressed as

x′ = K ′
(

R +
1

d
tnT

)
K−1x = Hx . (3.16)

Using the same assumptions as in subsection 3.3.1, we set K and K ′ to the identity

matrix I. Thus, the planar homography matrix takes the form

H = R +
1

d
tnT . (3.17)

A detailed derivation can be found in [29, 38, 63]. The matrix H is determined by

the translation and rotation between the two cameras {R, t}, and by the structure

parameters {n, d} of the world plane Π. Note that only the ratio t/d can be recovered

from H. We proceed to show how the structure of the homography can be used to

recover the relation between the camera frames and thus between the respective shape
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contours.

3.4.2 Implicit recovery of the homography

A nonsingular homography between two image planes f and f ′ is determined (up to

a scale factor) by four pairs of corresponding points p ∈ f and p′ ∈ f ′, with no triplet

of points in either plane being collinear. Consider the homography matrix H,

H =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 ∈ R3×3 (3.18)

and let x = (x, y, 1) and x′ = (x′, y′, 1) be the homogeneous representations of the

points p and p′, such that x′ = Hx. The eight unknowns of H (the ratios of its nine

entries) can be recovered by solving at least four pairs of equations of the form:

x′ =
h11x + h12y + h13

h31x + h32y + h33

, y′ =
h21x + h22y + h23

h31x + h32y + h33

(3.19)

Classic approaches recover H by solving an over-determined set of equations

like (3.19). The translation and rotation (R, t) between the image planes, and the

scene structure (n, d), are recovered by decomposition of the known homography

matrix (see [29, 38, 63] and references therein). In contrast, our novel approach cal-

culates the homography directly in its explicit form (3.17). Rather than relying on

point correspondence, we match two corresponding contours of the shape of interest

using calculus of variations. Note that since the recovery of the homography and the

segmentation process are simultaneous, only the reference shape is known in advance.

The prior shape is registered to the shape being segmented as part of its detection

and extraction.

3.4.3 Explicit recovery of the homography

We now use the explicit formulation of the homography (3.17) to reformulate equa-

tion (3.19). Consider first the special case in which the world plane and the first

image plane coincide, and d is set to 1. In this case, the normal to the world plane, n
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is (0, 0, 1). Substituting d and n in (3.17), we obtain the entries of the homography

matrix H: h13 = R13 + tx, h23 = R23 + ty, h33 = R33 + tz and hij = Rij otherwise.

Generally, the world plane is not perpendicular to the optical axis of the first

camera, thus n 6= (0, 0, 1). As before, we represent n using the coordinate system of

the first camera. The unit vector n is obtained by first rotating the vector (0, 0, 1)

by an angle ξ around the y-axis and then by an angle ψ around the x-axis. Hence,

n = (− sin ξ, sin ψ cos ξ, cos ψ cos ξ). Substituting R, t and n in (3.17), we obtain the

components of the homography matrix H:

h11 = cos β cos γ − tx
d

sin ξ

h12 = cos β sin γ + tx
d

sin ψ cos ξ

h13 = − sin β + tx
d

cos ψ cos ξ

h21 = sin α sin β cos γ − cos α sin γ − ty
d

sin ξ

h22 = sin α sin β sin γ + cos α cos γ + ty
d

sin ψ cos ξ

h23 = sin α cos β + ty
d

cos ψ cos ξ

h31 = cos α sin β cos γ + sin α sin γ − tz
d

sin ξ

h32 = cos α sin β sin γ − sin α sin γ + tz
d

sin ψ cos ξ

h33 = cos α cos β + tz
d

cos ψ cos ξ

(3.20)

Substituting the entries of H in (3.19), one can explicitly relate shape points between

the two views. We will use the calculus of variations to relate the shape contours and

recover the translation, rotation and structure parameters.

3.5 Objective functional

3.5.1 Representation of the prior shape

The generalized cone representation of the prior shape, discussed in section 3.3, is in-

adequate when the shape contour is seen from two different view points and the world

plane is in general position. Furthermore, zero-crossing the transformed generalized

cone H(T (φ̃)), as described in 3.3.3, requires T (φ̃) to be single-valued. This restricts

the group of admissible shape contours and the range of allowable transformations.

We therefore present an alternative representation of the prior shape that can be
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applied to general planar shapes.

Consider a prior image f : Ω → R+ with labeled object and background regions

Ω+ and Ω− respectively. The prior shape is represented by a function φ̃ ∈ R3 :

φ̃(x, y) =





1 f(x, y) ∈ Ω+

0 f(x, y) ∈ Ω−
(3.21)

Let T : (φ̃(x, y), x, y) → (φ̃′(x′, y′), x′, y′) denote the projective transformation,

that maps a point (x, y) and its φ̃ value to a (projectively) equivalent point (x′, y′),

with φ̃′(x′, y′) = φ̃(x, y). Thus, the binary function φ̃′(x′, y′) is obtained from φ̃(x, y)

by coordinate transformation.

Expressions for x′ and y′ are obtained by substituting the explicit entries for the

homography matrix (3.20) in (3.19). For example, when ξ = ψ = 0 and d = 1 the

expressions are:

x′=
cβcγx+cβsγy−sβ+tx

(cαsβcγ+sαsγ) x+(cαsβsγ−sαcγ) y+cαcβ+tz
(3.22)

y′=
(sαsβcγ−cαsγ) x+(sαsβsγ +cαcγ) y+sαcβ+ty
(cαsβcγ+sαsγ) x+(cαsβsγ−sαcγ) y+cαcβ+tz

(3.23)

The representation (3.21) of the shape prior is simpler than that using the generalized

cone (section 3.3), but leads to complex expressions for the transformed coordinates

x′ and y′. For example, the coordinates given in Eqs. (3.22 - 3.23) are the quotients

of the corresponding expressions in (3.15). In the proposed algorithm, at each time

step one re-evaluates the homography matrix entries (3.20), based on the estimated

transformation parameters. The coordinate transformation T is applied to the rep-

resentation φ̃ of the prior shape. The transformed representation T (φ̃(x, y), x, y) is

substituted in the gradient descent equation for φ (3.12).

3.5.2 Recovery of the transformation

In order to evolve the level set function φ according to (3.12), one has to simul-

taneously recover the transformation T (φ̃, x, y) of the prior level-set function. The

transformation parameters (α, β, γ, tx/d, ty/d, tz/d, ψ and ξ) are evaluated via
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the gradient descent equations obtained by minimizing the energy functional (3.11)

with respect to each of them. The general gradient descent equation for each of the

transformation parameters (denoted here by η) is of the form:

∂η

∂t
= 2µ

∫

Ω

δε(T (φ̃))
(
Hε(φ)−Hε(TP (φ̃))

) ∂TP (φ̃, η)

∂η
dx (3.24)

where

∂TP (φ̃, η)

∂η
=

∂TP (φ̃)

∂x

(
∂x

∂x′
∂x′

∂η
+

∂x

∂y′
∂y′

∂η

)

+
∂TP (φ̃)

∂y

(
∂y

∂x′
∂x′

∂η
+

∂y

∂y′
∂y′

∂η

)
(3.25)

The partial derivatives ∂T (φ̃)/∂x and ∂T (φ̃)/∂y are computed numerically using

the finite difference method. The derivatives ∂x′/∂η and ∂y′/∂η with respect to

each transformation parameter η have been derived analytically. From the implicit

function theorem we obtain

∂x

∂x′
=

∂y′
∂y

∂y′
∂y

∂x′
∂x
− ∂y′

∂x
∂x′
∂y

∂x

∂y′
=

∂x′
∂y

∂y′
∂x

∂x′
∂y
− ∂y′

∂y
∂x′
∂x

∂y

∂x′
=

∂y′
∂x

∂y′
∂x

∂x′
∂y
− ∂x′

∂x
∂y′
∂y

∂y

∂y′
=

∂x′
∂x

∂y′
∂y

∂x′
∂x
− ∂y′

∂x
∂x′
∂y

(3.26)

Finally, the equations for ∂x′
∂x

, ∂x′
∂y

,∂y′
∂x

,∂y′
∂y

are evaluated by differentiating the ex-

pressions (3.22 - 3.23) for x′ and y′ with respect to x and y.

3.5.3 The eight-parameter algorithm

Algorithm

We summarize the proposed algorithm assuming the following setup. The inputs are

two image frames f and f ′ of the same object, taken with identical cameras, but from
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different viewing positions. The segmentation of the reference object in f is known

and its contour is assumed to be approximately planar. The segmented reference

object is used to construct the prior shape representation φ̃ according to (3.21).

1. Choose some initial level-set function φ, for example a right circular cone. Its

zero level-set is the initial segmenting contour.

2. Set initial values (e.g. zero) for the transformation parameters α, β, γ, tx, ty,tz,ξ

and ψ. If d is unknown, set d = 1.

3. Compute the average gray level values of the current object and background

pixels, u+ and u−, using (3.4). Recall that the gray level function of the image

frame f ′ is I.

4. Apply a coordinate transformation to the prior shape representation φ̃ (substi-

tute (3.20) in (3.19)) with the current estimate of the transformation parame-

ters.

5. Update φ using the gradient descent equation (3.12).

6. Update the transformation parameters α, β, γ, tx, ty, tz, ψ and ξ as explained

in 3.5.4.

7. Repeat steps 3-6 until convergence.

The segmentation and registration steps are interleaved, thus realizing the power of

the prior-based segmentation approach. Note that the algorithm directly recovers the

transformation parameters, thus the cumbersome task of decomposing the homogra-

phy matrix is avoided [29, 38, 63].

3.5.4 Optimization

Global optimization problems are common in computer vision. Here, the cost func-

tional (3.11) may have several local minima with respect to the parameters and the

evolving level set function φ. Direct update of the parameters via their the deriva-

tives (3.24) may lead to an undesired local minimum, as exemplified in Fig. 3.6.
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It is known [109] that the global minimum of a general function (or functional)

above a continuous domain cannot be found in finite time. Nevertheless, global

optimization strategies can be successfully applied to well-behaved functions. In step 6

of the algorithm, the transformation parameters are determined by multidimensional

minimization, using the Nelder–Mead downhill simplex algorithm [71] followed by the

gradient based Quasi-Newton method [14]. The direct search method of Nelder-Mead

is based on evaluating a function at the vertices of a simplex, then iteratively shrinking

the simplex as better points are found until some desired bound is obtained. The nine

eight-dimensional vertices are randomly initialized within the limits of the parameters.

The outcome of the Nelder-Mead algorithm is used as the starting point for Quasi-

Newton minimization employing the partial derivatives (3.24) for fine tuning of the

search results. The simplex algorithm works, in our examples, moderately well. In

most cases, the globally minimal cost (corresponding to shape overlap) was identical

to the result of quasi-Newton search from the zero starting point. The Quasi-Newton

algorithm has a quadratic rate of convergence, but when applied by itself finds the

local minimum in the vicinity of its initial point.

The stability of the resulting shape with respect to small errors in the minimizing

transformation parameters was examined numerically on several images and transfor-

mation examples. The value of the shape term in the functional is taken as a measure

for the shape variation. It was found that the minimizing shape varies smoothly with

the change in the transformation parameters. The results differ slightly from image

to image. In Fig. 3.7 we depict the results of varying one parameter while keeping

the seven others fixed in the ground truth. The degree of stability is defined by the

Hessian of the shape term at that point. Few parameters are more sensitive to such

a variation. For a better understanding of the stability the correlations (or higher

order derivatives) should be calculated. This is under current study.

3.6 Experimental results

The algorithm developed in this chapter is capable of prior-based segmentation and

shape registration in the presence of perspective distortion. We demonstrate its oper-

ation on a variety of examples. In each example, we show the input image (the image
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(a) (b)

Figure 3.6: Failed segmenation and registration due to onvergence to a local minimum.
(a) A wrong segmenting contour (red), drawn on the input image. (b) The same
contour, drawn on the incorrectly transformed prior shape. To avoid convergence
to an incorrect local minimum, we use the Nelder–Mead downhill simplex algorithm
followed by the gradient based Quasi-Newton minimization.

Figure 3.7: The shape dissimilarity measure (Eq. 3.10) as a function of each of the
transformation parameters while keeping the seven others fixed in the ground truth.
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to segment), and the reference image, from which the prior-shape was obtained. In

addition to the prior-based segmentation results, we illustrate the mismatch between

the input image and the reference image, and verify the transformation parameters

estimated by the algorithm. In all the experiments we set dt = 0.1, ε = 1 and d = 1.

The contributions of each term in the gradient descent equation of φ (3.12) are nor-

malized to [−1, 1], thus ν and µ are set to 1. Modifying the weight of the prior term is

done by normalizing the term to [−µ, µ] with µ > 0. Examples for such modifications

are shown in Fig. 3.10f-i. In all the examined examples the number of iterations4

needed for convergence was between 50 and 100. The reader is also referred to the

web page [82] which contains video clips that visually demonstrate the convergence of

the segmentation processes for the examples shown in Fig. 3.9, Fig. 3.10 and Fig. 3.13.

We start by presenting two synthetic examples (Fig. 3.8 and Fig. 3.9) that allow

comparison with the ground truth, and proceed to show segmentation of various real

images. The first example (Fig. 3.8 and Table 3.1) demonstrates successful segmen-

tation and registration for a wide range of projective transformations between a prior

shape, shown in Fig. 3.8a and its different appearances, presented in Figs. 3.8b-f. The

recovered transformation parameters are compared with the true ones in Table 3.1.

Without the prior shape term, the final contour (red) may either incorrectly segment

the white objects (as in Fig 3.8g) or the black unconnected object (as in Fig 3.8h),

depending on the initial contour. When the prior shape term is over-stressed, the

final segmenting contour ignores the actual image data (Fig 3.8i). This figure also

displays the significant mismatch between the prior shape and the shape to segment.

Consider next the synthetic reference image shown in Fig. 3.9a, that contains

several components of different sizes and gray levels. The prior shape was obtained

by thresholding. The image to segment is shown in Fig. 3.9b, together with the initial

contour. The input image is a noisy5, transformed and corrupted version of the image

in Fig. 3.9a. Successful segmentation is demonstrated in Fig. 3.9c. The recovered

transformation parameters are validated by comparison to the true transformation

parameters in Table 3.2. The misalignment between the image to segment and the

4Repetitions of steps 3-6 in the eight parameter algorithm.
5Zero-mean Gaussian noise with STD equal to 14% of the grey-level dynamic range.
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Transformation α β γ tx ty tz ψ ξ
parameter

Fig 3.8c True 0.2000 −0.2000 −15.000 -5.00 5.00 0.100 0.1000 −0.2000

Recovered 0.2120 −0.2140 −14.450 -5.09 4.66 0.098 0.1230 −0.2690

Fig 3.8d True 0.2000 0.1000 20.000 -10.00 10.00 -0.050 −0.5000 −0.5000

Recovered 0.1970 0.1040 20.680 -9.82 9.91 -0.040 −0.4720 −0.4950

Fig 3.8e True −0.3000 −0.3000 −50.000 -10.00 10.00 0.100 0.7000 0.7000

Recovered −0.3020 −0.3000 −49.740 −10.19 10.00 0.111 0.7180 0.6780

Fig 3.8f True −0.3000 −0.3000 60.000 -10.00 15.00 0.300 −0.3000 0.7000

Recovered −0.2990 −0.3090 60.210 -10.16 14.96 0.309 −0.2810 0.7010

Table 3.1: A comparison of the recovered and true transformation parameters, for
the examples shown in Fig. 3.8

reference image is shown in Fig. 3.9d. Without using the prior shape, the input image

is difficult to segment, see Fig. 3.9e.

