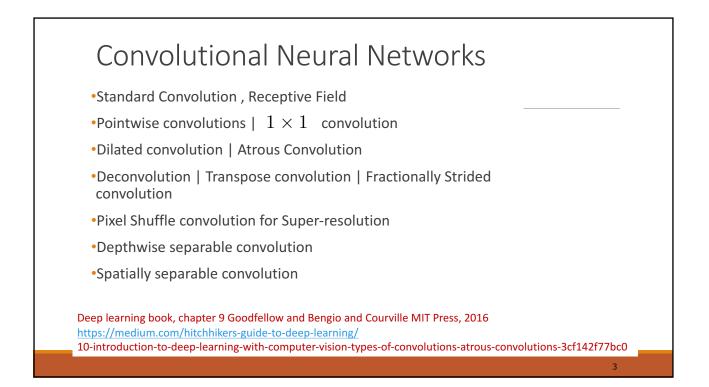
Deep Learning and Its Application to Signal and Image Processing and Analysis

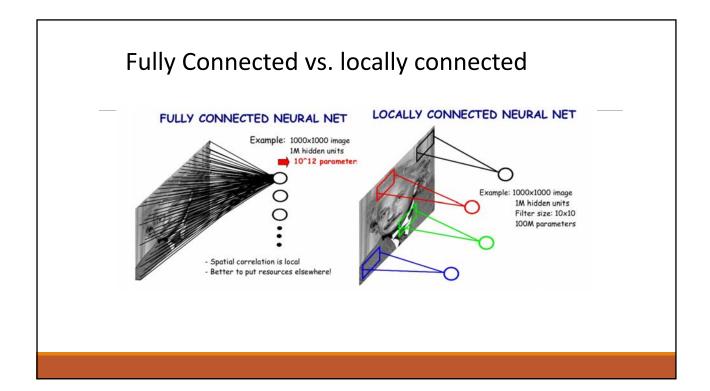
CLASS V - SPRING 2021 TAMMY RIKLIN RAVIV, ELECTRICAL AND COMPUTER ENGINEERING

Today's topics

Convolutional Neural Networks (CNN)

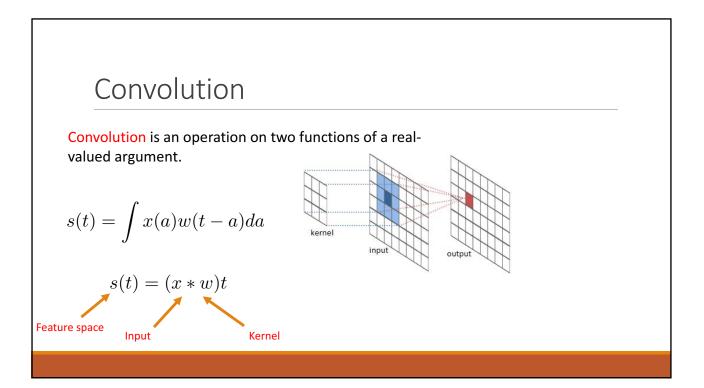
Batch Normalization

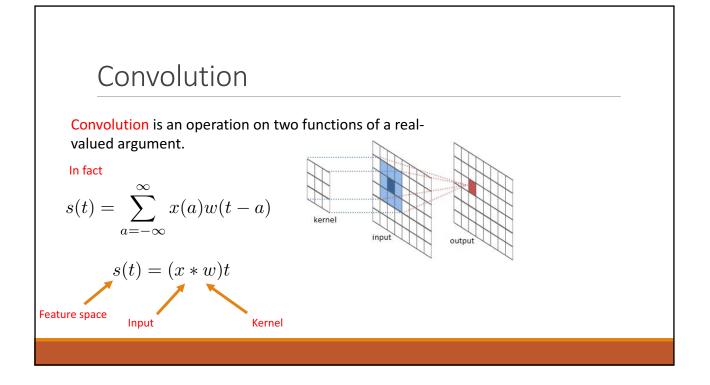




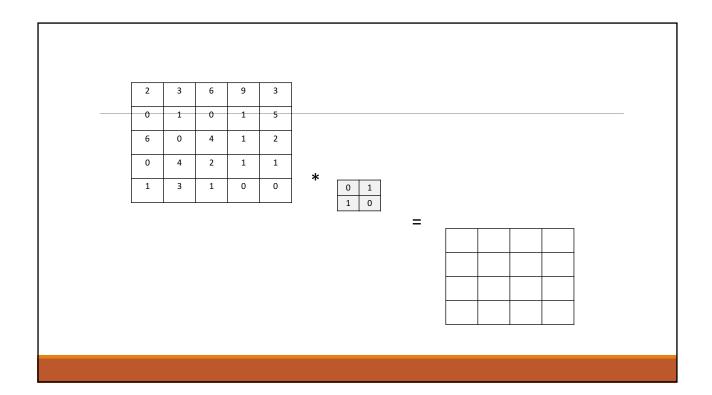
Convolution

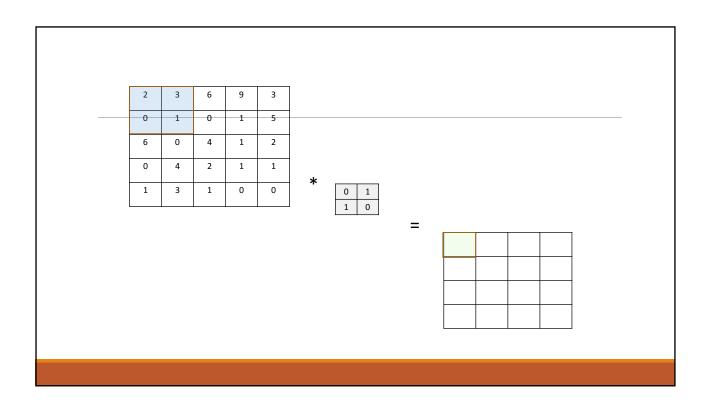
- Convolution the process of extracting features from input data using kernels/filters.
- Convolution is a mathematical operation of two functions that produces a third function that expresses how the shape of one is modified by the other

