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Abstract. We present a method that allows the detection, localization
and quantification of statistically significant morphological differences
in complex brain structures between populations. This is accomplished
by a novel level-set framework for shape morphing and a multi-shape
dissimilarity-measure derived by a modified version of the Hausdorff dis-
tance. The proposed method does not require explicit one-to-one point
correspondences and is fast, robust and easy to implement regardless of
the topological complexity of the anatomical surface under study.

The proposed model has been applied to different populations using
a variety of brain structures including left and right striatum, caudate,
amygdala-hippocampal complex and superior- temporal gyrus (STG) in
normal controls and patients. The synthetic databases allow quantitative
evaluations of the proposed algorithm while the results obtained for the
real clinical data are in line with published findings on gray matter re-
duction in the tested cortical and sub-cortical structures in schizophrenia
patients.

1 Introduction

The objective of the proposed study is the detection of morphometric differ-
ences in anatomical structures between different populations. We address this
challenge via a novel and robust mathematical shape model equipped with a new
parametrization-free shape metric. A variational framework, based on level-sets
is the key concept in the proposed methodology avoiding some of the bottlenecks
that are typical of numerous shape analysis applications – i.e. re-parametrization
or calculation of one-to-one point correspondences. The suggested model allows
to extract statistics that are sensitive enough to detect subtle changes between
populations, yet robust enough to avoid common statistical errors.

Detection of shape changes in neurodevelopmental and or neurodegenerative
diseases may shed new light on how illness impacts brain morphology. This
hypothesis, and the recent advent of sophisticated computer algorithms, have led
to many morphometric studies of brain anatomy in normal neurodevelopment.

There exist several general approaches to shape analysis. Perhaps the most
common one is based on a surface representation of the objects, which are then
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registered to each other to establish one-to-one correspondences [1–6]. This ap-
proach however involves difficult computational challenges, most notably estab-
lishing local correspondences within the population of objects and computing
robust statistics. Medial representations (e.g. [7, 8]) while more compact, face
similar challenges. Other methods represent a shape by a relatively small feature
vector (e.g. [9, 10]). Such methods are usually numerically stable and allow for
the computation of robust statistics. However, the resulting feature vectors are
rarely intuitive making the interpretation of the results difficult.

In this paper we define a shape dissimilarity-measure, which is a generaliza-
tion of the symmetrical Hausdorff distance between two objects (represented as
binary maps). Let S1 and S2 be two distinctive point sets which may have a
different cardinality, i.e. |S1| �= |S2|. The classical definition of the Hausdorff
distance DH(S1, S2) is as follows:

max{ sup
x1∈S1

inf
x2∈S2

d(x1,x2), sup
x2∈S2

inf
x1∈S1

d(x1,x2)}, (1)

where d(x1, x2) is the Euclidean distance between points x1 ∈ S1 and x2 ∈ S2.
When the maximum of the left and the right terms in Eq. (1) is replaced by their
sum, this measure becomes symmetrical. In the proposed framework, we use a
modified version of the symmetrical dissimilarity measure defined as follows:

DmH(S1, S2) =
∑

x1∈S1

inf
x2∈S2

d(x1,x2) +
∑

x2∈S2

inf
x1∈S1

d(x1,x2), (2)

which is more robust in the presence of noise and irregularities [11]. The mini-
mum distance between a boundary voxel x in S1 (or S2) and the boundary voxels
of the other shape S2 (or S1) is simply the value of the signed distance function
(SDF) of S2 (or S1) in voxel x. This connection allows us to represent shapes
by signed distance functions (SDFs) or equivalently with level-sets [12]. The
Hausdorff distance and the related Gromov-Hausdorff distance have been used
before by e.g. [13–15] to define distances between point sets. For example in [13]
the Gromov-Hausdorff distance was used for calculating the diffusion distance,
rather than the geodesic path between points on a surface, allowing the com-
parison of pairs of non-rigid shapes with different topology. Here, the modified
Hausdorff distance is used to define a level-set functional for the construction of
the mean of a shape ensemble.

Our algorithm jointly constructs the mean of the given shape ensemble via a
non-parametric shape deformation process derived by minimizing the proposed
level-set functional and searches for the affine transformations that minimize the
distances of the shapes to the evolved mean.