Real images are used in all other examples, Figs. 3.10-3.13. Consider the two views

of the toy elephant shown in Figs. 3.10a-b. As seen in Fig. 3.10c, the segmenting

contour precisely tracks the outline of the elephant, and recovers the missing part of

its trunk. This segmenting contour is the zero level-set of the final evolving function

φ shown in Fig. 3.10d. The accuracy of the recovered transformation is visually

verified in Fig. 3.10e. To demonstrate the influence of the prior shape weight on the

final segmentation, we have conducted several experiments with various values of µ,

shown in Figs. 3.10f-i. In Fig. 3.10f, the prior term is over-stressed (µ À 1) thus the

data is ignored and the transformation between the prior and the image to segment

is not recovered. Note the significant misalignment between the prior shape (red)

and the input image. Fig. 3.10g shows segmentation without prior (µ = 0). When

the weight of the shape term is low, as demonstrated in Fig. 3.10h (µ = 0.5) and

in Fig. 3.10i (µ = 0.8), the final segmenting contour occupies the gap between the

object boundaries and the transformed prior. Further stressing the contour length

term (ν > 1) a result similar to Fig. 3.10g is obtained. We compared the homography

matrix generated from the estimated transformation parameters with that obtained

using 13 manually selected corresponding point pairs, see Table 3.3. The comparison

has been done for the implicit homography parameters that were recovered directly

(row 2) and those that were computed from the explicit homography matrix entries
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according to Eq. 3.20 (row 3). The values of the parameters recovered assuming

similarity transformation (Fig. 3.1a) and affine transformation (Fig. 3.1b) are reported

in rows 4-5.

Transformation parameter α β γ tx ty tz ψ ξ

True values 0.0750 0.0750 7.50 -10.0 10.0 -0.1 0.0750 0.150

Recovered Values 0.0690 0.0750 7.40 -10.0 9.6 -0.1 0.0860 0.140

Table 3.2: A comparison of the recovered and true transformation parameters, for
the example shown in Fig. 3.9.

Homography matrix entry h11 h12 h13 h21 h22 h23 h31 h32

Point correspondence 0.91 0.28 3.2 -0.31 0.71 34.05 -0.0003 0.0019
Proposed algorithm, 0.92 0.27 2.88 -0.29 0.70 32.7 -0.0003 0.0017
implicit homography
Proposed algorithm, 0.92 0.27 2.80 -0.30 0.70 33.35 -0.0003 0.0018
explicit homography
Similarity approximation 0.88 0.37 1.81 -0.37 0.88 35.5 0 0
Affine approximation 0.92 0.30 0.09 -0.37 0.78 31.01 0 0

Table 3.3: A comparison of the homography matrix entries obtained using the pro-
posed algorithm and via manually selected corresponding point pairs, for Fig. 3.10.
The last two rows of the table display the transformation parameters obtained assum-
ing similarity and affine transformations respectively. These values correspond to the
registration results shown in Fig. 3.1b-c. Note, that not all the similarity parameters
are independent.

Fig. 3.11 demonstrates successful prior-based segmentation and registration of the

scissors despite the holes and the specular reflection. This is a challenging example,

since the overlap between the reference image and the image to segment is small, and

localized in the over-exposed part of the image. In Figs. 3.12c,g, the bottle-opener is

accurately segmented regardless of the significant projective distortion and the over-

exposure at the bottom-right part of the opener. Note the difference in the grey-level

distribution between the two views. Figs. 3.12h-i show registration of the prior contour

to the given image, assuming similarity and affine transformations respectively. The

similarity and affine approximations recover the rotation in the image plane, but

fail to capture the perspective deformation. The apparent mismatch inhibits the
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segmentation process and prohibits accurate reconstruction of the missing parts.

Finally, Figs. 3.13a-b are a day and night satellite views of Europe respectively.

The images were adapted from NASA:earthobservatory.nasa.gov. Successful segmen-

tation is demonstrated in Fig. 3.13c. The coast line of the continent and the islands

are precisely extracted, despite the spatial brightness variations. The accuracy of

the recovered transformation is visually verified in Fig. 3.13d. Note the significant

mismatch, Fig. 3.13e, between the two views. Without using the prior shape, seg-

mentation of Fig. 3.13b is difficult. As seen in Fig. 3.13f, parts of Scandinavia and

the eastern Adriatic shore are incorrectly segmented6.

3.7 Concluding remarks

Given an image and a prior shape, segmentation and registration can be viewed as two

aspects of a single underlying problem. The essence of the method proposed in this

chapter is concurrent segmentation and registration, as mutually supporting processes

within a unified variational framework. The keys to the success is the introduction of

a shape similarity measure that enables the incorporation of the homography formula-

tion within the objective functional. Explicit encoding of a geometric transformation

with such a high descriptive power allowed to break away from the common statistical

representation of transformations in prior-based segmentation.

The ability to precisely extract the actual object contour based on the image data

and its expected shape is critical in many applications. A robot manipulator guided

by the segmentation of Fig. 3.10g, for example, might break the elephant trunk or

attempt to pierce through its specular reflections, mistakenly interpreted as holes. In

this sense, segmentation that is based on Fig. 3.10c is preferable.

The Chan-Vese two-phase segmentation model, currently employed in our scheme,

requires the average grey-levels of the foreground and background to be distinct. Nev-

ertheless, as seen in the bottle opener, scissors and Europe examples (Figs. 3.11-3.13),

the use of the shape prior allows to substantially relax the homogeneity requirements.

The suggested method is modular in the sense that the underlying level-set segmen-

6A similar segmentation result (no prior), showing similar difficulties, appeared in [11], Fig. 11.
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tation model can be upgraded. For example, it will be possible to accommodate

cluttered background by using the Vese-Chan multi-phase segmentation model [119].

Expressing the planar-projective transformation within the energy func-

tional (3.11) in terms of relative camera-object motion (R, t) and plane structure

(n, d) rather than via the homography matrix is a considerable shortcut toward the

recovery of these parameters. The cumbersome task of decomposing the homography

matrix [29, 38, 63] is avoided. Also, note that reference images are often taken in

controlled conditions. If the prior image plane is perpendicular to the optical axis,

the search for the eight homography parameters can be reduced to six by setting the

structure parameters (ψ, ξ ) to zero, thus simplifying the registration procedure. For

non-calibrated cameras the homography can be fully recovered in its implicit form

(recovery of h11 . . . h32 instead of α, β etc.). Then only eight parameters are recovered

and the need for decoupling between the internal and external camera parameters does

not arise. The mathematical formulation for the recovery of the (implicit) homogra-

phy parameters is obtained by substituting the expressions (3.19) directly in (3.25)

for η = h11 . . . h32. The homography parameters recovered using this formulation are

shown in Table 3.3, second row.

In principle, the planar projective transformation model requires the observed con-

tour points of the 3D object to be coplanar and to take part in the prior shape outline

as well. In practice, this assumption can be relaxed for moderate transformations.

As seen in the satellite image example (Fig. 3.13), an excellent result is obtained

even though the coastline of Europe is clearly non-planar. The elephant example

(Fig. 3.10) demonstrates successful application of the suggested method despite the

evident violation of the assumption. The geometric model can be extended beyond

planar projective homography to handle non-planar transformations. In a work by

Brox, Rosenhahm and Weickert [6], that followed this research, three dimensional ob-

ject projections were used as priors for segmentation. A comprehensive solution for

general 3D objects is a subject for further study. Another interesting future direction

would be to consider framework where all the components are perspective invariant,

including arc-length, etc, as done for example in the affine invariant active contours

(without shape prior) by Olver et al [73, 74].

In active contour methods that do not employ a prior shape, the selection of the
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initial contour might be crucial for correct segmentation and designation of segments

as object or background. Figs. 3.8f-g demonstrate possible segmentation results ob-

tained without a shape prior, that are initialization dependent. Prior shape knowledge

facilitates the detection of the desired object, reducing the influence of the initializa-

tion on the final result, as demonstrated in the successful segmentation results in

Figs. 3.8b-e.

The suggested approach can be extended to deal with non-rigid objects in two

ways. If the non-rigidity can be modeled in parametric form, as in the case of artic-

ulated objects, the additional parameters could be incorporated within the transfor-

mation model. Otherwise, one may integrate the proposed method with a statistical

scheme based on a training set, e.g., Rousson and Paragios [96]. This would allow to

capture the non-rigidity via the statistical component, and the projective transfor-

mation using the approach that we suggest.

The successful segmentation results and the reliable estimation of the transforma-

tion parameters encourage future research. Potential applications include perspective-

invariant search in image databases, registration and structure recovery in stereo

imaging, and object tracking in video sequences.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Segmentation results of the digit five. (a) Prior shape. (b)-(f) Successful
segmentation results using the prior shape. Note the significant perspective distor-
tions of the shape that simulate quite wide camera view point changes with respect
to (a). A comparison of the recovered parameters with the true ones is shown in
Table 3.1. (g)-(h) Segmentation without prior shape term. The final contour may
either incorrectly segment the white objects (g) or the black disconnected object (h),
depending on the initial contour. (i) The prior shape term is over-stressed. The final
segmenting contour ignores the actual image data. This image also demonstrates the
misalignment between the prior shape (red) and the input image.
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(a) (b) (c)

(d) (e)

Figure 3.9: Segmentation results of a synthetic image. (a) A reference image, con-
taining several components of different sizes and gray levels. The prior shape was
obtained by thresholding. (b) The input image: a noisy, transformed and corrupted
version of (a), with the initial contour (red). (c) Correct segmentation (red). (d) The
unregistered prior shape (red) drawn on the input image. The reference (prior) im-
age and the image to segment are clearly misaligned. (e) Segmentation (red) without
using the prior shape.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10: Segmentation results of a toy elephant image. (a) A reference image
(elephant), from which the prior shape was obtained. (b) The input image. The initial
contour used for the segmentation process is shown (red). (c) Successful segmentation:
the final contour is shown (red). (d) The final form of the evolving level-set function
φ. (e) Verification of the estimated transformation parameters: The final contour as
in (c), drawn on the projectively transformed prior shape according to the recovered
homography. (f)-(i) The suggested method is demonstrated for several values of prior
shape weight (µ). (f) The prior shape is over-stressed (µ À 1) thus the data is
ignored and the transformation between the prior and the image to segment is not
recovered. Note the significant misalignment between the prior contour (red) and the
input image. (g) µ = 0. The prior shape does not effect the segmentation result
. (h)-(i) Low shape term weight (µ < 1). The final segmenting contour occupies
the gap between the object boundaries and the transformed prior contour. Further
stressing the contour length will yield result similar to (g). (h) µ = 0.5 (i) µ = 0.8.
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Segmentation results of the scissors image. (a) A reference image (scis-
sors), from which the prior shape was obtained. (b) The input image, taken from a
different viewpoint and with missing parts due to over-exposure. (c) Successful seg-
mentation. The missing contour parts are accurately completed. (d) Verification of
the estimated transformation parameters: The final contour as in (c), drawn on the
projectively transformed prior shape according to the recovered homography. (e) The
misalignment between the prior shape (red) and the input image. (f) Segmentation
(red) without using the prior shape.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: Segmention results of a bottle opener: (a) A reference image (bottle
opener), from which the prior shape was obtained. (b) The input image, taken from a
different viewpoint and with over-exposure. (c) Successful segmentation. The missing
contour parts are accurately completed. (d) Verification of the estimated transforma-
tion parameters: The final contour as in (c), drawn on the projectively transformed
prior shape according to the recovered homography. (e) The misalignment between
the prior shape (red) and the input image. (f) Segmentation (red) without using the
prior shape. (g) Successful segmentation with wider camera view, using the reference
image (a). (h)-(i) Registration of the prior contour to the given image using (h) simi-
larity approximation and (i) affine approximation. Note the apparent mismatch. The
similarity and the affine approximations cannot capture the perspective distortion.
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Segmentation results of Europe image taken from a satellite. (a) A
reference image of Europe, from which the prior shape was obtained. (b) Input image:
A satellite image of Europe at night. The reference and prior image were adapted
from earthobservatory.nasa.gov. (c) Successful segmentation: the final contour (red)
accurately traces the coast lines. (d) Verification of the estimated transformation
parameters: The final contour as in (c), drawn on the projectively transformed prior
shape according to the recovered homography. (e) The misalignment between the
prior shape (red) and the input image. (f) Segmentation (red) without using the
prior shape. The dark areas in Scandinavia and in the eastern Adriatic shore are
incorrectly segmented.



Chapter 4

Mutual Segmentation

4.1 Background and related works

This chapter addresses the segmentation of an image pair of the same object in

different appearances and poses. We can then redefine segmentation as the task

of extracting the common object in both images. Uncertainty regarding the object

boundaries can be resolved having two instances instead of one. Nevertheless, this

setting provides only an implicit prior. The “double” segmentation problem is thus

far from being trivial.

The proposed framework is useful when explicit prior knowledge is limited or not

available. Instead, two images of the same object are given. Had good segmentation

been possible in either image, it could have supported the segmentation of the other.

However, in the absence of additional information on the object of interest, segmen-

tation of each image by itself is prone to errors. Specifically, background regions can

be mistakenly labeled as foreground (excess) or vice versa (deficiency). The resulting

(possibly erroneous) segmentation of one of the images cannot provide a reliable prior

for the other.

We therefore suggest a coupled segmentation process for both images, in which

the information gained in the evolving segmentation of one image is a dynamic prior

for the other. The segmentation and thus the prior information are refined along the

process. We call this mutually supporting evolution process mutual segmentation.

Recent works, similar in their spirit include, [95], [116] and [124]. In the cosegmen-

60
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tation method of [95], both images are simultaneously partitioned assuming that the

common property of the foreground regions is their color probability density function

(modeled by histograms) which should be also significantly different from the color

distribution of the background. The unsupervised segmentation algorithm presented

in [116], uses the best SIFT matches of Harris-Affine features to extract the common

objects in image pairs. Similarly to [124], we presume that the object instances

resemble in their shapes, thus having the benefit of being specific to the particular

object of interest and insensitive to color and (in most cases) illumination variation.

Yet, while [124] handles images corrupted only by noise, where at least one of them

nearly contains sufficient information to be segmented by itself, we deal with cluttered

images corrupted by noise and occlusions.

The mutual segmentation approach goes beyond the concepts of shape-based seg-

mentation, because a well-defined shape prior is not available and the matching is be-

tween two possibly corrupted and noisy images. The main difficulty resides in labeling

regions where the aligned images do not overlap. Obviously, erroneous foreground-

background classifications spoil the segmentation of both images. Fig. 4.1 exemplifies

labeling ambiguity. The regions pointed by the red arrows could be attributed either

to the boot (according to one of the images) or to the background (according to the

other).