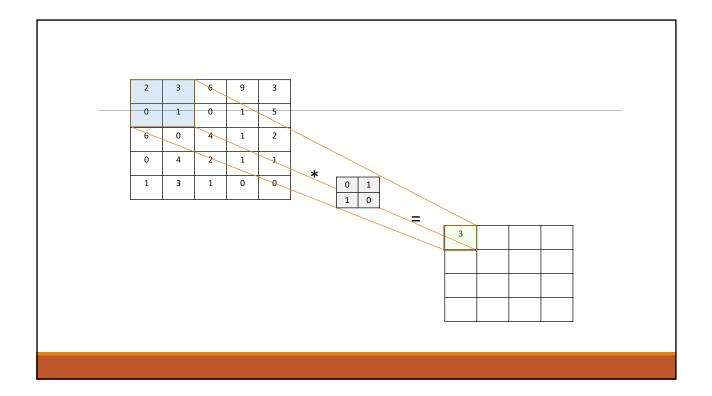


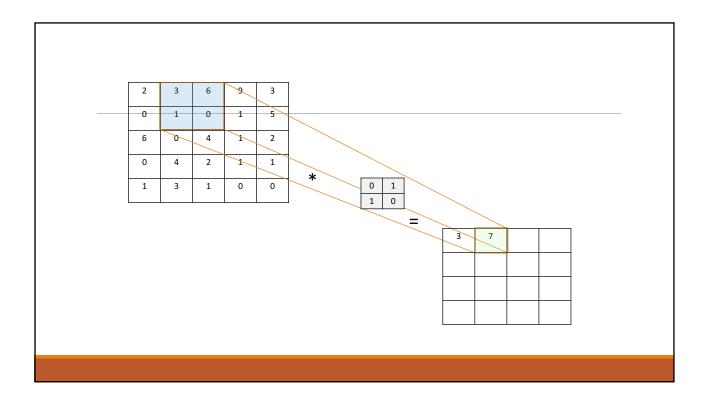


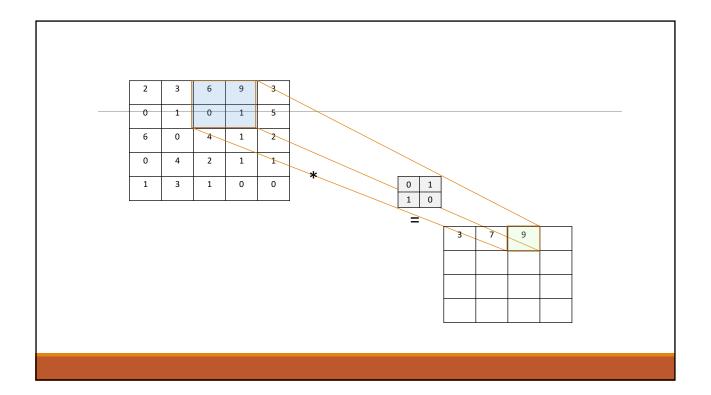
$$\begin{split} & \text{Multi-dimension convolution} \\ s(i,j) = (I*K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n) \\ & \text{commutative property:} \\ s(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n) \\ & \text{In practice cross correlation is commonly used instead :} \\ s(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n) \end{split}$$