Spatial statistical analysis is obtained by calculating the minimal distance
of each point on the mean shape surface to each of the affine registered input
shapes. We then compute two-sample t-tests at every location on the mean
shape surface to look for statistically significant differences between populations.
The resulting raw p-values are adjusted for multiple comparison using the False
Discovery Rate [16].
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We test the proposed method on well-defined regions of interest using both
synthetic and real data sets. The structures were selected for their importance
with respect to brain regions implicated in schizophrenia and other neurolog-
ical disorders. This includes synthetic sets of the striatum and the amygdala-
hippocampal complex (AHC) and real data of the superior-temporal gyrus (STG)
in first-episode schizophrenia patients and the caudate nucleus in women with
schizotypal personality disorder (SPD) . We show that our algorithm can accu-
rately detect, locate and quantify known morphological changes. Note that very
few shape algorithms have been both qualitatively and quantitatively evaluated
on ground truth data. Our results obtained for the clinical data are in line with
previous findings of volumetric differences of the tested brain structures between
schizophrenia patients and normal controls.

2 Methods

2.1 Shape Representation and Metric

A shape Si is defined by the image region ωi ⊂ Ω that corresponds to the
structure of interest, where Ω ∈ R

3 is the image domain. The boundary of ωi is
denoted by ∂ωi. Our representation of Si is the signed distance function of its
boundary: φSi : Ω → R such that the Eikonal equation ‖∇φSi‖ = 1 holds. We
define the distance between Si and Sj as the modified symmetrical Hausdorff
distance between their boundaries using the continuous form of Eq. (2):

dist(Si, Sj) =
∫

∂ωi

|φSj |dx +
∫

∂ωj

|φSi |dx (3)

As φSj is a signed distance function, its absolute value in x represents the min-
imal Euclidean distance from x to the boundary of ωj (∂ωj). The same applies
for φSi and ∂ωi. Formally, the signed distance of voxel x ∈ ∂ωi from ωj is:

dist(x ∈ ∂ωi, Sj) = φSj (x). (4)

We define the mean SM of a shape ensemble {S1 . . . SN}, as the shape that
minimizes the sum of the distances from all the shapes in the set:

ŜM = arg min
SM

N∑

i=1

dist(Si ◦ T̂i,M , SM ), (5)

where T̂i,M is the estimated affine trasformation that aligns a shape Si to the
mean shape as will be described next.

2.2 Alignment of Shapes

As in [17], we define ‘shape’ as a set of geometric features of an object that is
invariant to 12-parameter affine transformation. It is thus necessary to remove
the affine components differentiating the input objects before computing statis-
tics over populations. We use a group-wise registration framework in which each
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shape Si is registered by an affine transform to the estimated mean shape ŜM

such that the modified Hausdorff distance, defined in Eq. 3 is minimized:

T̂i,M = arg min
Ti,M

dist(Si ◦ Ti,M , ŜM ). (6)

2.3 Joint Group-Wise Registration and Mean Shape Evolution

As neither the mean shape SM nor the affine parameters Ti,M that aligns each
shape Si to the mean are known, we use an alternating minimization technique
in which Eq. (6) (for each shape Si in the ensemble) and Eq. (5) are jointly
solved. While the affine transformation parameters are inferred by using a global
optimization method [18] the mean shape is generated via gradient descent op-
timization of a level-set functional. The signed distance functions {φSi} can be
viewed as level-set functions, where their zero levels define the boundaries of the
respective shapes. In the spirit of [19] we use the sigmoidal “logistic” function
of φ as a regularized form of the Heaviside function :

Hε(φ) =
1
2

(
1 + tanh

(
φ

2ε

))
=

1
1 + e−φ/ε

, (7)

The boundary of a shape Si can be therefore approximated by ∂ωSi =
|∇Hε(φSi)| defining the distance between SM and the shape set {Si} as fol-
lows 1:

D(SM , {Si}) =
∑

i

∫

Ω

[|φSM ||∇Hε(φSi)| + ‖φSi ||∇Hε(φSM )|] dx. (8)

We estimate φSM iteratively:

φ̂SM = arg min
φSM

D(SM , {Si}). (9)

The gradient descent equation that determines the evolution of φSM is derived
from the first variation of the functional in equation (8):

φM
t =

∑

i

[
sign(φSM )|∇Hε(φSi)| + δε(φSM )div

( ∇φSM

|∇φSM | |φSi |
)]

, (10)

where sign(·) is the sign function; div is the divergence operator and δε(φ) is the
derivative of Hε(φ) with respect to φ.