The conflict between two possible interpretations of jointly segmented images has

never been addressed before. Note that when more than two object instances are

available, this ambiguity can be resolved by applying a majority rule [26]. Having

only two images, we favor the image partitioning that minimizes a biased shape

dissimilarity measure between the images. The definition of this biased shape term

is one of the important contributions of the proposed study.

We suggest a framework formutual segmentation of two images of the same ob-

ject, related by projective transformation. Segmentation is carried out concurrently

with registration of the evolving contours. The foundation of the proposed method

is the construction of two level set functions, one for each image. Their evolution

is controlled by the data contained in the associated image together with the shape

information gained in the segmentation process of the other image. The shape in-

formation is embedded in a biased shape dissimilarity measure that accommodates
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either deficient or excess parts in the extracted object shape. This measure is also

invariant to planar projective transformations. The outcomes of the proposed algo-

rithm include segmentation of the object appearances in both images and the recovery

of the homography that aligns them.

The chapter is organized as follows. In the following, we introduce the biased

shape dissimilarity measure which plays a key role in the proposed mutual segmen-

tation algorithm. The embedding of the transformation model within the variational

framework and the minimization of the resulting functional are also considered. The

mutual segmentation algorithm together with the implementation details are pre-

sented in section 4.3. Experimental results are provided in section 4.4. Section 4.5

concludes this chapter.

(a) (b) (c)

Figure 4.1: The inherent labeling ambiguity demonstrated on two boot images. (a-b)
Two instances of a boot. (c) Superposition of the aligned boot images. There is
an inherent labeling ambiguity in aligned image regions that correspond to different
objects. The regions pointed by the red arrows could be attributed either to the boot
(according to one of the images) or to the background (according to the other).

4.2 Mutual segmentation with projectivity

We consider the segmentation of two images, I1 and I2 that depict two imperfect

(occluded, noisy etc.) instances of an object. The segmentation is done by perform-

ing a joint maximum apriori probability (MAP) approximation via an alternating

maximization. Indeed since a reliable prior φ̃ is not available each evolving contour

in its turn is employed as a prior for the other. The two level set functions φ1 and

φ2 are alternately evolved. At even iterations the segmenting level-set is φ = φ1 and
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the prior is given by φ̃ = φ2. At odd iterations φ = φ2 and φ̃ = φ1. The statistical

inference problem takes the form:

P (φ, φ̃, T | I1, I2) ∝ P (I1, I2 | φ, φ̃, T )P (φ | φ̃, T )P (φ̃)P (T ) .

We assume that P (T ) is flat such that no projective transformation is a-priori pre-

ferred. The assumption that the two views are not unrelated is incorporated by initial-

izing T by the identity transformation. The crucial observation is that P (C | C̃, T )

(or equivalently P (φ | φ̃, T )) which is defined via a dissimilarity measure between

curves is not symmetric with respect to the two curves. This is so since P (φ1 | φ2, T )

is not necessarily equal to P (φ2 | φ1, T ). The symmetric shape dissimilarity measure

defined in Eq. (2.27) is thus not suitable for mutually evolving level-set functions.

In the next subsection we present a biased shape dissimilarity term which is more

appropriate.

4.2.1 Biased shape dissimilarity measure

Consider the image pair in Figure 4.2a-b. Both have deficiencies. In Fig. 4.2a the

hoop is absent. In Fig. 4.2b a portion of the creature’s leg was erased. When the

final segmentation of Fig. 4.2a is the prior for the segmentation of Fig. 4.2b and vice

versa, the imperfections of each segmentation spoil the other, as shown in Fig. 4.2e-f.

Note that the left leg is incorrectly segmented in Fig. 4.2e, while the hoop in Fig. 4.2f

is not segmented at all.

The images in Fig. 4.2c-d contain superfluous hoops located in different places.

When each segmentation is the prior for the other, using the unbiased dissimilarity

measure in Eq. (2.27), the contours of the superfluous hoops in Fig. 4.2c-d undesirably

appear in the segmentation shown in Fig. 4.2h,g respectively.

The discrimination between integral object parts (leg, hoop) and other surround-

ing objects (superfluous hoops) raises a fundamental question which extends beyond

the scope of the current work and relates to perceptual organization of images in

general. Given more than two images, this difficulty can be tackled by employing a

majority decision rule to determine the object-background partition. However, for

mutual segmentation of two images, another decision tool or source of information is
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needed. For simplicity, we assume either of the following “world states”:

1. The images to segment have (mostly) deficiencies. Application of this

rule is demonstrated in Fig. 4.2i-j to resolve labeling ambiguities between

Fig. 4.2a and Fig. 4.2b. Thus, for example, the missing part in the leg of

the creature, shown in Fig. 4.2b has been labeled as part of the object.

2. The images to segment have (mostly) excess parts. When this rule

is applied to Fig. 4.2c-d, the superfluous hoops are labeled as background, as

shown in Fig. 4.2k-l.

3. The prior shape is perfect. Examples for the application of this rule are

shown in Fig. 4.2e-h.

Refer again to the dissimilarity measure in Eq. (2.27). The cost functional in-

tegrates the non-overlapping object-background regions in both images indicated by

H(φ) and H(T (φ̃)). This is equivalent to a pointwise exclusive-or (xor) operation

integrated over the image domain. We may thus rewrite the functional as follows:

D(φ, φ̃| T ) =

∫

Ω

[
H(φ)

(
1−H(φ̃T )

)
+ (1−H(φ)) H(φ̃T )

]
dx (4.1)

To simplify the expression we denote T (φ̃) ≡ φ̃T . Note that the expressions (2.27)

and (4.1) are identical, since H(φ) is equal to (H(φ))2, when H(φ) is a strictly binary

function. There are two types of disagreement between the labeling of H(φ) and

H(φ̃T ). The left term in (4.1) does not vanish if there exist image regions labeled as

object by the image data (φ) and labeled as background by the shape prior (φ̃T ). The

right term in (4.1) does not vanish if there exist image regions labeled as background

by the image data and labeled as object by φ̃T . Inserting a weight parameter µ ≥ 0,

the relative contributions of the terms are changed.

EMUTUAL(φ, φ̃, T ) =

∫

Ω

[
µH(φ)

(
1−H(φ̃T )

)
+ (1−H(φ)) H(φ̃T )

]
dx (4.2)

The associated gradient descent equation for φ is then:

φMUTUAL
t = δ(φ)[H(φ̃T )− µ(1−H(φ̃T ))] (4.3)
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Now, if excess parts are assumed, the left penalty term should be dominant, thus

µ > 1. Otherwise, if deficiencies are assumed, the right penalty term should be

dominant and µ < 1.

4.2.2 Projective invariance

The mutual shape term EMUTUAL in (4.2) depends on the transformation T between

the currently evolved level set function φ and the level-set function associated with

the other image φ̃. We assume that T can be modeled by planar projective trans-

formation. Let C(t) and C̃(t) be the two planar active contours associated with the

images I and Ĩ, respectively. Recall that C(t) and C̃(t) are the zero levels of the

level set functions φ(t) and φ̃(t) (respectively) at time t. Let p ∈ C and p′ ∈ C̃

denote corresponding points on C and C̃. Their homogeneous coordinates x and x′

are related by planar projective homography, i.e. x′ = Hx. Recall, from the previous

chapter (Eqs. 3.18 and 3.19) that

x′ =
h11x + h12y + h13

h31x + h32y + h33

, y′ =
h21x + h22y + h23

h31x + h32y + h33

,

where hij are the entries of the homography matrix H. Equivalently we can define

T (φ(x)) ≡ φ(x′) = φ(Hx), where H is a linear transformation applied on the homo-

geneous coordinate of φ. Thus, given φ and φ̃, we would like to infer the homography

H that minimizes the “distance” (4.2) between φ and φ̃T . The eight unknown ratios

of the homography matrix entries, ĥk = hij/h33 where k = 1 . . . 8, are re-calculated

at each iteration for the currently updated φ and φ̃. The PDEs for ĥk are obtained

by differentiating (4.2) with respect to each.

∂ĥk

∂t
=

∫

Ω

δ(T (φ̃)) [(1−H(φ))− µH(φ)]
∂T (φ̃)

∂ĥk

dx (4.4)

Derivation of ∂T (φ̃)

∂ĥk
can be done as in the previous chapter, subsection 3.5.2.

At each iteration, the level set functions of the image pair are evolved alternately

with the recovery of the transformation that aligns them. In subsection 4.3.1 we

discuss further aspects of this process.
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4.2.3 Unified cost functional

A unified cost functional based on the data of the images to segment, on general

assumptions with respect to properties of natural images, and on the segmentation

curves both images takes the following form:

E(φ) = WRBERB(φ) + W LENELEN(φ) + WGACEGAC(φ) + WEAEEA(φ)

+ WMUTUALEMUTUAL(φ),
(4.5)

with the equations ( 2.9, 2.19, 2.21, 2.17, 4.2).

Note that the smoothness term ELEN (eq. 2.19) is contained in the GAC

term (eq.2.21) as discussed in subsection 2.1.5. It however appears in the complete

energy functional to enable flexibility in the functional construction, in particular

when the GAC term should be ignored while the smoothness term is most desirable.

Refer for example for Fig. 4.3. Practically either of the weights WGAC or W LEN is set

to zero. The evolution of the level-set functions φ in either of the images, is deter-

mined at each iteration by φ(t + ∆t) = φ(t) + φt∆t. The associated gradient descent

equations φt are derived using the first variation of the functional (4.5)

φt = WRBφRB
t + W LENφLEN

t + WGACφGAC
t + WEAφEA

t + WMUTUALφMUTUAL
t , (4.6)

The determination of WTERM is discussed in section 2.2.

4.3 Implementation

The essence of the proposed method is the simultaneous evolution of two level-set

functions. Each evolves on its corresponding image and is controlled by the data of

the associated image and by the level-set function associated with the other image.

The planar projective transformation between these two level-set function is updated

at each iteration. The algorithm is quite robust to the selection of initial level-set

function φ0(x). The only limitation is that image regions labeled as foreground in

the first iteration, i.e ω0 = {x | φ0(x) ≥ 0}, will contain a significant portion of the

object to be segmented, such that the calculated image features will approximately



CHAPTER 4. MUTUAL SEGMENTATION 67

characterize the object region. Formally, we assume that G+(I(ω0)) ≈ G+(I(ω̂)),

where ω̂ is the actual object region in the image. When there exists an estimate of

the average gray levels of either the foreground or the background image regions, this

restriction can be eliminated.

We run the algorithm until the following stopping condition is met:

max(d(φ1), d(φ2)) < s

where s is a predefined threshold and

d(φi) =
∑
x∈Ω

|H(φt+∆t
i (x))−H(φt

i(x))| i = 1, 2.

Here, φt+∆t
i (x) is the i-est level set function, at time t + ∆t.

4.3.1 Recovery of the transformation parameters

Minimizing the cost functional (4.2) with respect to the eight unknown ratios of the

homography matrix entries is a complicated computational task. Direct update of the

parameters via their the derivatives (4.4) may lead to an undesired local minimum as

discussed in subsection 3.5.4. Here we suggest a slight modification to the optimiza-

tion process used in section 3.5 We thus suggest to perform a rough search in the 8

dimensional parameter space working on a coarse to fine set of grids before applying

the gradient based Quasi-Newton method [14]. The former search, done only once,

significantly reduces the search space, constraining it to the region of attraction of

the global minimum. The gradient based algorithm, applied in every iteration, tunes

of the search result based on the updated level-set functions. Further discussion on

the application of the Quasi-Newton optimization and its significance for the recovery

of the transformation parameters can be found in subsection 3.5.4.

Since the registration of the evolved level-set functions toward each other is done

independently, the mean error (or max error) between the entries of the matricesH1→2

and H−1
2→1 (or H2→1 and H−1

1→2) could be used as a criterion for obtaining globally

optimal of the transformation parameters. Here we assume that the probability of

achieving a minimum, which is not a global one, that satisfies H1→2 ≈ H−1
2→1 is small.
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Table 4.1 and Table 4.2 present the estimated errors in the recovered homographies

based on this comparison. The exact formalism of the error estimate is discussed in

Section 4.4.

4.3.2 Algorithm

We summarize the proposed algorithm assuming the following setup. The input

is two images I1 and I2 of the same object, taken from different viewpoints. The

object contours are approximately coplanar. Two level-set functions φi, i = 1, 2 that

correspond to images Ii are alternately evolved, based on the data of the corresponding

image and the other level-set function.

1. Choose initial level-set functions φi, i = 1, 2, for example, standard circular (or

elliptic) cones. The intersections of the initial level-sets with the corresponding

image domains form the initial contours.

2. The homography matrices H1→2 and H2→1 are initialized to the identity matri-

ces.

3. For each image Ii, compute the values u+ and u− using Eq. (2.7), based on

the current object-background partition, defined by the corresponding level-set

function.

4. At even iterations evolve the level-set function φ = φ1 using the other level-set

function φ̃ = φ2 as a prior. At odd iterations evolve the level-set function φ = φ2

using the other level-set function φ̃ = φ1 as a prior.

5. Apply the corresponding projective transformation on the instantaneous prior

φ̃ using Eq. (3.19) with the parameters estimated in the preceding time step.

6. Update φ using the gradient descent equation (4.6).

7. Update the transformation parameters hk using the derivatives (4.4). The re-

lation H1→2 = H−1
2→1 can be used to speed up (or enhance) the recovery of the

transformation parameters.
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8. Repeat steps 3-7 until convergence. A convergence criterion is stated in Sec-

tion 4.3.