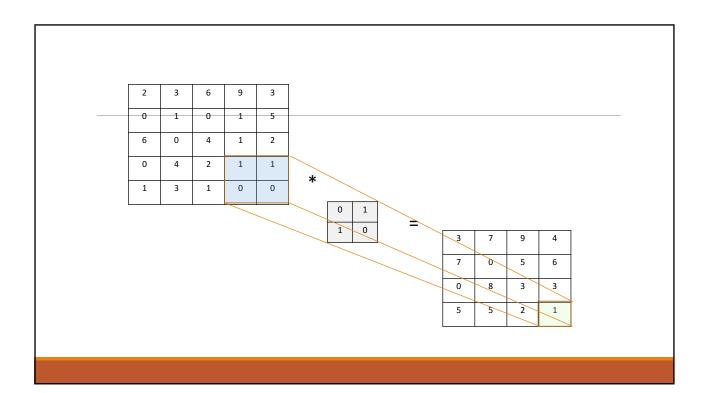


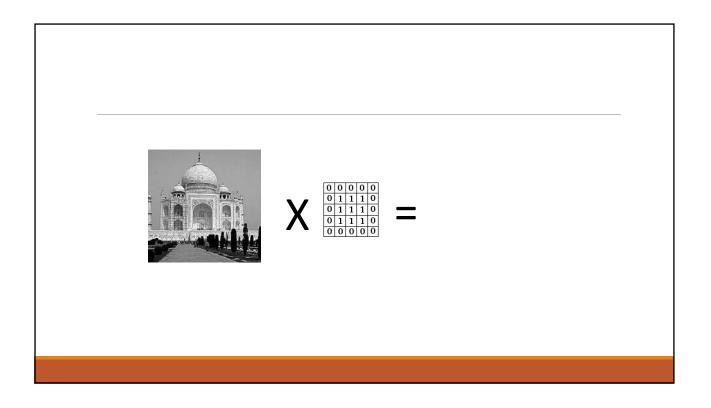


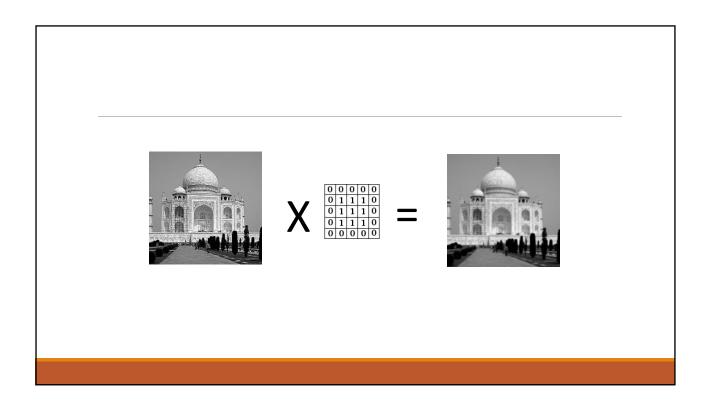


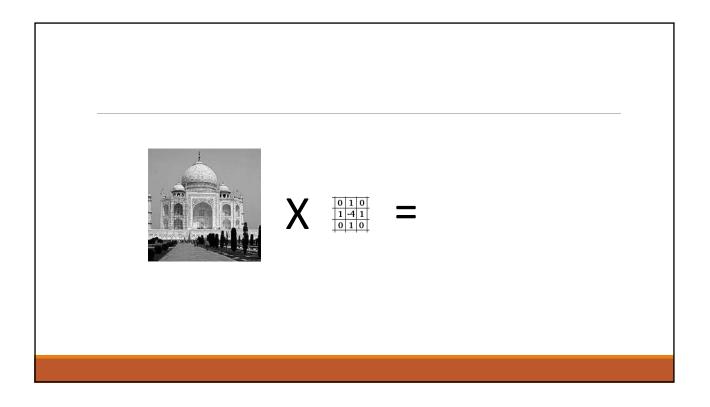


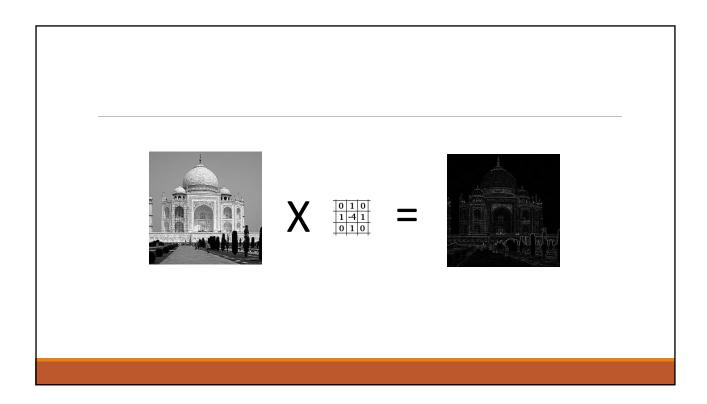


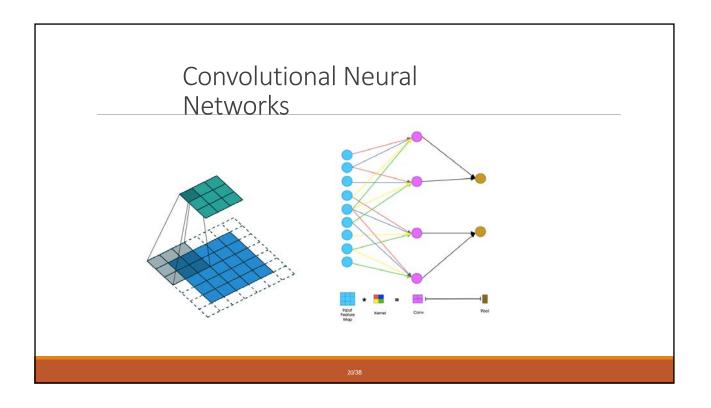


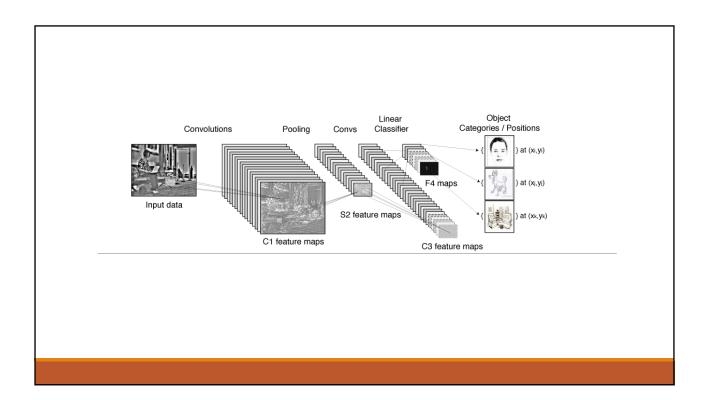


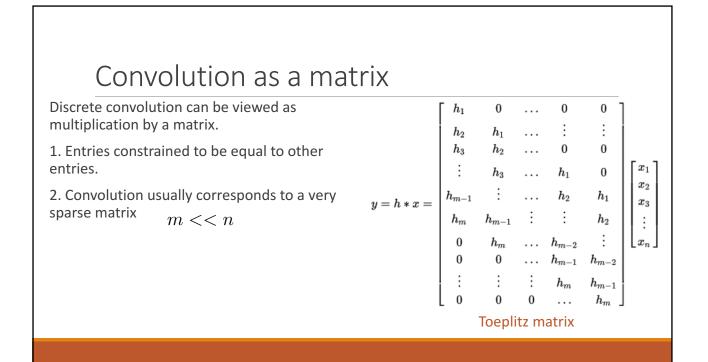










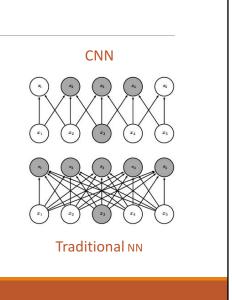


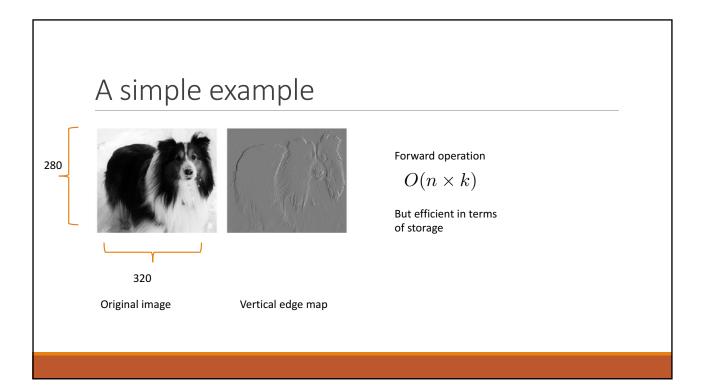
Convolution – three key ideas

- 1. Sparse interactions
- 2. Parameter sharing
- 3. Equivariant representations

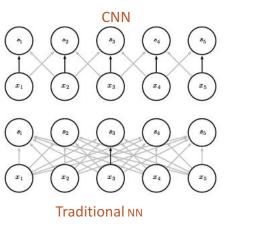
Sparse interactions

The kernel is smaller than the input millions of units -> hundreds of units (e.g. pixels -> edges) reduction of memory capacity statistical/computational efficiency





Parameter sharing: using the same parameter for more than one function in a model



Equivariance

In the case of convolution, the particular form of parameter sharing causes the

layer to have a property called equivariance to translation.

To say a function is equivariant means that if the input changes, the output changes in the same

way, i.e. The function f(x) is equivariant to a function g if

$$f(g(x)) = g(f(x))$$

Pooling

A pooling function replaces the output of the net at a certain location with a summary statistic of the nearby outputs (e.g. a rectangle neighborhood).