2.4 Implementation

The ensemble shapes are first aligned by translation such that the center of mass
of each shape coincides with the mean of the centers of mass of all the shapes.
We then average the shape, defining an ‘approximate’ mean and calculate the
1 Hereafter, Si ◦ TM,i is represented as Si to simplify the notation.
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affine transformations of each shape to that mean. Then a better approximation
to the mean shape is calculated by averaging the affine-transformed shapes.
We use the approximated mean shape to initialize the level-set-based gradient
descent process.

Averaging over the set of SDFs, i.e. φ1, . . . , φN , will not result in a valid SDF
representation as the mean of SDFs is not an SDF. We instead use the logistic
functions of the SDFs as in Eq. (7) folowing [20]. In practice, we average the
regularized Heaviside functions of the SDFs, i.e. H(φi). The boundary of the
mean shape, ∂ωMean, is the 0.5 level set of the mean probability map. The un-
derlying assumption here is that the morphological variability of an anatomical
structure within different subjects, even across populations, is sufficiently small
such that the high-dimensional points that represent the shape ensemble lie in
close proximity to each other upon the shape manifold. Therefore their mean
(used for initialization) is approximately on the manifold, as well.

2.5 Localization of Shape Differences between Populations

We now present how our model can effectively detect local shape deformations
within a population. Given a point on the mean shape boundary, x ∈ ∂ωMean,
we can directly obtain its signed distance to each of the affine aligned shapes, by
looking up the distance in the corresponding SDF φn(x). For each of those voxels,
statistics on the φn(x) can capture local thickening or thinning of structure
as well as more complex boundary displacements not removed by the affine
transformation.

Let φ∗
1, . . . , φ

∗
N and φ∗∗

1 , . . . , φ∗∗
M be the signed distance functions representing

shapes of a particular anatomical structure in two populations. Let d∗(x) and
d∗∗(x) be two vectors of lengths N and M respectively of the (signed) distances
of the corresponding shape ensembles to x. We can now apply two-sample t-tests
(or another statistic) at each location on the boundary to look for statistically
significant differences between the two populations. In the following experiments,
we also use False Discovery Rate (FDR) to correct for multiple comparisons [16].

3 Experiments

We evaluated the proposed algorithm using synthetic and real data sets: syn-
thetic sets of the amygdala-hippocampal complex (AHC) and of the striatum,
and real data of the superior-temporal gyrus (STG) in first episode schizophren-
ics and the caudate nucleus in women with schizotypal personality disorder
(SPD) . All results were corrected for multiple comparisons using the FDR ap-
proach in [16]. We applied a false discovery rate of 5%.

3.1 Synthetic Amygdala-Hippocampal Complex

Manual segmentations of the left amygdala-hippocampus complexes (AHC) in
40 normal controls were taken from the laboratory database. An unbiased atlas
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of the AHC was created from the 40 samples [21]. The resulting atlas was then
warped back to subject space using 20 randomly selected inverse warps obtained
in the previous step. The resulting samples compose the normal control group
(NC). The remaining 20 were manipulated by adding (or removing) a specific
number of voxels using a hemisphere such that either a bump (or dimple) would
be created and labeled “abnormal” (AB). Eight pairs of NC/AB data sets were
generated. Each AB set had a bump (or a dimple) located in the head of the
AHC and with a radius of 3, 4, 5 and 6 voxels respectively.

For each AB/NC data set, we generated the mean AHC and performed a t-
test comparing the NC and AB distances to the mean at each point on the mean
shape’s surface. Successful results of these eight experiments ({bump,dimple}
×{3, 4, 5, 6}) are shown in Fig. 1. We also evaluated the method by looking at
the ratio of the statistically significant voxels over the total number of sur-
face voxels for the bump (dimple) as the size of the deformation increases
(Fig. 2).

r = 3 Vox. r = 4 Vox. r = 5 Vox. r = 6 Vox.