4.4 Experiments

Fig. ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 ĥ7 ĥ8

H1→2 0.858 0.406 -12.12 -0.298 0.964 -27.93 -0.0002 -0.0009
4.2 H−1

2→1 0.868 0.408 -12.11 -0.302 0.969 -27.90 -0.0001 -0.0009

Err(ĥi) 0.0058 0.0025 0.0004 0.0067 0.0026 0.0005 0.3333 0

H1→2 1.0502 0.1496 0.67 -0.1271 0.9857 11.41 -0.0001 0.0008
4.3 H−1

2→1 1.0573 0.1504 1.2125 -0.1283 1.0027 11.79 -0.0001 0.0007

Err(ĥi) 0.0034 0.0027 0.2882 0.0047 0.0085 0.0164 0 0.0667

H1→2 1.0898 -.1315 11.4 0.1276 1.0277 -11.55 -0.0018 0.0003
4.4 H−1

2→1 0.9921 -0.1289 10.88 0.2303 1.0272 -11.25 -0.0010 0.0018

Err(ĥi) 0.0469 0.0100 0.0233 0.2870 0.0002 0.0132 0.2857 0.7143

H1→2 1.003 -0.1158 8.58 0.0359 0.9188 -0.16 0.0005 -0.0001
4.5 H−1

2→1 1.002 -0.1158 8.61 0.0364 0.9189 -0.12 0.0005 -0.0001

Err(ĥi) 0.0005 0 0.0017 0.0069 0.0001 0.1429 0 0

H1→2 0.9469 0.1461 17.92 -0.2128 1.031 -29.9 -0.0019 -0.0009
4.6 H−1

2→1 0.9503 0.1564 17.97 -0.2240 1.025 -29.6 -0.0018 -0.0007

Err(ĥi) 0.0018 0.0340 0.0014 0.0256 0.0029 0.0050 0.0270 0.1250

H1→2 0.9162 0.3374 -12.75 -0.2865 0.9016 8.79 -0.0005 -0.0003
4.7 H−1

2→1 0.9183 0.3396 -12.53 -0.2882 0.9034 8.81 -0.0005 -0.0003

Err(ĥi) 0.0011 0.0032 0.0087 0.0030 0.0010 0.0011 0 0

Table 4.1: Comparison of the entries of the matricesH1→2 andH−1
2→1 obtained through

the registration phase in the mutual segmentation algorithm applied to image pairs
presented in Figs. 4.2-4.7. The error estimate is calculated according to Err(ĥi) =
|ĥi− p̂i|/|ĥi + p̂i|,where ĥi and p̂i are the i-est entries of the normalized matrices H1→2

and H−1
2→1, respectively.

We exemplify the mutual segmentation algorithm on image pairs related by pro-

jective transformations. The input images are shown with the initial and final seg-

menting contours. The mismatch between the respective object views is demonstrated

by superposition of the images. The accuracy of recovered homographies is tested by

a comparison between the H1→2 and H−1
2→1. Table 4.1 exemplifies such comparisons

done on the homographies recovered for the image pairs shown in Figs. 4.2-4.7. The

term Err(ĥi) = |ĥi − p̂i|/|ĥi + p̂i| is our suggested error measure for the recovered
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Fig. No Mean Error
Fig. 4.2 0.0440
Fig. 4.3 0.0488
Fig. 4.4 0.1726
Fig. 4.5 0.019
Fig. 4.6 0.0278
Fig. 4.7 0.0023

Table 4.2: The mean of the errors over the entries of the homography matrices H1→2

that were estimated in each of the experiments. The estimated errors for each entry
of the respective matrices are presented in Table 4.1.

transformation parameter ĥi, where ĥi and p̂i are the i-est entries of the normalized

matrices H1→2 and H−1
2→1, respectively. Table 4.2 presents the mean error for each of

the estimated homography matrices.

In all the experiments we set dt = 0.1 and ε = 1. The weights of the gradient

descent terms (4.6) are adaptively determined as described in section 2.2. Figure 4.3

shows two images of a hand taken from two different view points. The misalignment

between the hand instances is shown in Fig. 4.3e. Successful segmentation of both

images, using the mutual segmentation algorithm with µ < 1, is demonstrated in

Fig. 4.3c-d. Fig. 4.3f-h demonstrate unsuccessful segmentation of each image by

itself. Fig. 4.3g-h display two possible segmentations of the noisy instance of the

hand. In the segmentation shown in Fig. 4.3h the smoothness term, Eq. (2.19), has

been stressed by multiplying its weight W LEN by 2. The segmenting contour is thus

smoother but does not extract precisely the narrow regions between the fingers.

The boot images in Fig. 4.4a-b were mutually segmented using the proposed algo-

rithm, with µ < 1. The delineating contour (shown in Figure 4.4d-e) traces precisely

the boot boundaries while correctly completing the occluded parts. The misalign-

ment between the boot instances is shown in Fig. 4.4c. The necessity of the biased

shape dissimilarity measure is demonstrated in Fig. 4.4f-g. In these figures we used

the unbiased dissimilarity measure (Eq. (2.27) and the evolving segmentation of each

image spoiled the segmentation of the other.

Fig. 4.5 demonstrates mutual segmentation of two images of a license plate with

corrupted digits. Fig. 4.5a-b present the license plate images with the initial contour
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(red). The misalignment between the images is shown in Fig. 4.5c. Assuming excess

parts we set µ > 1. Successful mutual segmentation results are shown in Fig. 4.5d-e.

For a comparison, fig. 4.5f-g display undesired segmentation results obtained when

each image is segmented by itself.

Fig. 4.6 shows the ability of the proposed method to detect the common object,

stop sign, in an image pair despite the clutter. The images have been downloaded

from different web sites (see caption). Note that the poses and surroundings of the

stop signs are different. As in all other examples, the algorithm was tested on gray

level images, thus the color cue is not used. The contours (red) in Fig. 4.6c-d precisely

extract the common object based on its shape. Fig. 4.6e-f present the final level-set

functions.

Mutual segmentation of the chess pieces shown in fig. 4.7 demonstrates the ability

of the algorithm to deal with both clutter and partial occlusions. Note that though

the objects segmented are definitely not planar, the comparisons of the homographies

between the object contours in Table 4.1, show that homography is a reasonable

approximation for the transformation.

4.5 Concluding remarks

We presented a method for concurrent, mutually-supporting segmentation of two

images of the same object, taken from different view points. Having two images

instead of one provides redundancy that is employed by using each instance to guide

the segmentation of the other. Unlike previous methods, the concept of a perfect

shape prior is replaced by information gathered from incomplete instances.

Segmentation is metaphorically similar to cliff climbing. Prior-based segmentation

is analogous to situations where someone climbs first and secures a rope to the cliff.

If this is not possible, the combined effort of at least a duo is needed. The two climb

in turns: at each stage one person holds the cliff and helps the other climb. The main

contribution of this chapter is the formulation of this duo shape term, that enables

solution of the mutual segmentation problem.

Having two object instances is helpful in regions where the aligned images agree,

but there is an inherent ambiguity where they don’t. In this chapter, we address this
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ambiguity via the biased shape dissimilarity measure. Note that if more than two

images are available, the ambiguity can be resolved by majority rule. We consider

this issue in the next chapter that deals with symmetry based segmentation. The

prior shape term of equation 5.26 in sub-subsection 5.5.2 handles similar scenario.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.2: A comparison of the mutual segmentation results using biased and unbi-
ased dissimilarity measures. (a,b) Input images with deficiencies (leg, hoop). (c,d)
Input images with excess parts (extra hoops). (e) Segmentation (red) of the image in
(a) using (b) as a prior. (f) Segmentation of the image in (b) using (a) as a prior. (g)
Segmentation of the image in (c) using (d) as a prior. (h) Segmentation of the image
in (d) using (c) as a prior. (i,j) Mutual segmentation results for images (a) and (b)
respectively. (k,l) Mutual segmentation results for images (c) and (d) respectively.
The images are related by projective transformation. The recovered parameters are
shown and compared in Table 4.1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Segmentation results of the hand images. (a,b) Noisy (a) and corrupted
(b) images of the same object taken from different view points. The initial contours are
drawn in red. (c,d) Successful mutual segmentation results (red). (e) Superposition
of the two images to demonstrate the misalignment. (f- h) Segmentation of each
image by itself. The noisy image (g,h) was segmented twice with different weights of
smoothness term: (g) The contribution of the smoothness term WLEN(t)(φLEN

t ) was
restricted to [−1, 1] (refer to section 2.2 for details). The contour “mistakenly” follows
image gradients that are due to noise. (h) The smoothness term WLEN(t)(φLEN

t ) was
further stressed, i.e. its contributions were multiplied by two. The segmenting contour
(red) is smoother but the gaps between the fingers are not well extracted.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.4: Segmentation results of the boot images.(a,b) Input images with their
initial contours (red). The images are of the same object (boot) taken from different
viewpoints. (c) Superposition of the two images to demonstrate the misalignment.
(f,g) Successful mutual segmentation results (red). (d,e) Segmentation using an un-
biased shape dissimilarity measure, Eq.(2.27). The evolving segmentation of each
image spoiled the other.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.5: Segmentation results of the license plate images. (a)-(b) Input images
with their initial contours (red). (c) Superposition of the two images to demonstrate
the misalignment. (d)-(e) Segmentation of each license plate image by itself using the
Chan-Vese level-set method for segmentation. (f)-(g) Successful mutual segmentation
of license plate images with corrupted digits taken from two different viewpoints.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Segmentation results of the stop sign images. (a, b) Dif-
ferent images of stop signs taken from different viewing positions with
their initial contours (red).(a) Original image courtesy of Erik Henne, URL:
www.erikhenne.indexxxx.com. (b) Original image courtesy of the Friedman archives,
URL: www.friedmanarchives.com/Chicago. (c,d) Successful detection of stop signs
using the proposed mutual segmentation algorithm. (e,f) Final level set functions of
the stop-sign images obtained by using the mutual segmentation algorithm.
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(a) (b)

(c) (d)

Figure 4.7: Segmentation results of the chess images. (a,b) Input images with their
initial contours (red). (c, d) Successful segmentation of chess pieces using the proposed
mutual segmentation algorithm. The final delineating contour overcomes clutter and
occlusions.



Chapter 5

Segmentation with Symmetry

Constraint

5.1 Background and related works

Shape symmetry is a useful visual feature for image understanding [111]. This re-

search employs symmetry for object detection and segmentation. In the presence of

noise, clutter, distortion, shadows, occlusions or assimilation with the background,

segmentation becomes challenging. In these cases, object boundaries do not fully

correspond to edges in the image and may not delimit homogeneous image regions.

Hence, classic region-based and edge based segmentation techniques are not sufficient.

We therefore suggest a novel approach to facilitate segmentation of objects that are

known to be symmetrical, by using their symmetry property as a shape constraint.

The model presented is applicable to objects with either rotational or bilateral (re-

flection) symmetry distorted by projectivity.

The proposed segmentation method partitions the image into foreground and

background domains, where the foreground region is known to be approximately

symmetrical up to planar projective transformation. The boundary of the symmet-

rical region (or object) is inferred by minimizing a cost functional. This functional

imposes the smoothness of the segmenting contour as well as its alignment with the

local maxima of image edges and the homogeneity of the regions it delimits. The

assumed symmetry property of the object to extract provides an essential additional

79
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constraint.

There has been intensive research on symmetry related to human and computer

vision. We mention a few of the classical and of the most recent papers. Most

natural structures are only approximately symmetrical, therefore there is a great

interest, pioneered by the work of [126] and followed by [48], in defining a mea-

sure of symmetry. There is a mass of work on symmetry and symmetry-axis de-

tection [7, 18, 50, 54, 65, 69, 80, 113]. Recovery of 3D structure from symmetry

is explored in [30, 100, 107, 108, 114, 122, 127]. There are a few works that use

symmetry for grouping [103] and segmentation [35, 56, 61, 123]. The majority of

the symmetry-related chapters consider either bilateral symmetry [30, 100, 127] or

rotational symmetry [18, 41, 80, 125]. Some studies are even more specific, for ex-

ample [68] suggests a symmetry measure for bifurcating structures, [44] handles tree

structures and [41, 122] demonstrate the relation between symmetry and perspectivity

on simple geometrical shapes such as rectangles.

The suggested method uncommonly treats the symmetrical object shape as a

single entity and not as a collection of landmarks or feature points. This is accom-

plished by modeling the image by a level-set function, assigning the positive levels to

the object domain. Taking the role of object indicator functions (or labeling func-

tions) level-sets are most adequate for dynamic shape representation. A dissimilarity

measure between objects is defined as a function of the weighted sum of pixels with

contradicting labeling. Moreover, any transformation applied to the image domain

changes, via the coordinate system, the defined level-set function (chapter 3). The

shape of the region bounded by its zero level is transformed correspondingly, as illus-

trated in Fig. 5.1.

We define the concept of symmetrical counterpart in the context of image analysis.

When the imaged object has a bilateral symmetry, the symmetrical counterpart image

is obtained by a vertical (or horizontal) flip of the image domain. When the imaged

object has a rotational symmetry, the symmetrical counterpart image is provided by

a rotation of the image domain. In the same manner we define the symmetrical coun-

terpart of a level-set (or a labeling) function. The symmetry constraint is imposed by

minimizing the dissimilarity measure between the evolving level-set (labeling) func-

tion and its symmetrical counterpart. The proposed segmentation approach is thus
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fundamentally different from other methods that support segmentation by symme-

try [35, 56, 61, 123].

When symmetry is distorted by perspectivity, the detection of the underlying sym-

metry becomes non-trivial, thus complicating symmetry aided segmentation. In this

case, even a perfectly symmetrical image is not identical to its symmetrical counter-

part. We approach this difficulty by performing registration between the symmetrical

counterpart level-set functions. The registration process is justified by showing that

an image of a symmetrical object, distorted by a projective transformation, relates

to its symmetrical counterpart by a planar projective homography. A key result pre-

sented in this manuscript is the structure of this homography, which is determined,

up to well defined limits, by the distorting projective transformation. A significant

gain from this result is the waiving of the potentially obstructive phase of symmetry

axis detection - an essential step in all previous symmetry oriented frameworks.

Figs. 5.2-5.3 illustrate the main idea of the proposed framework. Fig. 5.2a shows

an approximately symmetrical object (its upper-left part is erased) that underwent a

perspective distortion. Fig. 5.2b is a reflection of Fig. 5.2a with respect to the vertical

symmetry axis of the image domain. Note however that this is not the symmetry axis

of the object view, which is unknown. We call Fig. 5.2b the symmetrical counterpart

of Fig. 5.2a. Fig. 5.2a-b can be considered as two views of the same object. Fig. 5.2b

can be aligned to Fig. 5.2a by applying a perspective transformation different from the

counter reflection, as shown in Fig. 5.2c. Superposition of Fig. 5.2a and Fig. 5.2c yields

the complete non-corrupted object view as shown in Fig. 5.2d. In the course of the

iterative segmentation process the symmetrical counterpart of the object delineated

provides a dynamic shape prior and thus facilitates the recovery of the hidden or

vague object boundaries.

Fig. 5.3 demonstrates the detection of symmetrical objects. In Fig. 5.3a only

one of the flowers imaged has rotational symmetry (up to an affine transformation).

The symmetrical counterpart image (Fig. 5.3b) is generated by rotation of the image

domain. Fig. 5.3c shows the superposition of the images displayed in Fig. 5.3a,b.

Fig. 5.3d presents the superposition of the original image (Fig. 5.3a) and its symmet-

rical counterpart aligned to it. Note that the alignment between the two images was

not obtained by the counter rotation but by an affine transformation.
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This chapter contains two fundamental, related contributions. The first is the

use of an intrinsic shape property - symmetry - as a prior for image segmentation.

This is made possible by a group of theoretical results related to symmetry and per-

spectivity which are the essence of the second contribution. Specifically we present

the structure of the homography that relates an image (or a level-set function) to its

symmetrical counterpart. The unknown projective transformation that distorts the

object symmetry can be recovered from this homography under certain conditions.

These conditions are specified, defining the concept of symmetry preserving trans-

formation. We show that the transformation applied to a symmetrical image (or a

labeling function) cannot be recovered from the homography that aligns symmetrical

counterparts if it does not distort the image (or labeling function) symmetry. We

propose a measure for the ‘distance’ between a labeling function and its aligned sym-

metrical counterpart. We call it the symmetry imperfection measure. This measure is

the basis of the symmetry constraint that is incorporated within a unified functional

for segmentation, integrating region-based, edge-based and smoothness constraints.

