PROPAGATING DISTRIBUTIONS FOR SEGMENTATION OF BRAIN ATLAS
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ABSTRACT

We present a novel method for segmentation of anatomical
structures in histological data. Segmentation is carried out
slice-by-slice where the successful segmentation of one sec-
tion provides a prior for the subsequent one. Intensities and
spatial locations of the region of interest and the background
are modeled by three-dimensional Gaussian mixtures. This
information adaptively propagates across the sections. Seg-
mentation is inferred by minimizing a cost functional that en-
forces the compatibility of the partitions with the correspond-
ing models together with the alignment of the boundaries with
the image gradients. The algorithm is demonstrated on his-
tological images of mouse brain. The segmentation results
compare well with manual segmentation.

Index Terms— Segmentation, Brain atlas, Level sets,
Gaussian mixture model

1. INTRODUCTION

Automatic extraction of volumes of interest (VOIs) within ex-
perimental dataset of brain images can be facilitated by the
availability of an atlas. The atlas consists of delineated and
tagged anatomical structures of reference brain images . Usu-
ally, due to the high accuracy required from an atlas, seg-
mentation is carried out manually by an expert. This manual
segmentation is time consuming and laborious, therefore, au-
tomatic method for atlas segmentation is sought.

We address the problem of volumetric atlas segmentation
based on a high resolution dataset in the presence of tight
memory constraints. Segmentation is therefore carried out
slice-by-slice where the successful segmentation of one sec-
tion provides the initial conditions for the next one. Slices
are sequentially partitioned into two inhomogeneous regions
- the ROI (sliced anatomical structure of interest) and the
background. The intensities and spatial locations of the re-
gions are modeled by two distinct three dimensional Gaussian
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mixtures. The GMM parameters adaptively propagate across
slices, possibly in a bidirectional manner.

The foundation of the proposed method is the construc-
tion of a unified edge-based region-based segmentation func-
tional. A key contribution is a region-based energy term that
considers the probability density functions (PDFs) of the par-
titions. Since histological data is less noisy that the images
obtained by other modalities, the magnitudes and directions
of the image gradients are used to enhance the segmentation.

We use the level set framework [1] for segmentation,
where the segmenting curve is the zero level of a level set
function that evolves subject to some predefined constraints.
Being parameterization-free, the level-set model allows auto-
matic changes in the active contour topology. This feature has
particular importance when the volume traced along the slices
splits or merges.

Methods that use GMM for segmentation have been pre-
sented before, e.g. [2]. The works of [3, 4, 5] introduce a vari-
ational framework for image segmentation using the PDFs of
the partitions. Slice-by-slice approaches for volumetric seg-
mentation that use level-sets include [6, 5, 7]. Aykac et al [7]
suggest an active contour algorithm for the segmentation of
mouse spleen in micro-CT. However, their method, based on
the piecewise constant image model of Chan and Vese is not
suitable for segmentation of regions with heterogeneous in-
tensities. Paragios [6] proposed a user guided model based
on prior shape-knowledge for cardiac image analysis. Such
shape-based approaches depend on the availability of refer-
ence shapes and credible alignment. Yet, since transforma-
tions between corresponding or consecutive slices are non-
parametric they cannot be modeled reliably. Therefore, shape
constraints, based on prior knowledge, are likely to deflect the
contour evolution from the actual image data.

The proposed segmentation framework is capable of han-
dling challenging segmentation tasks. This is accomplished
by modeling the distribution functions of the image data and
by imposing compatibility of the partitions to the model. The
alignment of the ROI boundary with image gradients is con-
strained as well. The algorithm is demonstrated on images of
histological atlas of mouse brain [8]. Results compare well
with manual segmentation.



2. ALGORITHM DESCRIPTION

In the first part of this section the region-based and edge-
based energy terms and associated gradient descent equations
are presented. These energy terms are incorporated within
a unified cost functional for single slice segmentation. The
slice-by-slice segmentation framework is then described.

2.1. Level-set Approach

In this section we describe a level-set framework for image
partitioning into two disjoint regions. Let I: Q — R™ de-
note a gray level image, where ) C R? is the image domain.
Let w and w™ be open subsets of {2, denoting the region of
interest (ROI) and the background, respectively. The optimal
boundary C' € Q, C' = dw™ is obtained by minimizing a cost
functional E(C|I).

In this framework, we implicitly represent the curve C' as
the zero level of a level set function ¢: 2 — R at time ¢ [1]:

C(t) = {x € 9 o(x, 1) = 0}. (1)

The partition into two regions is done by using the Heaviside
function of ¢, [9]:
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2.2. Region-based term

+o(x))dx.

Region based segmentation approaches assumes homogene-
ity of semantic regions within the image, usually in terms of
pixels intensities [9]. The proposed framework extends the
concept of region homogeneity to include probability density
functions of the pixels feature vectors. This allows to extract
ROIs with heterogeneous intensities.

Let G(x) = (x,y,I(xz,y)) be a vector representation of
the pixel (x,y) € . We assume that G(x) are drawn from
two distinct probability density functions, p™ if x € w™ and
p~ otherwise. Specifically, p* and p~ are Gaussian mixture
models of (w™, I(w™)) and (w™, I(w™)), respectively. As-
suming an independent and identically distributed conditional
PDF, we get:
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hence,

log p~ (x)dx.

log P(G(x)0) =  Joap" () / .
4)

The region based (RB) energy term to be minimized thus
takes the form [3, 4]:

Frp = 7/ log p™ (x)H(¢) +logp™ () H(—¢)]dx.
xeN
(%)

In the proposed framework, the PDFs p™ and p~ are mul-
tivariate Gaussian densities
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where, 6F = {wi, i3 ,Ei} ", are the GMM parameters.
The gradient descent equation associated with Fgg is:

8 = 6(¢)[— log p* (x) + log p~ (x)], (8)

where § is the derivative of the Heaviside function H. The
parameters # and 6~ are first estimated given the segmenta-
tion of the predecessor slice and then alternately updated with
the evolution of ¢. We use the EM technique [10] to estimate
the GMM parameters.