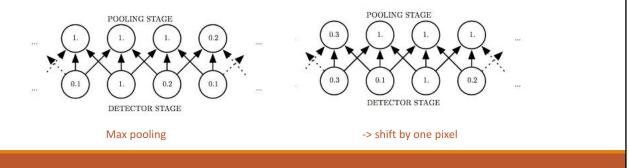
- 1. Max pooling
- 2. Average
- 3. Weighted average (e.g. based on the distance from the central voxel)
- 4. L2 Norm

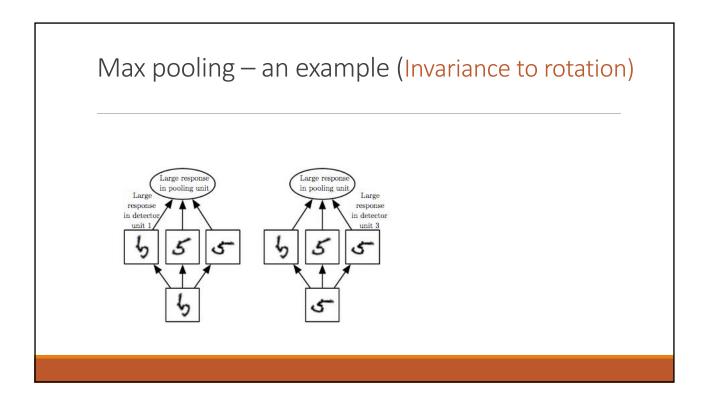
Pooling - advantages

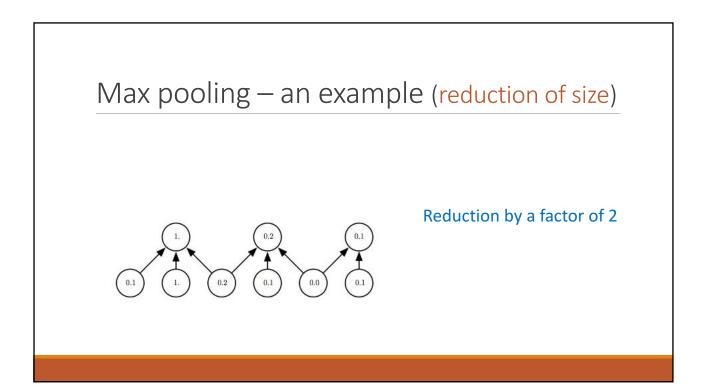
Invariance to small translations of the input (strong prior).

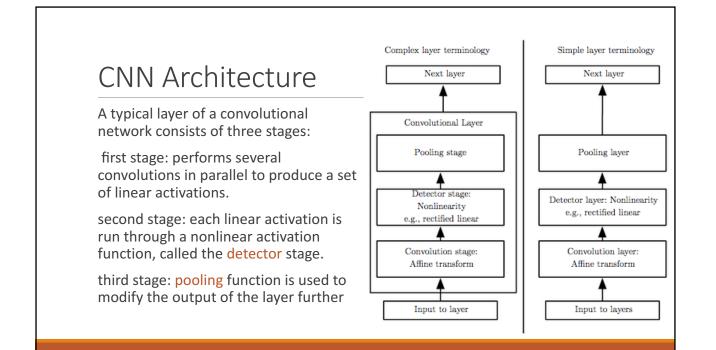
Computational efficiency: fewer pooling units than detector units

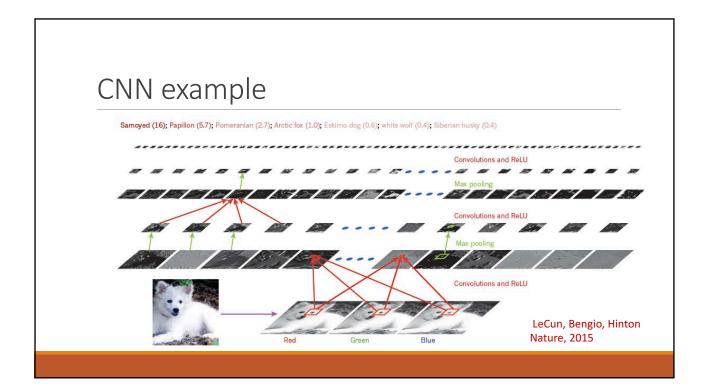
Handling inputs of varying size

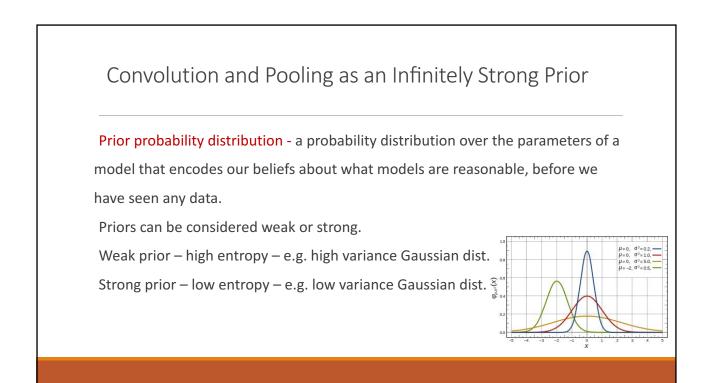












Convolution and Pooling as an Infinitely Strong Prior

CNN = fully connected NN with strong priors Identical weights – shifted in space Zero weights

Convolution and Pooling as an Infinitely Strong Prior

Key insights:

1. Convolution and pooling are only useful when the assumptions made

by the prior are reasonably accurate.

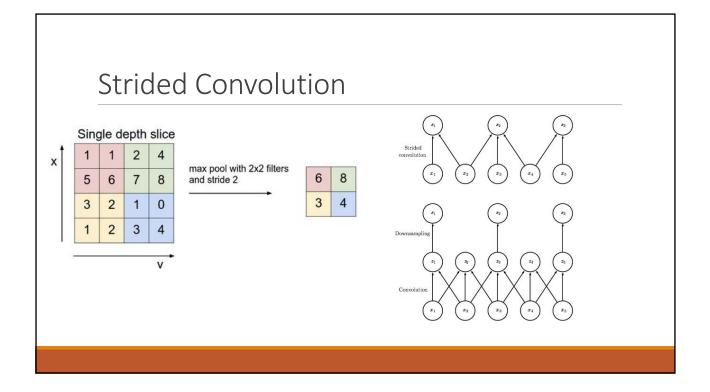
If not – may cause underfitting

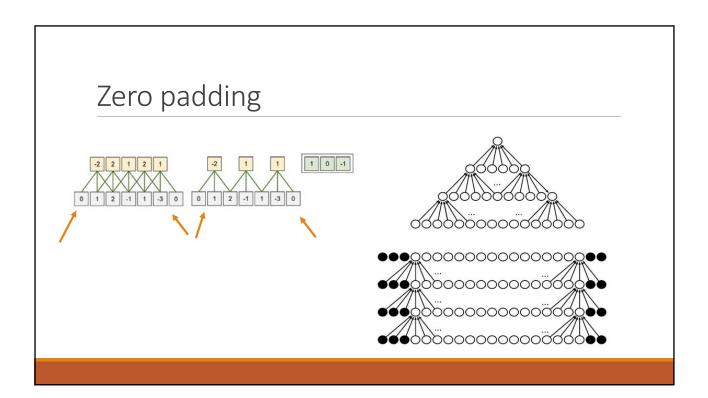
2. We should only compare convolutional models to other convolutional models in benchmarks of statistical learning performance.