The suggested segmentation method is demonstrated on various images of approxi-

mately symmetrical objects distorted by planar projective transformation.

This chapter is organized as follows. In the next section (section 5.2) we review

the main concepts of shape representation via level-sets. The mathematical formu-

lation has been already introduced in chapters 2-3. It is represented here from a

different viewpoint to emphasize the importance of this unique shape representation

in the proposed symmetry-based segmentation algorithm. In section 5.3 the concepts

of symmetry and projectivity are reviewed. The main theoretical contribution resides

in subsection 5.3.3 which establishes the key elements of the suggested study. In

particular, the structure of the homography that relates between symmetrical coun-

terpart images is analyzed. In section 5.4, a measure of symmetry imperfection of

approximately symmetrical images, based on that homography, is defined. We use

this measure to construct a symmetry-shape term. Implementation details and fur-

ther implications are presented in section 5.5. Experimental results are provided in

section 5.6. We conclude this chapter in section 5.7.
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(a) (b)

Figure 5.1: Shape transformation. The coordinate transformation applied to the
domain of the object indicator function transforms the represented shape accordingly.

(a) (b) (c) (d)

Figure 5.2: (a) Image of approximately symmetrical object distorted by perspectivity.
(b) The symmetrical counterpart of (a) is the reflection of (a) along the vertical sym-
metry axis of the image domain. (c) The image (b) aligned to (a). (d) Superposition
of the image (a) with the image (c). The corrupted shape is recovered.

5.2 Level sets framework and shape representation

In chapters 1- 2 we have discussed the advantages of the level-set representation. The

implicit contour representation is non-parametric and allows an automatic changes in

the contour topology. These characteristics are also most desirable for the dynamic

representation of the shape of the image region bounded by the zero level - an essential

element of proposed segmentation framework - which is based on shape symmetry.

5.2.1 Notation

Let I denote an image defined on the domain Ω ⊂ R2. We define a closed contour

C ∈ Ω, that partitions the image domain Ω into two disjoint open subsets: ω and

Ω \ ω. Without loss of generality, the image pixels {x | x ∈ ω} will be attributed to
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(a) (b) (c) (d)

Figure 5.3: (a) The image contains an object with rotational symmetry distorted by
affine transformation. (b) The symmetrical counterpart of (a) – Rotation of of the
image plane (a) by 900. (c) Superposition of (a) and (b). (d) Superposition of the
image (a) with the image (b) aligned to (a). The object with rotational symmetry
can be extracted.

the object domain. We use the level-set formulation for an implicit representation of

the evolving boundary C(t)- which is defined as the zero level of a level set function

φ : Ω → R at time t. The heaviside function of φ (defined in 2.3) assigns the positive

levels of the level-set function to the object domain and the negative levels to the

background. We can equivalently define an object indicator function or a labeling

function L : R2 → {0, 1} where,

L(x, t) =





1 x ∈ ω

0 x ∈ Ω \ ω
(5.1)

The binary function L(x, t) is determined by the evolving level-set function at time

t. This function thus embeds the dynamics of the shape bounded by the propa-

gating contour. It also plays an important role in defining shape symmetry, for ex-

ample, if L(x, t) = L(x, y, t) embeds a shape with left-right bilateral symmetry then

L(x, y, t) = L(−x, y, t). In general, transformation of the embedded shape is obtained

by a coordinate transformation H of the image domain i.e. LH(t) = L(x′, t), where

x′ = Hx, as illustrated in Fig. 5.1. This issue will be hereby discussed.

5.2.2 Shape term

The shape of the region bounded by the zero level of the evolving level-set function

is of much importance when a prior shape constraint is incorporated within the cost
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functional. In chapters 3 and 4 the shape term was a dissimilarity measure between

the evolving level-set function and a representation of the prior shape. We showed

there that the challenging part is the alignment process between the prior shape and

the shape evolved in the course of the segmentation. Shape transformations must be

then taken into consideration.

Shape transformations

Recall, (chapter 3) that shape transformation is obtained by a coordinate trans-

formation of the image domain Ω. Let H denote a 3 × 3 matrix that repre-

sents a planar transformation 1. The matrix H operates on homogeneous vectors

X = (x, 1)T = (x, y, 1)T . We define an operator h : Ω → Ω̃, where Ω̃ ∈ P2 is

the projective domain, such that h(x) = X. Let X′ = (X ′, Y ′, b) = HX define

the coordinate transformation of the projective domain Ω̃. The entries of the 2-

vector x′ ∈ Ω are the ratios of the first two coordinates of X′ and the third one,

i.e. x′ = (x′, y′) = (X ′/b, Y ′/b). Equivalently one can use the ‘inverse’ operator

h−1 : Ω̃ → Ω and write h−1(X′) = x′. Transformation of the object indicator function

L(x) by a planar transformation H will be denoted by L◦H ≡ L(Hx), where Hx is a

shorthand to h−1 (H(h(x))). We can think on L as a function defined on R2 where Ω

is the support of the image. This way the operation H maps vectors in R2 to vectors

in R2 and is well defined. Note that the shape of the support may be changed under

the action of the operator/matrix H.

Shape dissimilarity measure

Let L̃ be a binary representation of the prior shape. The segmentation process is

defined by the evolution of the object indicator function L. A shape constraint

takes the form D(L(x), L̃(Hx)) < ε where D is a dissimilarity measure between L(x)

and the aligned prior shape representation L̃(Hx). The matrix H represents that

alignment and is recovered concurrently with the segmentation process.

When only a single image is given, such prior is not available. Nevertheless, if an

object is known to be symmetrical, its replicative form, induced by the symmetry,

1Note that H denotes the transformation while H denotes the Heaviside function.
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can be used. Specifically, we treat the image and its symmetrical counterpart (e.g.

its reflection or rotation) as if they are two different views of the same object. The

instantaneous symmetrical counterpart of the evolving shape provides a dynamic

shape prior. The symmetry dissimilarity measure is based on a theoretical framework

established in section 5.3. Section 5.4 considers the incorporation of the symmetry

constraint within a level-set framework for segmentation.

5.3 Symmetry and projectivity

5.3.1 Symmetry

Symmetry is an intrinsic property of an object. An object is symmetrical with respect

to a given operation if it remains invariant under that operation. In 2D geometry these

operations relate to the basic planar Euclidean isometries: reflection, rotation and

translation. We denote the symmetry operator by S. The operator S is an isometry

that operates on homogeneous vectors X = (x, 1)T = (x, y, 1)T and is represented as

S =

∣∣∣∣∣∣
sR(θ) t

0T 1

∣∣∣∣∣∣
(5.2)

where t is a 2D translation vector, 0 is the null 2D vector, R is a 2 × 2 rotation

matrix and s is the diagonal matrix diag(±1,±1).

Specifically, we consider either of the following transformations:

1. S is translation if t 6= 0 and s = R(θ) = diag(1, 1).

2. S is rotation if t = 0, s = diag(1, 1) and θ 6= 0.

3. S is reflection if t = 0, θ = 0 and s is either diag(−1, 1) for left-right reflection

or diag(1,−1) for up-down reflection.

In the case of reflection, the symmetry operation reverses orientation, otherwise

(translation, rotation and inversion) it is orientation preserving.

The particular case of translational symmetry requires an infinite image domain.

Hence, it is not specifically considered in this manuscript.
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Definition 5.3.1 (Symmetrical image). Let S denote a symmetry operator as defined

in (5.2). The operator S is either reflection or rotation. The image I : Ω → R+ is

symmetrical with respect to S if

I(x) = I(Sx) ≡ I ◦ S (5.3)

The concept of symmetry is intimately related to the notion of invariance. We

say that a vector or a function L is invariant with respect to the transformation (or

operator) S if L is in the kernel of (S − 1) i.e. SL = L . It means in particular

that the respective eigen value of S is 1. Inversely we can call the transformation (or

operator) that has an eigenvalue 1 a symmetry operator and say that L is symmetric

with respect to the operation S if L is invariant to S.

Since we are interested in symmetry in terms of shape and not in terms of gray

levels, we will further consider the object indicator function L : Ω → {0, 1} defined

in subsection 5.2.1. Hereafter, we use the shorthand notation for the coordinate

transformation of the image domain as defined in subsection 5.2.2.

Definition 5.3.2 (Symmetrical counterpart). Let S denote a symmetry operator.

The object indicator function L̂(x) = L◦S(x) = L(Sx) is the symmetrical counterpart

of L(x).

L is symmetrical iff L = L̂.

We claim that the object indicator function of a symmetrical object distorted by

a projective transformation is related to its symmetrical counterpart by projective

transformation different from the defining symmetry. Before we proceed proving this

claim we recall the definition of projective transformation.

5.3.2 Projectivity

This subsection follows the definitions in [38].

Definition 5.3.3. A planar projective transformation (projectivity) is a linear trans-

formation represented by a non-singular 3 × 3 matrix H operating on homogeneous

vectors, x′ = Hx, as in equation 3.18.
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Important specializations of the group formed by projective transformation are

the affine group and the similarity group which is a subgroup of the affine group.

These groups form a hierarchy of transformations. A similarity transformation is

represented by

HSIM =


 κR(θ) t

0T 1


 (5.4)

where R is a 2× 2 rotation (by θ) matrix and κ is an isotropic scaling. When κ = 1,

HSIM is the Euclidean transformation denoted by HE. An affine transformation is

obtained by multiplying the matrix HSIM with

HA =


 K 0

0T 1


 . (5.5)

K is an upper-triangular matrix normalized as DetK = 1. The matrix HP defines

the “essence” of the projective transformation and takes the form:

HP =


 1 0

vT v


 , (5.6)

where 1 is the 2-identity matrix. A projective transformation can be decomposed

into a chain of transformations of a descending (or ascending) hierarchy order,

H = HSIMHAHP =


 A t

vT v


 (5.7)

where v 6= 0 and A = κRK + tvT is a non-singular matrix.

5.3.3 Theoretical results

In this subsection we consider the relation between an image (or object indicator

function) of a symmetrical object distorted by planar projective transformation H
and its symmetrical counterpart. The object indicator function L will be treated as

a binary image and will be called for simplicity - image.

Recall from the previous subsection that a symmetrical image (or labeling func-
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tion) L with respect to a symmetry operator S is invariant to S. We next consider the

invariant of symmetrical image that underwent a planar projective transformation H.

Theorem 5.3.4. Let LH = L(Hx) denote the image obtained from the symmetrical

image L by applying a planar projective transformation H. If L is invariant to S,

i.e. L(x) = L(Sx) = L(S−1x) then LH is invariant to SH where SH = H−1SH ≡
H−1S−1H.

Proof. We need to prove that LH(x) = LH(SHx).

We define y = Hx.

LH(SHx) = LH(H−1SHx) = L(SHx)

= L(Sy) = L(y)

= L(Hx) = LH(x)

(5.8)

Alternatively we can rewrite Eq.(5.8) as follows:

LH(x) = LH(H−1Hx) = L(Hx)

= L(y) = L(Sy)

= L(HH−1Sy) = LH(H−1Sy)

= LH(H−1SHx) = LH(SHx)

(5.9)

he chain of equalities in (5.9) is equivalent to the following sequence of operations:

1. Apply the inverse of the projective (distorting) transformation, H−1 on LH to

generate a symmetrical image L.

2. Apply the symmetry operation S on L, under which it remains invariant.

3. Apply the projective transformation matrix H on L to obtain back the image

LH.

We now use the result obtained in theorem 1 to define the structure of the homography

that aligns symmetrical counterpart images.
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Theorem 5.3.5. Let LH denote the image obtained from the symmetrical image L by

applying a planar projective transformation H. Let L̂H = LH(Sx) ≡ LH◦S denote the

symmetrical counterpart of LH with respect to a symmetry operation S. The image

LH can be obtained from its symmetrical counterpart L̂H by applying transformation

represented by a 3× 3 matrix of the form:

M = S−1H−1SH. (5.10)

Proof. We need to prove that LH(x) = L̂H(Mx), where M = S−1H−1SH.

The image LH is invariant to SH thus LH(x) = LH(SHx). By definition, L̂H(x) =

LH(Sx).

From the above equations and theorem 1, defining y = S−1SHx, we get:

LH(x) = LH(SHx) = LH(SS−1SHx)

= LH(Sy) = L̂H(y)

= L̂H(S−1SHx) = L̂H(S−1H−1SHx)

= L̂H(Mx).

(5.11)

The image LH can be generated from its symmetrical counterpart L̂H either by

applying the inverse of the symmetry operation S or by a projective transformation

M which is different from S−1.

Let MINV denote a 3×3 non-singular matrix such that MINV = H−1S−1HS. MINV

is a projective transformation since HMINV = S−1HS is a projective transformation

according to:

S−1HS = S−1


 A t

vT 1


 S =


 A′ t′

v′T v′


 = H′ (5.12)

where H is scaled such that v = 1.

Thus, M = M−1
INV represents a projective transformation. It is easy to prove that

M 6= S−1, when S is not the identity matrix. Assume to the contrary that there

exists a non-singular H and a symmetry operation S such that M = S−1. Then,

from (5.10), S−1 = S−1H−1SH. Thus, H = SH, which implies that either S is the
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identity matrix or H is singular, in contradiction to the assumptions.

The next theorem gives tighter characterization of M .

Theorem 5.3.6. Let LH denote the image obtained from the symmetrical image

L by applying transformation H. Let M denote the matrix that relates LH to its

symmetrical counterpart L̂H. The matrices M and H belong to the same subgroup of

transformations.

Proof. The proof is divided into several sub-cases. When S is either rotation or trans-

lation, M is the product of Euclidean transformations (S, S−1) and either Euclidean,

similarity or affine transformations (H, H−1). Thus M belongs to the respective sub-

group of transformations. When S = diag(s, 1) is reflection, i.e. s is either (1,−1) or

(−1, 1) the claim can be simply proved by matrix multiplications. Specifically, when

H = HSIM represents a similarity transformation, as defined in (5.4):

M =


 R(2θ) t′

0T 1


 , t′ = κ−1tT [1− diag(s)]R(θ)T (5.13)

When H represents an affine transformation:

H = HA =


 A t

0T 1


 , A =


 a1 a2

a3 a4




M =


 A′ t′

0T 1


 (5.14)

where,

A′ =
1

DetA


 a1a4 + a3a2 2a2a4

2a1a3 a1a4 + a3a2


 , t′ =

1

DetA
tT [1− diag(s)]A.

Next, we argue that H cannot be explicitly and fully recovered from M and S, if

the operation of H (or one of its factors) on a symmetrical image does not distort its

symmetry.
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Definition 5.3.7 (symmetry preserving transformation). Let L be a symmetrical im-

age with respect to S. The projective transformation matrix H is symmetry preserving

if

LH = L(Hx) = L(SHx) (5.15)

Lemma 5.3.8. Let H denote a symmetry preserving transformation with respect to

the symmetry operation S. Then H and S commute, i.e. SH = HS.