2.3. Smoothness and Edge based terms

Contour smoothness is imposed by minimizing its length
IC| = fol ds, where s is the curve length parameter. The
length term in a level set formulation takes the form:

Since histological images are less noisy than the data ob-
tained by other modalities we can employ the image gradients
as well. Next, we describe two edge-based terms that are in-
corporated within the proposed segmentation functional.

2.3.1. Geodesic active contour term

Following [11, 12], the inverse edge indicator function is de-
fined by;

gaac(x) =1/(1+ |VI|?), (10)

where VI denote the vector field of the image gradients. The
geodesic active contour functional (GAC) integrates the in-
verse edge indicator along the curve.

EGAC:/QQGAC(X)|VH(¢(X))|dX- (1D

This functional is minimized when the zero level of ¢ is
aligned with the local maxima of the image gradients. The
evolution of ¢ is determined by:

GAC — §(¢)div (gGAC(x)%) . (12)

(6)

(7



2.3.2. Edge alignment term

To enhance the segmentation we impose the normal direction
of the level set 7 = |v 47 o align with the image gradients
direction [13, 14]. This is obtained by minimizing the robust
alignment (RA) energy term:

IV H(¢)|dx. (13)
—— [V v aE)
The associated gradient descent equation is:

4 = 8(¢p)sign((Ve, V)AL (14)

where A is the divergence operator.

2.4. Unified cost functional

A unified region-based, edge-based cost functional takes the
following form:

E(¢) =WRB Erg(¢) + W€ Egac(¢) + WRAEra(9),
(15)

according to equations (5), (11) and (13) for Erp, Egac and
ERa respectively!. The evolution of the level-set functions ¢
at each iteration is determined by ¢(t + At) = ¢(t) + ¢+. The
associated gradient descent equations ¢, are derived using the
first variation of the functional (15) above,

¢t(¢) — WRB(t) $B —‘y—WGAC(t) GAC +WRA( ) RA,
(16)

The weight terms WTERM(¢) in (15,16) are adaptively chang-
ing scalars. There determination is explained in [15].

2.5. Slice by Slice Segmentation

The segmentation algorithm proposed in the previous sec-
tion is applied to images of consecutive brain slices. Given
a sequence of images {...,Is_1, s, Is41,. ..}, the final es-
timates of either (¢5_1,05-1) or (¢s41,0s+1) are used to ini-
tialize (¢s,0s). The level-set function ¢ and the GMM pa-
rameters 6, are updated alternately. We assume that the seg-
mentation of few sparsely sampled slices is done manually.
Once the segmentation is known the PDF parameters can be
computed accordingly. This information then propagates in
both directions. In the post-processing phase, the delineating
contours of the image sequence are stacked together to gener-
ate a model of the VOI.

3. EXPERIMENTS

The images utilized in this study are sampled coronal views
of a 3D brain atlas of a C57BL/6J mouse. The atlas was gen-
erated from consecutive 17.9 m thick horizontal sections of

'One may replace the edge terms (11) and (13) with the length term (9)
when the data is noisy and the image gradients are not reliable.

(e) slice #509: Segmentation with Chan-Vese model

Fig. 1. Segmentation of the last slice of 10 slices sequence.

a freshly frozen adult male brain [16]. The sections were
stained for acetylcholinesterase and imaged to yield a pixel
pitch of 8um. The volume was reconstructed based on the
block face images [17, 18]. It was then downsampled to yield
an isotropic 17.9um /voxel atlas.

Figure la-b exemplify segmentation of the last slice in a
sequence of 10 consecutive slices. The manual segmentation,
Figure Ic, is displayed for a comparison. Segmentation of the
complete sequence is accessible online at [19]. Mixtures of
4 and 8 Gaussian have been used to model the ROI and the
background, respectively, based on the manual segmentation
of the first slice (# 500). Figure 1d demonstrates the gradual
change of the ROI by displaying the image of slice #509 to-
gether with the ROI contour (red) of slice#500. To demon-
strate the advantage of the proposed algorithm we present
the unsuccessful segmentation, Figure le, obtained using a
region-based term that is established on a piecewise constant
image model [9] as used in [7]. A quantitative comparison
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(b) slice #321: Segmentation with the proposed algorithm
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(c) slice #321:Manual Segmentation

Fig. 2. Successful segmentation when two ROIs merge

between the manual segmentation and the segmentation ob-
tained by the proposed algorithm is shown in Table 1.

Figure 2b demonstrates successful segmentation when
two disjoint ROIs that belong to the same structure merge.
Manual segmentation is shown for a comparison in Figure 2c.

501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509

87| 93| 1.03 | 1.31 | 141 | 148 | 1.73 | 1.93 | 2.14

Table 1. The percentage of pixels with dissimilar labeling
with respect to the total number of pixels for slices 501 — 509

4. SUMMARY

A method for slice-by-slice segmentation of mouse brain his-
tological data is presented. The information on the spatial and
intensity distributions of the region of interest is propagated
along the slices. The ROI in each slice is extracted by mini-
mizing a unified region-based edge-based functional. Promis-
ing segmentation results on challenging data are shown.
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