Fully connected NN is permutation invariant.

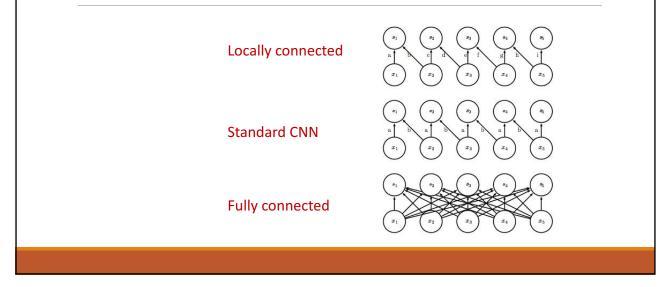
Variants of the Basic Convolution Function

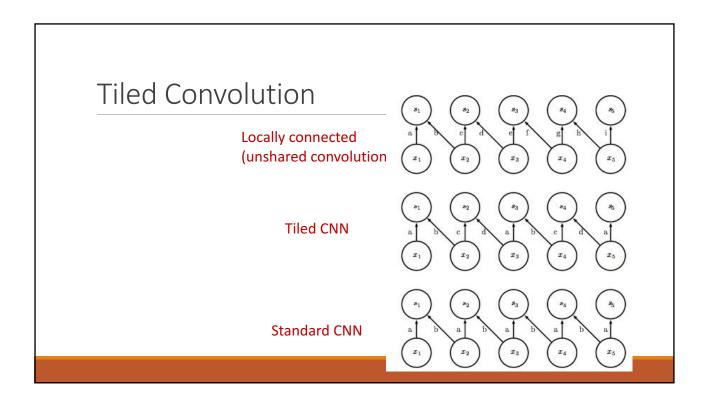
- 1. Strided convolution
- 2. Zero padding
- 3. Unshared convolution
- 4. Tiled CNN





Locally connected, CNN and Fully connected

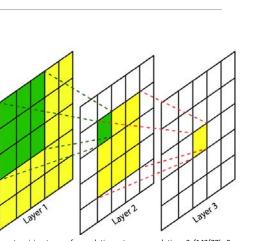




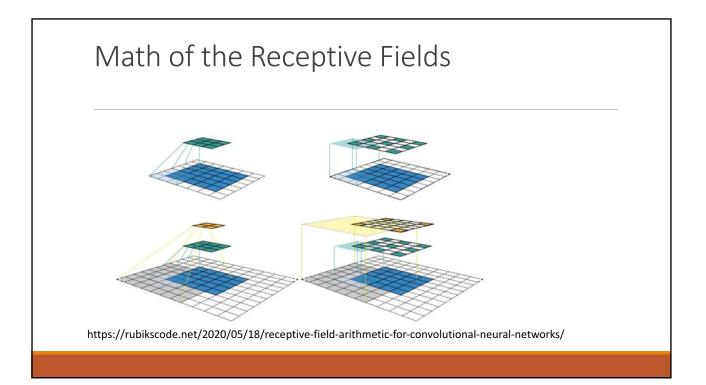
Receptive field

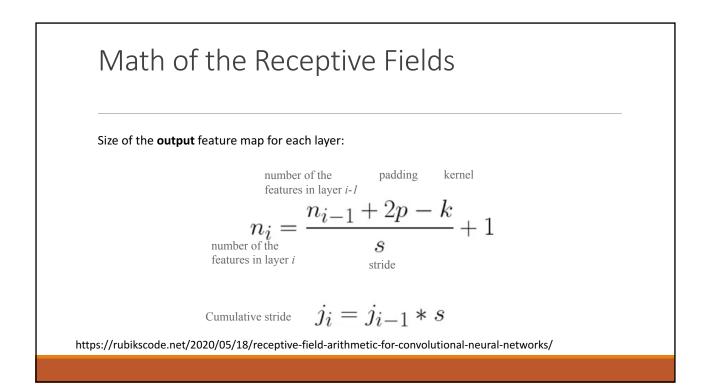
The receptive field is the region in the input space That a particular CNN's feature is looking at (i.e. affected by). A receptive field of a feature can be described by its **center location** and its **size**.

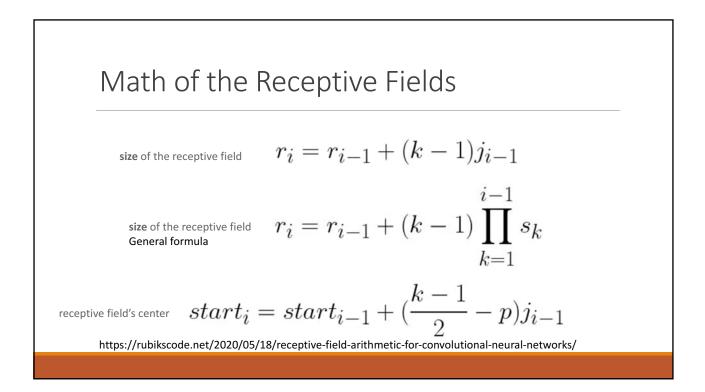
What is the receptive field of a feature in the 4th layers ? What is the receptive field of a feature in the Nth layers ?



https://medium.com/hitchhikers-guide-to-deep-learning/10-introduction-to-deep-learning-with-computer-vision-types-of-convolutions-atrous-convolutions-3cf142f77bc0