Proof. L is symmetrical, i.e. L(x) = L(Sx). Applying the transformation H on L we

obtain: L(Hx) = L(HSx). Since H is symmetry preserving, L(Hx) is symmetrical,

thus L(Hx) = L(SHx). The latter two equations prove the claim.

Theorem 5.3.9. Consider the image LH = L(Hx), where L is a symmetrical image.

Let L̂H = L(SHx) denote its symmetrical counterpart. Let the matrix M satisfy

Eq. (5.10), where L̂H(Mx) = LH(x) . If H can be factorized such that H = HSH̃
and HS denotes a symmetry preserving transformation with respect to S, then H
cannot be recovered from M .

Proof.

M = S−1H−1SH
= S−1(HSH̃)−1SHSH̃ = S−1H̃−1H−1

S SHSH̃
= S−1H̃−1H−1

S HSSH̃ since S and HS commute

= S−1H̃−1SH̃

(5.16)

5.3.4 Examples

The claims above are exemplified for four particular cases. Consider, first, the image

of the symmetrical object and its left-right reflection shown in Fig. 5.4a-b. Suppose

that the image symmetry has been distorted by an Euclidean transformation of the

form:

HE =




cos θ − sin θ tx

sin θ cos θ ty

0 0 1
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Note that the Euclidean transformation is an isometry and thus preserves the object

symmetry. However, it draws the symmetry axis of the object away from the symme-

try axis of the image, rotating it by angle θ and translating it by tx. Fig. 5.4a relates

to its symmetrical counterpart by:

M = S−1H−1
E SHE =




cos 2θ − sin 2θ 2tx cos θ

sin 2θ cos 2θ 2tx sin θ

0 0 1


 ,

where S = (−1, 1, 1). Fig. 5.4a can thus be obtained from Fig. 5.4b by a rotation

with angle 2θ and translation by 2R(θ)[tx, 0]T . Note that any translation parallel to

the symmetry axis (in this case ty) cannot be recovered from M . This expression for

M implies that in the case of pure Euclidean transformation, the deviation of the

object’s symmetry axis from that of the image can be recovered from M . Obviously

M is an Euclidean transformation.

Consider, next the images shown in Fig. 5.4c-d. The object is distorted by a

projective transformation HP :

HP =




1 0 0

0 1 0

v1 v2 1




The relation between the two images can be described by:

M = S−1H−1
P SHP =




1 0 0

0 1 0

2v1 0 1




When v2 6= 0 the object shape is distorted but its symmetry is preserved, thus v2

cannot be recovered from M .

The last example, Fig. 5.6 demonstrates the particular case of translational sym-

metry. The object (line of elephants) is invariant to translation along the x direction,

as long as the image domain is infinite. Fig. 5.6b is obtained by applying projec-
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tive transformation H = HP on Fig. 5.6a. Corresponding pairs of sub-images, for

example the sub-images bordered by the red and the blue dashed lines are symmet-

rical counterparts. Each sub-image can be obtained from the other by a projective

transformation other than a pure translation, tx. Let

S =




1 0 tx

0 1 0

0 0 1


 .

Then,

M =




1 + txv1 + tx
2v1

2 txv2 + tx
2v1v2 t2xv1

0 1 0

−txv1
2 −txv1v2 1− txv1


 .

Handling images with translational symmetry requires infinite image domain. Hence

the discussion on translational invariance is only theoretical.

(a) (b) (c) (d)

Figure 5.4: (a) An image of a symmetrical object transformed by an Euclidean trans-
formation: planar rotation by θ and then translation by t. (b) The symmetrical
counterpart of the image in (a). (c) An image of a symmetrical object distorted by
projective transformation. (d) The symmetrical counterpart of the image in (c).

Finally, consider the object shown in Fig. 5.5. The object’s appearance is invariant

to rotation by nπ/2, where n is an integer. Let S denote rotation by π/2 i.e.

S =




0 −1 0

1 0 0

0 0 1


 .

Fig. 5.5b is obtained by applying the affine transformation H = HSIMHA on Fig. 5.5a.
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Specifically, in this example

H =


 R(θ) 0

0T 1





 K 0

0T 1


 , where K =


 k1 k2

0 1/k1


 .

The scalars k1 and k2 determine the non-isotropic scaling: ratio and orientation.

Fig. 5.5c is the symmetrical counterpart of Fig. 5.5b. It can be also obtained by

applying M−1 on Fig. 5.5b, where M is of the form:

M =




k1
2 k1k2 0

k1k2 1/k1
2 + k2

2 0

0 0 1




Note, that the rotation θ has no effect on M .

(a) (b) (c)

Figure 5.5: (a) Schematic draw of a vane. The vane is symmetrical under rotation by
nπ/4, where n is an integer. (b) The vane (as in (a)) distorted by affine transforma-
tion. (c) The symmetrical counterpart of (b). This image can be generated from (b)
either by clockwise rotation by 900 or by applying a projective transformation which
captures the affine distortion of the vane.

5.4 Symmetry based segmentation

5.4.1 Symmetry imperfection

In the current subsection we formalize the concept of approximately symmetrical

shape. Specifically, two alternative definitions for ε−symmetrical images and sym-

metry imperfection measures are suggested.
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(a) (b)

Figure 5.6: (a) A line of successive elephants. The image is symmetrical under
translation along the x direction if the image domain is extended to infinity. (b) A
perspective distortion of the image in (a). Corresponding pairs of sub-images, for
example the sub-images bordered by the red and the blue dashed lines are symmet-
rical counterparts. Each sub-image can be obtained from the other by a projective
transformation other than a pure translation, tx.

The symmetry imperfection measure is of much importance when segmentation

is constrained by symmetry. Finding the object contour that minimizes this measure

implies that the eventual object shape is imposed to be symmetrical. When symmetry

is distorted by projectivity, defining a measure of symmetry imperfection is much less

trivial. We approach this difficulty relying on the results presented by theorems 1,2

in the previous section. The following measures for symmetry imperfection are based

on a dissimilarity measure between two labeling functions. We denote this measure

by D = D(L1, L2), where D is a function of the contradicting labeling in L1 and L2.

The exact form of D will be discussed in subsection 5.4.3.

Recall that a symmetrical binary image distorted by projective transformation is

invariant to the operator SH as defined in equation (5.8). This is the basis of the first

definition.

Definition 5.4.1 (ε-symmetrical image; Symmetry imperfection (1)). The image Lε

is ε-symmetrical with respect to the symmetry operator S if D = D (Lε, Lε ◦ S) ≤ ε,

where D is a dissimilarity measure (distance function) and ε is a small and positive

scalar. The measure D (Lε, Lε ◦ S) quantifies the symmetry imperfection of Lε. Let

Lε
H denote the image obtained from Lε by applying a planar projective transformation

H. The measure for the symmetry imperfection of the perspectively distorted image

Lε
H is defined by D (Lε

H, Lε
H ◦ SH) , where SH = H−1SH.

Although this definition is natural, it not always applicable, since usually the
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projective transformation H is unknown. We therefore use an alternative equivalent

definition of symmetry imperfection. This alternative measure involves the concept

of the symmetrical counterpart image (see definition 5.3.2) and the homography M

that aligns symmetrical counterpart images.

Definition 5.4.2 (Symmetry imperfection (2)). Let Lε
H be ε-symmetrical image (with

respect to S) distorted by planar projective homography H. We assume that S is

known, but H is unknown. Let L̂ε
H = Lε

H ◦ S denote the symmetrical counterpart of

Lε
H. The distance function D(Lε

H, L̂ε
H ◦M) measures to the symmetry imperfection of

Lε
H.

Lemma 5.4.3. The two definitions are equivalent

Proof. Direct consequence of the identity L̂ε
H ◦M = Lε

H ◦ SH

We assume that M is known or precisely recovered via registration between L̂H

and LH .

In the following subsections we show how M can be recovered during the segmen-

tation process by minimizing the term DH = D(Lε
H, L̂ε

H ◦M) with respect to M . The

recovery of M can be enhanced when H is either Euclidean or affine transformation,

following the result of theorem 3. In that case only 4 or 6 entries of M should be

recovered. The matrix H can be recovered from M up to a symmetry preserving

transformation (theorem 4).

5.4.2 Symmetry constraint

In the previous section the symmetrical counterparts were either images or labeling or

object indicator functions. Using level set formulation, we will now refer to level-sets

and their Heaviside functions, H(φ). Recall that H(φ(t)) is an indicator function of

the estimated object regions in the image at time t.

Let φ̂ : Ω → R denote the symmetrical counterpart of φ with respect to a symmetry

operation S. Specifically, φ̂(x) = φ(Sx) where S is either reflection or rotation.

We assume that S is known. Let M denote the planar projective transformation

that aligns H(φ̂) to H(φ) i.e. H(φ̂) ◦ M = H(φ̂(Mx)) = H(φ̂M). M captures the

deviation of the object symmetry axis from that of the image and the projective
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transformation that distorts its symmetry. Note, however, that this information is

not known in advance. The matrix M is recovered by a registration process held

concurrently with the segmentation, detailed in subsection 5.4.4.

Let D = D(H(φ), H(φ̂M)) denote a dissimilarity measure between the evolving

shape representation and its symmetrical counterpart. Note that if M is correctly

recovered and φ captures a perfectly symmetrical object (up to projectivity) then D
should be zero. D thus quantifies the symmetry imperfection of φ which is not caused

by the projectivity. Whenever this distortion is due to false detection of the object

boundaries (caused by noise, occlusions, clutter, etc.) and not a feature of the object

shape, D defines an adequate symmetry constraint. A possible definition of D is:

D(φ, φ̂ | M) =

∫

Ω

[
H(φ(x))−H(φ̂M)

]2

dx. (5.17)

This measure is identical to the measure suggested in chapter 3 for prior-based seg-

mentation. Nevertheless, since H(φ̂) is identical to H(φ) up to an isometry, it is

subject to the same distortions in its symmetry and thus cannot replace a well de-

fined prior. Hence, a different formulation is needed, to be described in the following

subsection.

5.4.3 Biased shape dissimilarity measure

Consider, for example, the approximately bilateral symmetrical (up to projectivity)

images shown in Fig. 5.7a,d. The objects symmetry is distorted by either deficien-

cies or excess parts. We would like to use the symmetry to overcome these shape

distortions. Nevertheless, incorporating the unbiased shape constraint (according to

Eq. 5.17) in the cost functional for segmentation, results in the undesired segmenta-

tion shown in Fig. 5.7b,e. The symmetrical counterpart of a level-set function φ is as

imperfect as φ. To support a correct evolution of φ by φ̂, we have to account for the

specific type of corruption.

The problem is identical to the one presented in chapter 4. We used then the

observation that an integral over the pointwise exclusive-or (xor) operations between

the respective pixels can replace the sum-square-differences in equation. (5.17). Sim-

ilarly to equation 4.1 in chapter 4, we will rewrite the dissimilarity measure between
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Segmentation results using biased and unbiased dissimilarity measures.
(a, d) Images of symmetrical objects up to a projective transformation. The objects
are distorted either by deficiencies (a) or by excess parts (d). (b, e) Segmentation
(red) of the images in (a) and (d) respectively, using unbiased dissimilarity measure
between φ and its transformed reflection as in Eq. (5.17). Object segmentation is
further spoiled due to the imperfection in its reflection. (c, f) Successful segmentation
(red) using the biased dissimilarity measure as in Eq. (5.19).

the evolving shape and its symmetrical counterpart, as follows:

D(φ, φ̂ | M) =

∫

Ω

[
H(φ)

(
1−H(φ̂M)

)
+ (1−H(φ))H(φ̂M)

]
dx (5.18)

Note that the expressions (5.17) and (5.18) are identical, since H(φ) = (H(φ))2.

There are two types of ‘disagreement’ between the labeling of H(φ) and H(φ̂M).

The first additive term in the right hand side of (5.18) is not zero for image regions

labeled as object by φ and labeled as background by its symmetrical counterpart φ̂.

The second additive term of (5.18) is not zero for image regions labeled as background

by φ and labeled as object by φ̂. We can change the relative contribution of each term

by a relative weight parameter µ 6= 0:

ESYM =
∫

Ω

[
µH(φ)

(
1−H(φ̂M)

)
+ (1−H(φ)) H(φ̂M)

]
dx (5.19)

The associated gradient equation for φ is then:

φSYM
t = δ(φ)[H(φ̂M)− µ(1−H(φ̂M))] (5.20)
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Now, if excess parts are assumed, the left penalty term should be dominant, setting

µ > 1. Otherwise, if deficiencies are assumed, the right penalty term should be

dominant, setting µ < 1. Fig. 5.7c,f show segmentation of symmetrical objects with

either deficiencies or excess parts, incorporating the shape term (5.19) within the

segmentation functional. We used µ = 0.5 and µ = 2 for the segmentation of Fig. 5.7c

and Fig. 5.7f, respectively. In chapter 4 similar dissimilarity measure was used to

quantify the ‘distance’ between the alternately evolving level-set functions of two

different object views.

5.4.4 Recovery of the transformation

In the previous subsection we suggested a biased dissimilarity measure ESYM

(Eq. 5.19) that is based on the shape symmetry. This measure indicates the mis-

alignment between H(φ) and its symmetrical counterpart H(φ̂). We now look for the

optimal alignment matrix M that minimizes ESYM.

Using the notation defined in subsection 5.2.2, we denote the coordinate transfor-

mation M of φ̂(x) as follows:

MH(φ̂(x)) = H(φ̂(x)) ◦M = H(φ̂(Mx)) ≡ H(φ̂M) (5.21)

We assume that the matrix M is a planar projective homography, as defined in

equation (3.18). The eight unknown ratios of its entries m̂k = mij/h33, {i, j} =

{1, 1}, {1, 2}, . . . {3, 2} are recovered through the segmentation process, alternately

with the evolution of the level set function φ. The PDEs for m̂k are obtained by

minimizing (5.19) with respect to each.

∂m̂k

∂t
=

∫

Ω

δ(φ̂M) [(1−H(φ))− µH(φ)]
∂M(φ̂)

∂m̂k

dx (5.22)

where,

∂M(φ̂)

∂m̂k

=
∂M(φ̂)

∂x

(
∂x

∂x′
∂x′

∂m̂k

+
∂x

∂y′
∂y′

∂m̂k

)
+

∂M(φ̂)

∂y

(
∂y

∂x′
∂x′

∂m̂k

+
∂y

∂y′
∂y′

∂m̂k

)
(5.23)

Refer to chapter 3, subsection 3.5.2 for detailed derivation of (5.22).
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5.4.5 Unified segmentation functional

Symmetry-based, edge-based, region-based and smoothness constraints can be inte-

grated to establish a comprehensive cost functional for segmentation:

E(φ) = EBU + W SYMESYM(φ), (5.24)

The cost functional EBU is composed of the low-level image constraints defined in

equation (2.23), where BU stands for bottom-up. The top-down flow of information

is incorporated via the symmetry term, ESYM, defined in equation( 5.19).