Fig. 1. AHC data set. p-value maps displayed on the mean shapes of NC/AB data
sets with a bump (top row) or dimple (bottom row) of radius (from left to right) 3, 4, 5
and 6. Red indicates non-significant p-values while the yellow colors present a scale of
FDR corrected p-values (below the threshold).
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Fig. 2. Method evaluation for
the synthetic AHC datasets.
The ratio of the statistically sig-
nificant mean shape surface vox-
els over the total number of sur-
face voxels increases as the size of
the synthetic distortion (bump or
dimple) increases.
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3.2 Synthetic Striatum

Synthetic striatum shapes were generated through manifold learning based on
a training set of 27 real samples [22]. Abnormal examples were generated via
random processes of either thinning or thickening of specific, well define regions
of the striatum (see Fig. 3a-c,e-g). Two sets of examples for the right and the
left striatum, each containing 50 normal and 50 abnormal examples, were tested.
Results are shown in Fig. 3. Note that the distorted regions (highlighted in red)
- corresponding to voxels with significant (FDR corrected) p-values (Fig. 3 d,h)
were precisely detected.

a b c d

e f g h

Fig. 3. Left (top) and Right (bottom) Striatum data sets. (a,e) Randomly se-
lected examples of the left (a) and the right (e) striatum. (b,f) Left (b) and right
(f) striatum shapes after applying shape deformations to the respective shapes shown
in (a,e). (c,g) Mean (left and right) striatum shapes along with the averaged arti-
ficial deformation (red) (d,h) Mean (left and right) striatum shapes along with the
respective p-value maps comparing distorted and undistorted data sets. Yellow indi-
cates non-significant p-values. Red colors present a scale of FDR corrected p-values
(below the threshold). Note that although the deformations and the extent of the de-
formed regions (pointed by arrows) are subtle, they were successfully detected by our
algorithm.

3.3 STG in First Episode Schizophrenic Patients

We used manual segmentation of the left and right STGs in 19 patients diag-
nosed with first episode schizophrenia and 14 matched normal controls originally
acquired for a brain volumetric study [23]. Examples of the left STG of some of
the subjects are shown in Fig. 4.

We generated the mean shapes of the patients and NC data sets for the left
and right STG. We computed a t-test comparing the two populations at each
point on the mean shape’s surface. The resulting p-values were thresholded at an
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FDR of 0.05. Qualitative results are shown in Figs. 5. We were able to detect and
locate morphological differences between populations in the left STG. Moreover,
most of the shape differences in the STG were detected in the planum temporale
(Fig. 5a, in red ) and the heschl gyrus (Fig. 5a, in green ). These findings are in
line with the recent literature on volumetric studies in schizophrenia [24].

a b c d e

Fig. 4. Left STG of first episode schizophrenics. A few examples demonstrating
the complexity of this structure and its variability among patients.

a b c

Fig. 5. STG in first episode schizophrenia. (a) Left STG composed of its sub-
structures: planum temporale (red), heschl’s gyrus (green), rest of the STG (yellow);
(b) p-value map of the left STG comparing schizophrenics and NCs; (c) p-value map
of the right STG Left for the same populations. Red indicates non-significant p-values,
green-to-purple colors present a scale of p-vales below the 0.05 FDR threshold. Note
that the right STG shows no differences.

3.4 Caudate Nucleus in Schizotypal Personality Disorder
(SPD) Patients

MR brain scans of 61 women, 32 SPD patients and 29 NC, were manually seg-
mented to extract the caudate nucleus in the left and right hemispheres [25] .
Statistically significant morphological differences have been detected in the right
caudate using the proposed algorithm (Fig. 6). Our results in these subjects are
comparable to the manual volumetric measures as well as to the shape statistics
obtained from using spherical harmonic-point distribution model (SPHARM-
PDM) methodology [25].
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a b c d

Fig. 6. Caudate nucleus in SPD patients. (a,c) Lateral and medial views of
the mean right caudate along with the respective p-value maps. Red indicates non-
significant p-values. Yellow-to-blue indicate p-value below a 0.05 FDR. (b,d) Signed
differences between the SPD patients and the NC. Negative values (deflation) are in
red, positive values (inflation) in dark blue.

4 Discussion

We presented a robust and simple framework to perform shape analysis for
population studies. The core of the method is a novel-level set algorithm based
on the modified Hausdorff distance for shape morphing.

Our experiments on synthetic data show the ability of the method to detect
small deformations of complex shapes such as the striatum. Very few boundary
based methods are able to address such convoluted shapes and, as far as we
know, have not been tested thoroughly on synthetic data. In addition, we were
able to find shape differences between patients and their controls in the left
STG and the right caudate which are consistent with the prior finding based
on manual segmentation. Finally, while we acknowledge that the geodesics upon
the shape ensemble manifolds are only roughly approximated by the modified
Hausdorff distances our experiments show that in practice they can be used as
accurate and reliable measures to perform population studies.
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