Math of the Receptive Fields

Initial values:

n = image size

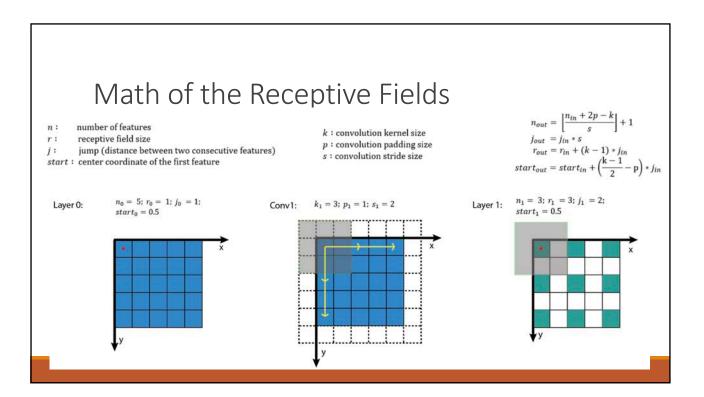
r = 1

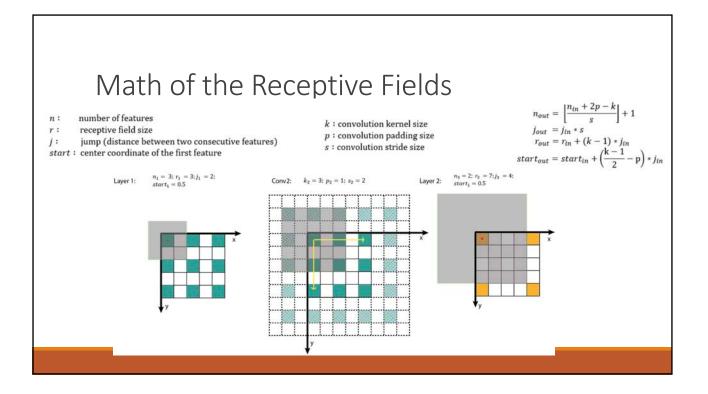
j = 1

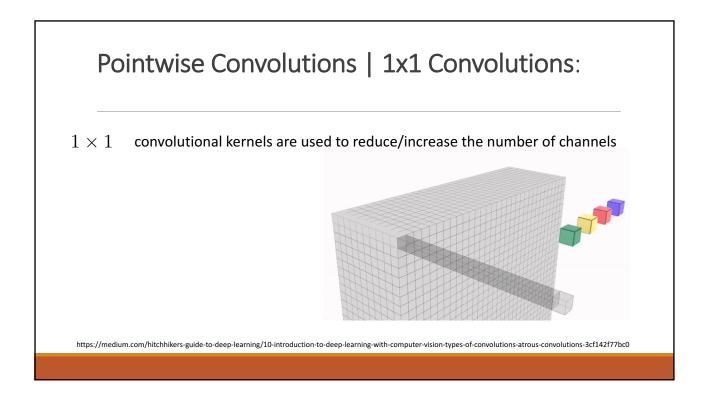
start = 0.5

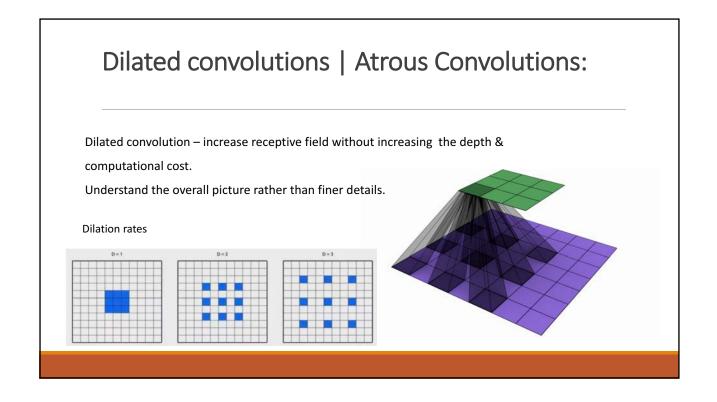
Receptive field calculator

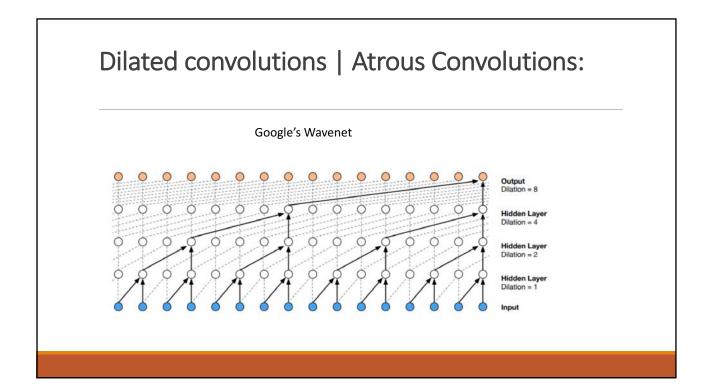
https://fomoro.com/research/article/receptive-field-calculator#











Deconvolution | Transpose convolution | Fractionally Strided Convolution:

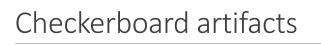
- Image data correlate
- Convolution learns these correlations
- Deconvolution "removes" pixel-wise and channel-wise

correlations before the data is fed to subsequent layers

• Deconvolution: spread out the pixels/features of the original

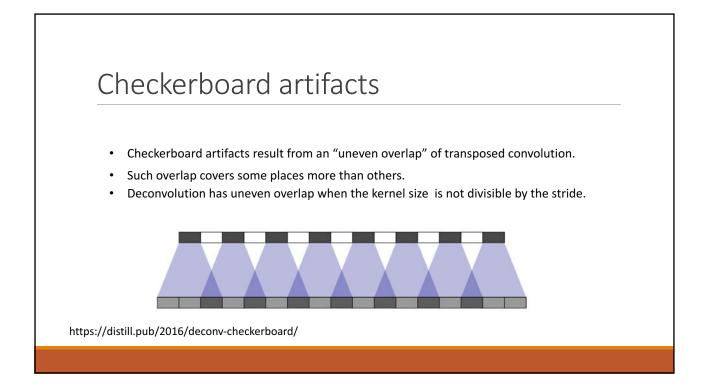
image/layer and pad the spaces with some values