The evolution of φ at each time step φ(t + ∆t) = φ(t) + φt is determined by

φt = φBU
t + W SYMφSYM

t , (5.25)

where φBU
t is the gradient descent equation of EBU according to equation (2.24) and

φSYM
t is the gradient descent equation (5.20). The determination of the weights

WTERM is discussed in section 2.2.

5.5 Implementation and further implications

Segmentation is obtained by minimizing a cost functional that incorporates symme-

try as well as region-based, edge-based and smoothness constraints. The minimizing

level-set function is evolved concurrently with the registration of its instantaneous

symmetrical counterpart to it. The symmetrical counterpart is generated by a flip

or rotation of the coordinate system of the propagating level-set function. The evo-

lution of the level-set function is controlled by the constraints imposed by the data

of the associated image and by the its aligned symmetrical counterpart . The planar

projective transformation between the evolving level-set function and its symmetrical

counterpart is updated at each iteration.

5.5.1 Algorithm

We summarize the proposed algorithm for segmentation of a symmetric object dis-

torted by projectivity.
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1. Choose an initial level-set function φ(t = 0) that determines the initial contour

within the image.

2. Set initial values for the transformation parameters m̂k. For example, set M to

the identity matrix.

3. Compute u+ and u− according to (2.7), based on the current contour interior

and exterior, defined by φ(t).

4. Generate the symmetrical counterpart of φ(x), φ̂(x) = φ(Sx). The symmetry

operator S is assumed to be known.

5. Update the matrix M by recovering the transformation parameters mk accord-

ing to (5.22)

6. Update φ using the gradient descent equation (5.25).

7. Repeat steps 3-6 until convergence.

5.5.2 Segmentation with multiple symmetrical counterparts

Consider the segmentation of an object with rotational symmetry. Let φ(t) denote

its corresponding level-set function at time t and LH = H(φ(t)) denote the respective

object indicator function. If LH is invariant to rotation by α degrees, where α ≤ 2π/3

then more than one symmetrical counterpart level-set functions can be used to support

the segmentation. Specifically, the number of supportive symmetrical-counterpart

level-set functions is N = b2π/αc − 1, since the object is invariant to rotations by

nα0, where n = 1 . . . N . We denote this rotation by Rnα. In that case, the symmetry

constraint takes the following form:

ESYM =
N∑

n=1

∫

Ω

[
µH(φ)

(
1−H(φ̂n ◦Mn)

)
+ (1−H(φ)) H(φ̂n ◦Mn)

]
dx, (5.26)

where, φ̂n = φ(Rnαx) = φ ◦Rnα and Mn is the homography that aligns φ̂n to φ. The

computational cost using this symmetry constraint is higher since N homographies

Mn should be recovered. However, the eventual segmentation results are better, as

demonstrates Fig. 5.12.
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5.5.3 Segmentation with partial information

The proposed segmentation algorithm assumes that S is known. This information is

essential for generating the symmetrical counterpart. We will now consider the cases

in which only partial information on S is available. For example, the object view is

known to have a bilateral symmetry however it is not known if the bilateral symmetry

is horizontal or vertical. Alternatively, the image has a rotational symmetry but the

precise rotation degree is not known.

Let S = Rα be a symmetry operator which is equivalent to a planar clockwise

rotation by α degrees. Consider the case where the symmetrical counterpart is mis-

takenly generated by a planar rotation of β degrees, thus L̂β
H = LH(Rβx) ≡ LH ◦Rβ.

The symmetry imperfection measure that will be eventually minimized, takes the

following form: D(LH, L̂β
H ◦ M̃). The matrix M̃ aligns L̂β

H to LH. The next theorem

relates M and M̃ .

Theorem 5.5.1. Let L be an image with rotational symmetry with respect to S = Rα.

The operator Rα is a planar clockwise rotation by α degrees. Let LH be a perspective

distortion of L by H. Let L̂H = LH(Rαx) be the symmetrical counterpart of LH

and let M be a planar projective homography such that LH(x) = L̂H(Mx). Suppose

that L̂β
H = LH(Rβx) is the mistaken symmetrical counterpart of LH, where Rβ is a

clockwise rotation of β0, β 6= α. We claim that LH = L̂β
H(M̃x), where M̃ = MRα−β.

Proof. By definition, L̂H(x) = LH(Rαx) and L̂β
H(x) = LH(Rβx). This implies that,

L̂H(x) = L̂β
H(Rα−βx) (5.27)

Using theorem 2 for the special case of S = Rα and the above definition of L̂H, we

get:

L̂H(x) = LH(M−1x). (5.28)

From equations (5.27) and (5.28), we get: LH(M−1x) = L̂β
H(Rα−βx). The latter

equation implies that

LH(x) = L̂β
H(MRα−βx) = L̂β

H(M̃x),
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defining M̃ = MRα−β.

The homography M̃ is equivalent to M up to a rotation by α− β degrees.

Theorem 5 implies that when the symmetry operator is an unknown rotation, the

symmetrical counterpart level-set function can be generated by an arbitrary rotation

(e.g. π/2). In this case the recovered homography is equivalent to the homography of

the true symmetrical counterpart up to a planar rotation. The distorting projective

transformation H can be recovered up to a similarity transformation. The result pre-

sented in theorem 5 is also applicable to object with bilateral symmetry. An image (or

any function defined on R2) reflected along its vertical axis can be aligned to its reflec-

tion along its horizontal axis by a rotation of R = π. Thus, SLR = R(π)SUD where SLR

is an horizontal reflection and SUD is a vertical reflection. Similarly, SUD = R(π)SLR.

Using a mistaken symmetrical counterpart, the homography of the true symmetri-

cal counterpart can be obtained from the recovered homography by a rotation of π

degrees.

5.6 Experiments

(a) (b) (c)

Figure 5.8: Segmentation results of a guitar. (a) Input image of a symmetrical object
with the initial segmentation contour (red). (b) Segmentation (red) without the
symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm.

We demonstrate the proposed algorithm for the segmentation of approximately

symmetrical objects in the presence of projective distortion. The images are displayed

with the initial and final segmenting contours. Segmentation results are compared

to those obtained using the functional (2.23) presented in chapter 2 which does not

include the symmetry shape-term term. The contribution of each term in the gradient

descent equation (5.25) is bounded to [−1, 1] as explained in section 2.2. In Fig. 5.8
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(a) (b) (c)

(d) (e)

Figure 5.9: Segmentation results of a butterfly image. (a) Input image of a sym-
metrical object with the initial segmentation contour (red). (b) Segmentation (red)
without the symmetry constraint. (c) Successful segmentation (red) with the pro-
posed algorithm. (d) Final form of the level set function φ. (e) The symmetrical
counterpart of the level-set function in (d). Original image courtesy of George Payne.
URL: http://cajunimages.com/images/butterfly%20wallpaper.jpg

the upper part of the guitar is used to extract its lower part correctly. In the butterfly

image, Fig. 5.9, a left-right reflection of the evolving level set function is used to sup-

port accurate segmentation of the left wing of the butterfly. The deviation between

the symmetry axis of the butterfly and that of the image has been recovered concur-

rently with the segmentation process. In Fig. 5.10 the approximately symmetrical

object (man’s shadow) is extracted based on the bilateral symmetry of the object.

In the swan example shown in Fig. 5.11 we used both color and symmetry cues for

correct extraction of the swan and its reflection. In the last example, Fig. 5.12, seg-

mentation of an object with approximate rotational symmetry is demonstrated. In

this example we could theoretically use four symmetrical counterparts to support the

segmentation. Note, however, that using only two symmetrical counterparts (instead

of one) significantly improves the results. One of the symmetrical counterparts of

the final level-set function is shown in 5.12f. We used the symmetry constraint for
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Figure 5.10: Segmentation results of a man-shadow image. (a) Input image of a
symmetrical object with the initial segmentation contour (black). (b) Segmentation
(black) without the symmetry constraint. (c) Successful segmentation (black) with
the proposed algorithm. Original image courtesy of Amit Jayant Deshpande. URL:
http://web.mit.edu/amitd/www/pics/chicago/shadow.jpg

multiple symmetrical counterpart level-set functions according to equation (5.26).

5.7 Concluding remarks

This chapter contains two fundamental, related contributions. The first is a varia-

tional framework for the segmentation of symmetrical objects distorted by perspec-

tivity. The proposed segmentation method relies on theoretical results related to

symmetry and perspectivity which are the essence of the second contribution.

As opposed to previous approaches to symmetry, the symmetrical object is consid-

ered as a single entity and not as a collection of landmarks or feature points. This is

accomplished by using the level-set formulation and assigning (w.l.o.g.) the positive

levels of the level-set function to the object domain and the negative levels to the

background. An object, in the proposed framework, is represented by the support of

its respective labeling function. As the level-set function evolves, the corresponding

labeling function and thus the represented object change accordingly.

A key concept in the suggested study is the symmetrical counterpart of the evolv-

ing level-set function, obtained by either rotation or reflection of the level-set function
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(a) (b) (c)

Figure 5.11: Segmentation results of a swan reflection image. (a) Input image
of a symmetrical object with the initial segmentation contour (red). (b) Segmen-
tation (red) without the symmetry constraint. (c) Successful segmentation (red)
with the proposed algorithm. Original image courtesy of Richard Lindley. URL:
http://www.richardlindley.co.uk/links.htm

domain. We assume that the object to segment underwent a planar projective trans-

formation, thus the source level-set function and its symmetrical counterpart are not

identical. We show that these two level-set functions are related by planar projective

homography.

Due to noise, occlusion, shadowing or assimilation with the background, the prop-

agating object contour is only approximately symmetrical. We define a symmetry

imperfection measure which is actually the ‘distance’ between the evolving level-set

function and its symmetrical counterpart aligned to it. A symmetry constraint based

on the symmetry imperfection measure is incorporated within the level-set based

functional for segmentation. The homography matrix that aligns the symmetrical

counterpart level-set functions is recovered concurrently with the segmentation.

We show in theorem 5.3.5 that the recovered homography is determined by the

projective transformation that distorts the image symmetry. This implies that the

homography obtained by the alignment process of the symmetrical counterpart func-

tions (or images) can be used for partial recovery of the 3D structure of the imaged

symmetrical object. As implied from theorem 5.3.9, full recovery is not possible if the

projection of the 3D object on the image plane preserves its symmetry.

The algorithm suggested is demonstrated on various images of objects with either

bilateral or rotational symmetry, distorted by projectivity. Promising segmentation
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results are shown. In this manuscript only shape symmetry is considered. The pro-

posed framework can be extended considering symmetry in terms of gray levels or

color. The notion of symmetrical counterpart can be thus applied to the image it-

self and not to binary (or level-set) functions. Possible applications are de-noising,

super-resolution from a single symmetrical image and impainting. All are subjects

for future research.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: (a) Input image of an object (flower) depicted with rotational symmetry.
The initial segmentation contour (red) is drawn. (b) Segmentation (red) without the
symmetry constraint. (c) Segmentation (red) with the proposed algorithm using a
single symmetrical counterpart. (d) Segmentation (red) with the proposed algorithm
using two symmetrical counterparts. (e) Final level-set function. (f) One of the
symmetrical counterparts of the level-set function (e), obtained by rotation of 900.
Original image courtesy of Kenneth R.Robertson. URL: http://inhs.uiuc.edu



Chapter 6

Segmentation of Mouse Brain Atlas

6.1 Propagating distributions for the segmenta-

tion of mouse brain atlas

Automatic extraction of volumes of interest (VOIs) within experimental dataset of

brain images can be facilitated by the availability of an atlas. The atlas consists of

delineated and tagged anatomical structures of reference brain images . Usually, due

to the high accuracy required from an atlas, segmentation is carried out manually

by an expert. This manual segmentation is time consuming and laborious, therefore,

automatic method for atlas segmentation is sought.

The Mouse Brain Library (MBL) is a neuroinformatic resource of brain images of

inbred strain of mice [93]. The database contains a large collection of sparse coronal or

horizontal brain sections. It is used for quantitative traits analysis - a genetic mapping

approach, which is based on a comparison of the morphometric and genetic variations

between strains. An automatic segmentation of the region of interest (ROI) within

each slice can significantly facilitate the process of 3-D segmentation which plays a

key role in traits analysis.

In this chapter, we address the problem of volumetric atlas segmentation based on

a high resolution dataset in the presence of tight memory constraints. Segmentation

is therefore carried out slice-by-slice where the successful segmentation of one section

provides the initial conditions for the next one. Slices are sequentially partitioned into

two inhomogeneous regions - the ROI (sliced anatomical structure of interest) and the

110
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background. The intensities and spatial locations of the regions are modeled by two

distinct three dimensional Gaussian mixtures. The Gaussian Mixture Model (GMM)

parameters adaptively propagate across slices, possibly in a bidirectional manner.

The foundation of the proposed method is the construction of a unified edge-based

region-based segmentation functional. A key contribution is a unique region-based

energy term that considers the Kullback-Leibler (K-L) divergence [55] between the

probability density functions (PDFs) of the partitions. Since histological data is less

noisy that the images obtained by other modalities, the magnitudes and directions of

the image gradients can be used to enhance the segmentation.

We use the level set framework [75] for segmentation, where the segmenting curve

is the zero level of a level set function that evolves subject to some predefined con-

straints. Being parameterization-free, the level-set model allows automatic changes in

the active contour topology. This feature has particular importance when the volume

traced along the slices splits or merges.

Methods that use GMM for segmentation have been presented before, e.g. [99].

The Kullback-Leibler (K-L) divergence has been used to as a measure of pseudo-

distance between GMM distributions in [33]. The works of [128, 78] introduce a

variational framework for image segmentation using the PDFs of the partitions. Slice-

by-slice approaches for volumetric segmentation that use level-sets include [76, 77, 2].

Aykac et al [2] suggest an active contour algorithm for the segmentation of mouse

spleen in micro-CT. However, their method, based on the piecewise constant image

model of Chan and Vese is not suitable for segmentation of regions with heteroge-

neous intensities. Paragios [76, 77] proposed a user guided model based on prior

shape-knowledge for cardiac image analysis. Such shape-based approaches depend

on the availability of reference shapes and credible alignment. Yet, since transforma-

tions between corresponding or consecutive slices are non-parametric they cannot be

modeled reliably. Therefore, shape constraints, based on prior knowledge, are likely

to deflect the contour evolution from the actual image data.

The proposed segmentation framework is capable of handling challenging segmen-

tation tasks. This is accomplished by modeling the distribution functions of the image

data and by imposing compatibility of the partitions to the model. The alignment

of the ROI boundary with image gradients is constrained as well. The algorithm is
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demonstrated on images of histological atlas of mouse brain [36]. Results compare

well with manual segmentation.

6.2 Algorithm description

We first present the segmentation of a single slice by minimizing a unified region-

based and edge-based energy terms and associated gradient descent equations are

presented. The slice-by-slice segmentation framework is then described.

6.2.1 Level-set representation of the region of interest

In this section we describe a level-set framework for image partitioning into two

disjoint regions. Let I : Ω → R+ denote a gray level image, where Ω ⊂ R2 is the image

domain. Let ω+ and ω− be open subsets of Ω, denoting the region of interest (ROI)

and the background, respectively. The optimal boundary C ∈ Ω, C = ∂ω+ is obtained

by minimizing a cost functional E(C|I). The curve C is implicitly represented as the

zero level of a level set function. Recall that for any arbitrary function f : Ω → R

defined on domain Ω the following holds:

∫

x∈ω±
f(x)dx =

∫

x∈Ω

f(x)H(±φ(x))dx.

Again, H denotes the Heaviside function defined in equation 2.3.

6.2.2 The K-L divergence term

Region based segmentation schemes are established on piecewise smoothness approx-

imations of images [70]. Usually the homogenity of semantic regions within the image

is in terms of gray levels [11]. Here, we propose a segmentation framework that ex-

tends the concept of region homogeneity to include probability density functions of

the pixels feature vectors. This allows to extract ROIs with heterogeneous intensi-

ties. The fundamentals of our region-based energy term partially rely on the works

of [128, 11, 78]. Let G(x) = (x, y, I(x, y)) be a vector representation of the pixel

(x, y) ∈ Ω. We assume that G(x) are drawn from two distinct probability density
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functions, p+ if x ∈ ω+ and p− otherwise. Specifically, p+ and p− are Gaussian mix-

ture models of (ω+, I(ω+)) and (ω−, I(ω−)), respectively. Assuming an independent

and identically distributed conditional PDF, we get:

P (G(x)|φ) =
∏

x∈ω+

p+(x)
∏

x∈ω−
p−(x), (6.1)

hence,

log P (G(x)|φ)=

∫

x∈ω+

log p+(x)dx+

∫

x∈ω−
log p−(x)dx. (6.2)

In Paragios and Rousson [78] Eq. 6.2 is maximized. In contrast, we maximize the K-L

divergences between p+ and p− within the partitions to obtain homogenity in regions

in terms of their PDFs. The resulting region-based energy term, to be minimized,

takes the form:

EKL = −[DKL(p
+‖p−) + DKL(p−‖p+)]dx, (6.3)

where,

DKL(p+‖p−) =

∫

x∈ω+

p+(x) log
p+(x)

p−(x)
dx (6.4)

DKL(p−‖p+) =

∫

x∈ω−
p−(x) log

p−(x)

p+(x)
dx. (6.5)

The optimal partitioning is inferred by maximizing the asymmetric divergences

DKL(p+‖p−) and DKL(p−‖p+) within ω+ and ω−, respectively. In the proposed

framework, the PDFs p+ and p− are multivariate Gaussian densities

p+(x|θ+) =
N+∑
i=1

w+
i

exp{−1
2
(x− µ+

i )T Σ+
i
−1

(x− µ+
i )}√

(2π)d|Σ+
i |

(6.6)

p−(x|θ−) =
N−∑
i=1

w−
i

exp{−1
2
(x− µ−i )T Σ−

i
−1

(x− µ−i )}√
(2π)d|Σ−

i |
(6.7)

where, θ± = {w±
i , µ±i , Σ±

i }N±
j=1 are the parameters of the Gaussian Mixture Model and

d = 3.

The gradient descent equation associated with EKL is:

φKL
t = δ(φ)[DKL(p+‖p−)−DKL(p−‖p+)], (6.8)



CHAPTER 6. SEGMENTATION OF MOUSE BRAIN ATLAS 114

where δ is the derivative of the Heaviside function H. The parameters θ+ and θ− are

first estimated given the segmentation of the predecessor slice and then updated at

every iteration along the evolution of the delineating contour. The GMMs p+ and p−

are alternately updated with the evolution of φ. We use the EM technique [24] based

on a maximum likelihood principle (ML) to estimate GMM parameters.

6.2.3 Unified cost functional

Histological images are usually less noisy than those obtained by other modalities.

We can therefore construct a cost functional which is based on the image gradients,

the smoothness constraint and the estimated parameters based on the adjacent slices:

E(φ) = WKLEKL(φ) + WGACEGAC(φ) + W LENELEN(φ) + WEAEEA(φ), (6.9)

according to equations (6.3), (2.21), (2.19), and (2.17) for ERB, EGAC and EEA re-

spectively 1. The evolution of the level-set functions φ at each iteration is determined

by φ(t + ∆t) = φ(t) + φt. The associated gradient descent equations φt are derived

using the first variation of the functional (6.9) above,

φt(φ) = WKL(t)φKL
t + WGAC(t)φGAC

t + W LEN(t)φLEN
t + WEA(t)φEA

t , (6.10)

The weight terms WTERM(t,x) in (6.9) adaptively changing scalars. There determi-

nation is explained in section 2.2.

6.2.4 Slice by slice segmentation

The segmentation algorithm proposed in the previous section is applied to images

of consecutive brain slices. Given a sequence of images {. . . , Is−1, Is, Is+1, . . .}, the

final estimates of either (φs−1, θs−1) or (φs+1, θs+1) are used to initialize (φs, θs). The

level-set function φs and the GMM parameters θs are updated alternately. We as-

sume that the segmentation of few sparsely sampled slices is done manually. Once

the segmentation is known the PDF parameters can be computed accordingly. This

1One may set the weights of the edge-based terms WGAC and WEA to zero when the data is
noisy and the image gradients are not reliable.
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information then propagates in both directions. This mostly automatic scheme facil-

itates significantly the process of segmentation, while keeping it away from undesired

drifts. In the post-processing phase, the delineating contours of the image sequence

are stacked together to generate a model of the VOI.

6.3 Experiments

The images utilized in this study are sampled coronal views of a 3D brain atlas

of a C57BL/6J mouse. To create the atlas, consecutive 17.9 m thick horizontal

sections were collected from a freshly frozen adult male brain using low distortion

cyrosectioning system [72] while simultaneously imaging the block face. The sections

were stained for acetylcholinesterase and imaged to yield a pixel pitch of 8µm. The

volume reconstruction was guided by the block face images. The alignment was

refined by section-to-section registration with rigid-body AIR [120, 121, 93]. Finally,

the volume was downsampled to yield an isotropic 17.9µm /voxel atlas.

Figure 6.1 exemplifies segmentation of the last slice in a sequence of 10 consecutive

slices. Figure 6.1a-b shows the reference slice without and with the manual segmenta-

tion, respectively. Figure 6.1c is the slice to segment.demonstrates the gradual change

of the ROI by displaying the image of slice #509 together with the ROI contour (red)

of slice#500. The slice-by-slice segmentation algorithm and the expert segmentation

is shown are Fig. 6.1e-f, respectively. To allow qualitative comparison between the

manual (blue) and the automatic segmentation using the slice-by-slice method (red)

we present a superposition of the respective contours, shown in Fig. 6.1g. Figure 6.1h,

obtained using a region-based term that is established on a piecewise constant image

model [11] as used in [2]. A quantitative comparison between the manual segmenta-

tion and the segmentation obtained by the proposed algorithm is shown in Table 6.1.

Figure 6.2 demonstrates successful segmentation when two disjoint ROIs that be-

long to the same structure merge. Figure 6.2a-b shows the reference slice without

and with the manual segmentation, respectively. Figure 6.2c is the slice to segment.

Figure 6.2d shows the first segmentation step where the reference slice boundary initi-

ates the segmentation process. A comparison between the slice-by-slice segmentation

algorithm and the expert segmentation is shown in Figs. 6.2e-f, respectively
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Figure 6.3 demonstrates successful segmentation when the ROI splits into two

regions. Figure 6.3a-b shows the reference slice without and with the manual seg-

mentation, respectively. Figure 6.3c is the slice to segment. Figure 6.3d shows the

first segmentation step where the reference slice boundary initiates the segmentation

process. A comparison between the slice-by-slice segmentation algorithm and the

expert segmentation is shown in Figs. 6.3e-f, respectively.

Slice# 501 502 503 504 505 506 507 508 509
Error percentage .87 .93 1.03 1.31 1.41 1.48 1.73 1.93 2.14

Table 6.1: Correspondence between the slice-by-slice automatic segmentation and
the expert segmentation. The table presents the percentage of pixels with dissimilar
labeling with respect to the total number of pixels for slices 501− 509

6.4 Concluding remarks

This chapter addressed the segmentation of structures in the mouse brain from his-

tological data, using different, yet natural source of priors. Namely, the statistical

information on the shape and the intensity distributions of consecutive slices was em-

ployed. The key contribution is the incorporation of the K-L divergence in a fidelity

term that compares the PDFs of adjacent slices. This modification suggest a novel

way to handle meaningful image regions with heterogeneous appearance. The region

of interest (ROI) in each slice was extracted by minimizing a cost functional that im-

posed the alignment of the ROI’s boundary with the image gradients and consistency

with nearby slices. It is a step towards the use of a comprehensive prior that consists

of shape, color and textural information.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: Segmentation of the last slice in a 10 slice sequence. (a) Slice #500- the
first slice in the sequence;(b) Manual segmentation of slice #500;(c) Slice #509- the
last slice in the sequence (d) The contour (red) of slice #500 is shown on slice #509
- to demonstrate the mismatch between the ROIs boundaries. (e) Segmentation of
slice #509 using the proposed algorithm; (f) Manual segmentation of slice #509 (g) A
comparison between the contour obtained by the slice-by-slice algorithm (red) to the
contour delineated by an expert (blue) (h) Segmentation (undesired) of slice #509
with the Chan-Vese algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Slice-by-slice segmentation captures the merge of to regions of interest. (a)
Slice #320- the first slice in the sequence;(b) Manual segmentation of slice #320;(c)
Slice #321- the next slice in the sequence (d) The contour (red) of slice #320 is shown
on slice #321 - to demonstrate the topological changes between the respective ROIs
boundaries. (e) Segmentation of slice #321 using the proposed algorithm; (f) Manual
segmentation of slice #321
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Slice-by-slice segmentation captures the split into two regions. (a)
Slice #322;(b) Manual segmentation of slice #322;(c) Slice #324 (d) The contour
(red) of slice #322 is shown on slice #324 - to demonstrate the topological changes
between the respective ROIs boundaries. (e) Segmentation of slice #324 using the
proposed algorithm; (f) Manual segmentation of slice #324



Chapter 7

Discussion and Future Directions

Segmentation has a key role in the fascinating field of image understanding. This

thesis addresses the image partitioning problem using a unified framework, incorpo-

rating low-level image features (such as intensities and edges) together with high-level

visual knowledge. The dominant player in this top-down flow of information is the

shape of the regions of interest. We also present an algorithm that uses expected

intensity distribution.

We use a variational formulation which allows a convenient way to integrate in-

formation from several sources. This is accomplished by the construction of a cost

functional that is composed of bottom-up image data terms and top-down flow of

external information. The functional is minimized to obtain the object contour rep-

resented by the zero level of a level-set function.

Shape priors are obtained from other instances of the same or similar object.

When the object is taken from different, unknown viewpoints - the alignment of the

object views should be addressed. The main difficulty resides in a “chicken and egg”

problem, where the boundary of one of the object views is registered towards the

boundary of the other while being evolved. Previous works resolved this difficulty

assuming a similarity transformation between the views. Similarity transformations,

however, rarely approximate satisfactorily the actual transformation between objects

taken close to the camera. Usually a bank of shapes and its statistics were used to

account for transformations beyond similarity.

One of the main novelties of this thesis is the inclusion of the two view geom-
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etry model within a variational framework for segmentation to account for planar

projective transformation. This was enabled using a unique shape representation to-

gether with a novel dissimilarity measure between the object to segment and the prior

shape. The variational registration process interleaved with the segmentation, is an

effective alternative to the classical computer vision problem of point correspondence.

The entire object contours are matched rather than a collection of feature points or

landmarks. The process of shape alignment is carried out under the assumption that

the object boundaries are approximately coplanar. This restriction can be removed,

extending the geometric model by increasing the number of the transformation pa-

rameters.

Consider now the more complicated case where neither of the two object instances

can be segmented by itself. In a process we call mutual segmentation, the evolv-

ing object contour in each image provides a dynamic prior for the segmentation of

the other object view. Again we assume that the two views are related by planar

projective transformation. The homography between the object views is recovered

concurrently with the mutual segmentation. The mutual segmentation scheme pro-

vides a non-standard tool to distinguish between the foreground image regions and

the background. The objects are regions with similar appearance in both images. In

this dissertation, similarity is defined in terms of shape. Future study may address

mutual segmentation of objects with similar intensity distributions or texture.

Shape symmetry is an important cue for image understanding. When the ob-

ject taken is known to be symmetrical, the symmetry property forms a significant

shape constraint and thus can be used to facilitate segmentation. We address the

segmentation of a single instance of a symmetrical object. We define the concept of

a symmetrical counterpart image of an object with known type of symmetry, as a flip

or rotation of the source image. The symmetrical counterpart image is considered as

another view of the same object, providing an implicit shape prior. The suggested

formulation is based on a theoretical result which shows that symmetrical counter-

part images are related by planar projective homography. The limits on the ability

to recover this homography are stated as well. These theorems are part of a set of

theoretical results that link between symmetry, two view geometry and level-set rep-

resentation. The implications of the theoretical foundation of the symmetry-based
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method go far beyond segmentation. One of the interesting problems, related to sym-

metry, is 3D reconstruction of symmetrical objects. Exploring this subject with the

proposed theoretical approach is a promising research direction.

The main body of the thesis is devoted to shape based object segmentation, using

either an explicit and well-defined shape prior, a dynamic prior (mutual segmenta-

tion) or a shape symmetry constraint. The need to account for non-parametric shape

deformations is crucial in bio-medical applications. Using shape statistics from a

comprehensive shape database as in [19, 58] is one of the possible solutions. Never-

theless, in the presence of significant morphological changes, other sources of prior

information such as texture or intensity distribution should be used.

We present a slice-by-slice framework for the volumetric segmentation of mouse

brain structures, obtained from histological data. The region of interest deforms

slowly across the slices but the deformations may be arbitrary. Moreover, topological

changes of the region boundaries, such as splits and merges, frequently occur. We

found that the spatial-intensity distribution of the neighboring slices is the most suit-

able prior. Based on this observation we incorporate the Kullback-Leibler divergence

in a fidelity term that compares the PDFs of adjacent slices. This modification suggest

a novel way to handle meaningful image regions with heterogeneous appearance.

A promising extension of this thesis involves feedback provided by the user to

guide the segmentation process. This direction is mostly suitable for bio-medical ap-

plications. It will allow the physician to interactively transfer his/her knowledge to

the segmentation algorithm via partial region labeling or control points. User inter-

active frameworks became very common recently [94]. User-interactive variational

method was suggested by Liang, McInerney and Terzopoulos [60]. Yet, a coherent

level-set framework that mediates online between the evolving segmentation based on

the inherent image properties and an external information flow is yet to be explored.

This research suggests promising methods to solve hard segmentation problems. It

also paves the way to advanced prior-based segmentation algorithms that will make

use of banks of shapes, statistics on a variety of characteristic features and more

elaborate geometrical models.
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