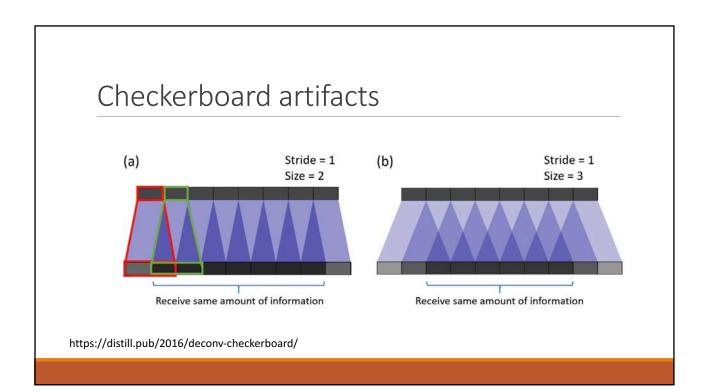
• May lead to checkerboard artifacts

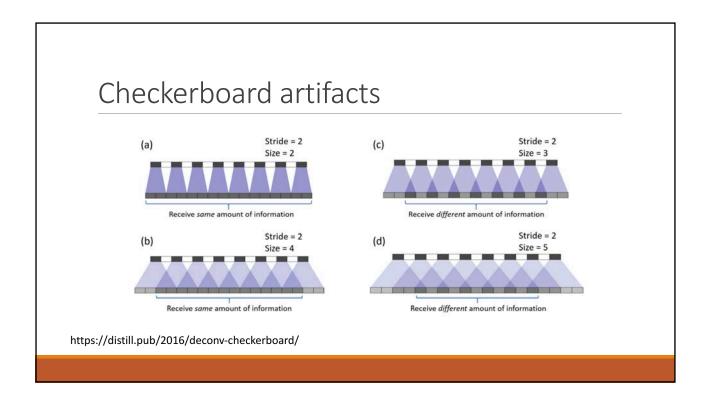


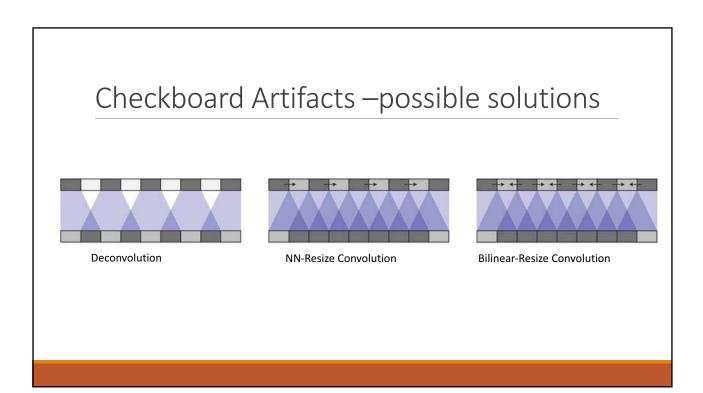
Dumoulin, et al., 2016 [4]

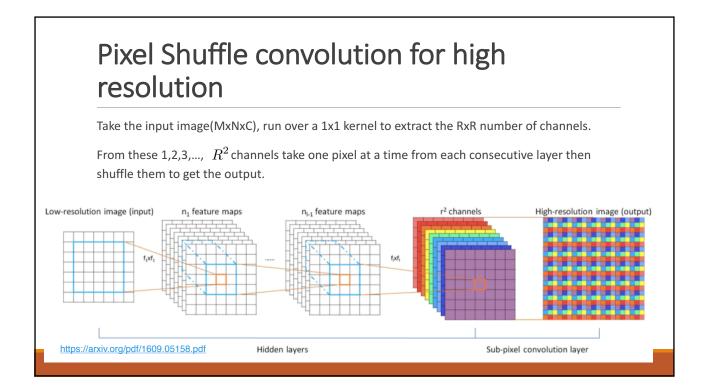
https://distill.pub/2016/deconv-checkerboard/

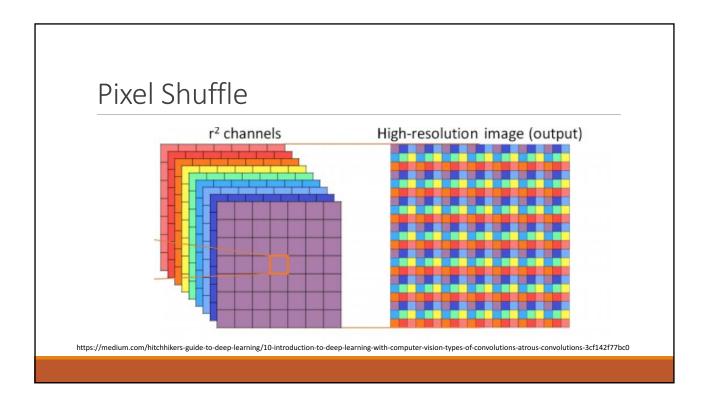


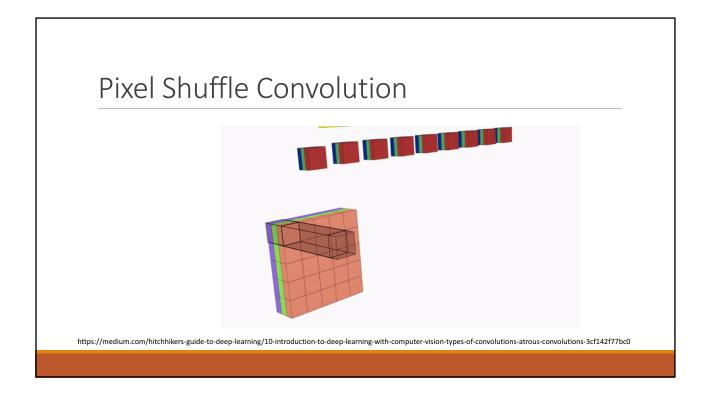




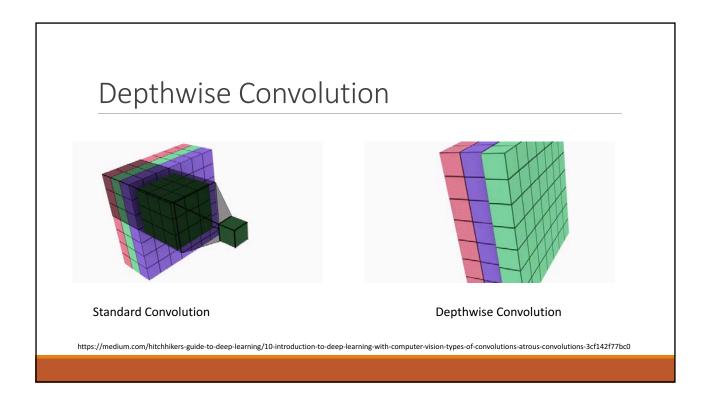


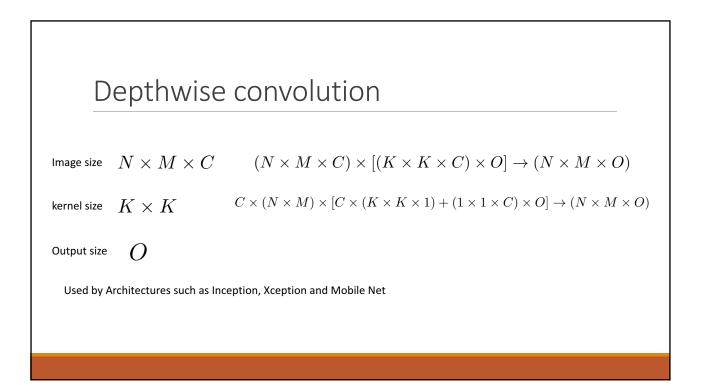




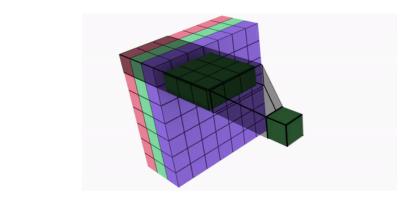








Spatially Separable Convolution



https://medium.com/hitchhikers-guide-to-deep-learning/10-introduction-to-deep-learning-with-computer-vision-types-of-convolutions-atrous-convolutions-3cf142f77bc0

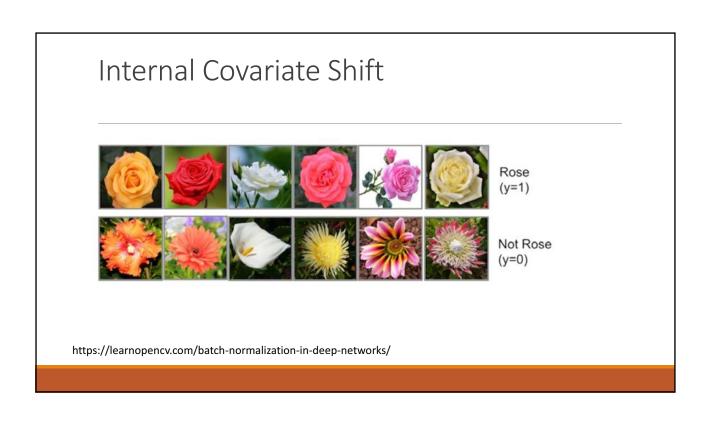
Data Types

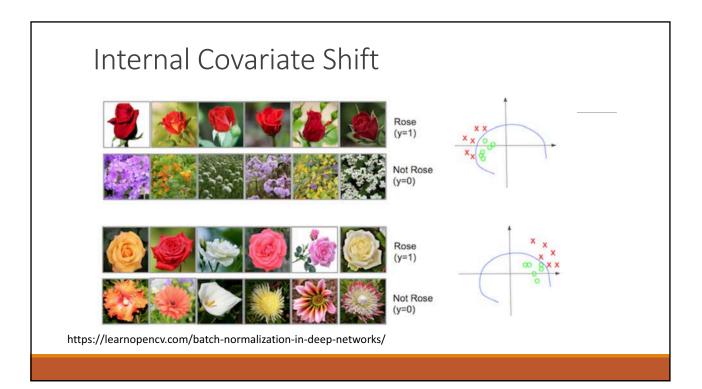
	Single Channel	Multi Channel
1D	Audio waveform	Skeleton animation data
2D	Fourier transform of Audio data	Color image data
3D	Volumetric data – e.g. CT scans	Color video data Multi-modal MRI
4D	Heart scans	

Batch Normalization

- Introduced by two researchers at Google, Sergey loffe and Christian Szegedy in their paper 'Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift' in 2015.
- They showed that batch normalization improved the top result of ImageNet (2014) by a significant margin using only 7% of the training steps
- Today, Batch Normalization is used in almost all CNN architectures.

<section-header><section-header><section-header><image><image>





Internal Covariate Shift

- **Covariate shift:** when the mini-batches have images that are not uniformly sampled from the entire distribution
- **Solution** for the input layer is to randomize the data before creating mini-batches. What about the hidden layers?
- In a neural network, each hidden unit's input distribution

changes every time there is a parameter update in the previous layer.

- Called internal covariate shift
- Makes training slow and requires a very small learning rate and a good parameter initialization
- Solution: Batch Normalization

https://learnopencv.com/batch-normalization-in-deep-networks/

Other benefits to BatchNorm

- Allows higher learning rate without vanishing or exploding gradients.
- Have a regularizing effect such that the network improves its generalization properties
- The network becomes more robust to different initialization schemes and learning rates.

Batch Normalization

- Batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs
- Ideally, the normalization would be conducted over the entire training set (obviously impractical with stochastic optimization methods).
- In practice, normalization is restrained to each mini-batch in the training process.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; CS231n Convolutional Neural Networks for be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Batch Normalization -algorithm

Use B to denote a mini-batch of size m of the entire training set.

The empirical mean and variance of B could thus be denoted as

$$\mu_B = rac{1}{m}\sum_{i=1}^m x_i$$
 , and $\sigma_B^2 = rac{1}{m}\sum_{i=1}^m (x_i-\mu_B)^2$

For a layer of the network with *d*-dimensional input, $\ x=(x^{(1)},\ldots,x^{(d)}),$

each dimension of its input is then normalized (i.e. re-centered and re-scaled) separately,

$$\hat{x}_i^{(k)} = \frac{x_i^{(k)} - \mu_B^{(k)}}{\sqrt{\sigma_B^{(k)^2} + \epsilon}}, \text{ where } k \in [1, d] \text{ and } i \in [1, m]; \quad \mu_B^{(k)} \text{ and } \sigma_B^{(k)^2} \text{ are the per-dimension mean and variance, respectively.}$$

Batch Normalization –Cont.

To restore the representation power of the network, a transformation step then follows as

$$y_{i}^{(k)}=\gamma^{(k)}\hat{x}_{i}^{(k)}+eta^{(k)}$$
 ,

where the parameters $\gamma^{(k)}$ and $\beta^{(k)}$ are subsequently learned in the optimization process.

Inference with Batch-Normalized Networks

During the training stage, the normalization steps depend on the mini-batches to ensure efficient and reliable training.

The normalization step in the inference stage is computed with the population statistics such that the output could depend on the input in a deterministic manner.

$$E[x^{(k)}]=E_B[\mu_B^{(k)}]$$
, and $\mathrm{Var}[x^{(k)}]=rac{m}{m-1}E_B[\sigma_B^{(k)^2}]$

The BN transform in the inference step thus becomes

$$y^{(k)} = BN^{ ext{inf}}_{\gamma^{(k)}, eta^{(k)}}(x^{(k)}) = rac{\gamma^{(k)}}{\sqrt{ ext{Var}[x^{(k)}] + \epsilon}} x^{(k)} + \left(eta^{(k)} - rac{\gamma^{(k)}E[x^{(k)}]}{\sqrt{ ext{Var}[x^{(k)}] + \epsilon}}
ight)$$

Since the parameters are fixed in this transformation, the batch normalization procedure is essentially applying a linear transform to the activation.